
 

 
Smale's Horseshoe Map Via Ternary Numbers
Author(s): John Banks and  Valentina Dragan
Source: SIAM Review, Vol. 36, No. 2 (Jun., 1994), pp. 265-271
Published by: Society for Industrial and Applied Mathematics
Stable URL: https://www.jstor.org/stable/2132464
Accessed: 20-11-2024 04:58 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize,
preserve and extend access to SIAM Review

This content downloaded from 74.96.4.74 on Wed, 20 Nov 2024 04:58:51 UTC
All use subject to https://about.jstor.org/terms



SIAM REVIEW ( 1994 Society for Industrial and Applied MathematicsVol. 36, No. 2, pp. 265-271, June 1994 006

SMALE'S HORSESHOE MAP VIA TERNARY NUMBERS*

JOHN BANKSt AND VALENTINA DRAGANt

Abstract. Smale's horseshoe map has become a standard example in the study of discrete dynamical systems.

Smale's horseshoe map occurs in a wide range of physical problems with chaotic dynamics on an invariant set.

Its chaotic behavior is usually shown by first conjugating it to the two-sided shift map. The authors give a more

elementary treatment of a special, but typical case. The only technical background needed is the Cantor set and its

ternary representation.

Key words. Smale's Horseshoe, chaos, dynamical systems, Cantor set, dense orbit, dense periodic points,

sensitivity to initial conditions

AMS subject classifications. 58F13, 34C35, 26A18

1. Introduction. The analysis of the van der Pol oscillator given by Cartwright and
Littlewood, and by Levinson led Smaleto invent the horseshoe map [6], [7]. Smale's horseshoe
exhibited the chaotic behavior of the van der Pol oscillator but, because of its greater simplicity,

he was able to prove structural stability. The horseshoe is now known to be present in many

systems (see, for example, [3], [4], and [8]).
Here we understand chaos in accordance with Devaney's definition: the map should have

a dense orbit, dense periodic points, and sensitivity to initial conditions [2]. The usual method

involves a rather difficult inductive argument using the geometry of the higher iterates of the

horseshoe map (see Wiggins [8, p. 423] for a complete account).
In this paper the two-dimensional problem for the horseshoe map is solved using an

approach that is an easy extension of that used for the one-dimensional tent map and is similar

to that given by Peitgen et al. [5, p. 80] for the binary representation of a related tent map.

Symbolic dynamics arises naturally from our use of ternary representation of numbers. This

approach allows us to introduce the horseshoe map to students somewhat earlier than usual.

A tent map on the Cantor set. To motivate our treatment of the horsehoe map, we first

study a simpler tent map. We define T: R -+ R by putting

I3x if x< IT(x)=( 2
3-3x ifx >

T

0 1
FIG. 1. The tent map acting on the unit interval.
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266 CLASSROOM NOTES
We study the dynamics of the map T on the set E of all points x whose iterates stay in

[0,1] (since for any other point the iterates approach -oo ).

Figure 2 suggests how to obtain E. First remove the middle third of [0, 1] and then remove

the middle third from the remaining intervals, and so on. This is the classic construction for

the Cantor Middle-Thirds Set.

T ~~~~~T 2Ta1--- 1?1?X
I I~ ~ ~ ~~~~~~~~~

FIG. 2. Intervals mapping into [0, 1] under T, T2, T3.

To actually prove that E is the Cantor set we use the representation of the Cantor set in

ternary numbers. We adopt the convention that, where there exist two alternative representa-

tions of a given number, we choose the form that ends with an infinite string of 2's, rather than

the form that ends with a 1 followed by an infinite string of 0's. The Cantor set then consists

of the numbers in [0,1] whose ternary expansions contain only 0's and 2's.

Let x = O.x1x2x3 . .. in ternary and introduce the notation x-i = 2 - xi. Multiplication
by 3 shifts x one digit to the left, and 3 = 2.222 ... in ternary. Hence

T(x) = ( xl X2X3X4... if 0 < x < I
I X1.X2X3X4... if < X < 1.2 -

Note that 1 = 1. Hence T(x) ' [0,1] if xl = 1. Otherwise, since 0 = 2 and 2 = 0,

(1) T(x)= 0.x2x3x4... if xI = 0,
0-`2x3x4 ... if xl = 2.

Hence T(x) E [0, 1] if and only if xl = 0 or 2. An easy inductive argument shows that for all
i EN,

T1(x) E [0, 1] if andonly if xi = 0 or2.

Thus x E E if and only if x is in the Cantor set and so E is the Cantor set. Hence inspection
of the formula (1) shows that T maps E into itself.

The next lemma enables us to study the behavior of T on the Cantor set E.

LEMMA 1.

T n(O.xx2x32.X ) = I 0Xn+lXn+2Xn+3 ... if Xn = 0,
X.xn+lXn+2Xn+3 ... if = 2.

Proof. The result holds for n = 1. Suppose it also holds for some n > 1. Hence

Tn+I (O.XX2 ...)= T (T(n 0.xIx2 ... ))

|T(0.Xn+lXn+2 . ..) if Xn = 0,

T(nY.x ,>n+ .. if Xn = 2
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CLASSROOM NOTES 267
I O.Xn+2Xn+3 ... if (xn = 0, xn+I = 0) or (xn = 2, xn+l = 0),

O.Xn+2Xn+3 * if (xn = 0, xn+I = 2) or (xn = 2, xn+l = 2),

I O.Xn+2Xn+3 ... if Xn+I = 0,

O.Xn+2Xn+3 ... if xn+ = 2.

The result now follows by induction.

The following Theorem shows that T is chaotic in the sense of Devaney.

THEOREM 1. The tent map T has (a) a dense set of periodic points; (b) a dense orbit; (c)
sensitive dependence on initial conditions.

Proof. (a) A point x EE of period n is one which satisfies the equation x = Tn (x). In
ternary, by Lemma 1, this equation is

0.XIX2X3... I nlXn 0.Xl+IX+2Xn +3 ... if xn = 0,O.XIX2X3. if Xn *2=
OXn+lXn+2Xn+3*** if = 2.

This leads to periodic points of the form

(2) X = O.XlX2X3 ... Xn1O0 orv-
(3) X = O. XlX2X3 . .. Xn-12Xl23***X-1- IO

where the underbrace indicates that the block of digits is to be repeated indefinitely. To show

that the set of periodic points is dense in E, let p = ?0PIP2P3 ... E E. Let E > 0 and
choose k E N so that 3-k < E. Choose a periodic point x = 0. PI P2 p3 ... pkO. This gives

-xP 3k <e

(b) Let x = O.AIA2A3 ..., where each An is a block of digits that contains every com-
bination of O's and 2's of length n preceeded by a zero: for example,

A2 = 000 002 020 022.

Now, let p = O.PIP2P3 ... E E. Let E > 0 and choose k E N so that 3-k < E. The finite
sequence of digits OPIp2p3 .p.. Pk occurs in x in the block Ak. Suppose this sequence starts
at the mth digit of x (so that xm = 0). By Lemma 1, TM (x) = . piP2p3 ... pk ... and so in
Tm (x) - p the first k digits are zero, giving I Tt (x) - pI < 3-k. Hence the orbit of x is dense.

(c) Sensitivity to initial conditions can easily be proved from first principles or by using

the result of Banks et al. [1] that (a) and (b) imply (c).

Smale's horseshoe. The version of the horseshoe map H which we will analyze acts on
the unit square by shrinking it three times vertically and stretching it three times horizontally,

then bending it back in the unit square as shown below in Fig. 3.

We study the dynamics of the map H on the set r of all points (x, y) whose iterates, both

forward and backward, stay in the unit square. Choosing the origin at the bottom left corner

we get the following formula for H for any (x, y) E r.

(3x, 1 y) if x E [0, 1],

We do not give a formula for the values of H at points that map outside the unit square as
these values are not needed.
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268 CLASSROOM NOTES

SL~~~~~~~~~~~~~~~~~- -- - - - - _l-- ----------

FIG. 3. The horseshoe map acting on the unit square.

The first component of H(x, y) is the tent map T(x). We can use the above formula to
find the inverse of H. We find that H-I (x, y) has as its second component T(y). Hence for
the forward and backward iterates of (x, y) to stay in the unit square it is necessary that the

ternary expansion of x and y contains only O's and 2's. Inspection of the formula for H(x, y)

shows that this condition is also sufficient. Hence the set r of all points whose forward and
backward iterates remain in the unit square is I: x E.

Let y = O.yIy2- ... in ternary. Since division by 3 shifts y one digit to the right and
1 = 0.222 ... in ternary,

H((X 4x2x3X 4..., O.OYIy2...) if x E [0, 1],
H(O.x1X2X399 09Y1Y 3t) |(.-2-X.* .2"2 )i x E [3X

Sincexi =Oifx E [0, 1]andx, =2ifx E [2, 1],wecanwrite

(5) H(0.xiX2X3.., 0....) = I (O.X2X3X4 ... O.XIYiy...) if xI=0,
(O. O.xij',Y2 ...) if xi =2.

Our aim is to generalize (5) to get an analogous formula for the iterates of H.

Geometrical motivation. Motivation for the desired generalization of (5) comes from
the geometric description of the horseshoe map. We will use the geometry for the first three

iterates to suggest a general formula for H' (x, y).

First iterate. Recall from Fig. 3 that H maps the two shaded vertical strips of width 1/3

to the horizontal strips of height 1/3. Figure 4 shows why in the formula (5), the first digit of

the second component of H(x, y) is xi.

Points with x 2-= map to points with Y = . ?:?::: O.xI ...

E M ] 2_0.2...
_ ~~H

Z * ?0.0....
Xi 0 2

FIG. 4. Effect of H: (x, y) -t (X, Y) on the digits.

Using the geometrical description of the map given in Fig. 3 twice shows that H2 acts on

the vertical strips as indicated in Fig. 5.
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CLASSROOM NOTES 269

|~~~~~~~~~~~~~~~~~~~~~~~~~~~~f -- - - - - ----HH
o~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - - - -D

FIG. 5. H2 maps the four vertical strips as shown. The points that map outside the unit square come from the

middle thirds of the vertical strips in Fig. 4 and are therefore deleted.

We now use the geometry of the second iterate to get a diagram for H2 analagous to Fig.

4, for H.

Second iterate. From Fig. 5, H2 maps the four shaded vertical strips of width 1/9 to the

horizontal strips of height 1/9. Figure 6 shows that the second digit of the second component

of H2(x, y) is x2 and how the first digit can then be obtained from x1.

Points with |x2- map to points with the second digit of Y = | = X2;

the first digit of Y is xi if x2 =0 but xl if x2 =2.

0l 2 yrv.21 2 0.20...
2 2 20 0.00....

2 2 0.02....X2 0 2 0 2

FIG. 6. Effect of H2 (x, y) * (X, Y) on the digits.

An overall pattern seems to be emerging here. To clarify it further, we summarize the

effect of H3 on the digits.

Third iterate. Once again, restricting the image of H3 to lie in the unit square means
removing middle thirds in the previous vertical strips in the domain of H2. This leaves eight

vertical strips in the domain of width 1/27, which under H3 will map to eight horizontal strips

of height 1/27. Figure 7 shows that the third digit of the second component of H3 (x, y) is X3

and how the first two digits can then be obtained from x1 and x2.

Points with x3 2 map to points with the third digit of Y = = X3;

the first two digits of Y are x2x1 if X3 = 0 but x-2x if X3 = 2.

Thus for n = 1, 2 and 3, we have found the first n digits of Y (which is the second component

of H(x, y)) in terms of the first n digits of x. These results, in conjunction with (5), motivate

the following lemma for the iterates of the horseshoe map.

LEMMA 2.

Hn (x,y) =I(O.Xn+lxn+2 ... O.Xn-IXn-2 ... XlXnYlY *...) if Xn = O,

(O.+1 n+2 . .n., O.Xln2 ... X Xn Y1Y2 ) if Xn = 2.
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270 CLASSROOM NOTES
Xl Z2 X3 Y

'uai --- ________0D
Z302 02002 0

FIG. 7. Effect of H3: (x, y) -H (X, Y) on the digits.

Proof. The first component of H is the tent map T. Hence the part of the formula giving

the first component of H is valid by Lemma 1. We denote the second component of HnM by

Sn and so it remains to prove that

OXnXn2. .2.XXnY 2 ---- if0x2=O2

The result holds for n = 1 by definition (5) of H. Suppose it holds for n > 1. Hence

Sn+i(x,y) = S(TN(O.xlx2 . ..*), STM(O.X1X2X3 .0y0Y23.2.))

| S(OXnlXn+2 .. . * ?Xn-lXn2 * * 0.02D.* * i x =O

I S(O.xn+1xfl+2..., O.Xn-lXn-2 ... X1XnY122...) if x,0 =02,

I0 O.X2+jX2.0 .0 . X2Xn j ... if (x0 .= 0, x" = 0),

FOG.X7+EXnf1 of *3 : * if (X, = O, Xteit = 2),

the firstco. . .xnoHi .v. . if (xb e = 2, xdot = 2),

OSXn+IXnX1 . . .X0xnYY . . . if (xn = 2, IXY2 = 0),

I O.x"x,iX. . . xix,1+iy. . . if x"+i=0O,

O l. . . ixn"+Ynl . . 2. if x = 2.

The result now follows by induction.

Lemma 2 allows us to show chaos for the horseshoe map in almost the same way as for
the tent map.

THEOREM 2. The horseshoe map H has (a) a dense set of periodic points; (b) a dense
orbit; (c) sensitive dependence on initial conditions.

Proof. (a) Since the action of H in the first coordinate is merely that of T, any periodic

point (x, y) of H with period n must have x as in (2) or (3). Using our formula for HM given

in Lemma 2 then gives y. Hence the coordinates of the periodic points are of the form

x = O. XIX2 . . .lXn1O and Y O. if _Xn n2 . . . X1O or

x=O.x1x2...x~~O-n2lyn-I...iY1O and Y=... Mif TXn 0.XnI 2XTITM..X

X = O. 1X2 . .. X"lXn1Xn-2 . .. XlXn-1? I ... if X= + O.x_x_ ..x2,l"_

Tersul nwflos by idcon

To show that the set of periodic points is dense in ;, let (p, q) E r and choose r E N so
that 3-r+l <E6. Choose

x=. = O -XIX2 ...prqrqr... ..q10 and y=O.qlq2.*.Xqrprprl * pO

x_ = 0-XX n,x n
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CLASSROOM NOTES 271
The point (x, y) then has period n = 2r + 1. Since x agrees with p to r ternary places, and
likewise y with q, it follows that 11 (x, y) - (p, q) 11 < X 3-r < E.

(b) Let x = O.B2B4B6 .... where B2n contains all blocks of the form

PI P2 ... PnOql q2 ... qn ,

where the p's and q's are 0 or 2 (for example, B2 = 000 002 200 202). Choose any y E S.
Now, given any point (p, q) E r where p = . p1p2 ... and q = O.qIq2 ... and any k E N
there is a block qkqk-I ... qI0pIp2 ... Pk in x where the middle zero is the nth digit of x. By
Lemma 2,

H n(x, y) = (O. pi P2 .. **Pk ... **. ?qIq2 ***qk ...

and so IIH (x, y) - (p, q)Ij < X 3-k. Hence the orbit of (x, y) E r is dense.
(c) This is the same as for Theorem 1.
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