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Preface

The present volume is a sequel to my earlier book, Calculus Deconstructed:
A Second Course in First-Year Calculus, published by the Mathematical
Association in 2009. I have used versions of this pair of books for severel
years in the Honors Calculus course at Tufts, a two-semester “boot camp”
intended for mathematically inclined freshmen who have been exposed to
calculus in high school. The first semester of this course, using the earlier
book, covers single-variable calculus, while the second semester, using the
present text, covers multivariate calculus. However, the present book is
designed to be able to stand alone as a text in multivariate calculus.

The treatment here continues the basic stance of its predecessor,
combining hands-on drill in techniques of calculation with rigorous
mathematical arguments. However, there are some differences in emphasis.
On one hand, the present text assumes a higher level of mathematical
sophistication on the part of the reader: there is no explicit guidance in
the rhetorical practices of mathematicians, and the theorem-proof format
is followed a little more brusquely than before. On the other hand, the
material being developed here is unfamiliar territory, for the intended
audience, to a far greater degree than in the previous text, so more effort is
expended on motivating various approaches and procedures. Where
possible, I have followed my own predilection for geometric arguments over
formal ones, although the two perspectives are naturally intertwined. At
times, this may feel like an analysis text, but I have studiously avoided the
temptation to give the general, n-dimensional versions of arguments and
results that would seem natural to a mature mathematician: the book is,
after all, aimed at the mathematical novice, and I have taken seriously the
limitation implied by the “3D” in my title. This has the advantage,
however, that many ideas can be motivated by natural geometric
arguments. I hope that this approach lays a good intuitive foundation for
further generalization that the reader will see in later courses.

Perhaps the fundamental subtext of my treatment is the way that the
theory developed for functions of one variable interacts with geometry to
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handle higher-dimension situations. The progression here, after an initial
chapter developing the tools of vector algebra in the plane and in space
(including dot products and cross products), is to first view vector-valued
functions of a single real variable in terms of parametrized curves—here,
much of the theory translates very simply in a coordinate-wise way—then
to consider real-valued functions of several variables both as functions with
a vector input and in terms of surfaces in space (and level curves in the
plane), and finally to vector fields as vector-valued functions of vector
variables. This progression is not followed perfectly, as Chapter 4 intrudes
between Chapter 3, the differential and Chapter 5, the integral calculus of
real-valued functions of several variables, to establish the
change-of-variables formula for multiple integrals.

Idiosyncracies

There are a number of ways, some apparent, some perhaps more subtle, in
which this treatment differs from the standard ones:

Parametrization: I have stressed the parametric representation of curves
and surfaces far more, and beginning somewhat earlier, than many
multivariate texts. This approach is essential for applying calculus to
geometric objects, and it is also a beautiful and satisfying interplay
between the geometric and analytic points of view. While Chapter 2
begins with a treatment of the conic sections from a classical point of
view, this is followed by a catalogue of parametrizations of these
curves, and in § 2.4 a consideration of what should constitute a curve
in general. This leads naturally to the formulation of path integrals
in § 2.5. Similarly, quadric surfaces are introduced in § 3.4 as level
sets of quadratic polynomials in three variables, and the
(three-dimensional) Implicit Function Theorem is introduced to show
that any such surface is locally the graph of a function of two
variables. The notion of parametrization of a surface is then
introduced and exploited in § 3.6 to obtain the tangent planes of
surfaces. When we get to surface integrals in § 5.4, this gives a
natural way to define and calculate surface area and surface integrals
of functions. This approach comes to full fruition in Chapter 6 in the
formulation of the integral theorems of vector calculus.

Determinants and Cross-Products: There seem to be two prevalent
approaches in the literature to introducing determinants: one is
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formal, dogmatic and brief, simply giving a recipe for calculation and
proceeding from there with little motivation for it; the other is even
more formal but elaborate, usually involving the theory of
permutations. I believe I have come up with an approach to
introducing 2× 2 and 3× 3 determinants (along with crossproducts)
which is both motivated and rigorous, in § 1.6. Starting with the
problem of calculating the area of a planar triangle from the
coordinates of its vertices, we deduce a formula which is naturally
written as the absolute value of a 2× 2 determinant; investigation of
the determinant itself leads to the notion of signed (i.e., oriented)
area (which has its own charm, and prophesies the introduction of
2-forms in Chapter 6). Going to the analogous problem in space, we
introduce the notion of an oriented area, represented by a vector
(which we ultimately take as the definition of the cross-product, an
approach taken for example by David Bressoud). We note that
oriented areas project nicely, and from the projections of an oriented
area vector onto the coordinate planes come up with the formula for
a cross-product as the expansion by minors along the first row of a
3× 3 determinant. In the present treatment, various algebraic
properties of determinants are developed as needed, and the relation
to linear independence is argued geometrically.

I have found in my classes that the majority of students have already
encountered (3× 3) matrices and determinants in high school. I have
therefore put some of the basic material about determinants in a
separate appendix (Appendix E).

“Baby” Linear Algebra: I have tried to interweave into my narrative
some of the basic ideas of linear algebra. As with determinants, I
have found that the majority of my students (but not all) have
already encountered vectors and matrices in their high school
courses, so the basic material on matrix algebra and row reduction is
covered quickly in the text but in more leisurely fashion in
Appendix D. Linear independence and spanning for vectors in
3-space are introduced from a primarily geometric point of view, and
the matrix representative of a linear function (resp. mapping) is
introduced in § 3.2 (resp. § 4.1). The most sophisticated topics from
linear algebra are eigenvectors and eigenfunctions, introduced in
connection with the (optional) Principal Axis Theorem in § 3.10.
The 2× 2 case is treated separately in § 3.7, without the use of these
tools, and the more complicated 3× 3 case can be treated as
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optional. I have chosen to include this theorem, however, both
because it leads to a nice understanding of quadratic forms (useful in
understanding the second derivative test for critical points) and
because its proof is a wonderful illustration of the synergy between
calculus (Lagrange multipliers) and algebra.

Implicit and Inverse Function Theorems: I believe these theorems
are among the most neglected major results in multivariate calculus.
They take some time to absorb, and so I think it a good idea to
introduce them at various stages in a student’s mathematical
education. In this treatment, I prove the Implicit Function Theorem
for real-valued functions of two and three variables in § 3.4, and then
formulate the Implicit Mapping Theorem for mappings R3 → R

2, as
well as the Inverse Mapping Theorem for mappings R2 → R

2 and
R
3 → R

3 in § 4.4. I use the geometric argument attributed to
Goursat by [34] rather than the more sophisticated one using the
contraction mapping theorem. Again, this is a more “hands on”
approach than the latter.

Vector Fields vs. Differential Forms: A number of relatively recent
treatments of vector calculus have been based exclusively on the
theory of differential forms, rather than the traditional formulation
using vector fields. I have tried this approach in the past, but in my
experience it confuses the students at this level, so that they end up
dealing with the theory on a blindly formal basis. By contrast, I find
it easier to motivate the operators and results of vector calculus by
treating a vector field as the velocity of a moving fluid, and so have
used this as my primary approach. However, the formalism of
differential forms is very slick as a calculational device, and so I have
also introduced it interwoven with the vector field approach. The
main strength of the differential forms approach, of course, is that it
generalizes to dimensions higher than 3; while I hint at this, it is one
place where my self-imposed limitation to “3D” is evident.

Format

In general, I have continued the format of my previous book in this one.

As before, exercises come in four flavors:

Practice Problems serve as drill in calculation.
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Theory Problems involve more ideas, either filling in gaps in the
argument in the text or extending arguments to other cases. Some of
these are a bit more sophisticated, giving details of results that are
not sufficiently central to the exposition to deserve explicit proof in
the text.

Challenge Problems require more insight or persistence than the
standard theory problems. In my class, they are entirely optional,
extra-credit assignments.

Historical Notes explore arguments from original sources. There are
many fewer of these than in the previous volume, in large part
because the history of multivariate calculus is not nearly as well
documented and studied as is the history of single-variable calculus.

I have deferred a number of involved, technical proofs to appendices,
especially from § 2.1 (to Appendix A-Appendix C), § 4.3-§ 4.4 (to
Appendix F) and § 5.3 (to Appendix G). As a result, there are more
appendices in this volume than in the previous one. To summarize their
contents:

Appendix A and Appendix B give the details of the classical
arguments in Apollonius’ treatment of conic sections and Pappus’
proof of the focus-directrix property of conics. The results
themselves are presented in § 2.1 of the text.

Appendix C carries out in detail the formulation of the equations of
conic sections from the focus-directrix property, sketched in § 2.1.

Appendix D gives a treatment of matrix algebra, row reduction, and
rank of matrices that is more leisurely and motivated than that in
the text.

Appendix E explains why 2× 2 and 3× 3 determinants can be
calculated via expansion by minors along any row or column, that
each is a multilinear function of its rows, and the relation between
determinants and singularity of matrices.

Appendix F Gives details of the proofs of the Inverse Mapping Theorem
in dimensions 2 or more, as well as of the Implicit Function Theorem
for dimensions above 2.
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Appendix G carries out the geometric argument that a coordinate
transformation “stretches” areas (or volumes) by a factor given by
integrating the Jacobian.

Appendix H presents H. Schwartz’s example showing that the definition
of arclength as the supremum of lengths of piecewise linear
approximations cannot be generalized to surface area. This helps
justify the resort to differential formalism in defining surface area in
§ 5.4.
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1
Coordinates and Vectors

1.1 Locating Points in Space

Rectangular Coordinates

The geometry of the number line R is quite straightforward: the location
of a real number x relative to other numbers is determined—and
specified—by the inequalities between it and other numbers x′: if x < x′

then x is to the left of x′, and if x > x′ then x is to the right of x′.
Furthermore, the distance between x and x′ is just the difference
△x = x′ − x (resp. x− x′) in the first (resp. second) case, a situation
summarized as the absolute value

|△x| =
∣

∣x− x′
∣

∣ .

When it comes to points in the plane, more subtle considerations are
needed. The most familiar system for locating points in the plane is a
rectangular or Cartesian coordinate system. We pick a distinguished
point called the origin and denoted O .
Now we draw two axes through the origin: the first is called the x-axis
and is by convention horizontal, while the second, or y-axis, is vertical.
We regard each axis as a copy of the real line, with the origin
corresponding to zero. Now, given a point P in the plane, we draw a
rectangle with O and P as opposite vertices, and the two edges emanating

1



2 CHAPTER 1. COORDINATES AND VECTORS

P

O

y

x

Figure 1.1: Rectangular Coordinates

from O lying along our axes (see Figure 1.1): thus, one of the vertices
between O and P is a point on the x-axis, corresponding to a number x
called the abcissa of P ; the other lies on the y-axis, and corresponds to
the ordinate y of P . We then say that the (rectangular or Cartesian)
coordinates of P are the two numbers (x, y). Note that the ordinate
(resp. abcissa) of a point on the x-axis (resp. y-axis) is zero, so the point
on the x-axis (resp. y-axis) corresponding to the number x ∈ R (resp.
y ∈ R) has coordinates (x, 0) (resp. (0, y)).

The correspondence between points of the plane and pairs of real numbers,
as their coordinates, is one-to-one (distinct points correspond to distinct
pairs of numbers, and vice-versa), and onto (every point P in the plane
corresponds to some pair of numbers (x, y), and conversely every pair of
numbers (x, y) represents the coordinates of some point P in the plane). It
will prove convenient to ignore the distinction between pairs of numbers
and points in the plane: we adopt the notation R

2 for the collection of all
pairs of real numbers, and we identify R

2 with the collection of all points
in the plane. We shall refer to “the point P (x, y)” when we mean “the
point P in the plane whose (rectangular) coordinates are (x, y)”.

The preceding description of our coordinate system did not specify which
direction along each of the axes is regarded as positive (or increasing). We
adopt the convention that (using geographic terminology) the x-axis goes
“west-to-east”, with “eastward” the increasing direction, and the y-axis
goes “south-to-north”, with “northward” increasing. Thus, points to the
“west” of the origin (and of the y-axis) have negative abcissas, and points
“south” of the origin (and of the x-axis) have negative ordinates
(Figure 1.2).

The idea of using a pair of numbers in this way to locate a point in the
plane was pioneered in the early seventeenth cenury by Pierre de Fermat
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(−,+)

(−,−)

(+,+)

(+,−)

Figure 1.2: Direction Conventions

(1601-1665) and René Descartes (1596-1650). By means of such a scheme,
a plane curve can be identified with the locus of points whose coordinates
satisfy some equation; the study of curves by analysis of the corresponding
equations, called analytic geometry, was initiated in the research of
these two men. Actually, it is a bit of an anachronism to refer to
rectangular coordinates as “Cartesian”, since both Fermat and Descartes
often used oblique coordinates, in which the axes make an angle other
than a right one.1 Furthermore, Descartes in particular didn’t really
consider the meaning of negative values for the abcissa or ordinate.
One particular advantage of a rectangular coordinate system over an
oblique one is the calculation of distances. If P and Q are points with
respective rectangular coordinates (x1, y1) and (x2, y2), then we can
introduce the point R which shares its last coordinate with P and its first
with Q—that is, R has coordinates (x2, y1) (see Figure 1.3); then the
triangle with vertices P , Q, and R has a right angle at R. Thus, the line
segment PQ is the hypotenuse, whose length |PQ| is related to the lengths
of the “legs” by Pythagoras’ Theorem

|PQ|2 = |PR|2 + |RQ|2 .
But the legs are parallel to the axes, so it is easy to see that

|PR| = |△x| = |x2 − x1|
|RQ| = |△y| = |y2 − y1|

and the distance from P to Q is related to their coordinates by

|PQ| =
√

△x2 +△y2 =
√

(x2 − x1)2 + (y2 − y1)2. (1.1)

1We shall explore some of the differences between rectangular and oblique coordinates
in Exercise 14.
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P R

Q

x1 x2△x

y1

y2

△y

Figure 1.3: Distance in the Plane

In an oblique system, the formula becomes more complicated (Exercise 14).

Coordinates in Space

The rectangular coordinate scheme extends naturally to locating points in
space. We again distinguish one point as the origin O, and draw a
horizontal plane through O, on which we construct a rectangular
coordinate system. We continue to call the coordinates in this plane x and
y, and refer to the horizontal plane through the origin as the xy-plane.
Now we draw a new z-axis vertically through O. A point P is located by
first finding the point Pxy in the xy-plane that lies on the vertical line
through P , then finding the signed “height” z of P above this point (z is
negative if P lies below the xy-plane): the rectangular coordinates of P are
the three real numbers (x, y, z), where (x, y) are the coordinates of Pxy in
the rectangular system on the xy-plane. Equivalently, we can define z as
the number corresponding to the intersection of the z-axis with the
horizontal plane through P , which we regard as obtained by moving the
xy-plane “straight up” (or down). Note the standing convention that,
when we draw pictures of space, we regard the x-axis as pointing toward
us (or slightly to our left) out of the page, the y-axis as pointing to the
right in the page, and the z-axis as pointing up in the page (Figure 1.4).

This leads to the identification of the set R3 of triples (x, y, z) of real
numbers with the points of space, which we sometimes refer to as three
dimensional space (or 3-space).

As in the plane, the distance between two points P (x1, y1, z1) and
Q(x2, y2, z2) in R

3 can be calculated by applying Pythagoras’ Theorem to
the right triangle PQR, where R(x2, y2, z1) shares its last coordinate with
P and its other coordinates with Q. Details are left to you (Exercise 12);
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x-axis

y-axis

z-axis

P (x, y, z)

z

x

y

Figure 1.4: Pictures of Space

the resulting formula is

|PQ| =
√

△x2 +△y2 +△z2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
(1.2)

In what follows, we will denote the distance between P and Q by
dist(P,Q).

Polar and Cylindrical Coordinates

Rectangular coordinates are the most familiar system for locating points,
but in problems involving rotations, it is sometimes convenient to use a
system based on the direction and distance of a point from the origin.
For points in the plane, this leads to polar coordinates. Given a point P
in the plane, we can locate it relative to the origin O as follows: think of
the line ℓ through P and O as a copy of the real line, obtained by rotating
the x-axis θ radians counterclockwise; then P corresponds to the real
number r on ℓ. The relation of the polar coordinates (r, θ) of P to its
rectangular coordinates (x, y) is illustrated in Figure 1.5, from which we
see that

x = r cos θ
y = r sin θ.

(1.3)

The derivation of Equation (1.3) from Figure 1.5 requires a pinch of salt:
we have drawn θ as an acute angle and x, y, and r as positive. In fact,
when y is negative, our triangle has a clockwise angle, which can be
interpreted as negative θ. However, as long as r is positive, relation (1.3)
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θ
x

y

P •

ℓ

O
r
→

Figure 1.5: Polar Coordinates

amounts to Euler’s definition of the trigonometric functions (Calculus
Deconstructed, p. 86). To interpret Figure 1.5 when r is negative, we move
|r| units in the opposite direction along ℓ. Notice that a reversal in the
direction of ℓ amounts to a (further) rotation by π radians, so the point
with polar coordinates (r, θ) also has polar coordinates (−r, θ + π).

In fact, while a given geometric point P has only one pair of rectangular
coordinates (x, y), it has many pairs of polar coordinates. Given (x, y), r
can be either solution (positive or negative) of the equation

r2 = x2 + y2 (1.4)

which follows from a standard trigonometric identity. The angle by which
the x-axis has been rotated to obtain ℓ determines θ only up to adding an
even multiple of π: we will tend to measure the angle by a value of θ
between 0 and 2π or between −π and π, but any appropriate real value is
allowed. Up to this ambiguity, though, we can try to find θ from the
relation

tan θ =
y

x
.

Unfortunately, this determines only the “tilt” of ℓ, not its direction: to
really determine the geometric angle of rotation (given r) we need both
equations

cos θ = x
r

sin θ = y
r .

(1.5)

Of course, either of these alone determines the angle up to a rotation by π
radians (a “flip”), and only the sign in the other equation is needed to
decide between one position of ℓ and its “flip”.
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Thus we see that the polar coordinates (r, θ) of a point P are subject to the
ambiguity that, if (r, θ) is one pair of polar coordinates for P then so are
(r, θ+2nπ) and (−r, θ+ (2n+1)π) for any integer n (positive or negative).
Finally, we see that r = 0 precisely when P is the origin, so then the line ℓ
is indeterminate: r = 0 together with any value of θ satisfies
Equation (1.3), and gives the origin.
For example, to find the polar coordinates of the point P with rectangular
coordinates (−2

√
3, 2), we first note that

r2 = (−2
√
3)2 + (2)2 = 16.

Using the positive solution of this

r = 4

we have

cos θ = −2
√
3

4
= −
√
3

2

sin θ = −2

4
=

1

2
.

The first equation says that θ is, up to adding multiples of 2π, one of
θ = 5π/6 or θ = 7π/6, while the fact that sin θ is positive picks out the
first value. So one set of polar coordinates for P is

r = 4

θ =
5π

6
+ 2nπ

where n is any integer, while another set is

r = −4

θ =

(

5π

6
+ π

)

+ 2nπ

=
11π

6
+ 2nπ.

It may be more natural to write this last expression as

θ = −π
6
+ 2nπ.
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•

θ

P•

Pxy

z

r

Figure 1.6: Cylindrical Coordinates

For problems in space involving rotations (or rotational symmetry) about a
single axis, a convenient coordinate system locates a point P relative to
the origin as follows (Figure 1.6): if P is not on the z-axis, then this axis
together with the line OP determine a (vertical) plane, which can be
regarded as the xz-plane rotated so that the x-axis moves θ radians
counterclockwise (in the horizontal plane); we take as our coordinates the
angle θ together with the abcissa and ordinate of P in this plane. The
angle θ can be identified with the polar coordinate of the projection Pxy of
P on the horizontal plane; the abcissa of P in the rotated plane is its
distance from the z-axis, which is the same as the polar coordinate r of
Pxy; and its ordinate in this plane is the same as its vertical rectangular
coordinate z.
We can think of this as a hybrid: combine the polar coordinates (r, θ) of
the projection Pxy with the vertical rectangular coordinate z of P to
obtain the cylindrical coordinates (r, θ, z) of P . Even though in
principle r could be taken as negative, in this system it is customary to
confine ourselves to r ≥ 0. The relation between the cylindrical coordinates
(r, θ, z) and the rectangular coordinates (x, y, z) of a point P is essentially
given by Equation (1.3):

x = r cos θ
y = r sin θ
z = z.

(1.6)

We have included the last relation to stress the fact that this coordinate is
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the same in both systems. The inverse relations are given by (1.4), (1.5)
and the trivial relation z = z.
The name “cylindrical coordinates” comes from the geometric fact that the
locus of the equation r = c (which in polar coordinates gives a circle of
radius c about the origin) gives a vertical cylinder whose axis of symmetry
is the z-axis with radius c.
Cylindrical coordinates carry the ambiguities of polar coordinates: a point
on the z-axis has r = 0 and θ arbitrary, while a point off the z-axis has θ
determined up to adding even multiples of π (since r is taken to be
positive).
For example, the point P with rectangular coordinates (−2

√
3, 2, 4) has

cylindrical coordinates

r = 4

θ =
5π

6
+ 2nπ

z = 4.

Spherical Coordinates

Another coordinate system in space, which is particularly useful in
problems involving rotations around various axes through the origin (for
example, astronomical observations, where the origin is at the center of the
earth) is the system of spherical coordinates. Here, a point P is located
relative to the origin O by measuring the distance of P from the origin

ρ = |OP |
together with two angles: the angle θ between the xz-plane and the plane
containing the z-axis and the line OP , and the angle φ between the
(positive) z-axis and the line OP (Figure 1.7). Of course, the spherical
coordinate θ of P is identical to the cylindrical coordinate θ, and we use
the same letter to indicate this identity. While θ is sometimes allowed to
take on all real values, it is customary in spherical coordinates to restrict φ
to 0 ≤ φ ≤ π. The relation between the cylindrical coordinates (r, θ, z) and
the spherical coordinates (ρ, θ, φ) of a point P is illustrated in Figure 1.8
(which is drawn in the vertical plane determined by θ): 2

2Be warned that in some of the engineering and physics literature the names of the
two spherical angles are reversed, leading to potential confusion when converting between
spherical and cylindrical coordinates.
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θ

φ

P•

ρ

Figure 1.7: Spherical Coordinates

P•

O

z

r

φ

ρ

Figure 1.8: Spherical vs. Cylindrical Coordinates
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r = ρ sinφ
θ = θ
z = ρ cosφ.

(1.7)

To invert these relations, we note that, since ρ ≥ 0 and 0 ≤ φ ≤ π by
convention, z and r completely determine ρ and φ:

ρ =
√
r2 + z2

θ = θ
φ = arccos zρ .

(1.8)

The ambiguities in spherical coordinates are the same as those for
cylindrical coordinates: the origin has ρ = 0 and both θ and φ arbitrary;
any other point on the z-axis (φ = 0 or φ = π) has arbitrary θ, and for
points off the z-axis, θ can (in principle) be augmented by arbitrary even
multiples of π.

Thus, the point P with cylindrical coordinates

r = 4

θ =
5π

6
z = 4

has spherical coordinates

ρ = 4
√
2

θ =
5π

6

φ =
π

4
.

Combining Equations (1.6) and (1.7), we can write the relation between
the spherical coordinates (ρ, θ, φ) of a point P and its rectangular
coordinates (x, y, z) as

x = ρ sinφ cos θ
y = ρ sinφ sin θ
z = ρ cosφ.

(1.9)

The inverse relations are a bit more complicated, but clearly, given x, y
and z,

ρ =
√

x2 + y2 + z2 (1.10)
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and φ is completely determined (if ρ 6= 0) by the last equation in (1.9),
while θ is determined by (1.4) and (1.6).
In spherical coordinates, the equation

ρ = R

describes the sphere of radius R centered at the origin, while

φ = α

describes a cone with vertex at the origin, making an angle α (resp. π − α)
with its axis, which is the positive (resp. negative) z-axis if 0 < φ < π/2
(resp. π/2 < φ < π).

Exercises for § 1.1

Practice problems:

1. Find the distance between each pair of points (the given coordinates
are rectangular):

(a) (1, 1), (0, 0)

(b) (1,−1), (−1, 1)
(c) (−1, 2), (2, 5)

(d) (1, 1, 1), (0, 0, 0)

(e) (1, 2, 3), (2, 0,−1)
(f) (3, 5, 7), (1, 7, 5)

2. What conditions on the components signify that P (x, y, z)
(rectangular coordinates) belongs to

(a) the x-axis?

(b) the y-axis?

(c) the z-axis?

(d) the xy-plane?

(e) the xz-plane?

(f) the yz-plane?

3. For each point with the given rectangular coordinates, find (i) its
cylindrical coordinates, and (ii) its spherical coordinates:
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(a) x = 0, y = 1,, z = −1
(b) x = 1, y = 1, z = 1

(c) x = 1, y =
√
3, z = 2

(d) x = 1, y =
√
3, z = −2

(e) x = −
√
3, y = 1, z = 1

4. Given the spherical coordinates of the point, find its rectangular
coordinates:

(a) ρ = 2, θ =
π

3
, φ =

π

2

(b) ρ = 1, θ =
π

4
, φ =

2π

3

(c) ρ = 2, θ =
2π

3
, φ =

π

4

(d) ρ = 1, θ =
4π

3
, φ =

π

3

5. What is the geometric meaning of each transformation (described in
cylindrical coordinates) below?

(a) (r, θ, z)→ (r, θ,−z)
(b) (r, θ, z)→ (r, θ + π, z)

(c) (r, θ, z)→ (−r, θ − π
4 , z)

6. Describe the locus of each equation (in cylindrical coordinates) below:

(a) r = 1

(b) θ = π
3

(c) z = 1

7. What is the geometric meaning of each transformation (described in
spherical coordinates) below?

(a) (ρ, θ, φ)→ (ρ, θ + π, φ)

(b) (ρ, θ, φ)→ (ρ, θ, π − φ)
(c) (ρ, θ, φ)→ (2ρ, θ + π

2 , φ)

8. Describe the locus of each equation (in spherical coordinates) below:

(a) ρ = 1
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(b) θ = π
3

(c) φ = π
3

9. Express the plane z = x in terms of (a) cylindrical and (b) spherical
coordinates.

10. What conditions on the spherical coordinates of a point signify that
it lies on

(a) the x-axis?

(b) the y-axis?

(c) the z-axis?

(d) the xy-plane?

(e) the xz-plane?

(f) the yz-plane?

11. A disc in space lies over the region x2 + y2 ≤ a2 (a > 0), and the
highest point on the disc has z = b. If P (x, y, z) is a point of the disc,
show that it has cylindrical coordinates satisfying

0 ≤ r ≤ a
0 ≤ θ ≤ 2π

z ≤ b.

Theory problems:

12. Prove the distance formula for R3 (Equation (1.2))

|PQ| =
√

△x2 +△y2 +△z2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
as follows (see Figure 1.9). Given P (x1, y1, z1) and Q(x2, y2, z2), let
R be the point which shares its last coordinate with P and its first
two coordinates with Q. Use the distance formula in R

2

(Equation (1.1)) to show that

dist(P,R) =
√

(x2 − x1)2 + (y2 − y1)2,
and then consider the triangle △PRQ. Show that the angle at R is a
right angle, and hence by Pythagoras’ Theorem again,

|PQ| =
√

|PR|2 + |RQ|2

=
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
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P (x1, y1, z1)

Q(x2, y2, z2)

R(x2, y2, z1)

△z

△x
△y

Figure 1.9: Distance in 3-Space

Challenge problem:

13. Use Pythagoras’ Theorem and the angle-summation formulas to
prove the Law of Cosines: If ABC is any triangle with sides

a = |AC|
b = |BC|
c = |AB|

and the angle at C is ∠ACB = θ, then

c2 = a2 + b2 − 2ab cos θ. (1.11)

Here is one way to proceed (see Figure 1.10) Drop a perpendicular

a b

x y

z

α β

A B

C

D

Figure 1.10: Law of Cosines

from C to AB, meeting AB at D. This divides the angle at C into
two angles, satisfying

α+ β = θ
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and divides AB into two intervals, with respective lengths

|AD| = x

|DB| = y

so

x+ y = c.

Finally, set

|CD| = z.

Now show the following:

x = a sinα

y = b sin β

z = a cosα = b cos β

and use this, together with Pythagoras’ Theorem, to conclude that

a2 + b2 = x2 + y2 + 2z2

c2 = x2 + y2 + 2xy

and hence

c2 = a2 + b2 − 2ab cos(α+ β).

See Exercise 16 for the version of this which appears in Euclid.

14. Oblique Coordinates: Consider an oblique coordinate system
on R

2, in which the vertical axis is replaced by an axis making an
angle of α radians with the horizontal one; denote the corresponding
coordinates by (u, v) (see Figure 1.11).

(a) Show that the oblique coordinates (u, v) and rectangular
coordinates (x, y) of a point are related by

x = u+ v cosα

y = v sinα.
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•P
v

u

u

vα

Figure 1.11: Oblique Coordinates

(b) Show that the distance of a point P with oblique coordinates
(u, v) from the origin is given by

dist(P,O) =
√

u2 + v2 + 2uv cosα.

(c) Show that the distance between points P (with oblique
coordinates (u1, v1)) and Q (with oblique coordinates (u2, v2)) is
given by

dist(P,Q) =
√

△u2 +△v2 + 2△u△v cosα

where

△u := u2 − u1
△v := v2 − v1.

(Hint: There are two ways to do this. One is to substitute the
expressions for the rectangular coordinates in terms of the
oblique coordinates into the standard distance formula, the
other is to use the law of cosines. Try them both. )

History note:

15. Given a right triangle with “legs” of respective lengths a and b and
hypotenuse of length c (Figure 1.12) Pythagoras’ Theorem says
that

c2 = a2 + b2.

In this problem, we outline two quite different proofs of this fact.

First Proof: Consider the pair of figures in Figure 1.13.

(a) Show that the white quadrilateral on the left is a square (that
is, show that the angles at the corners are right angles).
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a

b
c

Figure 1.12: Right-angle triangle

b a

c
b

ac

ba

cb

a c

a b

a

b

Figure 1.13: Pythagoras’ Theorem by Dissection

(b) Explain how the two figures prove Pythagoras’ theorem.

A variant of Figure 1.13 was used by the twelfth-century Indian
writer Bhāskara (b. 1114) to prove Pythagoras’ Theorem. His proof
consisted of a figure related to Figure 1.13 (without the shading)
together with the single word “Behold!”.

According to Eves [15, p. 158] and Maor [37, p. 63], reasoning based
on Figure 1.13 appears in one of the oldest Chinese mathematical
manuscripts, the Caho Pei Suang Chin, thought to date from the
Han dynasty in the third century B.C.

The Pythagorean Theorem appears as Proposition 47, Book I of
Euclid’s Elements with a different proof (see below). In his
translation of the Elements, Heath has an extensive commentary on
this theorem and its various proofs [29, vol. I, pp. 350-368]. In
particular, he (as well as Eves) notes that the proof above has been
suggested as possibly the kind of proof that Pythagoras himself
might have produced. Eves concurs with this judgement, but Heath
does not.

Second Proof: The proof above represents one tradition in proofs
of the Pythagorean Theorem, which Maor [37] calls “dissection
proofs.” A second approach is via the theory of proportions. Here is
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an example: again, suppose △ABC has a right angle at C; label the
sides with lower-case versions of the labels of the opposite vertices
(Figure 1.14) and draw a perpendicular CD from the right angle to
the hypotenuse. This cuts the hypotenuse into two pieces of
respective lengths c1 and c2, so

c = c1 + c2. (1.12)

Denote the length of CD by x.

D

C A

B

a

b

x

c1

c2

Figure 1.14: Pythagoras’ Theorem by Proportions

(a) Show that the two triangles △ACD and △CBD are both
similar to △ABC.

(b) Using the similarity of △CBD with △ABC, show that

a

c
=
c1
a

or

a2 = cc1.

(c) Using the similarity of △ACD with △ABC, show that

c

b
=

b

c2

or

b2 = cc2.
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(d) Now combine these equations with Equation (1.12) to prove
Pythagoras’ Theorem.

The basic proportions here are those that appear in Euclid’s proof of
Proposition 47, Book I of the Elements , although he arrives at these
via different reasoning. However, in Book VI, Proposition 31 , Euclid
presents a generalization of this theorem: draw any polygon using
the hypotenuse as one side; then draw similar polygons using the legs
of the triangle; Proposition 31 asserts that the sum of the areas of
the two polygons on the legs equals that of the polygon on the
hypotenuse. Euclid’s proof of this proposition is essentially the
argument given above.

16. The Law of Cosines for an acute angle is essentially given by
Proposition 13 in Book II of Euclid’s Elements[29, vol. 1, p. 406] :

In acute-angled triangles the square on the side subtending
the acute angle is less than the squares on the sides
containing the acute angle by twice the rectangle contained
by one of the sides about the acute angle, namely that on
which the perpendicular falls, and the straight line cut off
within by the perpendicular towards the acute angle.

Translated into algebraic language (see Figure 1.15, where the acute
angle is ∠ABC) this says

A

B CD

Figure 1.15: Euclid Book II, Proposition 13

|AC|2 = |CB|2 + |BA|2 − |CB| |BD| .
Explain why this is the same as the Law of Cosines.

1.2 Vectors and Their Arithmetic

Many quantities occurring in physics have a magnitude and a
direction—for example, forces, velocities, and accelerations. As a



1.2. VECTORS AND THEIR ARITHMETIC 21

prototype, we will consider displacements.

Suppose a rigid body is pushed (without being rotated) so that a
distinguished spot on it is moved from position P to position Q
(Figure 1.16). We represent this motion by a directed line segment, or

arrow, going from P to Q and denoted
−−→
PQ. Note that this arrow encodes

all the information about the motion of the whole body: that is, if we had
distinguished a different spot on the body, initially located at P ′, then its

motion would be described by an arrow
−−→
P ′Q′ parallel to

−−→
PQ and of the

same length: in other words, the important characteristics of the
displacement are its direction and magnitude, but not the location in space
of its initial or terminal points (i.e., its tail or head).

P

Q

Figure 1.16: Displacement

A second important property of displacement is the way different
displacements combine. If we first perform a displacement moving our

distinguished spot from P to Q (represented by the arrow
−−→
PQ) and then

perform a second displacement moving our spot from Q to R (represented

by the arrow
−−→
QR), the net effect is the same as if we had pushed directly

from P to R. The arrow
−→
PR representing this net displacement is formed

by putting arrow
−−→
QR with its tail at the head of

−−→
PQ and drawing the

arrow from the tail of
−−→
PQ to the head of

−−→
QR (Figure 1.17). More

generally, the net effect of several successive displacements can be found by
forming a broken path of arrows placed tail-to-head, and forming a new
arrow from the tail of the first arrow to the head of the last.

A representation of a physical (or geometric) quantity with these
characteristics is sometimes called a vectorial representation. With
respect to velocities, the “parallelogram of velocities” appears in the
Mechanica, a work incorrectly attributed to, but contemporary with,
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Figure 1.17: Combining Displacements

Aristotle (384-322 BC) [26, vol. I, p. 344], and is discussed at some length
in the Mechanics by Heron of Alexandria (ca. 75 AD) [26, vol. II, p. 348].
The vectorial nature of some physical quantities, such as velocity,
acceleration and force, was well understood and used by Isaac Newton
(1642-1727) in the Principia [41, Corollary 1, Book 1 (p. 417)]. In the late
eighteenth and early nineteenth century, Paolo Frisi (1728-1784), Leonard
Euler (1707-1783), Joseph Louis Lagrange (1736-1813), and others realized
that other physical quantities, associated with rotation of a rigid body
(torque, angular velocity, moment of a force), could also be usefully given
vectorial representations; this was developed further by Louis Poinsot
(1777-1859), Siméon Denis Poisson (1781-1840), and Jacques Binet
(1786-1856). At about the same time, various geometric quantities (e.g.,
areas of surfaces in space) were given vectorial representations by Gaetano
Giorgini (1795-1874), Simon Lhuilier (1750-1840), Jean Hachette
(1769-1834), Lazare Carnot (1753-1823)), Michel Chasles (1793-1880) and
later by Hermann Grassmann (1809-1877) and Giuseppe Peano
(1858-1932). In the early nineteenth century, vectorial representations of
complex numbers (and their extension, quaternions) were formulated by
several researchers; the term vector was coined by William Rowan
Hamilton (1805-1865) in 1853. Finally, extensive use of vectorial properties
of electromagnetic forces was made by James Clerk Maxwell (1831-1879)
and Oliver Heaviside (1850-1925) in the late nineteenth century. However,
a general theory of vectors was only formulated in the very late nineteenth
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century; the first elementary exposition was given by Edwin Bidwell
Wilson (1879-1964) in 1901 [57], based on lectures by the American
mathematical physicist Josiah Willard Gibbs (1839-1903)3 [19].
By a geometric vector in R

3 (or R2) we will mean an “arrow” which can
be moved to any position, provided its direction and length are
maintained.4 We will denote vectors with a letter surmounted by an arrow,
like this: −→v . We define two operations on vectors. The sum of two vectors
is formed by moving −→w so that its “tail” coincides in position with the
“head” of −→v , then forming the vector −→v +−→w whose tail coincides with
that of −→v and whose head coincides with that of −→w (Figure 1.18). If

−→v

−→w

−→v +
−→w

Figure 1.18: Sum of two vectors

instead we place −→w with its tail at the position previously occupied by the
tail of −→v and then move −→v so that its tail coincides with the head of −→w ,
we form −→w +−→v , and it is clear that these two configurations form a
parallelogram with diagonal

−→v +−→w = −→w +−→v
(Figure G.1). This is the commutative property of vector addition.
A second operation is scaling or multiplication of a vector by a
number. We naturally define

1−→v = −→v
2−→v = −→v +−→v
3−→v = −→v +−→v +−→v = 2−→v +−→v

and so on, and then define rational multiples by

−→v =
m

n
−→w ⇔ n−→v = m−→w ;

3I learned much of this from Sandro Caparrini [6, 7, 8]. This narrative differs from the
standard one, given by Michael Crowe [11]

4This mobility is sometimes expressed by saying it is a free vector.
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−→v

−→w

−→v
−→w

−→v +
−→w

−→w +
−→v

Figure 1.19: Parallelogram Rule (Commutativity of Vector Sums)

finally, suppose
mi

ni
→ ℓ

is a convergent sequence of rationals. For any fixed vector −→v , if we draw
arrows representing the vectors (mi/ni)

−→v with all their tails at a fixed
position, then the heads will form a convergent sequence of points along a
line, whose limit is the position for the head of ℓ−→v . Alternatively, if we
pick a unit of length, then for any vector −→v and any positive real number
r, the vector r−→v has the same direction as −→v , and its length is that of −→v
multiplied by r. For this reason, we refer to real numbers (in a vector
context) as scalars.
If

−→u = −→v +−→w
then it is natural to write

−→v = −→u −−→w
and from this (Figure 1.20) it is natural to define the negative −−→w of a
vector −→w as the vector obtained by interchanging the head and tail of −→w .
This allows us to also define multiplication of a vector −→v by any negative
real number r = − |r| as

(− |r|)−→v := |r| (−−→v )

—that is, we reverse the direction of −→v and “scale” by |r|.
Addition of vectors (and of scalars) and multiplication of vectors by scalars
have many formal similarities with addition and multiplication of numbers.
We list the major ones (the first of which has already been noted above):

• Addition of vectors is

commutative: −→v +−→w = −→w +−→v , and
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−→v

−→w−→u

−→v

-−→w−→u

−→u = −→v +−→w −→v = −→u −−→w
Figure 1.20: Difference of vectors

associative: −→u + (−→v +−→w ) = (−→u +−→v ) +−→w .

• Multiplication of vectors by scalars

distributes over vector sums: r(−→v +−→w ) = r−→w + r−→v , and
distributes over scalar sums: (r + s)−→v = r−→v + s−→v .

We will explore some of these properties further in Exercise 3.
The interpretation of displacements as vectors gives us an alternative way
to represent vectors. We will say that an arrow representing the vector −→v
is in standard position if its tail is at the origin. Note that in this case
the vector is completely determined by the position of its head, giving us a
natural correspondence between vectors −→v in R

3 (or R2) and points

P ∈ R
3 (resp. R2). −→v corresponds to P if the arrow

−−→OP from the origin to
P is a representation of −→v : that is, −→v is the vector representing that
displacement of R3 which moves the origin to P ; we refer to −→v as the
position vector of P . We shall make extensive use of the correspondence
between vectors and points, often denoting a point by its position vector
−→p ∈ R

3.
Furthermore, using rectangular coordinates we can formulate a numerical
specification of vectors in which addition and multiplication by scalars is

very easy to calculate: if −→v =
−−→OP and P has rectangular coordinates

(x, y, z), we identify the vector −→v with the triple of numbers (x, y, z) and
write −→v = (x, y, z). We refer to x, y and z as the components or entries

of −→v . Then if −→w =
−−→OQ where Q = (△x,△y,△z) (that is,

−→w = (△x,△y,△z)), we see from Figure 1.21 that

−→v +−→w = (x+△x, y +△y, z +△z);

that is, we add vectors componentwise.
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O

−→v
P (x, y, z)

−→w
−→v +
−→w

Q(△x,△y,△z)

−→w

Figure 1.21: Componentwise addition of vectors

Similarly, if r is any scalar and −→v = (x, y, z), then

r−→v = (rx, ry, rz) :

a scalar multiplies all entries of the vector.
This representation points out the presence of an exceptional vector—the
zero vector −→

0 := (0, 0, 0)

which is the result of either multiplying an arbitrary vector by the scalar
zero

0−→v =
−→
0

or of subtracting an arbitrary vector from itself

−→v −−→v =
−→
0 .

As a point,
−→
0 corresponds to the origin O itself. As an “arrow”, its tail

and head are at the same position. As a displacement, it corresponds to
not moving at all. Note in particular that the zero vector does not have a
well-defined direction—a feature which will be important to remember in
the future. From a formal, algebraic point of view, the zero vector plays
the role for vector addition that is played by the number zero for addition
of numbers: it is an additive identity element, which means that
adding it to any vector gives back that vector:

−→v +
−→
0 = −→v =

−→
0 +−→v .

A final feature that is brought out by thinking of vectors in R
3 as triples of

numbers is that we can recover the entries of a vector geometrically. Note



1.2. VECTORS AND THEIR ARITHMETIC 27

that if −→v = (x, y, z) then we can write

−→v = (x, 0, 0) + (0, y, 0) + (0, 0, z)

= x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

This means that any vector in R
3 can be expressed as a sum of scalar

multiples (or linear combination) of three specific vectors, known as the
standard basis for R3, and denoted

−→ı = (1, 0, 0)
−→ = (0, 1, 0)
−→
k = (0, 0, 1).

It is easy to see that these are the vectors of length 1 pointing along the
three (positive) coordinate axes (see Figure 1.22). Thus, every vector

x

y

z

−→ı −→

−→
k

−→v

(x)−→ı
(y)−→

(z)
−→
k

Figure 1.22: The Standard Basis for R3

−→v ∈ R
3 can be expressed as

−→v = x−→ı + y−→ + z
−→
k .

We shall find it convenient to move freely between the coordinate notation
−→v = (x, y, z) and the “arrow” notation −→v = x−→ı + y−→ + z

−→
k ; generally, we

adopt coordinate notation when −→v is regarded as a position vector, and
“arrow” notation when we want to picture it as an arrow in space.
We began by thinking of a vector −→v in R

3 as determined by its magnitude
and its direction, and have ended up thinking of it as a triple of numbers.
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To come full circle, we recall that the vector −→v = (x, y, z) has as its

standard representation the arrow
−−→OP from the origin O to the point P

with coordinates (x, y, z); thus its magnitude (or length, denoted
∣

∣

−→v
∣

∣) is
given by the distance formula

|−→v | =
√

x2 + y2 + z2.

When we want to specify the direction of −→v , we “point”, using as our
standard representation the unit vector—that is, the vector of length
1—in the direction of −→v . From the scaling property of multiplication by
real numbers, we see that the unit vector in the direction of a vector −→v
(−→v 6= −→0 ) is

u(−→v ) = 1

|−→v |
−→v .

In particular, the standard basis vectors −→ı , −→ , and −→k are unit vectors
along the (positive) coordinate axes.
This formula for unit vectors gives us an easy criterion for deciding
whether two vectors point in parallel directions. Given (nonzero5) vectors
−→v and −→w , the respective unit vectors in the same direction are

u(−→v ) = 1

|−→v |
−→v

u(−→w ) =
1

|−→w |
−→w .

The two vectors −→v and −→w point in the same direction precisely if the two
unit vectors are equal

u(−→v ) = u(−→w ) = −→u

or

−→v = |−→v | −→u
−→w = |−→w | −→u .

This can also be expressed as

−→v = λ−→w
−→w =

1

λ
−→v

5A vector is nonzero if it is not equal to the zero vector. Thus, some of its entries
can be zero, but not all of them.
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where the (positive) scalar λ is

λ =
|−→v |
|−→w | .

Similarly, the two vectors point in opposite directions if the two unit
vectors are negatives of each other, or

−→v = λ−→w
−→w =

1

λ
−→v

where the negative scalar λ is

λ = −|
−→v |
|−→w | .

So we have shown

Remark 1.2.1. For two nonzero vectors −→v = (x1, y1, z1) and−→w = (x2, y2, z2), the following are equivalent:

• −→v and −→w point in parallel or opposite directions;

• −→v = λ−→w for some nonzero scalar λ;

• −→w = λ′−→v for some nonzero scalar λ′;

• x1
x2

=
y1
y2

=
z1
z2

= λ for some nonzero scalar λ (where if one of the

entries of −→w is zero, so is the corresponding entry of −→v , and the
corresponding ratio is omitted from these equalities.)

• x2
x1

=
y2
y1

=
z2
z1

= λ′ for some nonzero scalar λ′ (where if one of the

entries of −→w is zero, so is the corresponding entry of −→v , and the
corresponding ratio is omitted from these equalities.)

The values of λ (resp. λ′) are the same wherever they appear above, and λ′

is the reciprocal of λ.

λ (hence also λ′) is positive precisely if −→v and −→w point in the same
direction, and negative precisely if they point in opposite directions.
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Two (nonzero) vectors are linearly dependent if they point in either the
same or opposite directions—that is, if we picture them as arrows from a
common initial point, then the two heads and the common tail fall on a
line (this terminology will be extended in Exercise 7—but for more than
two vectors, the condition is more complicated). Vectors which are not
linearly dependent are linearly independent.

Exercises for § 1.2

Practice problems:

1. In each part, you are given two vectors, −→v and −→w . Find (i) −→v +−→w ;
(ii) −→v −−→w ; (iii) 2−→v ; (iv) 3−→v − 2−→w ; (v) the length of −→v , ‖−→v ‖;
(vi) the unit vector −→u in the direction of −→v :

(a) −→v = (3, 4), −→w = (−1, 2)
(b) −→v = (1, 2,−2), −→w = (2,−1, 3)
(c) −→v = 2−→ı − 2−→ −−→k , −→w = 3−→ı +−→ − 2

−→
k

2. In each case below, decide whether the given vectors are linearly
dependent or linearly independent.

(a) (1, 2), (2, 4)

(b) (1, 2), (2, 1)

(c) (−1, 2), (3,−6)
(d) (−1, 2), (2, 1)
(e) (2,−2, 6), (−3, 3, 9)
(f) (−1, 1, 3), (3,−3,−9)
(g) −→ı +−→ +

−→
k , 2−→ı − 2−→ + 2

−→
k

(h) 2−→ı − 4−→ + 2
−→
k , −−→ı + 2−→ −−→k

Theory problems:

3. (a) We have seen that the commutative property of vector addition
can be interpreted via the “parallelogram rule” (Figure G.1).
Give a similar pictorial interpretation of the associative
property.

(b) Give geometric arguments for the two distributive properties of
vector arithmetic.
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(c) Show that if

a−→v =
−→
0

then either

a = 0

or

−→v =
−→
0 .

(Hint: What do you know about the relation between lengths
for −→v and a−→v ?)

(d) Show that if a vector −→v satisfies

a−→v = b−→v

where a 6= b are two specific, distinct scalars, then −→v =
−→
0 .

(e) Show that vector subtraction is not associative.

4. Polar notation for vectors:

(a) Show that any planar vector −→u of length 1 can be written in
the form

−→u = (cos θ, sin θ)

where θ is the (counterclockwise) angle between −→u and the
positive x-axis.

(b) Conclude that every nonzero planar vector −→v can be expressed
in polar form

−→v = |−→v | (cos θ, sin θ)
where θ is the (counterclockwise) angle between −→v and the
positive x-axis.

5. (a) Show that if −→v and −→w are two linearly independent vectors in
the plane, then every vector in the plane can be expressed as a
linear combination of −→v and −→w . (Hint: The independence
assumption means they point along non-parallel lines. Given a
point P in the plane, consider the parallelogram with the origin
and P as opposite vertices, and with edges parallel to −→v and −→w .
Use this to construct the linear combination.)
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(b) Now suppose −→u , −→v and −→w are three nonzero vectors in R
3. If

−→v and −→w are linearly independent, show that every vector lying
in the plane that contains the two lines through the origin
parallel to −→v and −→w can be expressed as a linear combination
of −→v and −→w . Now show that if −→u does not lie in this plane,
then every vector in R

3 can be expressed as a linear
combination of −→u , −→v and −→w .

The two statements above are summarized by saying that −→v and −→w
(resp. −→u , −→v and −→w ) span R

2 (resp. R3).

Challenge problem:

6. Show (using vector methods) that the line segment joining the
midpoints of two sides of a triangle is parallel to and has half the
length of the third side.

7. Given a collection {−→v1 ,−→v2 , . . . ,−→vk} of vectors, consider the equation
(in the unknown coefficients c1,. . . ,ck)

c1
−→v1 + c2

−→v2 + · · · + ck
−→vk =

−→
0 ; (1.13)

that is, an expression for the zero vector as a linear combination of
the given vectors. Of course, regardless of the vectors −→vi , one
solution of this is

c1 = c2 = · · · = 0;

the combination coming from this solution is called the trivial
combination of the given vectors. The collection {−→v1 ,−→v2 , . . . ,−→vk} is
linearly dependent if there exists some nontrivial combination of
these vectors—that is, a solution of Equation (1.13) with at least one
nonzero coefficient. It is linearly independent if it is not linearly
dependent—that is, if the only solution of Equation (1.13) is the
trivial one.

(a) Show that any collection of vectors which includes the zero
vector is linearly dependent.

(b) Show that a collection of two nonzero vectors {−→v1 ,−→v2} in R
3 is

linearly independent precisely if (in standard position) they
point along non-parallel lines.

(c) Show that a collection of three position vectors in R
3 is linearly

dependent precisely if at least one of them can be expressed as a
linear combination of the other two.
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(d) Show that a collection of three position vectors in R
3 is linearly

independent precisely if the corresponding points determine a
plane in space that does not pass through the origin.

(e) Show that any collection of four or more vectors in R
3 is

linearly dependent. (Hint: Use either part (a) of this problem or
part (b) of Exercise 5.)

1.3 Lines in Space

Parametrization of Lines

A line in the plane is the locus of a “linear” equation in the rectangular
coordinates x and y

Ax+By = C

where A, B and C are real constants with at least one of A and B nonzero.
A geometrically informative version of this is the slope-intercept
formula for a non-vertical line

y = mx+ b (1.14)

where the slope m is the tangent of the angle the line makes with the
horizontal and the y-intercept b is the ordinate (signed height) of its
intersection with the y-axis.

Unfortunately, neither of these schemes extends verbatim to a
three-dimensional context. In particular, the locus of a “linear” equation
in the three rectangular coordinates x, y and z

Ax+By + Cz = D

is a plane, not a line. Fortunately, though, we can use vectors to
implement the geometric thinking behind the point-slope formula (1.14).
This formula separates two pieces of geometric data which together
determine a line: the slope reflects the direction (or tilt) of the line, and
then the y-intercept distinguishes between the various parallel lines with a
given slope by specifying a point which must lie on the line. A direction in
3-space cannot be determined by a single number, but it is naturally
specified by a nonzero vector, so the three-dimensional analogue of the
slope of a line is a direction vector

−→v = a−→ı + b−→ + c
−→
k
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to which it is parallel.6 Then, to pick out one among all the lines parallel
to −→v , we specify a basepoint P0(x0, y0, z0) through which the line is
required to pass.
The points lying on the line specified by a particular direction vector −→v
and basepoint P0 are best described in terms of their position vectors.
Denote the position vector of the basepoint by

−→p0 = x0
−→ı + y0

−→ + z0
−→
k ;

then to reach any other point P (x, y, z) on the line, we travel parallel to −→v
from P0, which is to say the displacement

−−→
P0P from P0 is a scalar multiple

of the direction vector: −−→
P0P = t−→v .

The position vector −→p (t) of the point corresponding to this scalar multiple
of −→v is

−→p (t) = −→p0 + t−→v
which defines a vector-valued function of the real variable t. In terms of
coordinates, this reads

x = x0 + at

y = y0 + bt

z = z0 + ct.

We refer to the vector-valued function −→p (t) as a parametrization; the
coordinate equations are parametric equations for the line.
The vector-valued function −→p (t) can be interpreted kinematically: it gives
the position vector at time t of the moving point whose position at time
t = 0 is the basepoint P0, and which is travelling at the constant velocity
−→v . Note that to obtain the full line, we need to consider negative as well
as positive values of t—that is, the domain of the function −→p (t) is the
whole real line, −∞ < t <∞.
It is useful to keep in mind the distinction between the parametrization
−→p (t), which represents a moving point, and the line ℓ being parametrized,
which is the path of this moving point. A given line ℓ has many different
parametrizations: we can take any point on ℓ as P0, and any nonzero
vector pointing parallel to ℓ as the direction vector −→v . This ambiguity
means we need to be careful when making geometric comparisons between

6In general, we do not need to restrict ourselves to unit direction vectors; any nonzero
vector will do.
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lines given parametrically. Nonetheless, this way of presenting lines
exhibits geometric information in a very accessible form.

For example, let us consider two lines in 3-space. The first, ℓ1, is given by
the parametrization

−→p1(t) = (1,−2, 3) + t(−3,−2, 1)

or, in coordinate form,
x = 1 −3t
y = −2 −2t
z = 3 +t

while the second, ℓ2, is given in coordinate form as

x = 1 +6t
y = 4t
z = 1 −2t.

We can easily read off from this that ℓ2 has parametrization

−→p2(t) = (1, 0, 1) + t(6, 4,−2).

Comparing the two direction vectors

−→v1 = −3−→ı − 2−→ +
−→
k

−→v2 = 6−→ı + 4−→ − 2
−→
k

we see that

−→v2 = −2−→v1

so the two lines have the same direction—either they are parallel, or they
coincide. To decide which is the case, it suffices to decide whether the
basepoint of one of the lines lies on the other line. Let us see whether the
basepoint of ℓ2 −→p2(0) = (1, 0, 1)

lies on ℓ1. This means we need to see if for some value of t we have
−→p2(0) = −→p1(t), or

1 = 1 −3t
0 = −2 −2t
1 = 3 +t.
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It is easy to see that the first equation requires t = 0, the second requires
t = −1, and the third requires t = −2; there is no way we can solve all
three simultaneously. It follows that ℓ1 and ℓ2 are distinct, but parallel,
lines.

Now, consider a third line, ℓ3, given by

x = 1 +3t
y = 2 +t
z = −3 +t.

We read off its direction vector as

−→v3 = 3−→ı +−→ +
−→
k

which is clearly not a scalar multiple of the other two. This tells us
immediately that ℓ3 is different from both ℓ1 and ℓ2 (it has a different
direction). Let us ask whether ℓ2 intersects ℓ3. It might be tempting to try
to answer this by looking for a solution of the vector equation

−→p2(t) = −→p3(t)

but this would be a mistake. Remember that these two parametrizations
describe the positions of two points—one moving along ℓ2 and the other
moving along ℓ3—at time t. The equation above requires the two points to
be at the same place at the same time—in other words, it describes a
collision. But all we ask is that the two paths cross: it would suffice to
locate a place occupied by both moving points, but possibly at different
times. This means we need to distinguish the parameters appearing in the
two functions −→p2(t) and −→p3(t), by renaming one of them (say the first) as
(say) s: the vector equation we need to solve is

−→p2(s) = −→p3(t) ,

which amounts to the three equations in two unknowns

1 +6s = 1 +3t
4s = 2 +t

1 −2s = −3 +t.

The first equation can be reduced to the condition

2s = t
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and substituting this into the other two equations

2t = 2 +t
1 −t = −3 +t

we end up with the solution

t = 2

s = 1

—that is, the lines ℓ2 and ℓ3 intersect at the point

−→p2(1) = (7, 4,−1) = −→p3(2) .

Now let us apply the same process to see whether ℓ1 intersects ℓ3. The
vector equation

−→p1(s) = −→p3(t)
yields the three coordinate equations

1 −3s = 1 +3t
−2 −2s = 2 +t
3 +s = −3 +t.

You can check that these imply, respectively

s = −t
−2s = 4 +t
s = −6 +t.

Substituting the first equality into the other two yields, respectively

2t = 4 +t
−t = −6 +t

and the only value of t for which the first (resp. second) holds is,
respectively,

t = 4

t = 3.

Thus our three coordinate equations cannot be satisfied simultaneously; it
follows that ℓ1 and ℓ3 do not intersect, even though they are not parallel.
Such lines are sometimes called skew lines .
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Geometric Applications

A basic geometric fact is that any pair of distinct points determines a line.
Given two points P1(x1, y1, z1) and P2(x2, y2, z2), how do we find a
parametrization of the line ℓ they determine?

Suppose the position vectors of the two points are

−→p1 = x1
−→ı + y1

−→ + z1
−→
k

−→p2 = x2
−→ı + y2

−→ + z2
−→
k .

The vector
−−−→
P1P2 joining them lies along ℓ, so we can use it as a direction

vector:
−→v = −→p2 −−→p1 = △x−→ı +△y−→ +△z−→k

where △x = x2 − x1, △y = y2 − y1, and △z = z2 − z1. Using P1 as
basepoint, this leads to the parametrization

−→p (t) = −→p1 + t−→v
= −→p1 + t(−→p2 −−→p1)
= (1− t)−→p1 + t−→p2.

Note that we have set this up so that

−→p (0) = −→p1
−→p (1) = −→p2.

The full line ℓ through these points corresponds to allowing the parameter
to take on all real values. However, if we restrict t to the interval
0 ≤ t ≤ 1, the corresponding points fill out the line segment P1P2. Since
the point −→p (t) is travelling with constant velocity, we have the following
observations:

Remark 1.3.1 (Two-Point Formula). Suppose P1(x1, y1, z1) and
P2(x2, y2, z2) are distinct points. The line through P1 and P2 is given by
the parametrization7

−→p (t) = (1− t)−→p1 + t−→p2
7This is the parametrized form of the two-point formula for a line in the plane

determined by a pair of points.
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with coordinates

x = (1− t)x1 + tx2

y = (1− t)y1 + ty2

z = (1− t)z1 + tz2.

The line segment P1P2 consists of the points for which 0 ≤ t ≤ 1. The
value of t gives the portion of P1P2 represented by the segment P1

−→p (t); in
particular, the midpoint of P1P2 has position vector

1

2
(−→p1 +−→p2) =

(

1

2
(x1 + x2),

1

2
(y1 + y2),

1

2
(z1 + z2)

)

.

We will use these ideas to prove the following.

Theorem 1.3.2. In any triangle, the three lines joining a vertex to the
midpoint of the opposite side meet at a single point.

Proof. Label the vertices of the triangle A, B and C, and their position

vectors −→a , −→b and −→c , respectively. Label the midpoint of each side with
the name of the opposite vertex, primed; thus the midpoint of BC (the
side opposite vertex A) is A′ (see Figure 1.23). From Remark 1.3.1 we see

x

y

z

b

bb

A

A′B

B′

C

C ′

ℓA

ℓB

ℓC

−→a
−→
b −→c

Figure 1.23: Theorem 1.3.2
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that the position vectors of the midpoints of the sides are

−−→
OA′ =

1

2
(
−→
b +−→c )

−−→
OB′ =

1

2
(−→c +−→a )

−−→
OC ′ =

1

2
(−→a +

−→
b ),

and so the line ℓA through A and A′ can be parametrized (using r as the
parameter) by

−→pA(r) = (1− r)−→a +
r

2
(
−→
b +−→c ) = (1− r)−→a +

r

2

−→
b +

r

2
−→c .

Similarly, the other two lines ℓB and ℓC are parametrized by

−→pB(s) =
s

2
−→a + (1− s)−→b +

s

2
−→c

−→pC(t) =
t

2
−→a +

t

2

−→
b + (1− t)−→c .

To find the intersection of ℓA with ℓB , we need to solve the vector equation

−→pA(r) = −→pB(s)

which, written in terms of −→a , −→b and −→c is

(1− r)−→a +
r

2

−→
b +

r

2
−→c =

s

2
−→a + (1− s)−→b +

s

2
−→c .

Assuming the triangle △ABC is nondegenerate—which is to say, none of
−→a , −→b or −→c can be expressed as a linear combination of the others—this
equality can only hold if corresponding coefficients on the two sides are
equal. This leads to three equations in two unknowns

(1− r) = s

2
r

2
= (1− s)

r

2
=
s

2
.

The last equation requires

r = s
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turning the other two equations into

1− r = r

2

and leading to the solution

r = s =
2

3
.

In a similar way, the intersection of ℓB with ℓC is given by

s = t =
2

3

and so we see that the three lines ℓA, ℓB and ℓC all intersect at the point
given by

−→pA
(

2

3

)

= −→pB
(

2

3

)

= −→pC
(

2

3

)

=
1

3
−→a +

1

3

−→
b +

1

3
−→c .

The point given in the last equation is sometimes called the barycenter of
the triangle △ABC. Physically, it represents the center of mass of equal
masses placed at the three vertices of the triangle. Note that it can also be
regarded as the (vector) arithmetic average of the three position vectors
−→a , −→b and −→c . In Exercise 9, we shall explore this point of view further.

Exercises for § 1.3

Practice problems:

1. For each line in the plane described below, give (i) an equation in the
form Ax+By + C = 0, (ii) parametric equations, and (iii) a
parametric vector equation:

(a) The line with slope −1 through the origin.

(b) The line with slope −2 and y-intercept 1.

(c) The line with slope 1 and y-intercept −2.
(d) The line with slope 3 going through the point (−1, 2).
(e) The line with slope −2 going through the point (−1, 2).

2. Find the slope and y-intercept for each line given below:
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(a) 2x+ y − 3 = 0

(b) x− 2y + 4 = 0

(c) 3x+ 2y + 1 = 0

(d) y = 0

(e) x = 1

3. For each line in R
3 described below, give (i) parametric equations,

and (ii) a parametric vector equation:

(a) The line through the point (2,−1, 3) with direction vector
−→v = −−→ı + 2−→ +

−→
k .

(b) The line through the points (−1, 2,−3) and (3,−2, 1).
(c) The line through the points (2, 1, 1) and (2, 2, 2).

(d) The line through the point (1, 3,−2) parallel to the line

x = 2− 3t

y = 1 + 3t

z = 2− 2t.

4. For each pair of lines in the plane given below, decide whether they
are parallel or if not, find their point of intersection.

(a) x+ y = 3 and 3x− 3y = 3

(b) 2x− 2y = 2 and 2y − 2x = 2

(c)
x = 1 + 2t
y = −1 + t

and
x = 2− t
y = −4 + 2t

(d)
x = 2− 4t
y = −1− 2t

and
x = 1 + 2t
y = −4 + t

5. Find the points at which the line with parametrization

−→p (t) = (3 + 2t, 7 + 8t,−2 + t)

that is,

x = 3 + 2t

y = 7 + 8t

z = −2 + t

intersects each of the coordinate planes.
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6. Determine whether the given lines intersect:

(a)

x = 3t+ 2

y = t− 1

z = 6t+ 1

and

x = 3t− 1

y = t− 2

z = t;

(b)

x = t+ 4

y = 4t+ 5

z = t− 2

and

x = 2t+ 3

y = t+ 1

z = 2t− 3.

Theory problems:

7. Show that if −→u and −→v are both unit vectors, placed in standard
position, then the line through the origin parallel to −→u +−→v bisects
the angle between them.

8. The following is implicit in the proof of Book V, Proposition 4 of
Euclid’s Elements [29, pp. 85-88] . Here, we work through a proof
using vectors; we work through the proof of the same fact following
Euclid in Exercise 11

Theorem 1.3.3 (Angle Bisectors). In any triangle, the lines which
bisect the three interior angles meet in a common point.
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bA b B

b
C

ℓA

ℓB

ℓC

1/γ

1/β
1/α

−→w

−→u
−→v

Figure 1.24: Theorem 1.3.3

Note that this is different from Theorem 1.3.2 in the text.

Suppose the position vectors of the vertices A, B, and C are −→a , −→b
and −→c respectively.

(a) Show that the unit vectors pointing counterclockwise along the
edges of the triangle (see Figure 1.24) are as follows:

−→u = γ
−→
b − γ−→a

−→v = α−→c − α−→b
−→w = β−→a − β−→c

where

α =
1

|BC|
β =

1

|AC|
γ =

1

|AB|

are the reciprocals of the lengths of the sides (each length is
labelled by the Greek analogue of the name of the opposite
vertex).

(b) Show that the line ℓA bisecting the angle ∠A can be given as

−→pA(r) = (1− rβ − rγ)−→a + rγ
−→
b + rβ−→c
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and the corresponding bisectors of ∠B and ∠C are

−→pB(s) = sγ−→a + (1− sα− sγ)−→b + sα−→c
−→pC(t) = tβ−→a + tα

−→
b + (1− tα− tβ)−→c .

(c) Show that the intersection of ℓA and ℓB is given by

r =
α

αβ + βγ + γα

s =
β

αβ + βγ + γα
.

(d) Show that the intersection of ℓB and ℓC is given by

s =
β

αβ + βγ + γα

t =
γ

αβ + βγ + γα
.

(e) Conclude that all three lines meet at the point given by

−→pA
(

α

αβ + βγ + γα

)

= −→pB
(

β

αβ + βγ + γα

)

= −→pC
(

γ

αβ + βγ + γα

)

=
1

αβ + βγ + γα

(

βγ−→a + γα
−→
b + αβ−→c

)

.

Challenge problem:

9. Barycentric Coordinates: Show that if −→a , −→b and −→c are the
position vectors of the vertices of a triangle △ABC in R

3, then the
position vector v′ of every point P in that triangle (lying in the plane
determined by the vertices) can be expressed as a linear combination

of −→a , −→b and −→c

v′ = λ1
−→a + λ2

−→
b + λ3

−→c

with

0 ≤ λi ≤ 1 for i = 1, 2, 3
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and

λ1 + λ2 + λ3 = 1.

(Hint: (see Figure 1.25) Draw a line from vertex A through P , and
observe where it meets the opposite side; call this point D. Use

Remark 1.3.1 to show that the position vector
−→
d of D is a linear

combination of
−→
b and −→c , with coefficients between zero and one and

summing to 1. Then use Remark 1.3.1 again to show that v′ is a
linear combination of

−→
d and −→a .)

bA b B

b
C

b
D

b
P

Figure 1.25: Barycentric Coordinates

The numbers λi are called the barycentric coordinates of P with
respect to A, B and C. Show that P lies on an edge of the triangle
precisely if one of its barycentric coordinates is zero.

Barycentric coordinates were introduced (in a slightly different form)
by August Möbius (1790-1860)) in his book Barycentrische Calcul
(1827). His name is more commonly associated with “Möbius
transformations” in complex analysis and with the “Möbius band”
(the one-sided surface that results from joining the ends of a band
after making a half-twist) in topology.8

10. Find a line that lies entirely in the set defined by the equation
x2 + y2 − z2 = 1.

History note:

8The “Möbius band” was independently formulated by Johann Listing (1808-1882)
at about the same time—in 1858, when Möbius was 68 years old. These two are often
credited with beginning the study of topology. [33, p. 1165]
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11. Heath [29, pp. 85-88] points out that the proof of Proposition 4,
Book IV of the Elements contains the following implicit proof of
Theorem 1.3.3 (see Figure 1.26). This was proved by vector methods
in Exercise 8.

bB b C

b
A

b

D

E

F

G

Figure 1.26: Euclid’s proof of Theorem 1.3.3

(a) The lines bisecting ∠B and ∠C intersect at a point D above
BC, because of Book I, Postulate 5 (known as the Parallel
Postulate ):

That, if a straight line falling on two straight lines
make the interior angles on the same side less than two
right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles
less than the two right angles.

Why do the interior angles between BC and the two angle
bisectors add up to less than a right angle? (Hint: What do you
know about the angles of a triangle?)

(b) Drop perpendiculars from D to each edge of the triangle,
meeting the edges at E, F and G.

Show that the triangles △BFD and △BED are congruent.
(Hint: ASA—angle, side, angle!)

(c) Similarly, show that the triangles △CFD and △CGD are
congruent.

(d) Use this to show that

|DE| = |DF | = |DG| .

(e) Now draw the line DA. Show that the triangles △AGD and
△AED are congruent. (Hint: Both are right triangles; compare
one pair of legs and the hypotenuse.)
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(f) Conclude that ∠EAD = ∠GAD—which means that AD bisects
∠A. Thus D lies on all three angle bisectors.

1.4 Projection of Vectors; Dot Products

Suppose a weight is set on a ramp which is inclined θ radians from the
horizontal (Figure 1.27). The gravitational force −→g on the weight is

−→g
θ

Figure 1.27: A weight on a ramp

directed downward, and some of this is countered by the structure holding
up the ramp. The effective force on the weight can be found by expressing
−→g as a sum of two (vector) forces, −→g⊥ perpendicular to the ramp, and −→g‖
parallel to the ramp. Then −→g⊥ is cancelled by the structural forces in the
ramp, and the net unopposed force is −→g‖ , the projection of −→g in the
direction of the ramp.

To abstract this situation, recall that a direction is specified by a unit
vector. The (vector) projection of an arbitrary vector −→v in the direction
specified by the unit vector −→u is the vector

proj−→u
−→v := (|−→v | cos θ)−→u

where θ is the angle between −→u and −→v (Figure 1.28). Note that replacing

−→u
proj−→u

−→v

F

−→v
θ

Figure 1.28: Projection of a Vector
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−→u with its negative replaces θ with π− θ, and the projection is unchanged:

proj−−→u
−→v = (|−→v | cos(π − θ))(−−→u )

= (− |−→v | cos(θ))(−−→u )

= (|−→v | cos(θ))(−→u )
= proj−→u

−→v .

This means that the projection of a vector in the direction specified by −→u
depends only on the line parallel to −→u (not the direction along that line).
If −→w is any nonzero vector, we define the projection of −→v onto (the
direction of) −→w as its projection onto the unit vector −→u = −→w/ |−→w | in the
direction of −→w :

proj−→w
−→v = proj−→u

−→v =

( |−→v |
|−→w | cos θ

)

−→w . (1.15)

How do we calculate this projection from the entries of the two vectors?
To this end, we perform a theoretical detour.9

Suppose −→v = (x1, y1, z1) and
−→w = (x2, y2, z2); how do we determine the

angle θ between them? If we put them in standard position, representing
−→v by

−−→OP and −→w by
−−→OQ (Figure 1.29), then we have a triangle △OPQ

O

P (x1, y1, z1)

Q(x2, y2, z2)

a

b

c

θ

−→v
−→w

Figure 1.29: Determining the Angle θ

with angle θ at the origin, and two sides given by

a = |−→v | =
√

x21 + y21 + z21

b = |−→w | =
√

x22 + y22 + z22 .

The distance formula lets us determine the length of the third side:

c = dist(P,Q) =
√

△x2 +△y2 +△z2.
9Thanks to my student Benjamin Brooks, whose questions helped me formulate the

approach here.
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But we also have the Law of Cosines (Exercise 13):

c2 = a2 + b2 − 2ab cos θ

or

2ab cos θ = a2 + b2 − c2. (1.16)

We can compute the right-hand side of this equation by substituting the
expressions for a, b and c in terms of the entries of −→v and −→w :

a2 + b2 − c2 = (x21 + y21 + z21) + (x22 + y22 + z22)− (△x2 +△y2 +△z2).

Consider the terms involving x:

x21 + x22 −△x2 = x21 + x22 − (x1 − x2)2

= x21 + x22 − (x21 − 2x1x2 + x22)

= 2x1x2.

Similar calculations for the y- and z-coordinates allow us to conclude that

a2 + b2 − c2 = 2(x1x2 + y1y2 + z1z2)

and hence, substituting into Equation (1.16), factoring out 2, and recalling
that a = |−→v | and b = |−→w |, we have

|−→v | |−→w | cos θ = x1x2 + y1y2 + z1z2. (1.17)

This quantity, which is easily calculated from the entries of −→v and −→w (on
the right) but has a useful geometric interpretation (on the left), is called
the dot product10 of −→v and−→w . Equation (1.17) appears already (with
somewhat different notation) in Lagrange’s 1788 Méchanique Analitique
[36, N.11], and also as part of Hamilton’s definition (1847) of the product
of quaternions [24], although the scalar product of vectors was apparently
not formally identified until Wilson’s 1901 textbook [57], or more
accurately Gibbs’ earlier (1881) notes on the subject [19, p. 20].

Definition 1.4.1. Given any two vectors −→v = (x1, y1, z1) and−→w = (x2, y2, z2) in R
3, their dot product is the scalar

−→v · −→w = x1x2 + y1y2 + z1z2.

10Also the scalar product , direct product , or inner product
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This dot product exhibits a number of algebraic properties, which we leave
to you to verify (Exercise 3):

Proposition 1.4.2. The dot product has the following algebraic properties:

1. It is commutative:
−→v · −→w = −→w · −→v

2. It distributes over vector sums11:

−→u · (−→v +−→w ) = −→u · −→v +−→u · −→w

3. it respects scalar multiples:

(r−→v ) · −→w = r(−→v · −→w ) = −→v · (r−→w ).

Also, the geometric interpretation of the dot product given by
Equation (1.17) yields a number of geometric properties:

Proposition 1.4.3. The dot product has the following geometric
properties:

1. −→v · −→w = |−→v | |−→w | cos θ, where θ is the angle between the “arrows”
representing −→v and −→w .

2. −→v · −→w = 0 precisely if the arrows representing −→v and −→w are
perpendicular to each other, or if one of the vectors is the zero vector.

3. −→v · −→v = |−→v |2

4. proj−→w
−→v =

(−→v · −→w
−→w · −→w

)

−→w (provided −→w 6= −→0 ).

We note the curiosity in the second item: the dot product of the zero
vector with any vector is zero. While the zero vector has no well-defined
direction, we will find it a convenient fiction to say that the zero vector is
perpendicular to every vector, including itself.

Proof. 1. This is just Equation (1.17).

2. This is an (almost) immediate consequence: if |−→v | and |−→w | are both

nonzero (i.e., −→v 6= −→0 6= −→w ) then −→v · −→w = 0 precisely when
cos θ = 0, and this is the same as saying that −→v is perpendicular to
−→w (denoted −→v ⊥ −→w ). But if either −→v or −→w is

−→
0 , then clearly

−→v · −→w = 0 by either side of Equation (1.17).

11 In this formula, −→u is an arbitrary vector, not necessarily of unit length.
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3. This is just (1) when −→v = −→w , which in particular means θ = 0, or
cos θ = 1.

4. This follows from Equation (1.15) by substitution:

proj−→w
−→v =

( |−→v |
|−→w | cos θ

)

−→w

=

(

|−→v | |−→w |
|−→w |2

cos θ

)

−→w

=

(−→v · −→w
−→w · −→w

)

−→w .

These interpretations of the dot product make it a powerful tool for
attacking certain kinds of geometric and mechanical problems. We
consider two examples below, and others in the exercises.
Distance from a point to a line: Given a point Q with coordinate
vector −→q and a line ℓ parametrized via

−→p (t) = −→p0 + t−→v

let us calculate the distance from Q to ℓ. We will use the fact that this
distance is achieved by a line segment from Q to a point R on the line such
that QR is perpendicular to ℓ (Figure 1.30).

ℓ

b

P0

b
Q

R

−→v

−→ w

Figure 1.30: Distance from Point to Line

We have

−−→
P0Q = −→q −−→p0.
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We will denote this, for clarity, by

−→w := −→q −−→p0
−−→
P0R = proj−→v

−−→
P0Q

= proj−→v
−→w

so

|P0R| =
−→w · −→v
|−→v |

and thus by Pythagoras’ Theorem

|QR|2 = |P0Q|2 − |P0R|2

= −→w · −→w −
(−→w · −→v
|−→v |

)2

=
(−→w · −→w ) (−→v · −→v )− (−→w · −→v )2

−→v · −→v .

Another approach is outlined in Exercise 7.
Angle cosines: A natural way to try to specify the direction of a line
through the origin is to find the angles it makes with the three coordinate
axes; these are sometimes referred to as the Euler angles of the line. In
the plane, it is clear that the angle α between a line and the horizontal is
complementary to the angle β between the line and the vertical. In space,
the relation between the angles α, β and γ which a line makes with the
positive x, y, and z-axes respectively is less obvious on purely geometric
grounds. The relation

cos2 α+ cos2 β + cos2 γ = 1 (1.18)

was implicit in the work of the eighteenth-century mathematicians Joseph
Louis Lagrange (1736-1813) and Gaspard Monge (1746-1818), and
explicitly stated by Leonard Euler (1707-1783) [4, pp. 206-7]. Using vector
ideas, it is almost obvious.

Proof of Equation (1.18). Let −→u be a unit vector in the direction of the
line. Then the angles between −→u and the unit vectors along the three axes
are

−→u · −→ı = cosα
−→u · −→ = cosβ

−→u · −→k = cos γ
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from which it follows that

−→u = cosα−→ı + cos β−→ + cos γ
−→
k

or in other words

−→u = (cosα, cos β, cos γ).

But then the distance formula says that

1 = |−→u | =
√

cos2 α+ cos2 β + cos2 γ

and squaring both sides yields Equation (1.18).

Scalar Projection: The projection proj−→w
−→v of the vector −→v in the

direction of the vector −→w is itself a vector; a related quantity is the scalar
projection of −→v in the direction of −→w , also called the component of −→v
in the direction of −→w . This is defined as

comp−→w
−→v = ‖−→v ‖ cos θ

where θ is the angle between −→v and −→w ; clearly, this can also be expressed
as −→v · −→u , where

−→u :=
−→w
‖−→w ‖

is the unit vector parallel to −→w . Thus we can also write

comp−→w
−→v =

−→v · −→w
‖−→w ‖ . (1.19)

This is a scalar, whose absolute value is the length of the vector projection,
which is positive if proj−→w

−→v is parallel to −→w and negative if it points in the
opposite direction.

Exercises for § 1.4

Practice problems:

1. For each pair of vectors −→v and −→w below, find their dot product,
their lengths, the cosine of the angle between them, and the (vector)
projection of each onto the direction of the other:
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(a) −→v = (2, 3), −→w = (3, 2)

(b) −→v = (2, 3), −→w = (3,−2)
(c) −→v = (1, 0), −→w = (3, 2)

(d) −→v = (1, 0), −→w = (3, 4)

(e) −→v = (1, 2, 3), −→w = (3, 2, 1)

(f) −→v = (1, 2, 3), −→w = (3,−2, 0)
(g) −→v = (1, 2, 3), −→w = (3, 0,−1)
(h) −→v = (1, 2, 3), −→w = (1, 1,−1)

2. A point travelling at the constant velocity −→v = −→ı +−→ +
−→
k goes

through the position (2,−1, 3); what is its closest distance to (3, 1, 2)
over the whole of its path?

Theory problems:

3. Prove Proposition 1.4.2

4. The following theorem (see Figure 1.31) can be proved in two ways:

Theorem 1.4.4. In any parallelogram, the sum of the squares of the
diagonals equals the sum of the squares of the (four) sides.

O

Q

P

R

−→v
−→w

Figure 1.31: Theorem 1.4.4

(a) Prove Theorem 1.4.4 using the Law of Cosines (§ 1.2,
Exercise 13).
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(b) Prove Theorem 1.4.4 using vectors, as follows:

Place the parallelogram with one vertex at the origin: suppose
the two adjacent vertices are P and Q and the opposite vertex
is R (Figure 1.31). Represent the sides by the vectors

−→v =
−−→OP =

−−→
QR

−→w =
−−→OQ =

−→
PR.

i. Show that the diagonals are represented by

−−→OR = −→v +−→w
−−→
PQ = −→v −−→w .

ii. Show that the squares of the diagonals are

|OR|2 = |−→v +−→w |2

= |−→v |2 + 2−→v · −→w + |−→w |2

and

|PQ|2 = |−→v −−→w |2

= |−→v |2 − 2−→v · −→w + |−→w |2 .
iii. Show that

|OR|2 + |PQ|2 = 2 |−→v |2 + 2 |−→w |2 ;

but of course

|OP |2 + |PR|2 + |RQ|2 + |QO|2 = |−→v |2 + |−→w |2 + |−→v |2 + |−→w |2

= 2 |−→v |2 + 2 |−→w |2 .

5. Show that if

−→v = x−→ı + y−→

is any nonzero vector in the plane, then the vector

−→w = y−→ı − x−→

is perpendicular to −→v .
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6. Consider the line ℓ in the plane defined as the locus of the linear
equation in the two rectangular coordinates x and y

Ax+By = C.

Define the vector −→
N = A−→ı +B−→ .

(a) Show that ℓ is the set of points P whose position vector −→p
satisfies −→

N · −→p = C.

(b) Show that if −→p0 is the position vector of a specific point on the
line, then ℓ is the set of points P whose position vector −→p
satisfies −→

N · (−→p −−→p0) = 0.

(c) Show that
−→
N is perpendicular to ℓ.

7. Show that if ℓ is a line given by

Ax+By = C

then the distance from a point Q(x, y) to ℓ is given by the formula

dist(Q, ℓ) =
|Ax+By − C|√

A2 +B2
. (1.20)

(Hint: Let
−→
N be the vector given in Exercise 6, and −→p0 the position

vector of any point P0 on ℓ. Show that

dist(Q, ℓ) =
∣

∣

∣proj−→
N

−−→
P0Q

∣

∣

∣ =
∣

∣

∣proj−→
N
(−→q −−→p0)

∣

∣

∣, and interpret this in

terms of A, B, C, x and y.)

1.5 Planes

Equations of Planes

We noted earlier that the locus of a “linear” equation in the three
rectangular coordinates x, y and z

Ax+By + Cz = D (1.21)
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is a plane in space. Using the dot product, we can extract a good deal of
geometric information about this plane from Equation (1.21).

Let us form a vector from the coefficients on the left of (1.21):

−→
N = A−→ı +B−→ + C

−→
k .

Using
−→p = x−→ı + y−→ + z

−→
k

as the position vector of P (x, y, z), we see that (1.21) can be expressed as
the vector equation −→

N · −→p = D. (1.22)

In the special case that D = 0 this is the condition that
−→
N is perpendicular

to −→p . In general, for any two points P0 and P1 satisfying (1.21), the vector−−−→
P0P1 from P0 to P1, which is the difference of their position vectors

−−−→
P0P1 =

−→△p
= −→p1 −−→p0

lies in the plane, and hence satisfies

−→
N · −→△p = −→N · (−→p1 −−→p0)

=
−→
N · −→p1 −

−→
N · −→p0

= D −D = 0.

Thus, letting the second point P1 be an arbitrary point P (x, y, z) in the
plane, we have

Remark 1.5.1. If P0(x0, y0, z0) is any point whose coordinates satisfy
(1.21)

Ax0 +By0 + Cz0 = D

then the locus of Equation (1.21) is the plane through P0 perpendicular to
the normal vector −→

N := A−→ı +B−→ + C
−→
k .

This geometric characterization of a plane from an equation is similar to
the geometric characterization of a line from its parametrization: the

normal vector
−→
N formed from the left side of Equation (1.21) (by analogy

with the direction vector −→v of a parametrized line) determines the “tilt” of
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the plane, and then the right-hand side D picks out from among the planes

perpendicular to
−→
N (which are, of course, all parallel to one another) a

particular one by, in effect, determining a point that must lie in this plane.
For example, the plane P determined by the equation

2x− 3y + z = 5

is perpendicular to the normal vector

−→
N = 2−→ı − 3−→ +

−→
k .

To find an explicit point P0 in P, we can use one of many tricks. One such
trick is to fix two of the values x y and z and then substitute to see what
the third one must be. If we set

x = 0 = y,

then substitution into the equation yields

z = 5,

so we can use as our basepoint

P0(0, 0, 5)

(which is the intersection of P with the z-axis). We could find the
intersections of P with the other two axes in a similar way. Alternatively,
we could notice that

x = 1

y = −1

means that

2x− 3y = 5,

so

z = 0

and we could equally well use as our basepoint

P ′
0(1,−1, 0).
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Conversely, given a nonzero vector
−→
N and a basepoint P0(x0, y0, z0), we

can write an equation for the plane through P0 perpendicular to
−→
N in

vector form as −→
N · −→p =

−→
N · −→p0

or equivalently −→
N · (−→p −−→p0) = 0.

For example an equation for the plane through the point P0(3,−1,−5)
perpendicular to

−→
N = 4−→ı − 6−→ + 2

−→
k is

4(x− 3)− 6(y + 1) + 2(z + 5) = 0

or

4x− 6y + 2z = 8.

Note that the point P ′
0(2, 1, 3) also lies in this plane. If we used this as our

basepoint (and kept
−→
N = 4−→ı − 6−→ + 2

−→
k ) the equation

−→
N · (−→p −−→p0) = 0

would take the form

4(x− 2)− 6(y − 1) + 2(z − 3) = 0

which, you should check, is equivalent to the previous equation.

An immediate corollary of Remark 1.5.1 is

Corollary 1.5.2. The planes given by two linear equations

A1x+B1y + C1z = D1

A2x+B2y + C2z = D2

are parallel (or coincide) precisely if the two normal vectors

−→
N 1 = A1

−→ı +B1
−→ + C1

−→
k

−→
N 2 = A2

−→ı +B2
−→ + C2

−→
k

are (nonzero) scalar multiples of each other; when the normal vectors are
equal (i.e., the two left-hand sides of the two equations are the same) then
the planes coincide if D1 = D2, and otherwise they are parallel and
non-intersecting.
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For example the plane given by the equation

−6x+ 9y − 3z = 12

has normal vector
−→
N = −6−→ı + 9−→ − 3

−→
k

= −3

2
(4−→ı − 6−→ + 2

−→
k )

so multiplying the equation by −2/3, we get an equivalent equation

4x− 6y + 2z = −8

which shows that this plane is parallel to (and does not intersect) the
plane specified earlier by

4x− 6y + 2z = 8

(since 8 6= −8).
We can also use vector ideas to calculate the distance from a point
Q(x, y, z) to the plane P given by an equation

Ax+By + Cz = D.

proj−→
N

−−→
P0Q

dist(Q,P)

Q(x, y, z)

−→
N

P

P0(x0, y0, z0)

Figure 1.32: dist(Q,P)

If P0(x0, y0, z0) is any point on P (see Figure 1.32) then the
(perpendicular) distance from Q to P is the (length of the) projection of−−→
P0Q = △x−→ı +△y−→ +△z−→k in the direction of

−→
N = A−→ı +B−→ +C

−→
k

dist(Q,P) =
∣

∣

∣proj−→
N

−−→
P0Q

∣

∣

∣
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which we can calculate as

=

∣

∣

∣

−→
N · (−→q −−→p0)

∣

∣

∣

∥

∥

∥

−→
N
∥

∥

∥

=

∣

∣

∣

−→
N · −→q −−→N · −→p0

∣

∣

∣

√−→
N · −→N

=
|(Ax+By + Cz)−D|√

A2 +B2 + C2
.

For example, the distance from Q(1, 1, 2) to the plane P given by

2x− 3y + z = 5

is

dist(Q,P) = |(2)(1) − 3(1) + 1(2) − (5)|
√

22 + (−3)2 + 12

=
4√
14
.

The distance between two parallel planes is the distance from any
point Q on one of the planes to the other plane. Thus, the distance
between the parallel planes discussed earlier

4x −6y +2z = 8
−6x +9y −3z = 12

is the same as the distance from Q(3,−1,−5), which lies on the first plane,
to the second plane, or

dist(P1,P2) = dist(Q,P2)

=
|(−6)(3) + (9)(−1) + (−3)(−5) − (12)|

√

(−6)2 + (9)2 + (−3)2

=
24

3
√
14
.

Finally, the angle θ between two planes P1 and P2 can be defined as
follows (Figure 1.33): if they are parallel, the angle is zero. Otherwise,
they intersect along a line ℓ0: pick a point P0 on ℓ0, and consider the line
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ℓ2

ℓ1

ℓ0

P1

P2

P0θ

Figure 1.33: Angle between two planes

ℓ1

ℓ2

−→
N1

−→
N2

θ

θ

Figure 1.34: Angle between planes (cont’d)
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ℓi in Pi (i = 1, 2) through P0 and perpendicular to ℓ0. Then θ is by
definition the angle between ℓ1 and ℓ2.
To relate this to the equations of P1 and P2, consider the plane P0
(through P0) containing the lines ℓ1 and ℓ2. P0 is perpendicular to ℓ0 and
hence contains the arrows with tails at P0 representing the normals−→
N1 = A1

−→ı +B1
−→ + C1

−→
k (resp.

−→
N2 = A2

−→ı +B2
−→ +C2

−→
k ) to P1 (resp.

P2). But since
−→
Ni is perpendicular to ℓi for i = 1, 2, the angle between the

vectors
−→
N1 and

−→
N2 is the same as the angle between ℓ1 and ℓ2

(Figure 1.34), hence

cos θ =

−→
N1 ·
−→
N2

∣

∣

∣

−→
N1

∣

∣

∣

∣

∣

∣

−→
N2

∣

∣

∣

(1.23)

For example, the planes determined by the two equations

x +y +z = 3

x +
√
6y −z = 2

meet at angle θ, where

cos θ =

∣

∣(1, 1, 1) · (1,
√
6,−1)

∣

∣

√
12 + 12 + 12

√

12 +
√
6
2
+ (−1)2

=

∣

∣1 +
√
6− 1

∣

∣

√
3
√
8

=

√
6

2
√
6

=
1

2

so θ equals π/6 radians.

Parametrization of Planes

So far, we have dealt with planes given as loci of linear equations. This is
an implicit specification. However, there is another way to specify a plane,
which is more explicit and in closer analogy to the parametrizations we
have used to specify lines in space.
Suppose

−→v = v1
−→ı + v2

−→ + v3
−→
k

−→w = w1
−→ı + w2

−→ +w3
−→
k
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are two linearly independent vectors in R
3. If we represent them via

arrows in standard position, they determine a plane P0 through the origin.
Note that any linear combination of −→v and −→w

−→p (s, t) = s−→v + t−→w

is the position vector of some point in this plane: when s and t are both
positive, we draw the parallelogram with one vertex at the origin, one pair
of sides parallel to −→v , of length s |−→v |, and the other pair of sides parallel
to −→w , with length t |−→w | (Figure 1.35). Then −→p (s, t) is the vertex opposite

−→v

−→w

t−→w

s−→v

−→p (s, t)

Figure 1.35: Linear Combination

the origin in this parallelogram. Conversely, the position vector of any
point P in P0 can be expressed uniquely as a linear combination of −→v and
−→w . We leave it to you to complete the details (see Exercise 5 in § 1.2).

Remark 1.5.3. If −→v and −→w are linearly independent vectors in R
3, then

the set of all linear combinations of −→v and −→w

P0 (−→v ,−→w ) := {s−→v + t−→w | s, t ∈ R}

is the set of position vectors for points in the plane (through the origin)
determined by −→v and −→w , called the span of −→v and −→w .
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Suppose now we want to describe a plane P parallel to P0 (−→v ,−→w ), but
going through an arbitrarily given basepoint P0(x0, y0, z0). If we let

−→p0 = x0
−→ı + y0

−→ + z0
−→
k

be the position vector of P0, then displacement by −→p0 moves the origin O
to P0 and the plane P0 (−→v ,−→w ) to the plane P through P0 parallel to
P0 (−→v ,−→w ). It is clear from Remark 1.5.3 that the position vector

−→p = x−→ı + y−→ + z
−→
k

of every point in P can be expressed as −→p0 plus some linear combination of
−→v and −→w

−→p (s, t) = −→p0 + s−→v + t−→w (1.24)

or






x = x0 +sv1 +tw1

y = y0 +sv2 +tw2

z = z0 +sv3 +tw3

(1.25)

for a unique pair of scalars s, t ∈ R. These scalars form an oblique
coordinate system for points in the plane P. Equivalently, we can regard
these equations as defining a vector-valued function −→p (s, t) which
assigns to each point (s, t) in the “st-plane” a point −→p (s, t) of the plane P
in R

3. This is a parametrization of the plane P; by contrast with the
parametrization of a line, which uses one parameter t, this uses two
parameters, s and t.
We can use this to parametrize the plane determined by any three
noncollinear points. Suppose △PQR is a nondegenerate triangle in R

3. Set

−→p0 =
−−→OP ,

the position vector of the vertex P , and let

−→v =
−−→
PQ

and

−→w =
−→
PR

be two vectors representing the sides of the triangle at this vertex. Then
the parametrization

−→p (s, t) = −→p0 + s−→v + t−→w
=
−−→OP + s

−−→
PQ+ t

−→
PR
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describes the plane containing our triangle; the vertices have position
vectors

−−→OP = −→p0 = −→p (0, 0)
−−→OQ = −→p0 +−→v = −→p (1, 0)
−−→OR = −→p0−→w = −→p (0, 1) .

For example, the three points one unit out along the three (positive)
coordinate axes

P (1, 0, 0) (
−−→OP = −→ı )

Q(0, 1, 0) (
−−→OQ = −→ )

R(0, 0, 1) (
−−→OR =

−→
k )

determine the plane with parametrization

−→p (s, t) = −→ı + s(−→ −−→ı ) + t(
−→
k −−→ı )

or
x = 1 −s −t
y = s
z = t.

To see whether the point P (3, 1,−3) lies in this plane, we can try to solve

3 = 1 −s −t
1 = s
−3 = t;

it is clear that the values of s and t given by the second and third
equations also satisfy the first, so P does indeed lie in the plane through
−→ı , −→ and

−→
k : −−→OP = −→p (1,−3) .

Given a linear equation, we can parametrize its locus by finding three
noncollinear points on the locus and using the procedure above. For
example, to parametrize the plane given by

3x− 2y + 4z = 12

we need to find three noncollinear points in this plane. If we set

y = z = 0,
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we have

x = 4,

and so we can take our basepoint P to be (4, 0, 0), or

−→p0 = 4−→ı .

To find two other points, we could note that if

x = 4

then

−2y + 4z = 0,

so any choice with y = 2z will work, for example Q(4, 2, 1), or

−→v =
−−→
PQ = 2−→ +

−→
k

gives one such point. Unfortunately, any third point given by this scheme
will produce −→w a scalar multiple of −→v , so won’t work. However, if we set

x = 0

we have

−2y + 4z = 12,

and one solution of this is

y = −4,
z = 1,

so R(0,−4, 1) works, with

−→w =
−→
PR = −4−→ı − 4−→ +

−→
k .

This leads to the parametrization

−→p (s, t) = 4−→ı + s(2−→ +
−→
k ) + t(−4−→ı − 4−→ +

−→
k )
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or
x = 4 −4t
y = 2s −4t
z = s +t.

A different parametrization results from setting coordinates equal to zero
in pairs: this yields the same basepoint, P (4, 0, 0), but two new points,
Q(0,−6, 0), R(0, 0, 3). Then

−→p (s, t) = 4−→ı + s(−4−→ı − 6−→ ) + t(−4−→ı + 3
−→
k )

or
x = 4 −4s −4t
y = −6s
z = 3t.

The converse problem—given a parametrization of a plane, to find an
equation describing it—can sometimes be solved easily: for example, the

plane through −→ı , −→ and
−→
k easily leads to the relation x+ y + z = 1.

However, in general, it will be easier to handle this problem using cross
products (§ 1.6).

Exercises for § 1.5

Practice problems:

1. Write an equation for the plane through P perpendicular to
−→
N :

(a) P (2,−1, 3),−→
N = −→ı +−→ +

−→
k

(b) P (1, 1, 1),−→
N = 2−→ı −−→ +

−→
k

(c) P (3, 2, 1),
−→
N = −→

2. Find a point P on the given plane, and a vector normal to the plane:

(a) 3x+ y − 2z = 1 (b) x− 2y + 3z = 5

(c) 5x− 4y + z = 8 (d) z = 2x+ 3y + 1

(e) x = 5

3. Find a parametrization of each plane below:

(a) 2x+ 3y − z = 4 (b) z = 4x+ 5y + 1

(c) x = 5
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4. Find an equation for the plane through the point (2,−1, 2)

(a) parallel to the plane 3x+ 2y + z = 1

(b) perpendicular to the line given by

x = 3− t
y = 1− 3t

z = 2t.

5. Find the distance from the point (3, 2, 1) to the plane x− y + z = 5.

6. Find the angle between P1 and P2:

(a)

P1 : 2x+ y − z = 4

P2 : 2x− y + 3z = 3

(b)

P1 : 2x+ 2y + 2
√
6z = 1

P2 :
√
3x+

√
3y +

√
2z =

√
5

Theory problems:

7. (a) Show: If

−→p (t) = −→p0 + t−→v
−→q (t) = −→p0 + t−→w

are parametrizations of two distinct lines in P, both going
through a point P0 (with position vector −→p0), then

−→p (s, t) = −→p0 + s−→v + t−→w

is a parametrization of the plane P.



1.6. CROSS PRODUCTS 71

(b) Suppose an equation for P is

Ax+By + Cz = D

with C 6= 0. Show that the intersections of P with the xz-plane
and yz-plane are given by

z = −A
C
x+

D

C

z = −B
C
y +

D

C

and combine this with (a) to get a parametrization of P.
(c) Apply this to the plane x+ 2y + 3z = 9.

8. Find an equation for the plane P parametrized by

x = 2 + s− t
y = 1− s+ 2t

z = 3 + 2s− t.

1.6 Cross Products

Oriented Areas in the Plane

The standard formula for the area of a triangle

A =
1

2
bh, (1.26)

where b is the “base” length and h is the “height”, is not always
convenient to apply. Often we are presented with either the lengths of the
three sides or the coordinates of the vertices (from which these lengths are
easily calculated); in either case we can take a convenient side as the base,
but calculating the height—the perpendicular distance from the base to
the opposite vertex—can require some work.
In Exercise 5 we will derive a vector formula for the area of a triangle
based on the discussion (p. 52) of the distance from a point to a line, and
in Exercise 16 and Exercise 17 we will consider two area formulas given by
Heron of Alexandria (ca. 75 AD) in his Metrica.
Here, however, we will concentrate on finding a formula for the area of a
triangle in R

2 in terms of the coordinates of its vertices. Suppose the
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vertices are A(a1, a2), B(b1, b2), and C(c1, c2). Using the side AB as the

base, we have b =
∣

∣

∣

−−→
AB
∣

∣

∣ and, letting θ be the angle at vertex A,

h =
∣

∣

∣

−→
AC
∣

∣

∣ sin θ, so

A (△ABC) =
1

2

∣

∣

∣

−−→
AB
∣

∣

∣

∣

∣

∣

−→
AC
∣

∣

∣ sin θ.

To express this in terms of the coordinates of the vertices, note that
−−→
AB = △xB−→ı +△yB−→

where

△xB = b1 − a1
△yB = b2 − a2

and similarly

−→
AC = △xC−→ı +△yC−→ .

Recall (Exercise 4 in § 1.2) that any vector −→v = x−→ı + y−→ in the plane
can also be written in “polar” form as

−→v = |−→v | (cos θv−→ı + sin θv
−→ )

where θv is the counterclockwise angle between −→v and the horizontal

vector −→ı . Thus, the angle between
−−→
AB and

−→
AC is

θ = θ2 − θ1
where θ1 and θ2 are the angles between −→ı and each of the vectors

−−→
AB,−→

AC, and
θ2 > θ1.

But the formula for the sine of a sum of angles gives us

sin θ = cos θ1 sin θ2 − cos θ2 sin θ1.

Thus, if θC > θB we have

A (△ABC) =
1

2

∣

∣

∣

−−→
AB
∣

∣

∣

∣

∣

∣

−→
AC
∣

∣

∣
sin θ

=
1

2

∣

∣

∣

−−→
AB
∣

∣

∣

∣

∣

∣

−→
AC
∣

∣

∣
(cos θB sin θC − cos θC sin θB)

=
1

2

[

(
∣

∣

∣

−−→
AB
∣

∣

∣ cos θB)(
∣

∣

∣

−→
AC
∣

∣

∣ sin θC)− (
∣

∣

∣

−→
AC
∣

∣

∣ cos θC)(
∣

∣

∣

−−→
AB
∣

∣

∣ sin θB)
]

=
1

2
[△xB△yC −△xC△yB].
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The condition θC > θB means that the direction of
−→
AC is a

counterclockwise rotation (by an angle between 0 and π radians) from that

of
−−→
AB; if the rotation from

−−→
AB to

−→
AC is clockwise, then the two vectors

trade places—or equivalently, the expression above gives us minus the area
of △ABC.
The expression in brackets is easier to remember using a “visual” notation.
An array of four numbers

[

x1 y1
x2 y2

]

in two horizontal rows, with the entries vertically aligned in columns, is
called a 2 × 2 matrix12. The determinant of a 2× 2 matrix is the
product x1y2 of the downward diagonal minus the product x2y1 of the
upward diagonal. We denote the determinant by replacing the brackets
surrounding the array with vertical bars:13

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

= x1y2 − x2y1.

It is also convenient to sometimes treat the determinant as a function of its
rows, which we think of as vectors:

−→vi = xi
−→ı + yi

−→ , i = 1, 2;

treated this way, the determinant will be denoted

∆ (−→v1 ,−→v2) =
∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

.

If we are simply given the coordinates of the vertices of a triangle in the
plane, without a picture of the triangle, we can pick one of the
vertices—call it A—and calculate the vectors to the other two
vertices—call them B and C—and then take half the determinant. This
will equal the area of the triangle up to sign:

1

2

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

= σ(A,B,C)A (△ABC) , (1.27)

where σ(A,B,C) = ±1 depending on the direction of rotation from
−−→
AB to−→

AC. We refer to σ(A,B,C) as the orientation of the triangle (so an

12pronounced “two by two matrix”
13When a matrix is given a letter name—say A—we name its determinant det A.
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oriented triangle is one whose vertices have been assigned a specific
order) and the quantity σ(A,B,C)A (△ABC) as the signed area of the
oriented triangle. You should verify that the oriented triangle △ABC has
positive orientation precisely if going from A to B to C and then back
to A constitutes a counterclockwise transversal of its periphery, and a
negative orientation if this traversal is clockwise. Thus the orientation is
determined by the “cyclic order” of the vertices: a cyclic permutation
(moving everything one space over, and putting the entry that falls off the
end at the beginning) doesn’t change the orientation:

σ(A,B,C) = σ(B,C,A) = σ(C,A,B) .

For example, the triangle with vertices A(2,−3), B(4,−2) and C(3,−1),
shown in Figure 1.36, has

−−→
AB = 2−→ı +−→
−→
AC = −→ı + 2−→

and its signed area is

1

2

∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

=
1

2
[(2)(2) − (1)(1)]

=
1

2
[4− 1]

=
3

2
;

you can verify from Figure 1.36 that the path A 7→ B 7→ C 7→ A traverses
the triangle counterclockwise.
The triangle with vertices A(−3, 4), B(−2, 5) and C(−1, 3) (Figure 1.37)
has

−−→
AB = −→ı +−→
−→
AC = 2−→ı −−→

and its signed area is

1

2

∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

=
1

2
[(1)(−1) − (2)(1)]

=
1

2
[−1− 2]

= −3

2
;
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-1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

b

A(2,−3)

b

B(4,−2)

b

C(3,−1)

Figure 1.36: Oriented Triangle △ABC, Positive Orientation

you can verify from Figure 1.37 that the path A 7→ B 7→ C 7→ A traverses
the triangle clockwise.

Finally, the triangle with vertices A(2, 4), B(4, 5) and C(3, 3) (Figure 1.38)
has

−−→
AB = 2−→ı +−→
−→
AC = −→ı −−→

and its signed area is

1

2

∣

∣

∣

∣

2 1
1 −1

∣

∣

∣

∣

=
1

2
[(2)(−1) − (1)(1)]

=
1

2
[−2− 1]

= −3

2
;

you can verify from Figure 1.38 that the path A 7→ B 7→ C 7→ A traverses
the triangle clockwise.

These ideas can be extended to polygons in the plane: for example, a
quadrilateral with vertices A, B, C and D is positively (resp. negatively)
oriented if the vertices in this order are consecutive in the counterclockwise
(resp. clockwise) direction (Figure 1.39) and we can define its signed area
as the area (resp. minus the area). By cutting the quadrilateral into two
triangles with a diagonal, and using Equation (1.27) on each, we can
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-3 -2 -1 0 1
-1

0

1

2

3

4

5

6

b

A(−3, 4)

b

B(−2, 5)

b

C(−1, 3)

Figure 1.37: Oriented Triangle △ABC, Negative Orientation

-1 0 1 2 3 4
-1

0

1

2

3

4

5

6

b
A(2, 4)

b
B(4, 5)

b

C(3, 3)

Figure 1.38: Oriented Triangle △ABC, Negative Orientation
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b

A

b

B

b
C

b
D

+

b

A

b

D

b
C

b
B

−

Figure 1.39: Oriented Quadrilaterals

calculate its signed area from the coordinates of its vertices. This will be
explored in Exercises 10-14.
For the moment, though, we consider a very special case. Suppose we have
two nonzero vectors

−→v1 = x1
−→ı + y1

−→
−→v2 = x2

−→ı + y2
−→ .

Then the determinant using these rows

∆ (−→v1 ,−→v2) =
∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

.

can be interpreted geometrically as follows. Let P (x1, y1) and Q(x2, y2) be
the points with position vectors −→v1 and −→v2 , respectively, and let
R(x1 + x2, y1 + y2) be the point whose position vector is −→v1 +−→v2
(Figure 1.40). Then the signed area of △OPQ equals 1

2∆(−→v1 ,−→v2); but note

b

O

b

P

b
R

b
Q

−→v1

−→v2

Figure 1.40: Proposition 1.6.1
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that the parallelogram OPRQ has the same orientation as the triangles
△OPQ and △PRQ, and these two triangles △OPQ and △PRQ are
congruent, hence have the same area. Thus the signed area of the
parallelogram OPRQ is twice the signed area of △OPQ; in other words

Proposition 1.6.1. The 2× 2 determinant

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

is the signed area of the parallelogram OPRQ, where

−−→OP = x1
−→ı + y1

−→
−−→OQ = x2

−→ı + y2
−→

and

−−→OR =
−−→OP +

−−→OQ.

Let us note several properties of the determinant ∆ (−→v ,−→w ) which make it
a useful computational tool. The proof of each of these properties is a
straightforward calculation (Exercise 6):

Proposition 1.6.2. The 2× 2 determinant ∆(−→v ,−→w ) has the following
algebraic properties:

1. It is additive in each slot:14 for any three vectors −→v1 ,−→v2 ,−→w ∈ R
2

∆(−→v1 +−→w ,−→v2) = ∆ (−→v1 ,−→v2) + ∆ (−→w ,−→v2)
∆ (−→v1 ,−→v2 +−→w ) = ∆ (−→v1 ,−→v2) + ∆ (−→v1 ,−→w ) .

2. It is homogeneous in each slot: for any two vectors −→v1 ,−→v2 ∈ R
2 and

any scalar r ∈ R

∆(r−→v1 ,−→v2) = r∆(−→v1 ,−→v2) = ∆ (−→v1 , r−→v2) .

3. It is skew-symmetric: for any two vectors −→v1 ,−→v2 ∈ R
2

∆(−→v2 ,−→v1) = −∆(−→v1 ,−→v2) .
14This is a kind of distributive law.
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In particular,

Corollary 1.6.3. A 2× 2 determinant equals zero precisely if its rows are
linearly dependent.

Proof. If two vectors are linearly dependent, we can write both of them as
scalar multiples of the same vector, and

∆ (r−→v , s−→v ) = rs∆(−→v ,−→v ) = ∆ (s−→v , r−→v ) = −∆(r−→v , s−→v )

where the last equality comes from skew-symmetry. So ∆ (r−→v , s−→v ) equals
its negative, and hence must equal zero.
To prove the reverse implication, write −→vi = xi

−→ı + yi
−→ , i = 1, 2, and

suppose ∆ (−→v1 ,−→v2) = 0. This translates to x1y2 − x2y1 = 0 or

x1y2 = x2y1.

Assuming that −→v1 and −→v2 are both not vertical (xi 6= 0 for i = 1, 2), we can
conclude that

y2
x2

=
y1
x1

which means they are dependent. We leave it to you to show that if one of
them is vertical (and the determinant is zero), then either the other is also
vertical, or else one of them is the zero vector.

Of course, Corollary 1.6.3 can also be proved on geometric grounds, using
Proposition 1.6.1 (Exercise 7).

Oriented Areas in Space

Suppose now that A, B and C are three noncollinear points in R
3. We can

think of the ordered triple of points (A,B,C) as defining an oriented
triangle, and hence associate to it a “signed” area. But which sign should
it have—positive or negative? The question is ill-posed, since the words
“clockwise” and “counterclockwise” have no natural meaning in space:
even when A, B and C all lie in the xy-plane, and have positive orientation
in terms of the previous subsection, the motion from A to B to C will look
counterclockwise only when viewed from above the plane; viewed from
underneath, it will look clockwise. When the plane containing A, B and C
is at some cockeyed angle, it is not at all clear which viewpoint is correct.
We deal with this by turning the tables:15 the motion, instead of being
inherently “clockwise” or “counterclockwise”, picks out a side of the

15No pun intended! :-)
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plane–namely, the one from which the motion appears counterclockwise.
We can think of this as replacing the sign σ(A,B,C) with a unit vector
−→σ (A,B,C), normal to the plane containing the three points and pointing
toward the side of this plane from which the motion described by our order
appears counterclockwise. One way to determine which of the two unit
normals is correct is the right-hand rule: point the fingers of your right
hand along the direction of motion; then your (right) thumb will point in
the appropriate direction. In Figure 1.41 we sketch the triangle with

x
y

zb
b

b

A

B

C

Figure 1.41: Oriented Triangle in R
3

vertices A(2,−3, 4), B(4,−2, 5), and C(3,−1, 3); from our point of view
(we are looking from moderately high in the first octant), the orientation
appears counterclockwise.

By interpreting σ(A,B,C) as a unit normal vector, we associate to an
oriented triangle △ABC ∈ R

3 an oriented area

~A (△ABC) = −→σ (A,B,C)A (△ABC)

represented by a vector normal to the triangle whose length is the ordinary
area of △ABC. Note that for a triangle in the xy-plane, this means
−→σ (ABC) = σ(ABC)

−→
k : the oriented area is the vector

−→
k times the signed

area in our old sense. This interpretation can be applied as well to any
oriented polygon contained in a plane in space.
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In particular, by analogy with Proposition 1.6.1, we can define a function
which assigns to a pair of vectors −→v ,−→w ∈ R

3 a new vector representing the
oriented area of the parallelogram with two of its edges emanating from
the origin along −→v and −→w , and oriented in the direction of the first vector.
This is called the cross product16 of −→v and −→w , and is denoted

−→v ×−→w .

For example, the sides emanating from A in △ABC in Figure 1.41 are
represented by

−→v =
−−→
AB = 2−→ı +−→ +

−→
k

−→w =
−→
AC = −→ı + 2−→ −−→k ;

these vectors, along with the direction of −→v ×−→w , are shown in Figure 1.42.

x y

z

−→v

−→w

−→v ×−→w

Figure 1.42: Direction of Cross Product

We stress that this product differs from the dot product in two essential
ways: first, −→v · −→w is a scalar, but −→v ×−→w is a vector ; and second, the dot
product is commutative (−→w · −→v = −→v · −→w ), but the cross product is
anticommutative (−→w ×−→v = −−→v ×−→w ).
How do we calculate the components of the cross product −→v ×−→w from the
components of −→v and −→w ? To this end, we detour slightly and consider the
projection of areas.
The (orthogonal) projection of points in R

3 to a plane P ′ takes a point
P ∈ R

3 to the intersection with P ′ of the line through P perpendicular to
P ′ (Figure 1.43). We denote this by

16Also vector product , or outer product .
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b
P

bb

proj
P′ P

P ′

Figure 1.43: Projection of a Point P on the Plane P ′

P ′ = projP ′ P.

Similarly, a vector −→v is projected onto the direction of the line where P ′

meets the plane containing both −→v and the normal to P ′ (Figure 1.44).

−→v
projP ′

−→v

P ′

Figure 1.44: Projection of a Vector −→v on the Plane P ′

Suppose △ABC is an oriented triangle in R
3. Its projection to P ′ is the

oriented triangle △A′B′C ′, with vertices A′ = projP ′ A, B′ = projP ′ B, and
C ′ = projP ′ C. What is the relation between the oriented areas of these
two triangles?

Let P be the plane containing △ABC and let −→n be the unit vector
(normal to P) such that

~A (△ABC) = A−→n

where A is the area of △ABC. If the two planes P and P ′ are parallel,
then △A′B′C ′ is a parallel translate of △ABC, and the two oriented areas
are the same. Suppose the two planes are not parallel, but meet at (acute)
angle θ along a line ℓ (Figure 1.45).
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P ′

ℓ

P

A
′

B
′

C
′

A

B

C

~A(△ABC) −→n1

−→n2

θ

θ

Figure 1.45: Projection of a Triangle

Then a vector −→v‖ parallel to ℓ (and hence to both P and P ′) is unchanged
by projection, while a vector −→v⊥ parallel to P but perpendicular to ℓ
projects to a vector projP ′

−→v⊥ parallel to P ′, also perpendicular to ℓ, with
length

|projP ′
−→v⊥| = |−→v⊥| cos θ.

The angle between these vectors is the same as between −→n and a unit
vector −→n ′ normal to P ′; the oriented triangle △A′B′C ′ is traversed
counterclockwise when viewed from the side of P ′ determined by −→n ′.
Furthermore, if △ABC has one side parallel to ℓ and another
perpendicular to ℓ, then the same is true of △A′B′C ′; the sides parallel to
ℓ have the same length, while projection scales the side perpendicular to
ℓ—and hence the area—by a factor of cos θ. Since every triangle in P can
be subdivided (using lines through the vertices parallel and perpendicular
to ℓ) into triangles of this type, the area of any triangle △ABC is
multiplied by cos θ under projection. This means

~A
(

△A′B′C ′) = (A cos θ)−→n ′

which is easily seen to be the projection of ~A (△ABC) onto the direction
normal to the plane P ′. We have shown

Proposition 1.6.4. For any oriented triangle △ABC and any plane P ′ in
R
3, the oriented area of the projection △A′B′C ′ of △ABC onto P ′ (as a

triangle) is the projection of the oriented area ~A (△ABC) (as a vector)
onto the direction normal to P ′.
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Note in particular that when △ABC is parallel to P ′, its oriented area is
unchanged, while if △ABC is perpendicular to P ′, its projection is a
degenerate triangle with zero area.
As an example, let us consider the projections onto the coordinate planes of
the triangle with vertices A(2,−3, 4), B(4,−2, 5), and C(3,−1, 3), which is
the triangle we sketched in Figure 1.41. We reproduce this in Figure 1.46,
showing the projections of △ABC on each of the coordinate axes

x
y

z

pr
oj x

y
(△A

BC
)

A

B

C

proj
yz(△ABC)

pr
ojxz

(△A
BC

)

Figure 1.46: Projections of △ABC

The projection onto the xy-plane has vertices A(2,−3), B(4,−2), and
C(3,−1), which is the triangle we sketched in Figure 1.36. This has signed

area 3/2, so its oriented area is 3
2

−→
k—that is, the area is 3/2 and the

orientation is counterclockwise when seen from above the xy-plane.
The projection onto the yz-plane has vertices A(−3, 4), B(−2, 5), and
C(−1, 3) (Figure 1.37) and we saw that its signed area is −1/2. If we look
at the yz-plane from the direction of the positive x-axis, then we see a
“clockwise” triangle, so the oriented area is −1

2
−→ı —it points in the

direction of the negative x-axis.
Finally, the projection onto the xz-plane has vertices A(2, 4), B(4, 5), and
C(3, 3). We sketched this in Figure 1.38, and calculated a negative signed
area of −3/2. Note, however, that if we look at our triangle from the
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direction of the positive y-axis, we see a counterclockwise triangle. Why
the discrepancy? The reason for this becomes clear if we take into account
not just the triangle, but also the axes we see. In Figure 1.38, we sketched
the triangle with positive abcissas pointing “east” and ordinates pointing
“north”, but in Figure 1.46 the positive x-axis points “west” from our
point of view. In other words, the orientation of the x-axis and z-axis (in
that order) looks counterclockwise only if we look from the direction of the
negative y-axis. From this point of view–that is, the direction of −−→
(which is the one we used to calculate the signed area)–the triangle looks
negatively oriented, so the oriented area should be

(

−3
2

)

(−−→ ) = 3
2
−→ .

This agrees with the geometric observation based on Figure 1.42.

We have seen that the oriented area ~A (△ABC) has projections

proj−→
k
~A (△ABC) =

3

2

−→
k

proj−→ı ~A (△ABC) = −1

2
−→ı

proj−→ ~A (△ABC) =
3

2
−→ .

But these projections are simply the components of the vector, so we
conclude that the oriented area ~A (△ABC) is

~A (△ABC) = −1

2
−→ı +

3

2
−→ +

3

2

−→
k .

Looked at differently, the two sides of △ABC emanating from vertex A are
represented by the vectors

−→v =
−−→
AB = 2−→ı +−→ +

−→
k

−→w =
−→
AC = −→ı + 2−→ −−→k

and by definition

−→v ×−→w = 2 ~A (△ABC)

= −→ı
∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

−−→
∣

∣

∣

∣

2 1
1 −1

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

.

The reasoning used in this example leads to the following general formula
for the cross product of two vectors in R

3 from their components.



86 CHAPTER 1. COORDINATES AND VECTORS

Theorem 1.6.5. The cross product of two vectors

−→v = x1
−→ı + y1

−→ + z1
−→
k

−→w = x2
−→ı + y2

−→ + z2
−→
k

is given by

−→v ×−→w = −→ı
∣

∣

∣

∣

y1 z1
y2 z2

∣

∣

∣

∣

−−→
∣

∣

∣

∣

x1 z1
x2 z2

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

.

Proof. Let P (x1, y1, z1) and Q(x2, y2, z2) be the points in R
3 with position

vectors −→v and −→w , respectively. Then

−→v ×−→w = 2 ~A (△OPQ) = a1
−→ı + a2

−→ + a3
−→
k .

The three components of ~A (△OPQ) are its projections onto the three
coordinate directions, and hence by Proposition 1.6.4 each represents the
oriented area of the projection projP △OPQ of △OPQ onto the plane P
perpendicular to the corresponding vector.

Projection onto the plane perpendicular to a coordinate direction consists

of taking the other two coordinates. For example, the direction of
−→
k is

normal to the xy-plane, and the projection onto the xy-plane takes
P (x1, y1, z1) onto P (x1, y1).

Thus, the determinant
∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

represents twice the signed area of △OP3Q3, the projection of △OPQ
onto the xy-plane, when viewed from above—that is, from the direction of−→
k—so the oriented area is given by

a3
−→
k = 2 ~A (△OP3Q3)

=
−→
k

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

.

Similarly,

a1
−→ı = 2 ~A (△OP1Q1)

= −→ı
∣

∣

∣

∣

y1 z1
y2 z2

∣

∣

∣

∣

.
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Finally, noting that the direction from which the positive z-axis is
counterclockwise from the positive x-axis is −−→ , we have

a2
−→ = 2 ~A (△OP2Q2)

= −−→
∣

∣

∣

∣

x1 z1
x2 z2

∣

∣

∣

∣

.

Adding these yields the desired formula.

In each projection, we used the 2× 2 determinant obtained by omitting the
coordinate along whose axis we were projecting. The resulting formula can
be summarized in terms of the array of coordinates of −→v and −→w

(

x1 y1 z1
x2 y2 z2

)

by saying: the coefficient of the standard basis vector in a given coordinate
direction is the 2× 2 determinant obtained by eliminating the
corresponding column from the above array, and multiplying by −1 for the
second column.

We can make this even more “visual” by defining 3× 3 determinants.

A 3 × 3 matrix 17 is an array consisting of three rows of three entries
each, vertically aligned in three columns. It is sometimes convenient to
label the entries of an abstract 3× 3 matrix using a single letter with a
double index: the entry in the ith row and jth column of a matrix A is
denoted 18 aij , giving the general form for a 3× 3 matrix

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 .

We define the determinant of a 3× 3 matrix as follows: for each entry
a1j in the first row, its minor is the 2× 2 matrix A1j obtained by deleting

17Pronounced “3 by 3 matrix”
18Note that the row index precedes the column index: aji is in the jth row and ith

column, a very different place in the matrix.
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the row and column containing our entry. Thus

A11 =





. . .

. a22 a23

. a32 a33





A12 =





. . .
a21 . a23
a31 . a33





A13 =





. . .
a21 a22 .
a31 a32 .



 .

Now, the 3× 3 determinant of A can be expressed as the alternating sum
of the entries of the first row times the determinants of their minors:

detA = a11 detA11 − a12 detA12 + a13 detA13

=

3
∑

j=1

(−1)1+ja1j detA1j .

For future reference, the numbers multiplying the first-row entries in the
formula above are called the cofactors of these entries: the cofactor of a1j
is

cofactor(1j) := (−1)1+j detA1j .

We shall see later that this formula usefully generalizes in several ways.
For now, though, we see that, once we have mastered this formula, we can
express the calculation of the cross product as

−→v ×−→w =

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

v1 v2 v3
w1 w2 w3

∣

∣

∣

∣

∣

∣

(1.28)

where

−→v = v1
−→ı + v2

−→ + v3
−→
k

−→w = w1
−→ı + w2

−→ + w3
−→
k .

Exercises for § 1.6

Practice problems:
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1. Calculate each determinant below:

(a)
∣

∣

∣

∣

1 −2
3 4

∣

∣

∣

∣

(b)
∣

∣

∣

∣

−1 2
3 −4

∣

∣

∣

∣

(c)
∣

∣

∣

∣

−1 2
4 −8

∣

∣

∣

∣

2. Sketch the triangle △ABC and indicate its orientation; find
σ(A,B,C)A (△ABC):

(a) A(0, 0), B(2, 1), C(1, 2)

(b) A(1, 2), B(2, 0), C(3, 3)

(c) A(2, 1), B(1, 3), C(3, 2)

3. Calculate −→v ×−→w :

(a) −→v = (1, 2, 3), −→w = (3, 1, 2)

(b) −→v = (3, 1, 2), −→w = (6, 5, 4)

(c) −→v = −→ı , −→w = −→
(d) −→v = −→ı , −→w =

−→
k

(e) −→v = 4−→ı − 3−→ + 7
−→
k , −→w = −2−→ı − 5−→ + 4

−→
k

4. Find the oriented area vector ~A (△ABC) and calculate the area of
the triangle:

(a) A = (0, 0, 0), B = (1, 2, 3), C = (3, 2, 1)

(b) A = (1, 3, 2), B = (2, 3, 1), C = (3, 3, 2)

(c) A = (2,−1,−4), B = (−1, 1, 0), C = (3,−3,−2)

Theory problems:
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5. Suppose that in △ABC the vector from B to A is −→v and that from
B to C is −→w . Use the vector formula for the distance from A to BC
on p. 52 to prove that the area of the triangle is given by

A (△ABC) =
1

2

√

(−→w · −→w )(−→v · −→v )− (−→v · −→w )2.

6. Prove Proposition 1.6.2.

7. Use Proposition 1.6.1 to prove Corollary 1.6.3. (Hint: If the rows are
linearly dependent, what does this say about the parallelogram
OPRQ?)

8. Show that the cross product is:

(a) skew-symmetric:

−→v ×−→w = −−→w ×−→v

(b) additive in each slot:

(−→v1 +−→v2)×−→w = (−→v1 ×−→w ) + (−→v2 ×−→w )

(use skew-symmetry to take care of the other slot: this is a kind
of distributive law)

(c) homogeneous in each slot:

(a−→v )×−→w = a(−→v ×−→w ) = −→v × (a−→w )

(d) Conclude that the cross product is bilinear:

(a1
−→w1 + a2

−→w2)×−→v = a1(
−→w1 ×−→v ) + a2(

−→w2 ×−→v )

and, analogously

−→v × (a1
−→w1 + a2

−→w2) = a1(
−→v ×−→w1) + a2(

−→v ×−→w2).

9. (a) Prove the following cross-product formulas, using the
determinant formulas, using the determinant formula
Equation (1.28) on p. 88:

−→ı ×−→ı = −→ ×−→ =
−→
k ×−→k =

−→
0
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−→ı ×−→ =
−→
k −→ ×−→ı = −−→k

−→
k ×−→ı = −→ −→ı ×−→k = −−→
−→ ×−→k = −→ı −→

k ×−→ = −−→ı

(b) Here is a way to remember these formulas:

• The cross product of any vector with itself is the zero
vector.

• Label the vertices of a planar triangle with −→ı , −→ , and −→k ,
with positive orientation (see Figure 1.47). Then the cross
product of two of these vertices is, up to sign, the third one;
the sign is the same as the orientation of the triangle
consisting of the first and second factors followed by the
third vertex.

−→ı

−→ −→
k

+

−→ı

−→ −→
k

-

Figure 1.47: Sign of cross products.

10. (a) Suppose A, B, and C lie on the line ℓ in R
2, and that ℓ does not

go through the origin.

Explain why, if B is between A and C,

A (△OAB) +A (△OBC)−A (△OAC) = 0.

(b) Show that the above is not true if B is not between A and C.

(c) Show that

σ(O, A,B)A (△OAB) + σ(O, B,C)A (△OBC)

+ σ(O, C,A)A (△OCA) = 0

regardless of the order of A, B and C along the line.

11. Show that the oriented area of a triangle can also be calculated as
half of the cross product of the vectors obtained by moving along two
successive edges:

~A (△ABC) =
1

2

−−→
AB ×−−→BC

(Hint: You may use Exercise 8.)
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Challenge Problems:

Given a point D in the plane, and a directed line segment
−−→
AB, we can

define the area swept out by the line DP as P moves from A to B along−−→
AB to be the signed area of the oriented triangle [D,A,B]. We can then
extend this definition to the area swept out by DP as P moves along any
broken-line path (i.e., a path consisting of finitely many directed line
segments) to be the sum of the areas swept out over each of the segments
making up the path.

12. (a) Show that the area swept out by DP as P travels along an
oriented triangle equals the signed area of the triangle: that is,
show that

σ(ABC)A (△ABC) =

σ(DAB)A (△DAB)+σ(DBC)A (△DBC)+σ(DCA)A (△DCA) .
(Hint: This can be done geometrically. Consider three cases: D
lies outside, inside, or on △ABC. See Figure 1.48.)

A

B

C

•D

A

B

C

•
D

A

B

C

•D

Figure 1.48: Area Swept Out by DP as P Traverses a Triangle

(b) Show that the area swept out by OP as P moves along the line
segment from (x0, y0) to (x1, y1) is

1

2

∣

∣

∣

∣

x0 y0
x1 y1

∣

∣

∣

∣

.

(c) Show that if −→vi = (xi, yi), i = 0, . . . , 3 with −→v0 = −→v3 then the
signed area of [−→v1 ,−→v2 ,−→v3 ] can be calculated as

σ(−→v1−→v2−→v3)A (△−→v1−→v2−→v3) =
1

2

3
∑

i=1

∣

∣

∣

∣

xi−1 yi−1

xi yi

∣

∣

∣

∣

.
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13. (a) Consider the three quadrilaterals in Figure 1.49. In all three

A

B

C

D

A

B

C

D

A

B

C

D

Figure 1.49: Signed Area of Quadrangles

cases, the orientation of �[ABCD] and of △ABC is positive,
but the orientation of △ACD is not necessarily positive. Show
that in all three cases,

A (�ABCD) = σ(ABC)A (△ABC) + σ(ACD)A (△ACD) .

(b) Use this to show that the signed area of a quadrilateral
�[ABCD] is given by

σ(ABCD)A (�[ABCD]) =
1

2

{

(x2−x0)(y3−y1)+(x1−x3)(y2−y0)
}

where the coordinates of the vertices are

A(x0, y0)

B(x1, y1)

C(x2, y2)

D(x3, y3).

Note that this is the same as
1

2
∆ (−→v ,−→w )

where −→v =
−→
AC and −→w =

−−→
DB are the diagonal vectors of the

quadrilateral.

(c) What should be the (signed) area of the oriented quadrilateral
�[ABCD] in Figure 1.50?

14. Show that the area swept out by a line DP as P travels along a
closed, simple19 polygonal path equals the signed area of the

19i.e., , the path does not cross itself: this means the path is the boundary of a polygon.
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A

B

C

D

Figure 1.50: Signed Area of Quadrangles (2)

polygon: that is, suppose the vertices of a polygon in the plane,
traversed in counterclockwise order, are

−→vi = (xi, yi), i = 0, ..., n

with

−→v0 = −→vn.

Show that the (signed) area of the polygon is

1

2

n
∑

i=1

∣

∣

∣

∣

xi−1 yi−1

xi yi

∣

∣

∣

∣

.

15. Now extend the definition of the area swept out by a line to space,
by replacing signed area (in the plane) with oriented area in space:
that is, given three points D,A,B ∈ R

3, the area swept out by the

line DP as P moves from A to B along
−−→
AB is defined to be the

oriented area ~A (△DAB). Show that the oriented area of a triangle
△ABC ⊂ R

3 in space equals the area swept out by the line DP as P
traverses the triangle, for any point D ∈ R

3. (Hint: Consider the
projections on the coordinate planes, and use Exercise 12.)

History Notes:

Heron’s Formulas: Heron of Alexandria (ca. 75 AD), in his Metrica,
gave two formulas for the area of a triangle in terms of the lengths of its
sides.
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16. Heron’s First Formula: The first area formula given by Heron in
the Metrica is an application of the Law of Cosines, as given in Book
II, Propositions 12 and 13 in the Elements . Given △ABC, we
denote the (lengths of the) side opposite each vertex using the
corresponding lower case letter (see Figure 1.51).

A

B
CD

c
b

a

A

BC
D

cb

← a→
Figure 1.51: Propositions II.12-13: c2 = a2 + b2 ± 2a · CD

(a) Obtuse Case: Suppose the angle at C is obtuse. Extend BC
to the foot of the perpendicular from A, at D. Prove Euclid’s
Proposition 11.12:

c2 = a2 + b2 + 2a · CD.

From this, prove Heron’s formula20 in the obtuse case:

A (△ABC) =
1

4

√

2(a2b2 + b2c2 + a2c2)− (a4 + b4 + c4). (1.29)

(Hint: First find CD, then use the standard formula.)

(b) Acute case: Suppose the angle at C is acute. Let D be the
foot of the perpendicular from A to BC. Show that

c2 = a2 + b2 − 2a · CD.

From this, prove that Equation (1.29) also holds in the acute
case.

17. Heron’s Second Formula: The second (and more famous) area
formula given by Heron is

A =
√

s(s− a)(s− b)(s − c) (1.30)

20Of course, Heron did not give this complicated algebraic expression. Rather, he out-
lined the procedure we are using here.
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where a, b and c are the lengths of the sides of the triangle, and s is
the semiperimeter

s =
1

2
(a+ b+ c).

Equation (1.30) is known as Heron’s formula, although it now
seems clear from Arabic commentaries that it was already known to
Archimedes of Syracuse (ca. 287-212 BC).

Prove Heron’s this formula as follows: (refer to Figure 1.52; we follow
the exposition in [5, p. 186] and [26, p. 322]):

O

D
C

E

A

F

B

L

H
J

Figure 1.52: Heron’s Formula

The original triangle is △ABC.

(a) Inscribe a circle inside △ABC, touching the sides at D, E, and
F . Denote the center of the circle by O; Note that

OE = OF = OD.

Show that

AE = AF

CE = CD

BD = BF.
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(Hint: e.g., the triangles △OAF and △OAE are similar—why?)

(b) Show that the area of △ABC equals s ·OD. (Hint: Consider
△OBC, △OAC and △OAB.)

(c) Extend CB to H, so that BH = AF . Show that

s = CH.

(d) Let L be the intersection of the line through O perpendicular to
OC with the line through B perpendicular to BC. Show that
the points O, B, L and C all lie on a common circle. (Hint:
Each of the triangles △CBL and △COL have right angles
opposite their common edge CL, and the hypotenuse of a right
triangle is a diameter of a circle containing the right angle.)

(e) It then follows by Proposition III.22 of the Elements (opposite
angles of a quadrilateral inscribed in a circle sum to two right
angles) that ∠CLB + ∠COB equals two right angles.

Show that ∠BOC + ∠AOF equals two right angles. (Hint:
Each of the lines from O to a vertex of △ABC bisects the angle
there.) It follows that

∠CLB = ∠AOF.

(f) Show from this that △AOF and △CLB are similar.

(g) This leads to the proportions

BC

BH
=
BC

AF
=
BL

OF
=
BL

OD
=
BJ

JD
.

Add one to both outside fractions to show that

CH

BH
=
BD

JD
.

(h) Use this to show that

(CH)2

CH ·HB =
BD · CD
JD · CD =

BD · CD
(OD)2

.

(Hint: For the second equality, use the fact that △COD and
△OJD are similar.) Conclude that

(CH)2(OD)2 = CH ·HB ·BD · CD.

(i) Explain how this proves Heron’s formula.
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1.7 Applications of Cross Products

In this section we explore some useful applications of cross products.

Equation of a Plane

The fact that −→v ×−→w is perpendicular to both −→v and −→w can be used to
find a “linear” equation for a plane, given three noncollinear points on it.

Remark 1.7.1. If −→v and −→w are linearly independent vectors in R
3, then

any plane containing a line ℓv parallel to −→v and a line ℓw parallel to −→w has

−→n = −→v ×−→w
as a normal vector.
In particular, given a nondegenerate triangle △ABC in R

3, an equation
for the plane P containing this triangle is

−→n · (−→p −−→p0) = 0 (1.31)

where

−→p = x−→ı + y−→ + z
−→
k

−→p0 =
−−→OA

−→n =
−−→
AB ×−→AC.

For example, an equation for the plane P containing △PQR with vertices
P (1,−2, 3), Q(−2, 4,−1) and R(5, 3, 1) can be found using

−→p0 = −→ı − 2−→ + 3
−→
k

−−→
PQ = −3−→ı + 6−→ − 4

−→
k

−→
PR = 4−→ı + 5−→ − 2

−→
k

−→n =
−−→
PQ×−→PR

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

−3 6 −4
4 5 −2

∣

∣

∣

∣

∣

∣

= −→ı
∣

∣

∣

∣

6 −4
5 −2

∣

∣

∣

∣

−−→
∣

∣

∣

∣

−3 −4
1 −2

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

−3 6
4 5

∣

∣

∣

∣

= −→ı (−12 + 20)−−→ (6 + 4) +
−→
k (−15− 10)

= 8−→ı − 10−→ − 25
−→
k
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so the equation for P is

8(x− 1)− 10(y + 2)− 25(z − 3) = 0

or

8x− 10y − 25z = −47.

As another example, consider the plane P ′ parametrized by

x = 3 −2s +t
y = −1 +2s −2t
z = 3s −t.

We can read off that
−→p0 = 3−→ı −−→

is the position vector of −→p (0, 0) (corresponding to s = 0, t = 0), and two
vectors parallel to the plane are

−→vs = −2−→ı + 2−→ + 3
−→
k

−→vt = −→ı − 2−→ −−→k .

Thus, a normal vector is

−→n = −→vs ×−→vt

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

−2 1 3
1 −2 −1

∣

∣

∣

∣

∣

∣

= −→ı
∣

∣

∣

∣

1 3
−2 −1

∣

∣

∣

∣

−−→
∣

∣

∣

∣

−2 3
1 −1

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

−2 1
1 −2

∣

∣

∣

∣

= 5−→ı +−→ + 3
−→
k

and an equation for P ′ is

5(x− 3) + 1(y + 1) + 3(z − 0) = 0

or

5x+ y + 3z = 14.
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Intersection of Planes

The line of intersection of two planes can be specified as the set of
simultaneous solutions of two linear equations, one for each plane. How do
we find a parametrization for this line?

Note that a linear equation for a plane

Ax+By + Cz = D

immediately gives us a normal vector

−→n = A−→ı +B−→ + C
−→
k .

If we are given two such equations

A1
−→ı +B1

−→ + C1
−→
k = D1

A2
−→ı +B2

−→ + C2
−→
k = D2

then the line of intersection ℓ (the locus of this pair of equations) is
perpendicular to both normal vectors

−→ni = Ai
−→ı +Bi

−→ + Ci
−→
k i = 1, 2, 3

and hence parallel to their cross-product

−→v = −→n1 ×−→n2.

Thus, given any one point P0(x0, y0, z0) on ℓ (i.e., one solution of the pair
of equations) the line ℓ can be parametrized using P0 as a basepoint and
−→v = −→n1 ×−→n2 as a direction vector.

For example, consider the two planes

3x− 2y + z = 1

2x+ y − z = 0.

The first has normal vector

−→n1 = 3−→ı − 2−→ +
−→
k

while the second has
−→n2 = 2−→ı +−→ −−→k .
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Thus, a direction vector for the intersection line is

−→v = −→n1 ×−→n2

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

3 −2 1
2 1 −1

∣

∣

∣

∣

∣

∣

= −→ı
∣

∣

∣

∣

−2 1
1 −1

∣

∣

∣

∣

−−→
∣

∣

∣

∣

3 1
2 −1

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

3 −2
2 1

∣

∣

∣

∣

= −→ı + 5−→ + 7
−→
k .

One point of intersection can be found by adding the equations to
eliminate z

5x− y = 1

and, for example, picking

x = 1

which forces

y = 4.

Substituting back into either equation, we get

z = 6

so we can use (1, 4, 6) as a basepoint; a parametrization of ℓ is

−→p (t) = (−→ı + 4−→ + 6
−→
k ) + t(−→ı + 5−→ + 7

−→
k )

or

x = 1 + t

y = 4 + 5t

z = 6 + 7t.

If we try this when the two planes are parallel, we have linearly dependent
normals, and their cross product is zero (Exercise 6 in § 1.6). In this case,
the two left sides of the equations describing the planes are proportional: if
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the right sides have the same proportion, then we really have only one
equation (the second is the first in disguise) and the two planes are the
same, while if the right sides have a different proportion, the two equations
are mutually contradictory—the planes are parallel, and have no
intersection.
For example, the two equations

x− 2y + 3z = 1

−2x+ 4y − 6z = −2

are equivalent (the second is the first multiplied by −2) and describe a
(single) plane, while

x− 2y + 3z = 1

−2x+ 4y − 6z = 0

are contradictory, and represent two parallel, nonintersecting planes.

Oriented Volumes

In common usage, a cylinder is the surface formed from two horizontal
discs in space, one directly above the other, and of the same radius, by
joining their boundaries with vertical line segments. Mathematicians
generalize this, replacing the discs with horizontal copies of any plane
region, and allowing the two copies to not be directly above one another
(so the line segments joining their boundaries, while parallel to each other,
need not be perpendicular to the two regions). Another way to say this is
to define a (solid) cylinder on a given base (which is some region in a
plane) to be formed by parallel line segments of equal length emanating
from all points of the base (Figure 1.53). We will refer to a vector −→v
representing these segments as a generator for the cylinder.
Using Cavalieri’s principle (Calculus Deconstructed, p. 365) it is fairly easy
to see that the volume of a cylinder is the area of its base times its height
(the perpendicular distance between the two planes containing the
endpoints of the generating segments). Up to sign, this is given by
orienting the base and taking the dot product of the generator with the
oriented area of the base

V = ±−→v · ~A (B) .

We can think of this dot product as the “signed volume” of the oriented
cylinder, where the orientation of the cylinder is given by the direction of
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B

−→v
h

Figure 1.53: Cylinder with base B, generator −→v , height h

the generator together with the orientation of the base. The signed volume
is positive (resp. negative) if −→v points toward the side of the base from
which its orientation appears counterclockwise (resp. clockwise)—in other
words, the orientation of the cylinder is positive if these data obey the
right-hand rule. We will denote the signed volume of a cylinder C by−→V (C).

A cylinder whose base is a parallelogram is called a parallelepiped: this
has three quartets of parallel edges, which in pairs bound three pairs of
parallel parallelograms,21 called the faces. If the base parallelogram has
sides represented by the vectors −→w1 and −→w2 and the generator is −→v
(Figure 1.54) we denote the parallelepiped by �[−→v ,−→w1,

−→w2].

−→v

−→w1

−→w2

Figure 1.54: Parallelepiped

The oriented area of the base is

~A (B) = −→w1 ×−→w2

21This tongue-twister was unintentional! :-)
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so the signed volume is22

−→V (�[−→v ,−→w1,
−→w2]) =

−→v · ~A (B) = −→v · (−→w1 ×−→w2)

(where −→v represents the third edge, or generator).
If the components of the “edge” vectors are

−→v = a11
−→ı + a12

−→ + a13
−→
k

−→w1 = a21
−→ı + a22

−→ + a23
−→
k

−→w2 = a31
−→ı + a32

−→ + a33
−→
k

then

−→w1 ×−→w2 =

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= −→ı
∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

−−→
∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+
−→
k

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

so

−→v · (−→w1 ×−→w2) = a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

− a12
∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

.

This gives us a geometric interpretation of a 3× 3 (numerical) determinant:

Remark 1.7.2. The 3× 3 determinant
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

is the signed volume
−→V (�[−→v ,−→w1,

−→w2]) of the oriented parallelepiped
�[−→v ,−→w1,

−→w2] whose generator is the first row

−→v = a11
−→ı + a12

−→ + a13
−→
k

22The last calculation in this equation is sometimes called the triple scalar product

of −→v , −→w1 and −→w2.
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and whose base is the oriented parallelogram with edges represented by the
other two rows

−→w1 = a21
−→ı + a22

−→ + a23
−→
k

−→w2 = a31
−→ı + a32

−→ + a33
−→
k .

For example, the parallelepiped with base OPRQ, with vertices the origin,

P (0, 1, 0), Q(−1, 1, 0), and R(−1, 2, 0) and generator −→v = −→ı −−→ + 2
−→
k

(Figure 1.55) has “top” face OP ′R′Q′, with vertices O(1,−1, 2), P ′(1, 0, 2),

x
y

z

O

O

P

P ′

Q

Q′

R

R′

−→v

Figure 1.55: �OPRQ

Q′(0, 0, 2) and R′(0, 1, 2). Its signed volume is given by the 3× 3

determinant whose rows are −→v , −−→OP and
−−→OQ:

−→V (�[OPRQ]) =

∣

∣

∣

∣

∣

∣

1 −1 2
0 1 0
−1 1 0

∣

∣

∣

∣

∣

∣

= (1)

∣

∣

∣

∣

1 0
1 0

∣

∣

∣

∣

− (−1)(1)
∣

∣

∣

∣

0 0
−1 0

∣

∣

∣

∣

+ (2)(1)

∣

∣

∣

∣

0 1
−1 1

∣

∣

∣

∣

= (1)(0) − (−1)(0) + (2)(0 + 1)

= 2.

We see from Figure 1.55 that the vectors
−−→OP , −−→OQ, −→v obey the right-hand

rule, so have positive orientation.

Given any four points A, B, C, and D in R
3, we can form a “pyramid”

built on the triangle △ABC, with a “peak” at D (Figure 1.56). The
traditional name for such a solid is tetrahedron, but we will follow the
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A

B

C

D

Figure 1.56: Simplex △ABCD

terminology of combinatorial topology, calling this the simplex23 with
vertices A, B, C and D, and denote it △ABCD; it is oriented when we
pay attention to the order of the vertices. Just as for a triangle, the edges
emanating from the vertex A are represented by the displacement vectors−−→
AB,

−→
AC, and

−−→
AD. The first two vectors determine the oriented “base”

triangle △ABC, and the simplex △ABCD is positively (resp. negatively)
oriented if the orientation of △ABC is positive (resp. negative) when
viewed from D, or equivalently if the dot product

−−→
AD · (−−→AB ×−→AC)

is positive (resp. negative).

In Exercise 9, we see that the parallelepiped �OPRQ determined by the

three vectors
−−→
AB,

−→
AC, and

−−→
AD can be subdivided into six simplices, all

congruent to △ABCD, and its orientation agrees with that of the simplex.
Thus we have

Lemma 1.7.3. The signed volume of the oriented simplex △ABCD is

−→V (△ABCD) =
1

6

−−→
AD · (−−→AB ×−→AC)

=
1

6

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

23Actually, this is a 3-simplex. In this terminology, a triangle is a 2-simplex (it lies
in a plane), and a line segment is a 1-simplex (it lies on a line).
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where

−−→
AB = a21

−→ı + a22
−→ + a23

−→
k

−→
AC = a31

−→ı + a32
−→ + a33

−→
k

−−→
AD = a11

−→ı + a12
−→ + a13

−→
k .

We can use this geometric interpretation (which is analogous to
Proposition 1.6.1) to establish several algebraic properties of 3× 3
determinants, analogous to those in the 2× 2 case which we noted in § 1.6:

Remark 1.7.4. The 3× 3 determinant has the following properties:

1. It is skew-symmetric : Interchanging two rows of a 3× 3
determinant reverses its sign (and leaves the absolute value
unchanged).

2. It is homogeneous in each row: multiplying a single row by a scalar
multiplies the determinant by that scalar.

3. It is additive in each row: Suppose two matrices (say A and B)
agree in two rows (say, the two second rows are the same, and the
two third rows are the same). Then the matrix with the same second
and third rows, but with first row equal to the sum of the first rows of
A and of B, has determinant det A+ det B.

4. A 3× 3 determinant equals zero precisely if its rows are linearly
dependent.

For the first item, note that interchanging the two edges of the base
reverses the sign of its oriented area and hence the sign of its oriented
volume; if the first row is interchanged with one of the other two, you
should check that this also reverses the orientation. Once we have the first
item, we can assume in the second item that we are scaling the first row,
and and in the second that A and B agree except in their first row(s). The
additivity and homogeneity in this case follows from the fact that the
oriented volume equals the oriented area of the base dotted with the first
row. Finally, the last item follows from noting that zero determinant
implies zero volume, which means the “height” measured off a plane
containing the base is zero.
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Rotations

So far, the physical quantities we have associated with vectors—forces,
velocities—concern displacements. In effect, we have been talking about
the motion of individual points, or the abstraction of such motion for larger
bodies obtained by replacing each body with its center of mass. However,
a complete description of the motion of solid bodies also involves rotation.

A rotation of 3-space about the z-axis is most easily described in
cylindrical coordinates: a point P with cylindrical coordinates (r, θ, z),
under a counterclockwise rotation (seen from above the xy-plane) by α
radians does not change its r- or z- coordinates, but its θ- coordinate
increases by α. Expressing this in rectangular coordinates, we see that the
rotation about the z-axis by α radians counterclockwise (when seen from
above) moves the point with rectangular coordinates (x, y, z), where

x = r cos θ

y = r sin θ

to the point

x(α) = r cos(θ + α)

y(α) = r sin(θ + α)

z(α) = z.

These new rectangular coordinates can be expressed in terms of the old
ones, using the angle-summation formulas for sine and cosine, as

x(α) = x cosα −y sinα
y(α) = x sinα +y cosα
z(α) = z.

(1.32)

Under a steady rotation around the z-axis with angular velocity24

α̇ = ω radians/sec, the velocity −→v of our point is given by

ẋ =
(

dx(α)
dα

∣

∣

∣

α=0

)

ω = (−x sin 0− y cos 0)ω = −yω
ẏ ==

(

dy(α)
dα

∣

∣

∣

α=0

)

ω = (x cos 0− y sin 0)ω = xω

ż = 0

24We use a dot over a variable to indicate its time derivative.
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which can also be expressed as

−→v = −yω−→ı + xω−→

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

0 0 ω
x y z

∣

∣

∣

∣

∣

∣

= ω
−→
k ×−→p

(1.33)

where −→p = x−→ı + y−→ + z
−→
k is the position vector of P .

When the rotation is about a different axis, the analogue of Equation (1.32)
is rather complicated, but Equation (1.33) is relatively easy to carry over,
on geometric grounds. Note first that the z coordinate does not affect the
velocity in Equation (1.33): we could replace −→p , which is the displacement−−→OP from the origin to our point, with the displacement

−−→
P0P from any

point on the z-axis. Second, the vector ω
−→
k can be characterized as a

vector parallel to our axis of rotation whose length equals the angular
velocity, where ω is positive if the rotation is counterclockwise when
viewed from above. That is, we can regard the angular velocity as a
vector −→ω analogous to a oriented area: its magnitude is the angular speed,
and its direction is normal to the planes invariant under the rotation (i.e.,
planes perpendicular to the axis of rotation) in the direction from which
the rotation is counterclockwise. These considerations easily yield

Remark 1.7.5. The (spatial) velocity −→v of a point P under a steady
rotation (about the axis ℓ) with angular velocity −→ω is

−→v = −→ω ×−−→P0P (1.34)

where P0 is an arbitrary point on ℓ, the axis of rotation.

Associated to the analysis of rotation of rigid bodies are the rotational
analogues of momentum and force, called moments. Recall that the
momentum of a (constant) mass m moving with velocity −→v is m−→v ; its
angular momentum or moment of momentum about a point P0 is

defined to be
−−→
P0P ×m−→v . More generally, the moment about a point P0

of any vector quantity
−→
V applied at a point P is defined to be

−−→
P0P ×

−→
V .

For a rigid body, the “same” force applied at different positions on the
body has different effects on its motion; in this context it is the moment of
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the force that is relevant. Newton’s First Law of Motion [41, Law 1(p.
416)] is usually formulated as conservation of momentum: if the net
force acting on a system of bodies is zero, then the (vector) sum of their
momenta will not change with time: put differently, their center of mass
will move with constant velocity. A second conservation law is
conservation of angular momentum, which says that in addition the
(vector) sum of the angular momenta about the center of mass will be
constant. This net angular momentum specifies an axis (through the
center of mass) and a rotation about that axis. For a rigid body, the
motion can be decomposed into these two parts: the displacement motion
of its center of mass, and its rotation about this axis through the (moving)
center of mass.

Exercises for § 1.7

Practice problems:

1. Find an equation for the plane P described in each case:

(a) P goes through (1, 2, 3) and contains lines parallel to each of the
vectors

−→v = (3, 1, 2)

and

−→w = (1, 0, 2).

(b) P contains the three points

P (4, 5, 6)

Q(3, 2, 7)

R(5, 1, 1).

(c) P contains P (3, 1, 4) and the line

x = 1 +t
y = −2 +2t
z = 3 −t.
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(d) P is parametrized by

x = 1 −2s +3t
y = 2 −s +t
z = −2 +s +t.

2. Give a parametrization of each plane P described below:

(a) P contains the three points

P (3,−1, 2)
Q(2, 1,−1)
R(8, 3, 1).

(b) P contains the lines

ℓ1 :







x = −2 +t
y = 1 −2t
z = 4 +t

ℓ2 :







x = −1 +2t
y = −1 +t
z = 5 −3t

.

(c) P meets the plane 3x+ y + z = 2 in the line

x = 1 −t
y = 2 +t
z = −3 +2t

and is perpendicular to it.

(d) P is the locus of
2x− 3y + 4z = 3.

3. (a) Find a line in the plane 3x+ 7y + z = 29 which is perpendicular
to the line

x = 1 −2t
y = 3 +t
z = 5 −t.

(b) Find the line in the plane x+ y + z = 0 which meets the line ℓ
given by

x = −5 +3t
y = 4 −2t
z = 1 −t

at the point (−2, 2, 0) and is perpendicular to ℓ.
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4. Parametrize the line described in each case below:

(a) ℓ is the intersection of the planes

P1 : 5x− 2y + 3z = 0

P2 : 2x+ 2y + z = 3.

(b) ℓ is the intersection of the planes parametrized as follows:

P1 :







x = 1 +2s +3t
y = 2 −s +t
z = 3 +s −2t

P2 :







x = 1 +s −t
y = 2 +2s +3t
z = 3 −3s −t

5. Find the volume of each parallelepiped described below:

(a) The origin is a vertex, and the three vertices joined to the origin
by an edge are

P (1,−3, 2)
Q(2, 3,−1)
R(3, 2, 1).

(b) The faces of the parallelepiped lie on the planes

z = 0

z = 1

z = 2y

z = 2y − 1

z = x

z = x+ 1.

6. Determine the orientation and volume of the simplex △ABCD
whose vertices are

A(1,−1, 1)
B(2, 0, 1)

C(2,−2, 1)
D(1,−1, 0)
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7. The plane x+ y + z = 3 is continuously rotated about the line

x = t

y = t

z = t

(which is perpendicular to the plane and meets it at the point
P0(1, 1, 1)). If the point P (2, 2,−1) has velocity −→v = −→ı −−→ , what is
its angular momentum about the line?

Challenge problems:

8. Suppose −→v0 ,−→v1 , ...,−→vn = −→v0 are the vertices of an oriented polygon in
the plane, traversed in order around the circumference. Show that
the sum of the moments of the vectors vi − vi−1, i = 1, . . . , n, about
the origin is twice the area of the polygon. (Hint: Compare
Exercise 12 and Exercise 14 in the previous section.)

9. Consider the “prism” E bounded below by the xy-plane (z = 0),
above by the plane z = 1, and on the sides by the three vertical
planes x = 0 (the yz-plane), y = 0 (the xz-plane), and x+ y = 1 (see
Figure 1.57).

x y

z

Figure 1.57: The Prism E

(a) Show that E consists of all points in R
3 which simultaneously

satisfy the inequalities

x ≥ 0

y ≥ 0

x+ y ≤ 1

0 ≤ z ≤ 1.
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(b) Show that the six vertices of E are

P0(0, 0, 0)

P1(1, 0, 0)

P2(0, 1, 0)

Q0(0, 0, 1)

Q1(1, 0, 1)

Q2(0, 1, 1).

(Note that in this numbering, Qi is directly above Pi.)

(c) Now consider the three oriented simplices

△1 = △P0P1P2Q0

△2 = △P1P2Q0Q1

△3 = △P2Q0Q1Q2.

Show that

i. △1 consists of all points in E which also satisfy

x+ y + z ≤ 1.

ii. △2 consists of all points in E which also satisfy

x+ y + z ≥ 1 and y + z ≤ 1

iii. △3 consists of all points in E which also satisfy

y + z ≥ 1.

(d) Show that each of the pairs of simplices △1 and △2 (resp. △2

and △3) meets along a common face, while △1 and △3 meet
only at P2.

(e) Show that each of these simplices has volume 1
6 .



2
Curves and

Vector-Valued Functions of One Variable

2.1 Conic Sections

We begin this chapter by looking at the conic sections, which were
regarded by the Greeks as the simplest curves after the straight line and
circle.
A major source of information about classical Greek mathematics is
Pappus of Alexandria (ca. 300 AD), a formidable geometer of the late
third century AD.1 In his Mathematical Collection2 he surveyed the work
of his predecessors; many of these works have been lost. He classified
mathematical problems according to the kinds of loci (curves) required for
their solution:

• planar problems can be solved using circles and straight lines, or
planar loci. These are often called compass and straightedge
constructions;

• solid problems involve the intersection of a plane with a cone (solid
loci, or conic sections);

1The work of Pappus is sometimes taken to mark the end of the classical Greek tradition
in mathematics.

2Parts of this survive in a twelfth-century copy.

115



116 CHAPTER 2. CURVES

• linear problems3 are those involving other loci, such as spirals (see
p. 150 and Exercises 9-10), quadratrices (Exercise 11) and
conchoids (Exercise 12).

One classic problem is that of duplicating the cube: given a cube, we
are to construct a second cube whose volume is twice that of the first (or
some other specified multiple). Hippocrates of Chios (460-380 BC) reduced
this [27, p. 131], [33, p. 41] to the problem of two mean proportionals:
given line segments a and b, to construct two other segments, y and x,
whose lengths satisfy

|a| : |y| = |y| : |x| = |x| : |b| .

Early solutions of this problem [27, pp. 154-170] used “linear” loci, but
two solutions by Menaechmus (ca. 350 BC), a follower of Plato, appear to
be the first investigation and use of conic sections. The impossibility of
duplicating the cube by compass and straightedge was first proved in the
nineteenth century, using some deep algebraic and analytic results.
In this section, we summarize two approaches to the conic sections. First,
we discuss briefly the way these curves arise from intersecting a cone with
a plane, the classic approach of Apollonius of Perga (ca. 262-ca. 190 BC).
Second, we discuss the focus-directrix property, which was not mentioned
by Apollonius, but appeared some six hundred years later in the work of
Pappus—who however seems to have been summarizing lost work by
Euclid and his contemporaries, written a generation before Apollonius. We
merely sketch a picture of the ideas in Apollonius and Pappus, leaving out
many details which we explore further in Appendix A and Appendix B,
respectively. At the end of this section, we also consider how an equation
can be modified so as to move its locus to a specified position, and note
the relation of this geometric work to the analysis of quadratic curves in
the plane.

Conics according to Apollonius

Pappus referred to two works on conic sections—one by by Euclid, the
other by Aristaeus the Elder (ca. 320 BC)—which preceded him by six
centuries. These works have been lost,4 but in any case they were quickly
eclipsed by the work of Apollonius of Perga (ca. 262-ca. 190 BC). His

3Caution: this is not the modern meaning of “linear”!
4Pappus refers to the “still surviving” Solid Loci of Aristaeus, but the Conics of Euclid

were apparently already lost by the time of Pappus.
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Conics, in eight books, was recognized by his contemporaries as the
definitive work on the subject.5 Here, we give a simplified and
anachronistic sketch of the basic ideas in Book I, bowlderizing [27, pp.
355-9]. Start with a horizontal circle C; on the vertical line through the
center of C (the axis6 ) pick a point A distinct from the center of C. The
union of the lines through A intersecting C (the generators) is a surface
K consisting of two cones joined at their common vertex (Figure 2.1). If

, origin

generator
axis

C

H

Figure 2.1: Conical Surface K

we put the origin at A, the axis coincides with the z-axis, and K is the
locus of the equation in rectangular coordinates

z2 = m2(x2 + y2) (2.1)

where

m = cotα

is the cotangent of the angle α between the axis and the generators.

Now consider the intersection of a plane with the conical surface K. If our
plane contains the origin A, this intersection is rather uninteresting
(Exercise 4).

5The first four books of Apollonius’ Conics have survived in a Greek edition with com-
mentaries by Eutocius (ca. 520 AD), and the next three survived in an Arabic translation
of Eutocius’ edition by Thabit ibn Qurra (826-901); the eighth book is lost. A modern
translation of Books I-IV is [43]. An extensive detailed and scholarly examination of the
Conics has recently been published by Fried and Unguru [16].

6Apollonius allows the axis to be oblique—not necessarily normal to the plane of C.
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A horizontal plane H not containing A intersects K in a circle centered on
the axis. The yz-plane intersects H in a line which meets this circle at two
points, B and C; clearly the segment BC is a diameter of the circle. Given

B C

R

Q

V

Figure 2.2: Elements, Book VI, Prop. 13

a point Q on this circle distinct from B and C (Figure 2.2), the line
through Q parallel to the x-axis intersects the circle in a second point R,
and the segment QR is bisected at V , the intersection of QR with the
yz-plane. Note that QR is perpendicular to BC.
Apollonius’ analysis starts from a basic property of circles, implicit in Prop.
13, Book VI of Euclid’s Elements [29, vol. 2, p. 216] and equivalent to the
equation of a circle in rectangular coordinates 7 (Exercise 5)—namely,

The product of the segments on a chord equals the product of
the segments on the diameter perpendicular to it.

In Figure 2.2, this means

|QV | · |V R| = |BV | · |V C| . (2.2)

To understand the curve obtained by intersecting K with a plane P which
does not contain the origin A, we can assume that horizontal lines in P are
parallel to the x-axis—that is, its equation has the form z =My + c for
some nonzero constants M and c. Let γ be the intersection of P with K.
The yz-plane intersects P in a line that meets γ in one or two points; we
label the first P and the second (if it exists) P ′; these are the vertices of γ
(Figure 2.3). Given a point Q on γ distinct from the vertices, and H the
horizontal plane through Q, define the points R, V , B and C as in
Figure 2.2. The line segments QV and PV are, respectively, the ordinate
and abcissa.
There are three possible configurations, depending on the angle between
the planes P and H:

7Since BC bisects QR, the product in Equation (2.2) equals |QV |2.
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R

Q
V

B

C

P

H

P

Figure 2.3: Conic Section

• Parabolas: If the generator AC is parallel to the plane P, then P is
the only vertex of γ. Apollonius constructs a line segment PL
perpendicular to the plane P called the orthia; 8 he then
formulates9 a relation between the square of the ordinate and the
abcissa analogous to Equation (2.2)as equality of area between the
rectangle LPV and a square with side |QV | (recall Equation (2.2)).

|QV |2 = |PL| |PV | . (2.3)

In a terminology going back to the Pythagoreans, this says that the
square on the ordinate is equal to the rectangle applied to PL, with
width equal to the abcissa. Accordingly, Apollonius calls this curve a
parabola. (Figure 2.4) (the Greek word for “application” is
παραβολή) [27, p. 359].

• Ellipses: If PV is not parallel to AC, then the line PV (extended)
meets the line AB (extended) at a second vertex P ′. If φ denotes the
(acute) angle between P and a horizontal plane H, then V lies
between P and P ′ if 0 ≤ φ < π

2 − α and P lies between V and P ′ if
π
2 − α < φ ≤ π

2 .

One finds a point S so that △P ′V S is a right triangle whose
hypotenuse SP ′ is horizontal, and derives the equation (see
Appendix A)

|QV |2 = |V S| · |PV | . (2.4)

8The Latin translation of this term is latus rectum, although this term has come to
mean a slightly different quantity, the parameter of ordinates (see Appendix A).

9Details are in Appendix A
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Figure 2.4: Parabola

This is like Equation (2.3), but |PL| is replaced by the shorter length
|V S|; in the Pythagorean terminology, the square on the ordinate is
equal to the rectangle with width equal to the abcissa applied to the
segment V S, falling short of PL. The Greek for “falling short” is
ἔλλειψιζ, and Apollonius calls γ an ellipse in this case. (Figure 2.5)

• Hyperbolas: In the final case, when When π
2 − α < φ ≤ π

2 , the
same arguments as in the ellipse case yield Equation (2.4), but this
time the segment V S exceeds PL; the Greek for “excess” is ἠπερβολή,
and γ is called a hyperbola. (Figure 2.6)

The Focus-Directrix Property

Pappus, in a section of the Collection headed “Lemmas to the Surface
Loci10 of Euclid”, proves the following ([27, p. 153]):

Lemma 2.1.1. If the distance of a point from a fixed point be in a given
ratio to its distance from a fixed straight line, the locus of the point is a

10This work, like Euclid’s Conics, is lost, and little information about its contents can
be gleaned from Pappus.
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Figure 2.5: Ellipse

Figure 2.6: Hyperbola
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conic section, which is an ellipse, a parabola, or a hyperbola according as
the ratio is less than, equal to, or greater than, unity.

The fixed point is called the focus, the line is the directrix, and the ratio
is called the eccentricity of the conic section. This focus-directrix
property of conics is not mentioned by Apollonius, but Heath deduces from
the way it is treated by Pappus that this lemma must have been stated
without proof, and regarded as well-known, by Euclid. We outline a proof
in Appendix B.

The focus-directrix characterization of conic sections can be turned into an
equation. This approach—treating a curve as the locus of an equation in
the rectangular coordinates—was introduced in the early seventeenth
century by René Descartes (1596-1650) and Pierre de Fermat (1601-1665).

Here, we will explore each of the three types of conic section by
considering, for each, a standard model locus with a particularly simple
equation from which various geometric features are easily deduced. In
Appendix C we shall derive these equations directly from the
focus-directrix property. In § 3.11 we shall see that, with a few
“degenerate” exceptions, every quadratic equation in x and y has a conic
section as its locus.

Parabolas

A parabola is a curve with eccentricity e = 1, which means it is the locus
of points equidistant from a given line (the directrix) and a given point
(the focus). Taking the directrix vertical and to the left of the y-axis (say
x = −p

4 ) and the focus on the x-axis an equal distance to the right of the
origin (F (p4 , 0)), we get (Exercise 6) a curve going through the origin, with
equation

y2 = px. (2.5)

The origin is the point on this curve closest to the directrix, known as the
vertex of the parabola. Since y only appears squared in the equation,
replacing y with −y does not change the equation, so the curve is
symmetric about the x-axis (if (x, y) lies on the locus, so does (x,−y)).
The curve has two branches, both going to infinity “to the right” (values of
x can be arbitrarily high). See Figure 2.7.

If we interchange x and y in Equation (2.5), we obtain the graph

y = ax2 (2.6)
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•
F
(p
4 , 0
)

x = −p
4

Figure 2.7: The Parabola y2 = px, p > 0

where a = 1
p . Geometrically, this amounts to reflecting the locus across the

diagonal, leading to a horizontal directrix y = −px
4 = − x

4a and a focus
F (0, p4 ) = (0, 1

4a) on the y-axis. This curve is symmetric about the y-axis
and opens up (Figure 3.31).

•
F (0, 1/4a)

y = −1/4a

Figure 2.8: The Parabola y = ax2, a > 0

Ellipses

The standard ellipse is given by the equation

x2

a2
+
y2

b2
= 1 (2.7)

where a and b are (by convention positive) constants.
We easily see that for any point on this curve, |x| ≤ a and |y| ≤ b, so the
curve is bounded. The two numbers a and b determine the x-intercepts
(±a, 0) and y-intercepts (0,±b) of the curve. The intervals between the
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intercepts are called the axes of this ellipse; the larger (resp. smaller) is
called the major axis (resp. minor axis); thus the larger of a and b is
the semi-major axis while the smaller is the semi-minor axis.
Note that when a = b, Equation (2.7) is the equation of a circle, centered
at the origin, whose radius equals their common value a = b = r. In
general, the roles of a and b in the focus-directrix analysis depend on
which is major and which is minor. We shall carry out this analysis
assuming that a is the semi-major axis:

a > b > 0

and at the end consider how to modify this when a < b.
The ends of the major axis are the vertices of the ellipse. We are
assuming these are (±a, 0). Associated to the vertex (a, 0) is a focus
F (c, 0) and a directrix x = d. We expect that c < a < d. If we fix the
eccentricity 0 < e < 1, the focus-directrix property at the vertex reads

a− c = e(d− a).

You should verify (Exercise 7a) that this holds if

c = ae (2.8)

d =
a

e
. (2.9)

For other points satisfying Equation (2.7), the condition reads

(x− c)2 + y2 = e2(d− x)2

which holds (Exercise 7b) if

e =

√

1−
(

b

a

)2

; (2.10)

note that this together with Equation (2.11) gives

c =
√

a2 − b2. (2.11)

As in the case of the parabola, the locus of Equation (2.7) is symmetric
about each of the coordinate axes. In particular, reflection about the
y-axis yields a second focus-directrix pair, F (−ae, 0) and x = −a

e . As a
consequence of Equation (2.11), we obtain the following characterization of
the ellipse, sometimes called the Gardener’s Rule (Exercise 13):
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b
F F ′

x = −a/e x = a/ea
b

c

a

Figure 2.9: The ellipse x2

a2
+ y2

b2
= 1, a > b > 0

The sum of the distances of any point on the ellipse to the two
foci equals the major axis.

This information is illustrated in Figure 2.9.
Our analysis was based on the assumption that the positive constants in
Equation (2.7) satisfied a > b > 0, that is, the major axis is horizontal. An
ellipse with vertical major axis can be obtained either by; interchanging x
and y in Equation (2.7) (so that a remains the major semi-axis but is now
associated with y) or by interchanging the roles of a and b in our analysis.
The latter approach is probably more natural; it is carried out in
Exercise 7c.

Hyperbolas

The standard equation for a hyperbola can be obtained from
Equation (2.7) by replacing the sum of terms with their difference:

x2

a2
− y2

b2
= 1. (2.12)

Clearly, the first term must be at least equal to 1, so |x| ≥ a for any point
on the curve; in particular there are no y-intercepts. There are two
x-intercepts, (±a, 0), which again play the role of vertices. Associated to
the vertex (a, 0) is the focus-directrix pair F (ae, 0), x = a

e . Note however
that the eccentricity of a hyperbola is greater than 1, so the focus (resp.
directrix) is to the right (resp. left) of the vertex. We see that the locus
has two parts, one opening to the right from the vertex (a, 0), the other to
the left from (−a, 0). You should verify that Equation (2.12) is satisfied in
general if in the focus-directrix condition we take the eccentricity to be

e =

√

1 +

(

b

a

)2

. (2.13)
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Note that by contrast with the ellipse case, a and b can have any relative
(nonzero) values.

If we interchange x and y, we obtain another hyperbola, whose parts open
up and down. The same effect can be obtained by leaving the left side of
Equation (2.12) alone but switching the sign on the right:

x2

a2
− y2

b2
= −1. (2.14)

This causes a and b (as well as x and y) to switch roles; see Exercise 8b.

Finally, the equation obtained by replacing the right side with zero

x2

a2
− y2

b2
= 0

has as its locus a pair of straight lines, crossing at the origin:

x

a
= ±y

b
. (2.15)

These are the asymptotes of the hyperbola: a point moving to infinity
along one of the branches of Equation (2.12) or Equation (2.14)
approaches one of the lines in Equation (2.15).

This information is illustrated in Figure 2.10.

x2

a2
− y2

b2
= −1

x2

a2 −
y2

b2 = 1

x2

a2
− y2

b2
= 0

•F

x = a/e

c

a

b

Figure 2.10: Hyperbolas and asymptotes
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Moving loci

In the model equations we have obtained for parabolas, ellipses and
hyperbolas in this section, the origin and the two coordinate axes play
special roles with respect to the geometry of the locus. For the parabola
given by Equation (2.5), the origin is the vertex, the point of closest
approach to the directrix, and the y-axis is an axis of symmetry for the
parabola, while the x-axis is a kind of boundary which the curve can touch
but never crosses. For the ellipse given by Equation (2.7), the coordinate
axes are both axes of symmetry, containing the major and minor axes, and
the origin is their intersection (the center of the ellipse). For the hyperbola
given by Equation (2.12), the coordinate axes are again both axes of
symmetry, and the origin is their intersection, as well as the intersection of
the asymptotes (the center of the hyperbola).
Suppose we want to move one of these loci (or indeed any locus) to a new
location: that is, we want to displace the locus (without rotation) so that
the special point given by the origin for the model equation moves to
(α, β). Any such motion is accomplished by replacing x with x plus a
constant and y with y plus another constant inside the equation; we need
to do this in such a way that substituting x = α and y = β into the new
equation leads to the same calculation as substituting x = 0 and y = 0 into
the old equation. It may seem wrong that this requires replacing x with
x− α and y with y − β in the old equation; to convince ourselves that it is
right, let us consider a few simple examples.
First, the substitution

x 7→ x− 1

y 7→ y − 2

into the model parabola equation

y = x2

leads to the equation

y − 2 = (x− 1)2;

we note that in the new equation, substitution of the point (1, 2) leads to
the equation 0 = 0, and furthermore no point lies below the horizontal line
through this point, y − 2 = 0: we have displaced the parabola so as to
move its vertex from the origin to the point (1, 2) (Figure 2.11).
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(0, 0)

(−1, 1) (1, 1)

y = x2

(1, 2)

(0, 3) (2, 3)

y − 2 = (x− 1)2

Figure 2.11: Displacing a parabola

Second, to move the ellipse

x2

4
+
y2

1
= 1

so that its center moves to (−2, 2), we perform the substitution

x 7→ x− (−2) = x+ 2

y 7→ y − 2

(Figure 2.12)

x2

4 + y2

1 = 1

(x+2)2

4 + (y−2)2

1 = 1

Figure 2.12: Displacing an ellipse

We can also reflect a locus about a coordinate axis. Since our model
ellipses and hyperbolas are symmetric about these axes, this has no effect
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on the curve. However, while the model parabola given by Equation (2.5)
is symmetric about the y-axis, it opens up; we can reverse this, making it
open down, by replacing y with −y, or equivalently replacing the positive
coefficient p with its negative. For example, when p = 1 this leads to the
equation

y = −x2

whose locus opens down: it is the reflection of our original parabola y = x2

about the x-axis (Figure 2.13).

y = x2

y = −x2

Figure 2.13: Reflecting a parabola about the x-axis

Finally, we can interchange the two variables; this effects a reflection about
the diagonal line y = x. We have seen the effect of this on an ellipse and
hyperbola. For a parabola, the interchange x↔ y takes the parabola
y = x2, which opens along the positive y-axis (i.e., up), to the parabola
x = y2, which opens along the positive x-axis (i.e., to the right)
(Figure 2.14), and the parabola y = −x2, which opens along the negative
y-axis (i.e., down), to the parabola x = −y2, which opens along the
negative x-axis (i.e., to the left).

y = x2

x = y2

Figure 2.14: Reflecting a parabola about the diagonal

Finally, we briefly consider the rotation of loci.
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A rotation of the plane by α radians counterclockwise amounts to adding α
to the “angular” polar coordinate of each point; thus the point P (x, y)
with Cartesian coordinates (r cos θ, r sin θ) is taken to P ′(x′, y′), where

x′ = r cos(θ + α)

= r(cos θ cosα− sin θ sinα)

= x cosα− y sinα
y′ = r sin(θ + α)

= r(cos θ sinα+ sin θ cosα)

= x sinα+ y cosα.

In keeping with our experience of displacements,it is reasonable that to
rotate a locus by α radians in a given direction, we should substitute the
values x′ and y′ for a point rotated in the opposite direction by α radians;
thus to rotate a given locus α radians counterclockwise we should perform
the substitution

x 7→ x cosα+ y sinα

y 7→ −x sinα+ y cosα.

As an example, let us rotate the hyperbola given by

x2

2
− y2

2
= 1

by π
4 radians (45 degrees) counterclockwise. The appropriate substitution

is

x 7→ x cos
π

4
+ y sin

π

4

=
x√
2
+

y√
2

y 7→ −x sin π
4
+ y cos

π

4

= − x√
2
+

y√
2
;

this substitution transforms the equation into

1

2

(

x√
2
+

y√
2

)2

− 1

2

(

− x√
2
+

y√
2

)2

= 1
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or

x2

4
+
xy

2
+
y2

4
−
(

x2

4
− xy

2
+
y2

4

)

= 1

xy

2
+
xy

2
= 1

xy = 1.

We shall see later (§ 3.11) that, with a few degenerate exceptions, every
quadratic equation has as its locus one of the types of conic sections
discussed here.

Exercises for § 2.1

Practice problems:

1. In each problem below, you are given the locus of a conic section in
“standard position”; give give an equation for the locus resulting
from the indicated motion:

(a) The parabola y = x2, moved so its vertex is at (1,−2).
(b) The ellipse 4x2 + y2 = 1, moved so its center is at (3,−2).
(c) The hyperbola x2

9 −
y2

4 = 1, moved so that its “right” vertex is
at (3, 0).

(d) The parabola y = x2
√
2, rotated counterclockwise π

4 radians.

(e) The ellipse x2

4 + y2 = 1, rotated counterclockwise π
4 radians.

(f) The ellipse x2

4 + y2 = 1, rotated counterclockwise π
3 radians.

2. Identify each of the following curves as a circle, ellipse, hyperbola,
parabola, or degenerate locus. For a parabola, determine the axis of
symmetry and vertex. For a hyperbola, determine the vertices,
asymptotes and center. For an ellipse (resp. circle), determine the
center and semimajor and semiminor axes (resp. radius).

(a) y2 = x+ 2y

(b) 4x2 + 4x+ 4y2 − 12y = 15

(c) 4x2 + 4x+ y2 + 6y = 15

(d) x2 − 10x− y2 − 6y − 2 = 0
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3. Determine the focus, directrix and eccentricity of each conic section
below:

(a) 2x2 − 4x− y = 0

(b) 4y2 − 16y + x+ 16 = 0

(c) 4x2 − 8x+ 9y2 + 36y + 4 = 0

(d) x2 + 4x− 16y2 + 32y + 4 = 0

Theory problems:

4. Show that if P is a plane through A, then P ∩K is

• just the origin if P is horizontal or is tilted not too far off the
horizontal;

• a single generator if P is tangent to the cone, and

• a pair of generators otherwise.

5. Show that Equation (2.2) (the statement of Prop. 13, Book VI of
the Elements) is equivalent to the standard equation for a circle.
(Hint: In Figure 2.2, put the origin at the center of the circle and
assume the radius of the circle is ρ. This means the coordinates of B
are (−ρ, 0) and those of C are (ρ, 0). If the coordinates of Q are
(x, y), then show that

|BV | = ρ+ x

|CV | = ρ− x
|QV | = |y| .

Substituting these values into Equation (2.2) then gives the equation
of the circle. )

6. (a) Show that a point P (x, y) is equidistant from the vertical line
x = −p

4 and the point F (p4 ) precisely if its coordinates satisfy

y2 = px.

(b) Verify that the curve with equation y = ax2 is a parabola with
directrix y = − 1

4a and focus F (0, 1
4a).
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7. (a) Verify that the point P (a, 0) satisfies the eccentricity
condition–that the distance to F (c, 0) is e times the distance to
the line x = d–if c = ae and d = a

e ; that is, if Equation (2.11)
and Equation (2.9) hold then

a− c = e(d− a).

Note that for the ellipse, 0 < e < 1 means that c < a < d.

(b) Assume the conditions of Exercise 7a hold, with 0 < e < 1.
Verify that the eccentricity condition–that the distance from
P (x, y) to F (ae, 0) equals e times its distance to the line
x = a

e–holds for every point of the locus of

x2

a2
+
y2

b2
= 1 (2.7)

provided

a2(1− e2) = b2 (2.16)

or equivalently,

e =

√

1−
(

b

a

)2

. (2.10)

Note that these last two conditions are possible only if
0 < a < b.

(c) Suppose that 0 < b < a in Equation (2.7); then Equation (2.16)
(and hence Equation (2.10)) is an impossible condition. Show,
however, that in this case (2.7) is the locus of points P (x, y)
whose distance from the point F (0, be) equals e times their
distance from the line y = b

e , where

e =

√

1−
(a

b

)2
.

8. (a) Note that if e > 1 in Exercise 7a, then d < a < c, and that the
condition in Equation (2.10) is impossible. However, show that
if

e =

√

1 +

(

b

a

)2
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than the eccentricity condition–that the distance from P (x, y)
to F (ae, 0) equals e times its distance to the line x = a

e– does
hold for every point on the locus of

x2

a2
− y2

b2
= 1.

(b) Show that replacing 1 with −1 in Equation (2.12) is equivalent
to interchanging the roles of x and y–or equivalently, to creating
a hyperbola which opens up and down instead of right and left.

History Notes:

Spiral of Archimedes: Archimedes in his work On Spirals [3], studied
the curve with polar equation r = aθ (a a positive constant) (see p. 150).

9. Quadrature of the Circle: According to Heath [26, vol. 1, p.
230] and Eves [15, p. 84], Archimedes is said to have used the spiral
to construct a square whose area equals that of a given circle. This
was one of the three classical problems (along with trisecting the
angle and duplicating the cube) which the Greeks realized could not
be solved by ruler-and-compass constructions [26, vol 1, pp. 218ff],
although a proof of this impossibility was not given until the
nineteenth century. However, a number of constructions using other
curves (not constructible by compass and straightedge) were given.
Our exposition of Archimedes’ approach follows [15, p. 84].

(a) The area of a circle is equal, by Archimedes’ result in
Measurement of a Circle [2, Prop. 1, p. 91], to half the product
of its radius and its circumference. Show that the ray
perpendicular to the initial position of the ray generating the
spiral is cut by the spiral in a segment whose length is
one-fourth of the circumference of the circle of radius a.

(b) Use this to show that the side s of a square whose area equals
that of the circle of radius a is the mean proportional
between the diameter of the circle and the length of this
segment. (The mean proportional between A and B is the
number M such that A :M =M : B.)

10. Trisection of an Angle: Proposition 12 in On Spirals [3, p. 166]
gives an immediate construction for trisecting a given angle. Again, I
follow Eves [15, p. 85]: given a spiral and a given angle ∠AOB = θ,
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draw a spiral starting with the generating ray along OA, and let P
be its intersection with the spiral. Now divide OP into three equal
parts OQ1, Q1Q2, and Q2P . Draw circles through Q1 and Q2

centered at O, and let P1 (resp. P2) be the intersection of the circle
through Q1 (resp. Q2) with the spiral. Show that
∠P10A = ∠P1OP2 = ∠P2OP = θ

3 . Note that a similar argument
allows division of an angle into arbitrarily many equal parts.

11. The Quadratrix of Hippias: Pappus describes the construction of
a curve he calls the quadratrix, which can be used for the quadrature
of the circle as well as trisection of an angle. He ascribes it to
Nicomedes (ca. 280-210 BC), but Proclus (411-485), a later
commentator on Euclid and Greek geometry as important as Pappus,
ascribes its invention to Hippias of Elis (ca. 460-400 BC), and Heath
trusts him more than Pappus on this score (see [26, vol. 1, pp.
225-226]). The construction is as follows [15, p. 95]: the radius OX
of a circle rotates through a quarter-turn (with constant angular
speed) from position OC to position OA, while in the same time
interval a line BD parallel to OA undergoes a parallel displacement
(again with constant speed) from going through C to containing OA.
The quadratrix is the locus of the intersection of the two during this
motion (except for the final moment, when they coincide).

(a) Assuming the circle has center at the origin and radius a and
the final position of the radius OA is along the positive x-axis,
show that the equation of the quadratrix in polar coordinates is

πr sin θ = 2aθ.

(b) Show that if P is on the arc of the circle in the first quadrant,
then the angle ∠POA can be trisected as follows: let Q be the
intersection of OP with the quadratrix, and let QH be the
vertical line segment to the x-axis. If Q′ is one-third the way
from H to Q along this segment, and Q′L is a horizontal
segment with L on the quadratrix, then show that
∠LOA = 1

3∠POA.

(c) i. Show that if the quadratrix intersects OA at G, then
OG = 2a

π . (You can use calculus here: in the proof by
Dinostratus (ca. 390-320 BC), it is done by contradiction,
using only Euclidean geometry.)
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ii. Conclude from this that

⌢
CA : OA = OA : OG.

iii. Show how, in light of this, we can construct a line segment

equal in length to
⌢
CA.

iv. Show that a rectangle with one side equal to twice this line
segment and the other equal to a has the same area as the
circle of radius a.

v. Given a rectangle with sides of length w and h, show that
the side s of a square with the same area satisfies
w : s = s : h. The construction of a segment of length s
given segments of respective lengths w and h is given in
Proposition 13, Book VI of Euclid’s Elements.

12. The Conchoid of Nicomedes: Nicomedes (ca. 280-210 BC)
constructed the following curve: Fix a point O and a line L not going
through O, and fix a length a. Now, for each ray through O, let Q be
its intersection with L and let P be further out along the ray so that
QP has length a. (see Figure 2.15)

L

O

P

Q

b

θ

ℓ

a

Figure 2.15: The Conchoid of Nicomedes

(a) Show that if O is the origin and L is the horizontal line at
height b, then the equation of the conchoid in polar coordinates
is

r = a+ b csc θ.
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(b) Show that the equation of the same conchoid in rectangular
coordinates is

(y − b)2(x2 + y2) = a2y2.

(c) Trisecting an angle with the conchoid: ([27, p. 148], cite[p.
123]Burton). Consider the following configuration (see
Figure 2.16): Given a rectangle BCAF , suppose that the line
FA is extended to E in such a way that the line AD cuts off
from BE a segment DE of length precisely 2AB. Now let AG
bisect DE. Then AB = DG = GE; show that these are also
equal to AG. (Hint: ∠DAE is a right angle.) Conclude that
∠ABG = ∠AGB and ∠GAE = ∠GEA; use this to show that
∠GBA = 2∠AEG. (Hint: external angles.) Finally, show that
∠GBC = ∠AEG, and use this to show that ∠ABC = 3∠GBC.

B C

F A E

G

D

Figure 2.16: Trisecting an Angle using the Conchoid

(d) How do we use this to trisect an angle? Given an angle, draw it
as ∠ABC where AC is perpendicular to BC. Now using B in
place of O and the line AC in place of L, with a = 2AB, carry
out the construction of the conchoid. Show that E is the
intersection of the line through A parallel to BC with the
conchoid. But then we have constructed the angle ∠GBA to be
one-third of the given angle.

Challenge problems:

13. Show that the sum of the distances from a point on an ellipse to its
two foci equals the major axis. (You may assume the equation is in
standard form.) This is sometimes called the Gardener’s Rule for an
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ellipse: explain how one can construct an ellipse using a piece of
string.

14. Show that the (absolute value of the) difference between the
distances from a point on a hyperbola to its two foci equals the
transverse axis. (You may assume the equation is in standard form.)

15. Show that the locus of the equation

xy = 1

is a hyperbola. (Hint: consider a different coordinate system, using
the diagonal and anti-diagonal as axes.) (Compare the example at
the end of this section.)

2.2 Parametrized Curves

Parametrized Curves in the Plane

There are two distinct ways of specifying a curve in the plane. In classical
geometric studies, a curve is given in a static way, either as the intersection
of the plane with another surface (like the conical surface in Apollonius) or
by a geometric condition (like fixing the distance from a point or the
focus-directrix property in Euclid and Pappus). This approach reached its
modern version in the seventeenth century with Descartes’ and Fermat’s
formulation of a curve as the locus of an equation in the coordinates of a
point. A second and equally important source of curves is dynamic in
nature: a curve can be generated as the path of a moving point. This is the
fundamental viewpoint in Newton’s Principia (as well as the work of
Newton’s older contemporary Christian Huygens (1629-1695)), but
“mechanical” constructions of curves also go back to antiquity, for example
in “Archimedes’ spiral” (p. 150).
We have seen in the case of lines in the plane how these two approaches
interact: for example, the intersection of two lines is easier to find as the
simultaneous solution of their equations, but a parametrized version more
naturally encodes intrinsic geometric properties like the “direction” of a
line. We have also seen that when one goes from lines in the plane to lines
in space, the static formulation becomes unwieldy, requiring two equations,
while—especially with the language of vectors—the dynamic formulation
extends quite naturally. For this reason, we will adopt the dynamic
approach as our primary way to specify a curve.
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We can think of the position of a point moving in the plane as a
vector-valued function assigning to each t ∈ I the vector −→p (t); this
point of view is signified by the notation

−→p :R→R
2

indicating that the function −→p takes real numbers as input and produces
vectors in R

2 as output. If we want to be explicit about the domain I we
write

−→p : I→R
2.

The component functions of a vector-valued function

−→p (t) = (x(t) , y(t))

are simply the (changing) coordinates of the moving point; thus a
vector-valued function −→p :R→R

2 is the same thing as a pair of (ordinary,
real-valued) functions.

We have seen how to parametrize a line in the plane. Some other standard
parametrizations of curves in the plane are:

Circle: A circle in the plane with center at the origin and radius R > 0 is
the locus of the equation

x2 + y2 = R2.

A natural way to locate a point on this circle is to give the angle that
the radius through the point makes with the positive x-axis;
equivalently, we can think of the circle as given by the equation
r = R in polar coordinates, so that the point is specified by the polar
coordinate θ. Translating back to rectangular coordinates we have

x = R cos θ

y = R sin θ

and the parametrization of the circle is given by the vector-valued
function

−→p (θ) = (R cos θ,R sin θ).

As θ goes through the values from 0 to 2π, −→p (θ) traverses the circle
once counterclockwise; if we allow all real values for θ, −→p (θ)
continues to travel counterclockwise around the circle, making a full
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circuit every time θ increases by 2π. Note that if we interchange the
two formulas for x and y, we get another parametrization

−→q (θ) = (R sin θ,R cos θ)

which traverses the circle clockwise.

We can displace this circle, to put its center at any specified point
C(c1, c2), by adding the (constant) position vector of the desired
center C to −→p (θ) (or −→q (t)):

−→r (θ) = (R cos θ,R sin θ) + (c1, c2)

= (c1 +R cos θ, c2 +R sin θ).

Ellipse: The “model equation” for an ellipse with center at the origin
(Equation (2.7) in § 2.1)

x2

a2
+
y2

b2
= 1

looks just like the equation for a circle of radius 1 centered at the
origin, but with x (resp. y)) replaced by x/a (resp. y/b), so we can
parametrize this locus via

x

a
= cos θ

y

b
= sin θ

or

−→p (θ) = (a cos θ, b sin θ).

To understand the geometric significance of the parameter θ in this
case (Figure 2.17), imagine a pair of circles centered at the origin,
one circumscribed (with radius the semi-major axis a), the other
inscribed (with radius the semi-minor axis b) in the ellipse.

Draw a ray at angle θ with the positive x-axis; the point −→p (θ) is the
intersection of two lines—one vertical, the other horizontal—through
the intersections of the ray with the two circles. Again, the ellipse is
traversed once counterclockwise as θ varies by 2π.

As before, by adding a constant displacement vector, we can move
the ellipse so that its center is at (c1, c2):

−→r (θ) = (a cos θ, b sin θ) + (c1, c2)

= (c1 + a cos θ, c2 + b sin θ).
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b

aθ

Figure 2.17: Parametrization of an Ellipse

Hyperbola: The “model equation” for a hyperbola (Equation (2.12) in
§ 2.1)

x2

a2
− y2

b2
= ±1

can be parametrized as follows. The substitution

x

a
=
et ± e−t

2
y

b
=
et ∓ e−t

2

yields

(x

a

)2
=
e2t

4
± 2

(

et

2

)(

e−t

2

)

+
e−2t

4

=
e2t

4
± 1

2
+
e−2t

4

and similarly

(y

b

)2
=
e2t

4
∓ 2

(

et

2

)(

e−t

2

)

+
e−2t

4

=
e2t

4
∓ 1

2
+
e−2t

4



142 CHAPTER 2. CURVES

so

(x

a

)2
−
(y

b

)2
= ±1

2
−
(

∓1

2

)

= ±1.

The functions
{

cosh t = et+e−t

2

sinh t = et−e−t

2

(2.17)

are known, respectively, as the hyperbolic cosine and hyperbolic
sine of t. Using Euler’s formula (Calculus Deconstructed, p. 475),
they can be interpreted in terms of the sine and cosine of an
imaginary multiple of t, and satisfy variants of the usual
trigonometric identities (Exercise 6):

cosh t = cos it

sinh t = −i sin it.

We see that

−→p (t) = (a cosh t, b sinh t) −∞ < t <∞

gives a curve satisfying

x2

a2
− y2

b2
= 1.

However, note that cosh t is always positive (in fact, cosh t ≥ 1 for all
t), so this parametrizes only the “right branch” of the hyperbola; the
“left branch” is parametrized by

−→p (t) = (−a cosh t, b sinh t) −∞ < t <∞.

Similarly, the two branches of

x2

a2
− y2

b2
= −1

are parametrized by

−→p (t) = (a sinh t,±b cosh t) −∞ < t <∞.
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Parabolas: The model equation for a parabola with horizontal directrix
(Equation (2.5) in § 2.1)

y = ax2

is easily parametrized using x as the parameter:

x = t

y = at2

which leads to

−→p (t) =
(

t, at2
)

−∞ < t <∞.

This last example illustrates how to parametrize a whole class of curves.
The equation for a parabola gives one of the coordinates as an explicit
function of the other—that is, the curve is represented as the graph of a
function.

Remark 2.2.1. If a curve is expressed as the graph of a function

y = f(x)

then using the independent variable as our parameter, we can parametrize
the curve as

−→p (t) = (t, f(t)).

The circle x2 + y2 = 1 consists of two graphs: if we solve for y as a
function of x, we obtain

y = ±
√

1− x2, −1 ≤ x ≤ 1.

The graph of the positive root is the upper semicircle, and this can be
parametrized by

x(t) = t

y(t) =
√

1− t2

or

−→p (t) = (t,
√

1− t2), t ∈ [−1, 1] .
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Note, however, that in this parametrization, the upper semicircle is
traversed clockwise; to get a counterclockwise motion, we replace t with its
negative:

−→q (t) = (−t,
√

1− t2), t ∈ [−1, 1] .

The lower semicircle, traversed counterclockwise, is the graph of the
negative root:

−→p (t) = (t,−
√

1− t2, t ∈ [−1, 1] .

Displacing Curves

The parametrizations so far concern ellipses and hyperbolas in standard
positions—in particular, they have all been centered at the origin. We saw
at the end of § 2.1 how the standard equation of a conic section can be
modified to give a displaced version of the standard one. Actually,
displacing a curve given via a parametrization is even easier: we simply
add the desired (constant) displacement vector to the standard
parametrization.
For example, the standard ellipse (centered at the origin, with horizontal
semi-axis a and vertical semi-axis b) is parametrized by

−→p (θ) = (a cos θ)−→ı + (b sin θ)−→

or equivalently

{

x = a cos θ
y = b sin θ

.

Suppose we want to describe instead the ellipse with the same semi-axes
(still parallel to the coordinate axes) but with center at the point (c1, c2).
The displacement vector taking the origin to this position is simply the
position vector of the new center

−→c = c1
−→ı + c2

−→

so we can obtain the new ellipse from the old simply by adding this
(constant) vector to our parametrization function:

−→p (θ) = (c1
−→ı + c2

−→ ) + (a cos θ−→ı + b sin θ−→ )
= (c1 + a cos θ)−→ı + (c2 + b sin θ)−→
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or, in terms of coordinates,
{

x = c1 +a cos θ
y = c2 +b sin θ

.

We might also consider the possibility of a conic section obtained by
rotating a standard one. This is easily accomplished for a parametrized
expression: the role of −→ı (resp. −→ ) is now played by a rotated version −→u1
(resp. −→u2) of this vector. Two words of caution are in order here: the new
vectors must still be unit vectors, and they must still be perpendicular to
each other. Both of these properties are guaranteed if we make sure to
rotate both −→ı and −→ by the same amount, in the same direction.
For example, suppose we want to describe the ellipse, still centered at the
origin, with semi-axes a and b, but rotated counterclockwise from the
coordinate axes by α = π

6 radians. Rotating −→ı leads to the unit vector
making angle α = π

6 with the positive x-axis

−→u1 = (cosα)−→ı + (sinα)−→

=

√
3

2
−→ı +

1

2
−→

while rotating −→ the same amount yields the vector making angle α
(counterclockwise) with the positive y-axis, or equivalently making angle
α+ π

2 with the positive x-axis:

−→u2 = cos(α+
π

2
)−→ı + sin(α+

π

2
)−→

= (− sinα)−→ı + (cosα)−→

= −1

2
−→ı +

√
3

2
−→ .

Our parametrization of the rotated ellipse is obtained from the standard
parametrization by replacing −→ı with −→u1 and −→ with −→u2:
−→p (θ) = (a cos θ)−→u1 + (b sin θ)−→u2

= (a cos θ)

(

(cosα)−→ı + (sinα)−→
)

+ (b sin θ)

(

(− sinα)−→ı + (cosα)−→
)

= (a cos θ cosα− b sin θ sinα)−→ı + (a cos θ sinα+ b sin θ cosα)−→

=

(

a
√
3

2
cos θ − b

2
sin θ

)

−→ı +

(

−a
2
cos θ +

b
√
3

2
sin θ

)

−→
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or, in terms of coordinates,
{

x = a
√
3

2 cos θ − b
2 sin θ

y = −a
2 cos θ +

b
√
3

2 sin θ

Of course, we can combine these operations, but again some care is
necessary: rotate the standard parametrization before adding the
displacement; otherwise you will have rotated the displacement, as well.
For example, a parametrization of the ellipse centered at −→c = (1, 2) with
axes rotated π

6 radians counterclockwise from the positive coordinate axes
is given (in terms of the notation above) by

−→p (θ) = −→c +

(

(a cos θ)−→u1 + (b sin θ)−→u2
)

= (−→ı + 2−→ ) +
(

a
√
3

2
cos θ − b

2
sin θ

)

−→ı +

(

−a
2
cos θ +

b
√
3

2
sin θ

)

−→

=

(

1 +
a
√
3

2
cos θ − b

2
sin θ

)

−→ı +

(

2− a

2
cos θ +

b
√
3

2
sin θ

)

−→

or, in terms of coordinates,
{

x = 1 +a
√
3

2 cos θ − b
2 sin θ

y = 2 −a
2 cos θ +

b
√
3

2 sin θ
.

The general relation between a plane curve, given as the locus of an
equation, and its possible parametrizations will be clarified by means of
the Implicit Function Theorem in Chapter 3.

Analyzing a Curve from a Parametrization

The examples in the preceding subsection all went from a static expression
of a curve as the locus of an equation to a dynamic description as the
image of a vector-valued function. The converse process can be difficult,
but given a function −→p :R→R

2, we can try to “trace out” the path as the
point moves.
As an example, consider the function −→p :R→R

2 defined by

x(t) = t3

y(t) = t2
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with domain (−∞,∞). We note that y(t) ≥ 0, with equality only for t = 0,
so the curve lies in the upper half-plane. Note also that x(t) takes each
real value once, and that since x(t) is an odd function and y(t) is an even
function, the curve is symmetric across the y-axis. Finally, we might note
that the two functions are related by

(y(t))3 = (x(t))2

or

y(t) = (x(t))2/3

so the curve is the graph of the function x2/3—that is, it is the locus of the
equation

y = x2/3.

This is shown in Figure 2.18: as t goes from −∞ to ∞, the point moves to
the right, “bouncing” off the origin at t = 0.

Figure 2.18: The curve y3 = x2

A large class of curves can be given as the graph of an equation in polar
coordinates. Usually, this takes the form

r = f(θ) .

Using the relation between polar and rectangular coordinates, this can be
parametrized as

−→p (θ) = (f(θ) cos θ, f(θ) sin θ).

We consider a few examples.
The polar equation

r = sin θ
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describes a curve which starts at the origin when θ = 0; as θ increases, so
does r until it reaches a maximum at t = π

2 (when −→p
(

π
2

)

= (0, 1)) and
then decreases, with r = 0 again at θ = π (−→p (π) = (−1, 0)). For
π < θ < 2π, r is negative, and by examining the geometry of this, we see
that the actual points −→p (θ) trace out the same curve as was already traced
out for 0 < θ < π. The curve is shown in Figure 2.19. In this case, we can

Figure 2.19: The curve r = sin θ

recover an equation in rectangular coordinates for our curve: multiplying
both sides of

r = sin θ

by r, we obtain

r2 = r sin θ

and then using the identities r2 = x2 + y2 and y = r sin θ, we can write

x2 + y2 = y

which, after completing the square, can be rewritten as

x2 +

(

y − 1

2

)2

=
1

4
.

We recognize this as the equation of a circle centered at (0, 12) with radius
1
2 .
The polar equation

r = sin 2θ

may appear to be an innocent variation on the preceding, but it turns out
to be quite different. Again the curve begins at the origin when θ = 0 and
r increases with θ, but this time it reaches its maximum r = 1 when θ = π

4 ,
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which is to say along the diagonal (−→p
(

π
4

)

= ( 1√
2
, 1√

2
)), and then decreases,

hitting r = 0 and hence the origin when θ = π
2 . Then r turns negative,

which means that as θ goes from π
2 to π, the point −→p (θ) lies in the fourth

quadrant (x > 0, y < 0); for π < θ < 3π
2 , r is again positive, and the point

makes a “loop” in the third quadrant, and finally for 3π
2 < θ < 2π, it

traverses a loop in the second quadrant. After that, it traces out the same
curve all over again. This curve is sometimes called a four-petal rose
( Figure 2.20). Again, it is possible to express this curve as the locus of an

i

iiiii

iv

Figure 2.20: Four-petal Rose r = sin 2θ

equation in rectangular coordinates via mutliplication by r. However, it is
slightly more complicated: if we multiply

r = sin 2θ

by r, we obtain

r2 = r sin 2θ

whose left side is easy to interpret as x2 + y2, but whose right side is not so
obvious. If we recall the identity sin 2θ = 2 sin θ cos θ, we see that

r sin 2θ = 2r sin θ cos θ

but to turn the right side into a recognizable expression in x and y we need
to multiply through by r again; this yields

r3 = 2(r sin θ)(r cos θ)
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or

(

x2 + y2
)3/2

= 2xy.

While this is an equation in rectangular coordinates, it is not particularly
informative about our curve.
Polar equations of the form

r = sinnθ

define curves known as “roses”: it turns out that when n is even (as in the
preceding example) there are 2n “petals”, traversed as θ goes over an
interval of length 2π, but when n is odd—as for example n = 1, which was
the previous example—then there are n “petals”, traversed as θ goes over
an interval of length π.
A different kind of example is provided by the polar equation

r = aθ

where a > 0 is a constant, which was (in different language, of course)
studied by Archimedes of Syracuse (ca.287-212 BC) in his work On Spirals
[3] and is sometimes known as the spiral of Archimedes. Here is his own
description (as translated by Heath [28, p. 154]):

If a straight line of which one extremity remains fixed be made
to revolve at a uniform rate in a plane until it returns to the
position from which it started, and if, at the same time as the
straight line revolves, a point move at a uniform rate along the
straight line, starting from the fixed extremity, the point will
describe a spiral in the plane.

Of course, Archimedes is describing the above curve for the variation of θ
from 0 to 2π. If we continue to increase θ beyond 2π, the curve continues
to spiral out, as illustrated in Figure 2.21. If we include negative values of
θ, we get another spiral, going clockwise instead of counterclockwise
(Figure 2.22) It is difficult to see how to write down an equation in x and y
with this locus.
Finally, we consider the cycloid, which can be described as the path of a
point on the rim of a wheel rolling along a line (Figure 2.23). Let R be the
radius of the wheel, and assume that at the beginning the point is located
on the line—which we take to be the ξx—at the origin, so the center of the
wheel is at (0, R). We take as our parameter the (clockwise) angle θ which
the radius to the point makes with the downward vertical, that is, the
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Figure 2.21: The Spiral of Archimedes, r = θ, θ ≥ 0

Figure 2.22: r = θ, θ < 0

amount by which the wheel has turned from its initial position. When the
wheel turns θ radians, its center travels Rθ units to the right, so the
position of the center of the wheel corresponding to a given value of θ is

−→c (θ) = R−→ + (Rθ)−→ı
= (Rθ,R).

At that moment, the radial vector −→r (θ) from the center of the wheel to
the point on the rim is

−→r (θ) = −R(sin θ−→ı + cos θ−→ )

and so the position vector of the point is

−→p (θ) = −→c (θ) +−→r (θ)
= (Rθ −R sin θ,R−R cos θ)
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θ R

θ

Figure 2.23: Turning Wheel

or

x(θ) = R(θ − sin θ)

y(θ) = R(1− cos θ).

The curve is sketched in Figure 2.24.

θ = 0 θ = 2π

Figure 2.24: Cycloid

Curves in Space

As we have seen in the case of lines, when we go from curves in the plane
to curves in space, the static formulation of a curve as the locus of an
equation must be replaced by the more complicated idea of the locus of a
pair of equations. By contrast, the dynamic view of a curve as the path of
a moving point—especially when we use the language of vectors—extends
very naturally to curves in space. We shall adopt this latter approach to
specifying a curve in space.

The position vector of a point in space has three components, so the
(changing) position of a moving point is specified by a function whose
values are vectors in R

3, which we denote by −→p :R→R
3; this can be
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regarded as a triple of functions:

x = x(t)

y = y(t)

z = z(t)

or

−→p (t) = (x(t) , y(t) , z(t)).

As before, it is important to distinguish the vector-valued function −→p (t),
which specifies the motion of a point, from the path traced out by the
point. Of course the same path can be traced out by different motions; the
curve parametrized by the function −→p (t) is the range (or image) of the
function:

C = {−→p (t) | t ∈ domain(−→p )} .
When we are given a vector-valued function −→p :R→R

3, we can try to
analyze the motion by considering its projection on the coordinate planes.
As an example, consider the function defined by

x(t) = cos 2πt

y(t) = sin 2πt

z(t) = t

which describes a point whose projection on the xy-plane moves
counterclockwise in a circle of radius 1 about the origin; as this projection
circulates around the circle, the point itself rises in such a way that during
a complete “turn” around the circle, the “rise” is one unit. The
“corkscrew” curve traced out by this motion is called a helix (Figure 2.25).
While this can be considered as the locus of the pair of equations

x = cos 2πz

y = sin 2πz

such a description gives us far less insight into the curve than the
parametrized version.
As another example, let us parametrize the locus of the pair of equations

x2 + y2 = 1

y + z = 0
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x y

z

Figure 2.25: Helix

which, geometrically, is the intersection of the vertical cylinder

x2 + y2 = 1

with the plane

y + z = 0.

The projection of the cylinder on the xy-plane is easily parametrized by

x = cos t

y = sin t

and then substitution into the equation of the plane gives us

z = − sin t.

Thus, this curve can be described by the function −→p :R→R
3

−→p (t) = (cos t, sin t,− sin t).

It is shown in Figure 2.26. Note that it is an ellipse, not a circle (for
example, it intersects the x-axis in a line of length 2, but it intersects the
yz-plane in the points (0,±1,∓1), which are distance

√
2 apart).

How would we parametrize a circle in the plane y + z = 0, centered at the
origin? One way is to set up a rectangular coordinate system (much like
we did for conic sections) given by

X = x

Y = y
√
2
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x

y

z

Figure 2.26: Intersection of the Cylinder x2+y2 = 1 and the Plane y+z = 0.

which gives the distance from the yz-plane and the x-axis. The translation
back is

x = X

y =
1√
2
Y

z = − 1√
2
Y.

Then a circle of radius 1 centered at the origin but lying in the plane is
given by the parametrization

X = cos t

Y = sin t
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and the translation of this to space coordinates is

x = cos t

y =
1√
2
sin t

z = − 1√
2
sin t

or

−→p (t) = (cos t,
1√
2
sin t,− 1√

2
sin t).

This is sketched in Figure 2.27.

x

y

z

Figure 2.27: Circle of radius 1 about the Origin in the Plane y + z = 0.

Exercises for § 2.2

Practice problems:

1. Parametrize each plane curve below, indicating an interval of
parameter values over which the curve is traversed once:

(a) The circle of radius 5 with center (2, 3).
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(b) The ellipse centered at (1, 2) with horizontal semimajor axis 3
and vertical semiminor axis 1.

(c) The upper branch of the hyperbola y2 − x2 = 4.

(d) The lower branch of the hyperbola 4y2 − x2 = 1.

2. Sketch the curve traced out by each function −→p :R→R
2:

(a) −→p (t) = (t, sin t)

(b) −→p (t) = (cos t, t)

(c) −→p (t) = (3 cos t, sin t)

(d) −→p (t) = (t cos t, t sin t)

(e) −→p (t) = (t+ sin t, t+ cos t)

3. Sketch the curve given by the polar equation:

(a) r = 3cos θ

(b) r = sin 3θ

(c) r = sin 4θ

(d) r = 1− cos θ

(e) r = 2cos 2θ

4. Parametrize each of the curves in R
3 described below:

(a) The intersection of the plane x+ y + z = 1 with the cylinder
y2 + z2 = 1

(b) The circle of radius 1, centered at (1, 1, 1), and lying in the
plane x+ y + z = 3.

(c) A curve lying on the cone z =
√

x2 + y2 which rotates about
the z-axis while rising in such a way that in one rotation it rises
2 units. (Hint: Think cylindrical.)

(d) The great circle11 on the sphere of radius 1 about the origin
which goes through the points (1, 0, 0) and ( 1√

3
, 1√

3
, 1√

3
).

Theory problems:

5. Using the definition of the hyperbolic cosine and sine
(Equation (2.17)), prove that they satisfy the identities:

11A great circle on a sphere is a circle whose center is the center of the sphere.
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(a)
cosh2 t− sinh2 t = 1.

(b)

cosh2 t =
1

2
(1 + cosh 2t)

(c)

sinh2 t =
1

2
(cosh 2t− 1)

Challenge problem:

6. Using Euler’s formula

ea+bi = ea(cos b+ i sin b)

prove the identities

cos t =
eit + e−it

2

sin t =
eit − e−it

2i

and use these to justify the definitions

cos it = cosh t

sin it = i sinh t.

7. (a) A wheel of radius 1 in the plane, rotating counterclockwise with
angular velocity ω1 rotations per second, is attached to the end
of a stick of length 3 whose other end is fixed at the origin, and
which itself is rotating counterclockwise with angular velocity
ω2 rotations per second. Parametrize the motion of a point on
the rim of the wheel.

(b) A wheel of radius 1 in the plane rolls along the outer edge of the
disc of radius 3 centered at the origin. Parametrize the motion
of a point on the rim.

8. A vertical plane P through the z-axis makes an angle θ radians with
the xz-plane counterclockwise (seen from above). The torus T
consists of all points in R

3 at distance 1 from the circle x2 + y2 = 9,
z = 0 in the xy-plane. Parametrize the intersection P ∩ T of these
surfaces. (Hint: It is a circle.)
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9. Parametrize the path in space of a point on the wheel of a unicycle of
radius a which is ridden along a circular path of radius b centered at
the origin. (Hint: Note that the plane of the unicycle is vertical and
contains, at any moment, the line tangent to the path at the point of
contact with the wheel. Note also that as the wheel turns, it travels
along the path a distance given by the amount of rotation (in
radians) times the radius of the wheel.)

2.3 Calculus of Vector-Valued Functions

To apply methods of calculus to curves in R
2 or R3 or equivalently to their

parametrizations via vector-valued functions, we must first reformulate the
basic notion of convergence, as well as differentiation and integration, in
these contexts.

Convergence of Sequences of Points

The convergence of sequences of points {−→pi} in R
2 or R3 is a natural

extension of the corresponding idea for numbers, or points on the line R.
We will state everything in terms of R3, but the corresponding statements
and/or proofs for R2 are easy modifications of the R

3 versions.

Before formulating a geometric definition of convergence, we note a few
properties of the distance function on R

3. The first property will allow us
to use estimates on coordinates to obtain estimates on distances, and
vice-versa.

Lemma 2.3.1. Suppose P,Q ∈ R
3 have respective (rectangular)

coordinates (x1, y1, z1) and (x2, y2, z2). Let

δ := max(|△x| , |△y| , |△z|)

(where △x := x2 − x1, etc.)
Then

δ ≤ dist(P,Q) ≤ δ
√
3. (2.18)

Proof. Since each of (△x)2, (△y)2 and (△z)2 is at least zero and at most
δ2 (and at least one of them equals δ2), we have

δ2 ≤ (△x)2 + (△y)2 + (△z)2 ≤ δ2 + δ2 + δ2 = 3δ2

and taking square roots gives us Equation (2.18).
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In particular, we clearly have

dist(P,Q) = 0 ⇐⇒ P = Q. (2.19)

The next important property is proved by a calculation which you do in
Exercise 4.

Lemma 2.3.2 (Triangle Inequality). For any three points P,Q,R ∈ R
3,

dist(P,Q) ≤ dist(P,R) + dist(R,Q). (2.20)

With these properties in hand, we consider the notion of convergence for a
sequence {−→pi} of points −→pi ∈ R

3. The definition is an almost verbatim
translation of the corresponding notion for sequences of numbers (i.e., of
points in R) (Calculus Deconstructed, Dfn. 2.2.2).

Definition 2.3.3. A sequence of points −→pi ∈ R
3 converges to a point

L ∈ R
3 if for every desired accuracy ε > 0 there exists a place N in the

sequence such that every later point of the sequence approximates L with
accuracy ε:

i > N guarantees dist(−→pi , L) < ε.

We will write
−→pi → L

in this case.
An immediate corollary of the triangle inequality is the uniqueness of
limits (see Exercise 5 for a proof):

Corollary 2.3.4. If a sequence {−→pi} converges to L and also to L′, then
L = L′.

As a result of Corollary 2.3.4, if −→pi → L we can refer to L as the limit of
the sequence, and write

L = lim−→pi .
A sequence is convergent if it has a limit, and divergent if it has none.
The next result lets us relate convergence of points to convergence of their
coordinates. A proof is outlined in Exercise 7.

Lemma 2.3.5. Suppose {−→pi} is a sequence of points in R
3 with respective

coordinates (xi, yi, zi) and L ∈ R
3 has coordinates (ℓ1, ℓ2, ℓ3). Then the

following are equivalent:

1. −→pi → L (in R
3);
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2. xi → ℓ1, yi → ℓ2, and zi → ℓ3 (in R).

As in R, we say a sequence {−→pi} of points is bounded if there is a finite
upper bound on the distance of all the points in the sequence from the
origin—that is,

sup {dist(−→pi ,O)} <∞.
An easy analogue of a basic property of sequences of numbers is the
following, whose proof we leave to you (Exercise 6):

Remark 2.3.6. Every convergent sequence is bounded.

A major difference between sequences of numbers and sequences of points
in R

3 is that there is no natural way to compare two points: a statement
like “P < Q” does not make sense for points in space. As a result, there is
no natural way to speak of monotone sequences, and correspondingly we
cannot think about, for example, the maximum or supremum of a
(bounded) sequence of points. What we can do, however, is to think about
the maximum or supremum of a sequence of numbers associated to a
sequence of points—we have already seen an instance of this in the
definition of boundedness for a sequence.
One consequence of the lack of natural inequalities between points is that
we cannot translate the Completeness Axiom (Calculus Deconstructed,
Axiom 2.3.2) directly to R

3. However, the Bolzano-Weierstrass Theorem
(Calculus Deconstructed, Prop. 2.3.8), which is an effective substitute for
the Completeness Axiom, can easily be extended from sequences of
numbers to sequences of points (see Exercise 9):

Proposition 2.3.7 (Bolzano-Weierstrass Theorem). Every bounded
sequence of points in R

3 has a convergent subsequence.

In the exercises, you will check a number of features of convergence (and
divergence) which carry over from sequences of numbers to sequences of
points.

Continuity of Vector-Valued Functions

Using the notion of convergence formulated in the previous subsection, the
notion of continuity for real-valued functions extends naturally to
vector-valued functions.

Definition 2.3.8.
−→
f :R→R

3 is continuous on D ⊂ R if for every

convergent sequence ti → t in D the sequence of points
−→
f (ti) converges to−→

f (t).



162 CHAPTER 2. CURVES

Every function from R to R
3 can be expressed as

−→
f (t) = (f1(t) , f2(t) , f3(t))

or

−→
f (t) = f1(t)

−→ı + f2(t)
−→ + f3(t)

−→
k

where f1(t), f2(t) and f3(t), the component functions of
−→
f (t), are

ordinary (real-valued) functions. Using Lemma 2.3.5, it is easy to connect

continuity of
−→
f (t) with continuity of its components:

Remark 2.3.9. A function
−→
f :R→R

3 is continuous on D ⊂ R precisely if
each of its components f1(t), f2(t), f3(t) is continuous on D.

A related notion, that of limits, is an equally natural generalization of the
single-variable idea:

Definition 2.3.10.
−→
f :R→R

3 converges to
−→
L ∈ R

3 as t→ t0 if t0 is an

accumulation point of the domain of
−→
f (t) and for every sequence {ti} in

the domain of
−→
f which converges to, but is distinct from, t0, the sequence

of points pi =
−→
f (ti) converges to

−→
L .

We write

−→
f (t)→ −→L as t→ t0

or

−→
L = lim

t→t0

−→
f (t)

when this holds.

Again, convergence of
−→
f relates immediately to convergence of its

components:

Remark 2.3.11.
−→
f :R→R

3 converges to
−→
L as t→ t0 precisely when the

components of
−→
f converge to the components of

−→
L as t→ t0.

If any of the component functions diverges as t→ t0, then so does
−→
f (t).

The following algebraic properties of limits are easy to check (Exercise 11):
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Proposition 2.3.12. Suppose
−→
f ,−→g :R→R

3 satisfy

−→
L f = lim

t→t0

−→
f (t)

−→
L g = lim

t→t0

−→g (t)

and r:R→R satisfies

Lr = lim
t→t0

r(t).

Then

1. lim
t→t0

[−→
f (t)±−→g (t)

]

=
−→
L f ±

−→
L g

2. lim
t→t0

r(t)
−→
f (t) = Lr

−→
L f

3. lim
t→t0

[−→
f (t) · −→g (t)

]

=
−→
L f ·

−→
L g

4. lim
t→t0

[−→
f (t)×−→g (t)

]

=
−→
L f ×

−→
L g.

Derivatives of Vector-Valued Functions

When we think of a function
−→
f :R→R

3 as describing a moving point, it is
natural to ask about its velocity, acceleration and so on. For this, we need
to extend the notion of differentiation. We shall often use the Newtonian
“dot” notation for the derivative of a vector-valued function
interchangeably with “prime”.

Definition 2.3.13. The derivative of the function
−→
f :R→R

3 at an
interior point t0 of its domain is the limit

−̇→
f (t0) = ~f ′(t0) =

d

dt

∣

∣

∣

∣

t=t0

[−→
f
]

= lim
h→0

1

h

[−→
f (t0 + h)−−→f (t0)

]

provided it exists. (If not, the function is not differentiable at t = t0.)

Again, using Lemma 2.3.5, we connect this with differentiation of the
component functions:
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Remark 2.3.14. The vector-valued function

−→
f (t) = (x(t) , y(t) , z(t))

is differentiable at t = t0 precisely if all of its component functions are
differentiable at t = t0, and then

~f ′(t0) = (x′ (t0) , y
′ (t0) , z

′ (t0)).

In particular, every differentiable vector-valued function is continuous.

When −→p (t) describes a moving point, then its derivative is referred to as
the velocity of −→p (t)

−→v (t0) = −̇→p (t0)

and the derivative of velocity is acceleration

−→a (t0) = −̇→v (t0) = −̈→p (t0) .

The magnitude of the velocity is the speed, sometimes denoted

ds

dt
= ‖−→v (t)‖ .

Note the distinction between velocity, which has a direction (and hence is a
vector) and speed, which has no direction (and is a scalar).
For example, the point moving along the helix

−→p (t) = (cos 2πt, sin 2πt, t)

has velocity

−→v (t) = −̇→p (t) = (−2π sin 2πt, 2π cos 2πt, 1)

speed

ds

dt
=
√

4π2 + 1

and acceleration

−→a (t) = −̇→v (t) = (−4π2 cos 2πt,−4π2 sin 2πt, 0).

The relation of derivatives to vector algebra is analogous to the situation
for real-valued functions. The proofs of these statements are outlined in
Exercise 12.
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Theorem 2.3.15. Suppose the vector-valued functions
−→
f ,−→g : I→R

3 are
differentiable on I. Then the following are also differentiable:

Linear Combinations: for any real constants α, β ∈ R, the function

α
−→
f (t) + β−→g (t)

is differentiable on I, and

d

dt

[

α
−→
f (t) + β−→g (t)

]

= α~f ′(t) + β~g′(t) . (2.21)

Products: 12

• The product with any differentiable real-valued function α(t) on
I is differentiable on I:

d

dt

[

α(t)
−→
f (t)

]

= α′(t)
−→
f (t) + α(t)~f ′(t). (2.22)

• The dot product (resp. cross product) of two differentiable
vector-valued functions on I is differentiable on I:

d

dt

[−→
f (t) · −→g (t)

]

= ~f ′(t) · −→g (t) +−→f (t) · ~g′(t) (2.23)

d

dt

[−→
f (t)×−→g (t)

]

= ~f ′(t)×−→g (t) +−→f (t)× ~g′(t) . (2.24)

Compositions: 13 If t(s) is a differentiable function on J and takes

values in I, then the composition (
−→
f ◦ t)(s) is differentiable on J :

d

ds

[−→
f (t(s))

]

=
d
−→
f

dt

dt

ds
= ~f ′(t(s))t′(s) . (2.25)

An interesting and useful corollary of this is

Corollary 2.3.16. Suppose
−→
f :R→R

3 is differentiable, and let

ρ(t) :=
∥

∥

∥

−→
f (t)

∥

∥

∥ .

Then ρ2 (t) is differentiable, and

12These are the product rules or Leibniz formulas for vector-valued functions of
one variable.

13This is a chain rule for curves
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1.
d

dt

[

ρ2 (t)
]

= 2
−→
f (t) · ~f ′(t).

2. ρ(t) is constant precisely if
−→
f (t) is always perpendicular to its

derivative.

3. If ρ(t0) 6= 0, then ρ(t) is differentiable at t = t0, and ρ
′(t0) equals the

component of ~f ′(t0) in the direction of
−→
f (t0):

ρ′(t0) =
~f ′(t0) ·

−→
f (t0)

∥

∥

∥

−→
f (t0)

∥

∥

∥

. (2.26)

A proof is sketched in Exercise 13.

Linearization of Vector-Valued Functions

In single-variable calculus, an important application of the derivative of a
function f(x) is to define its linearization or degree-one Taylor polynomial
at a point x = a:

Taf(x) := f(a) + f ′(a) (x− a).
This function is the affine function (e.g., polynomial of degree one) which
best approximates f(x) when x takes values near x = a; one formulation of
this is that the linearization has first-order contact with f(x) at x = a:

lim
x→a

|f(x)− Taf(x)|
|x− a| = 0;

or, using “little-oh” notation, f(x)− Taf(x) = o(x− a). This means that
the closer x is to a, the smaller is the discrepancy between the easily
calculated affine function Taf(x) and the (often more complicated)
function f(x), even when we measure the discrepancy as a percentage of
the value. The graph of Taf(x) is the line tangent to the graph of f(x) at
the point corresponding to x = a.

The linearization has a straightforward analogue for vector-valued
functions:

Definition 2.3.17. The linearization of a differentiable vector-valued
function −→p (t) at t = t0 is the vector-valued function

Tt0
−→p (t) = −→p (t0) + t~p ′(t0)
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whose components are the linearizations of the component functions of
−→p (t): if

−→p (t) = x(t)−→ı + y(t)−→ ,

then the linearization at t = t0 is

Tt0
−→p (t) = (Tt0x(t))

−→ı + (Tt0y(t))
−→

= (x(t0) + x′ (t0) t)
−→ı + (y(t0) + y′ (t0) t)

−→ .

A component-by-component analysis (Exercise 16) easily gives

Remark 2.3.18. The vector-valued functions Tt0
−→p (t) and −→p (t) have

first-order contact at t = t0:

lim
t→t0

−→p (t)− Tt0
−→p (t)

|t− t0|
=
−→
0 .

When we interpret −→p (t) as describing the motion of a point in the plane or
in space, we can interpret Tt0

−→p (t) as the constant-velocity motion which
would result, according to Newton’s First Law of motion, if all the forces
making the point follow −→p (t) were instantaneously turned off at time
t = t0. If the velocity ~p ′(t0) is a nonzero vector, then Tt0

−→p (t) traces out a
line with direction vector ~p ′(t0), which we call the tangent line to the
motion at t = t0.

Integration of Vector-Valued Functions

Integration also extends to vector-valued functions componentwise. Given−→
f : [a, b]→R

3 and a partition P = {a = t0 < t1 < · · · < tn = b} of [a, b], we
can’t form upper or lower sums, since the “sup” and “inf” of

−→
f (t) over Ij

don’t make sense. However we can form (vector-valued) Riemann sums

R(P,−→f ,
{

t∗j
}

) =

n
∑

j=1

−→
f
(

t∗j
)

△tj

and ask what happens to these Riemann sums for a sequence of partitions
whose mesh size goes to zero. If all such sequences have a common (vector)

limit, we call it the definite integral of
−→
f (t) over [a, b]. It is natural (and

straightforward to verify, using Lemma 2.3.5) that this happens precisely if
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each of the component functions fi(t), i = 1, 2, 3 is integrable over [a, b],
and then

∫ b

a

−→
f (t) dt =

(∫ b

a
f1(t) dt,

∫ b

a
f2(t) dt,

∫ b

a
f3(t) dt

)

.

A direct consequence of this and the Fundamental Theorem of Calculus is
that the integral of (vector) velocity is the net (vector) displacement:

Lemma 2.3.19. If −→v (t) = −̇→p (t) is continuous on [a, b], then

∫ b

a

−→v (t) dt = −→p (b)−−→p (a) .

The proof of this is outlined in Exercise 15.

Exercises for § 2.3

Practice problems:

1. For each sequence {−→pn} below, find the limit, or show that none
exists.

(a)

(

1

n
,

n

n+ 1

)

(b) (cos(
π

n
), sin(

nπ

n+ 1
))

(c) (sin(
1

n
), cos(n))

(d) (e−n, n1/n)

(e)

(

n

n+ 1
,

n

2n+ 1
,

2n

n+ 1

)

(f)

(

n

n+ 1
,

n

n2 + 1
,
n2

n+ 1

)

(g) (sin
nπ

n+ 1
, cos

nπ

n+ 1
, tan

nπ

n+ 1
)

(h) (
1

n
lnn,

1√
n2 + 1

,
1

n
ln
√

n2 + 1)

(i) (x1, y1, z1) = (1, 0, 0), (xn+1, yn+1, zn+1) = (yn, zn, 1−
xn
n
)

(j)

(x1, y1, z1) = (1, 2, 3), (xn+1, yn+1, zn+1) = (xn +
1

2
yn, yn +

1

2
zn,

1

2
zn)
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2. An accumulation point of a sequence {−→pi} of points is any limit
point of any subsequence. Find all the accumulation points of each
sequence below.

(a)

(

1

n
,
(−1)nn
n+ 1

)

(b)

(

n

n+ 1
cosn,

n

n+ 1
sinn

)

(c)

(

n

n+ 1
,
(−1)nn
2n + 1

, (−1)n 2n

n+ 1

)

(d)

(

n

n+ 1
cos

nπ

2
,

n

n+ 1
sin

nπ

2
,

2n

n+ 1

)

3. For each vector-valued function −→p (t) and time t = t0 below, find the
linearization Tt0

−→p (t).

(a) −→p (t) = (t, t2), t = 1 (b) −→p (t) = t2−→ı − t3−→ , t = 2

(c) −→p (t) = (sin t, cos t),
t = 4π

3

(d) −→p (t) =
(2t+ 1)−→ı + (3t2 − 2)−→ ,
t = 2

(e) −→p (t) = (sin t, cos t, 2t),
t = π

6

(f) −→p (t) = (sin t)−→ı +

(cos 2t)−→ + (cos t)
−→
k ,

t = π
2

Theory problems:

4. Prove the triangle inequality

dist(P,Q) ≤ dist(P,R) + dist(R,Q)

(a) in R
2;

(b) in R
3.

(Hint: Replace each distance with its definition. Square both sides of
the inequality and expand, cancelling terms that appear on both
sides, and then rearrange so that the single square root is on on one
side; then square again and move all terms to the same side of the
equals sign (with zero on the other). Why is the given quantity
non-negative?
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You may find it useful to introduce some notation for differences of
coordinates, for example

△x1 = x2 − x1
△x2 = x3 − x2;

note that then

△x1 +△x2 = x3 − x1.

)

5. Prove Corollary 2.3.4 as follows:

For any ε > 0, we can find integers N and N ′ so that dist(−→pi , L) < ε
for every i > N and also dist(−→pi , L′) < ε for every i > N ′.

Show how, given any index i beyond both N and N ′, we can use the
triangle inequality (in R) to write

dist(L,L′) < 2ε.

But this says that dist(L,L′) is less than any positive number and
hence equals zero, so L = L′ by Equation (2.19).

6. Show that if −→pi → L in R
3, then {−→pi} is bounded.

7. Prove Lemma 2.3.5 as follows:

(a) Suppose −→pi → L. Given ε > 0, we can find N so that i > N
guarantees dist(−→pi , L) < ε. But then by Lemma 2.3.1

max(|xi − ℓ1| , |yi − ℓ2| , |zi − ℓ3|) < ε,

showing that each of the coordinate sequences converges to the
corresponding coordinate of L.

(b) Conversely, suppose xi → ℓ1, yi → ℓ2, and zi → ℓ3. Given ε > 0,
we can find

N1 so that i > N1 guarantees |xi − ℓ1| <
ε√
3

N2 so that i > N2 guarantees |yi − ℓ2| <
ε√
3

N3 so that i > N3 guarantees |zi − ℓ3| <
ε√
3
.
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Let L ∈ R
3 be the point with rectangular coordinates (ℓ1, ℓ2, ℓ3).

i > N guarantees dist(−→pi , L) <
√
3
ε√
3
= ε,

so −→pi → L.

8. Suppose {−→pi} is a sequence of points in R
3 for which the distances

between consecutive points form a convergent series:

∞
∑

0

dist(−→pi ,−−→pi+1) <∞.

(a) Show that the sequence {−→pi} is bounded. (Hint: Use the
triangle inequality)

(b) Show that the sequence is Cauchy—that is, for every ε > 0
there exists N so that i, j > N guarantees dist(−→pi ,−→pj ) < ε.
(Hint: see (Calculus Deconstructed, Exercise 2.5.9))

(c) Show that the sequence is convergent.

9. Prove Proposition 2.3.7 from the one-dimensional
Bolzano-Weierstrass Theorem as follows: Suppose M is an upper
bound on distances from the origin:

dist(−→pi ,O) < M for all i.

Show that we can pick a subsequence of {−→pi} whose first coordinates
form a convergent sequence of numbers. Then by the same reasoning,
we can find a (sub-)subsequence for which the the second coordinates
also converge, and finally a third (sub-sub-)subsequence for which
the third coordinates also converge. Show that this last
(subsub)subsequence is in fact a convergent sequence of vectors.

10. This problem concerns some properties of accumulation points
(Exercise 2).

(a) Show that a sequence with at least two distinct accumulation
points diverges.

(b) Show that a bounded sequence has at least one accumulation
point.

(c) Give an example of a sequence with no accumulation points.
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(d) Show that a bounded sequence with exactly one accumulation
point converges to that point.

11. Prove Proposition 2.3.12.

12. In this problem, we will prove Theorem 2.3.15.

(a) To prove Equation (2.21), apply standard differentiation
formulas (in R) to each component of

−→
h (t) = α

−→
f (t) + β−→g (t)

to get

h′i(t) = αf ′i(t) + βg′i(t) , i = 1, 2, 3

and then recombine using Remark 2.3.14.

(b) Use a similar strategy to prove Equation (2.22).

(c) Use a similar strategy to prove Equation (2.25).

(d) To prove Equation (2.23), set

h(t) =
−→
f (t) · −→g (t) ;

then

△h =
−→
f (t+△t) · −→g (t+△t)−−→f (t) · −→g (t) .

Use the “Leibnz trick” (add and subtract a term) to get

△h =
−→
f (t+△t) · −→g (t+△t)−−→f (t) · −→g (t+△t)

+
−→
f (t) · −→g (t+△t)−−→f (t) · −→g (t) .

Now divide by △t and take limits as △t→ 0.

(e) Use a similar strategy to prove Equation (2.24).

13. Prove Corollary 2.3.16.

14. Prove that the moment of velocity about the origin is constant if and
only if the acceleration is radial (i.e., parallel to the position vector).

15. Prove Lemma 2.3.19. (Hint: Look at each component separately.)
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16. Use the fact that each component of the linearization Tt0
−→p (t) of

−→p (t) has first-order contact with the corresponding component of
−→p (t) to prove Remark 2.3.18.

Challenge problem:

17. (David Bressoud) A missile travelling at constant speed is homing in
on a target at the origin. Due to an error in its circuitry, it is
consistently misdirected by a constant angle α. Find its path. Show
that if |α| < π

2 then it will eventually hit its target, taking 1
cosα times

as long as if it were correctly aimed.

2.4 Regular Curves

In § 2.2 we saw how a vector-valued function −→p (t) specifies a curve by
“tracing it out”. This approach is particularly useful for specifying curves
in space, but as we shall see it is also a natural setting (even in the plane)
for applying calculus to curves. However, it has the intrinsic complication
that a given curve can be traced out in many different ways. In this
section, we study how different vector-valued functions specify the same
curve, and which properties of a function encode geometric properties of
the curve it traces out, independent of which particular function is used to
describe it. Along the way, we will formulate more carefully which kinds of
vector-valued functions are appropriate parametrizations of a curve, and
hopefully end up with a better understanding of what, exactly, constitutes
a “curve”.

Graphs of Functions

We begin with the simplest example of a curve in the plane: the graph of a
function f(x) defined on an interval I

gr(f) := {(x, y) | y = f(x) , x ∈ I} .
In order to apply calculus to this curve, we assume that the function f(x)
is continuously differentiable,14 or C1. Such a curve has a natural
parametrization, using the input x as the parameter:

−→p (x) = (x)−→ı + (f(x))−→ = (x, f(x)).

14Although in principle only differentiability is needed, we also assume the derivative
is continuous; dealing with examples of functions with possibly discontinuous derivatives
could distract us from our main goal here.
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We note several properties of this parametrization:

1. Different values of the input x correspond to distinct points on the
graph. This means we can use the value of the parameter x to
unambiguously specify a point on the curve gr(f). In other words,
the vector-valued function −→p (x) is one-to-one:15

x 6= x′ ⇒ −→p (x) 6= −→p
(

x′
)

.

2. The vector-valued function −→p (x) is C1: it is differentiable, with
derivative the velocity vector

−→v (x) = ~p ′(x) = −→ı + (f ′(x))−→

and this vector varies continuously with x. Also, since its first
component is always 1, it is always a nonzero vector: we express this
by saying that −→p (x) has nonvanishing velocity.

3. At each point P (x0, f(x0)) on the curve, gr(f) has a tangent line:
this is the line through P with slope

dy

dx
= f ′(x0) .

The velocity vector −→v (x0) points along this line, so it can be used as
a direction vector for the tangent line.

The tangent line at P is the graph of the degree one Taylor
polynomial of f at x0

Tx0f(x) := f(x0) + f ′(x0) (x− x0)

which has first-order contact with f(x) at x = x0:

f(x)− Tx0f(x) = o(x− x0), i.e., lim
x→x0

f(x)− Tx0f(x)
x− x0

= 0.

Regular Parametrizations

To compare different parametrizations of the same curve, we consider the
upper semicircle of radius 1 centered at the origin in the plane

x2 + y2 = 1, y > 0

15A synonym for one-to-one, derived from the French literature, is injective.
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which is the graph of the function

y = f(x) =
√

1− x2, −1 < x < 1

and hence can be parametrized by

−→p (x) = (x,
√

1− x2)
= (x)−→ı + (

√

1− x2)−→ , x ∈ (−1, 1) .

Clearly, the vector-valued function −→p (x) is one-to-one; its velocity vector
at each parameter value x = x0 (−1 < x0 < 1)

−→vp(x0) = −→ı −
(

x0
√

1− x20

)

−→ (2.27)

is nonvanishing and parallel to the tangent line, which in turn is the graph
of

y = Tx0f(x) =
√

1− x20 −
x0

√

1− x20
(x− x0)

=
1− x0x
√

1− x20
.

An equivalent equation for the tangent line is

y
√

1− x20 + xx0 = 1. (2.28)

Now, consider the vector-valued function

−→q (θ) = (cos θ)−→ı + (sin θ)−→ , 0 < θ < π

giving another parametrization of the semicircle, in terms of polar
coordinates. This vector-valued function is also one-to-one and C1, with
nonvanishing velocity vector at θ = θ0

−→vq (θ0) = ~q ′(θ0) = (− sin θ0)
−→ı + (cos θ0)

−→ .

Comparing the two parametrizations, we see that each point of the
semicircle corresponds to a unique value of θ0 as well as a unique value of
x0; these are related by

x0 = cos θ0.
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In other words, the function −→q (θ) can be expressed as the composition of
−→p (x) with the change-of-variables function

x = cos θ.

Furthermore, substituting cos θ0 for x0 (and noting that for 0 < θ0 < π,
sin θ0 > 0, so

√

1− x20 = sin θ0) we see that at the point

P = −→p (x0) =
(

x0,
√

1− x20
)

= −→q (θ0) = (cos θ0, sin θ0)

the velocity vector, when calculated using −→q (θ), is
−→vq (θ0) = (− sin θ0)

−→ı + (cos θ0)
−→

=

(

−
√

1− x20, x0
)

=

(

−
√

1− x20
)

−→vp(x0)

(2.29)

and the resulting parametrization of the tangent line is

y sin θ0 + x cos θ0 = 1. (2.30)

The tangent line, given by either Equation (2.28) or Equation (2.30), is the
same, but the velocity vectors given by Equation (2.27) and
Equation (2.29) are not the same: each is parallel to the tangent line, and
hence the two vectors are linearly dependent, but they point in opposite
directions.
We codify some of these observations in several definitions and remarks.

Definition 2.4.1. A vector-valued function −→p (t) defined on an interval I
is regular on I if it is C1 and has nonvanishing velocity for every
parameter value in I. (The velocity vector at an endpoint, if included in I,
is the one-sided derivative, from the inside.)
A regular parametrization of the curve C is a regular function defined
on an interval I whose image equals C(i.e., −→p maps I onto 16 C).

When −→p (t) is a regular parametrization of the graph of a function f(x),
the tangent line agrees with the usual one, namely the graph of the

16The French-derived term for onto is surjective.
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linearization of f(x). This suggests that the tangent line is a geometric
object, attached to a curve independent of the vector-valued function used
to parametrize it. To study this question, we first study the different ways
a graph can be parametrized.
The following result says that any two regular parametrizations of the
same graph differ by a “change of variables” formula.

Lemma 2.4.2. If −→p (t) and −→q (s) defined on the interval I (resp. J) are
both regular parametrizations of a graph C = gr(f), then there is a unique
function t(s) defined on J and mapping onto I such that

−→q (s) = −→p (t(s)) for all s ∈ J.
The function t(s) is C1 with nonzero derivative everywhere in J , and hence
has a C1 inverse s(t), defined on I and mapping onto J , such that

−→p (t) = −→q (s(t)) for all t ∈ I.
The proof of this observation is fairly straightforward if −→p (t) is the
standard parametrization of C as a graph (Exercise 2), and the general
case follows by composition (Exercise 13).

Definition 2.4.3. We will say that −→p (t) (t ∈ I) is a reparametrization

of −→q (s) (s ∈ J) if there is a C1 function t with nonzero derivative on J ,
mapping onto I, such that

−→q (s) = −→p (t(s)) for all s ∈ J.
The function t is the recalibration function associated to the
reparametrization.

Remark 2.4.4. If −→p (t) is a reparametrization of −→q (s) with recalibration
function t(s), then −→q (s) is a reparametrization of −→p (t), with recalibration
function s(t) = t

−1(t).

As we saw in the example of the semicircle, different parametrizations of a
graph generally have different velocity vectors, but the same tangent line:

Remark 2.4.5. Suppose −→p (t) is a reparametrization of −→q (s), with
recalibration function t(s). Then the velocity vectors at corresponding
parameter values are linearly dependent: if

t0 = t(s0)

then

−→vp(t0) = t
′(s0)

−→vq(s0) .
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Intuitively, reparametrizing a curve amounts to speeding up or slowing
down the process of tracing it out. Since the speed with which we trace
out a curve is certainly not an intrinsic property of the curve itself, we can
try to eliminate the effects of such speeding up and slowing down by
concentrating on the unit tangent vector determined by a
parametrization −→p (t),

−→
Tp(t) =

−→vp(t)
|−→vp(t)|

.

The unit tangent vector can be used as the direction vector for the
tangent line of −→p (t) at t = t0. Remark 2.4.5 suggests that the unit
tangent is unchanged if we compute it using a reparametrization of −→p (t).
This is almost true, but not quite: if the derivative of the recalibration
function is negative, then one unit tangent vector points exactly opposite
to the direction of the other. This occurs in the example of the upper
semicircle above; it reflects the fact that the “graph” parametrization
−→p (x) traces the semicircle left-to-right (i.e., clockwise), while the
parametrization −→q (θ) coming from polar coordinates traces it right-to-left
(i.e., counterclockwise). We see, then, that a parametrization of a curve
encodes not just the path of its motion, but also a direction along that
path. We will say that a reparametrization preserves direction if the
recalibration has positive derivative (and hence is strictly increasing), and
it reverses direction if the recalibration has negative derivative (and
hence is strictly decreasing). Since the recalibration is assumed to have
nonzero derivative everywhere, the derivative can’t change sign, so these
are the only two possibilities.

We shall see in § 2.5 that it is possible in principle to realize the unit
tangent vector as the velocity of a suitable reparametrization of the curve.

Regular Plane Curves

The graph of a function defined on an interval I is a very special kind of
planar curve; in particular it must pass the vertical line test:17 for every
x0 ∈ I, the vertical line x = x0 must meet the curve in exactly one point.
Certainly there are many curves in the plane which fail this test. A large
class of such curves are polar curves, given by an equation of the form

r = f(θ) .

17This is the test for a curve to be the graph of y as a function of x; the analogous
horzontal line test checks whether the curve is the graph of x as a function of y.
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It is easy to check that as long as f is a C1 function and f(θ) 6= 0, the
vector-valued function

−→p (θ) = (f(θ) cos θ, f(θ) sin θ)

is a regular parametrization of this curve (Exercise 3).
One example is the spiral of Archimedes (see p. 150), given by the polar
equation r = θ, and hence parametrized by

−→p (θ) = (θ cos θ, θ sin θ).

In this case, even though the vertical and horizontal line tests fail, the
parametrization (see Exercise 4) is one-to-one: each point gets “hit” once.
It will be useful for future discussion to formalize this notion; for technical
reasons that will become clear later, we impose an additional condition in
the definition below:18

Definition 2.4.6. An arc is a curve that can be parametrized by a
one-to-one vector-valued function19 on a closed interval [a, b].20

Arcs share the property stated in Lemma 2.4.2 for graphs, that any two
parametrizations differ by a substitution (i.e., recalibration function).
We explore some aspects of this concept in Exercise 13
However, there are curves which cannot be represented as arcs. One
example is the (full) circle, given in polar coordinates by the equation
r = 1. The standard parametrization

−→p (θ) = (cos θ, sin θ).

is not one-to-one if we allow a pair of values for θ that differ by an even
multiple of π. If we try to avoid this problem by restricting the domain of
−→p , we run into difficulties, explored in Exercise 5. However, even if −→p (θ)
takes the whole real line −∞ < θ <∞ as its domain, it is locally
one-to-one: given any particular value θ = θ0 in the domain, we can find
an interval containing θ0 in its interior, on which −→p is one-to-one; namely,
any interval of length strictly less than 2π.
In fact, if we restrict −→p to any interval of length less than π, we can
express the resulting piece of C as a graph. This property holds for any
regular curve:

18The careful reader will note that if the spiral of Archimedes is defined on the infinite
interval θ > 0 then the second condition fails; however, it holds for any (closed) finite
piece.

19We have not specified that the function must be regular, although in practice we deal
only with regular examples.

20For the importance of this assumption, see Exercise 13b.
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Proposition 2.4.7. Suppose −→p (t) (t ∈ I) is a regular parametrization of
the curve C in the plane. Then −→p is locally the graph of a function: for
each t0 ∈ I, for every sufficiently small ε > 0, the subcurve parametrized by
−→p restricted to |t− t0| ≤ ε is the graph of y as a function of x, or of x as
a function of y. This function is C1.

A proof of this is sketched in Exercise 6; from this we can conclude that
the tangent line to a curve is an intrinsic, geometric item.
Theorem 3.4.2, Theorem 4.4.6, and Proposition 4.4.3, give a similar picture
for level curves and surfaces.
This picture is somewhat complicated when a curve has
self-intersections, illustrated by the Folium of Descartes, with
equation

x3 + y3 = 3xy (2.31)

and sketched in Figure 2.28.

Figure 2.28: The Folium of Descartes: x3 + y3 = 3xy

This is discussed in (Exercises 7 and 8).
Definition 2.4.1 applies to most of the curves we consider, but it excludes a
few, notably polygons like triangles or rectangles and the cycloid
(Figure 2.24). These have a few exceptional points at which the tangent
vector is not well defined. Generally, we define a parametrization (and the
curve it traces out) to be piecewise regular on an interval if there is a
finite partition such that the restriction to each closed atom is regular; at
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the partition points we require that the parametrization be continuous and
locally one-to-one. We shall not pursue this line further.

Regular Curves in Space

The theory we have outlined for planar curves applies as well to curves in
space. A regular parametrization of a curve in space is a C1 vector-valued
function of the form

−→p (t) = (x(t) , y(t) , z(t)) = (x(t))−→ı + (y(t))−→ + (z(t))
−→
k

with non-vanishing velocity

−→v (t) := ~p ′(t) = (x′ (t) , y′ (t) , z′ (t))

= (x′ (t))−→ı + (y′ (t))−→ + (z′ (t))
−→
k 6= −→0

(or equivalently, non-zero speed)

(x′ (t))2 + (y′ (t))2 + (z′ (t))2 6= 0.

We can no longer talk about such a curve as the graph of a function, but
we can get a kind of analogue of the second statement in Proposition 2.4.7
which can play a similar role:

Remark 2.4.8. If −→p (t) is a regular vector-valued function with values in
R
3, then locally its projections onto two of the three coordinate planes are

graphs: more precisely, for each parameter value t = t0 at least one of the
component functions has nonzero derivative on an interval of the form
|t− t0| < ε for ε > 0 sufficiently small; if the first component has this
property, then the projection of the subcurve defined by this inequality onto
the xy-plane (resp. xz-plane) is the graph of y (resp. of z) as a C1
function of x.

From this we can conclude that, as in the planar case, the tangent line to
the parametrization at any particular parameter value t = t0 is
well-defined, and is the line in space going through the point −→p (t0) with
direction vector −→v (t0); furthermore, the linearization of −→p (t) at t = t0 is a
regular vector-valued function which parametrizes this line, and has
first-order contact with −→p (t) at t = t0.
As a quick example, we consider the vector-valued function

−→p (t) = (cos t, sin t, cos 3t)
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with velocity

−→v (t) = (− sin t, cos t,−3 sin 3t).
Since sin t and cos t cannot both be zero at the same time, this is a regular
parametrization of a curve in space, sketched in Figure 2.29. We note, for

x y

z

(a) 3D View

x

z

y

z

x

y

(b) Projections onto Coordinate Planes

Figure 2.29: The Parametric Curve ~p(t) = (cos t, sin t, cos 3t)

example, that dx
dt = 0 when t is an integer multiple of π: x is strictly

decreasing as a function of t for t ∈ [0, π], going from x(0) = 1 to
x(π) = −1; as t goes from t = 0 to t = π, y goes from y = 0 to y = 1 and
back again, and z goes from z = 1 (at t = π

3 ) to z = −1 to z = 1 (at
t = 2π

3 ) and back to z = −1. The projected point (x, y) traces out the
upper semicircle in the projection on the xy-plane; meanwhile, (x, z) traces
out the graph z = 4x3 − 3x, both going right-to-left. As t goes from t = π
to t = 2π, (x, y) traces out the lower semicircle and (x, z) retraces the same
graph as before, this time left-to-right.
Similarly, dydt = 0 when t is an odd multiple of π

2 ; for t ∈
[

−π
2 ,

π
2

]

, y is
strictly increasing, and (x, y) traverses the right semicircle in the
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projection on the xy-plane counterclockwise, while (y, z) traverses the
“W-shaped” graph z = (1− 4y2)

√

1− y2 in the yz-plane left-to-right.
Finally, dt

dx = 0 when t is an integer multiple of π3 . These correspond to six
points on the curve, and correspondingly there are six subintervals on
which z is a strictly monotone. For example, as t goes from t = 0 to t = π

3 ,
z goes from z = 1 z = −1, (x, z) traverses the leftmost branch of the
projection on the xz-plane and (y, z) traces out the downward-sloping
branch of the projection on the yz-plane, from the z-axis at (0, 1) to the

minimum point
(√

3
2 ,−1

)

to its right.

Exercises for § 2.4

Practice problems:

1. For each pair of vector-valued functions −→p (t) and −→q (t) below, find a
recalibration function t(s) so that −→q (s)=−→p (t(s)) and another, s(t),
so that −→p (t)=−→q (s(t)):

(a)

−→p (t) = (t, t) − 1 ≤ t ≤ 1
−→q (t) = (cos t, cos t) 0 ≤ t ≤ π

(b)

−→p (t) = (t, et) −∞ < t <∞
−→q (t) = (ln t, t) 0 < t <∞

(c)

−→p (t) = (cos t, sin t) −∞ < t <∞
−→q (t) = (sin t, cos t) −∞ < t <∞

(d)

−→p (t) = (cos t, sin t, sin 2t) − π

2
≤ t ≤ π

2
−→q (t) = (

√

1− t2, t, t
√

4− 4t2) − 1 ≤ t ≤ 1

Theory problems:
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2. Prove Lemma 2.4.2 as follows:

(a) Suppose first that −→p (t) = (t, f(t)), and write

−→q (s) = (q1(s) , q2(s)).

Then show that t(s) = q1(s) satisfies
−→p (t(s)) = −→q (s).

(b) Show that the derivatives of the components of −→q (s) are related
by

q′2(s) = f ′(q1(s)) · q′1(s)

so that if ~q ′(s0) 6=
−→
0 , then also q′1(s0) 6= 0.

(c) Conclude that, when −→p (t) is the standard graph
parametrization of C and −→q (s) is another regular
parametrization, then t(s) = q1(s) satisfies all the conditions of
the lemma.

(d) In general, if −→p (t) and −→q (s) are arbitrary regular
parametrizations of C, let −→r (x) = (x, f(x)) be the standard
graph parametrization of gr(f) and let t(x) (resp. s(s)) be the
calibration function for −→p in terms of −→r (resp. −→r in terms of
−→q ). Then show that their composition is the required
recalibration between −→p and −→q .

3. Let C be given by the polar equation

r = f(θ)

and set

−→p (θ) = (f(θ) cos θ, f(θ) sin θ).

Assume that the function f is C1.

(a) Show that if f(θ0) 6= 0, we have −→v (θ0) 6=
−→
0 . (Hint: Calculate

−→v (θ) and the speed |−→v (θ)|.)
(b) Show that if f(θ0) = 0 but f ′(θ0) 6= 0, we still have −→v (θ0) 6= 0.

(c) Show that in the second case (i.e., when the curve goes through
the origin) the velocity makes angle θ0 with the positive x-axis.
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4. Show directly that the vector-valued function giving the Spiral of
Archimedes

−→p (θ) = (θ cos θ, θ sin θ), θ ≥ 0.

is regular. (Hint: what is its speed?) Show that it is one-to-one on
each of the intervals (−∞, 0) and (0,∞).

5. Consider the standard parametrization of the circle

−→p (θ) = (cos θ, sin θ).

(a) Show that if I has length strictly greater than 2π, then the
restriction of −→p to I cannot be one-to-one.

(b) Show that if I is an interval of length strictly less than 2π, then
the restriction of −→p to I cannot have the whole circle as its
image.

(c) Suppose I is an interval of length exactly 2π.

i. Show that if I is closed, then the restriction of −→p to I is
not one-to-one.

ii. Show that if I is open, say I = (a, b) with b = a+ 2π, then
limt→a

−→p (t) = limt→b
−→p (t) is a point not in the image of −→p .

iii. Suppose I is half-open (say I = [a, b) with b = a+ 2π).
Show that −→p is one-to-one and onto. On the other hand,
find a sequence of points −→pi = −→p (ti)→ −→p (a) such that
ti 6→ a.

6. Prove Proposition 2.4.7 as follows:

(a) Given t0 ∈ I, at least one of x′ (t0) and y′ (t0) must be nonzero.
Assume x′ (t0) 6= 0; without loss of generality, assume it is
positive. Show that for some ε > 0 the x-coordinate x(t) is
strictly increasing on the interval t0 − ε < t < t0 + ε.

(b) Show that the vertical-line test applies to −→p (t) on
(t0 − ε, t0 + ε). This means that this restriction lies on the
graph of some function

y(t) = f(x(t)) for t0 − ε < t < t0 + ε.

(c) To show that f(t) is C1, show that the slope of the velocity
vector −→v (t0) equals f ′(t0): first, show that any sequence
x(ti)→ x(t0) must have ti → t0. But then the corresponding
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y-values y(ti) must converge to y(t0), and the slopes of the
secant lines satisfy

△y
△x →

y′ (t0)
x′ (t0)

where the denominator in the last line is nonzero by assumption.

(d) Complete the proof by showing how to modify the argument if
either x′ (t0) is negative, or if x′ (t0) is zero but y′ (t0) is not.

7. Consider the vector-valued function −→p (t) defined by







x =
(

3(1+t)(1−t)
2(1+3t2)

)

(1− t)
y =

(

3(1+t)(1−t)
2(1+3t2)

)

(1 + t)
−∞ < t <∞ (2.32)

which traces out the Folium of Descartes sketched in Figure 2.28.

(a) Show that −→p (t) has image in the locus C of the equation
x3 + y3 = 3xy.

(b) Show that −→p (t) is regular.
(c) Show that −→p (t) is onto, by establishing

i. limt→−∞ x(t) = −∞
ii. limt→−∞ y(t) =∞
iii. limt→∞ x(t) =∞
iv. limt→∞ y(t) = −∞
v. −→p (0) =

(

3
2 ,

3
2

)

(Why does this prove that −→p (t) is onto?)
(d) Show that −→p (−1) = −→p (1),and verify that the velocity is

horizontal when t = −1 but vertical when t = 1.

8. Show that the Folium of Descartes (Figure 2.28) is given by the polar
equation

r =
3 sin θ cos θ

sin3 θ + cos3 θ
.

9. Consider the curve C given by the polar equation

r = 2cos θ − 1

known as the Limaçon of Pascal (see Figure 2.30).
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Figure 2.30: Limaçon of Pascal: (x2 − 2x+ y2)2 = x2 + y2

(a) Find a regular parametrization of C.
(b) Verify that this curve is the locus of the equation

(x2 − 2x+ y2)2 = x2 + y2.

(c) Find the equations of the two “tangent lines” at the crossing
point at the origin.

10. Suppose f:R→R is continuous on R. Show :

(a) f is one-to-one if and only if it is strictly monotone.

(Hint: One direction is trivial. For the other direction, use the
Intermediate Value Theorem: what does it mean to not be
monotone?)

(b) If f is locally one-to-one, then it is globally one-to-one.

(c) Give an example of a function f(x) which is one-to-one on
[−1, 1] but is not strictly monotone on [−1, 1].

11. (a) Suppose −→p (t) is a regular vector-valued function whose image
satisfies the vertical line test—so that the curve it traces out is
the graph of a function f(x). Show that this function is C1,
provided the velocity always has a nonzero horizontal
component (that is, the velocity is never vertical). (Hint: Show
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that the “slope” of the velocity vector at any point (x, f(x))
equals the derivative of f(x) at x.)

(b) Show that the vector-valued function

−→p (t) = (t |t| , t2)

is C1 and one-to-one on the whole real line, but its image is the
graph of the function y = |x|, which fails to be differentiable at
x = 0. This shows the importance of the condition that the
velocity is always nonzero in our definition of regularity.

12. Prove Remark 2.4.8, as follows: Suppose C is parametrized by

−→p (t) = (x(t) , y(t) , z(t))

with dx
dt 6= 0 at t = t0, and hence nearby (i.e., on J). Now consider

the two plane curves parametrized by

−→py(t) = (x(t) , y(t))
−→pz(t) = (x(t) , z(t)).

These are the projections of C onto, respectively the xy-plane and
the xz-plane. Mimic the argument for Proposition 2.4.7(??) to show
that each of these is the graph of the second coordinate as a function
of the first.

Challenge problems:

13. Arcs: In this exercise, we study some properties of arcs, as defined
in Definition 2.4.6.

(a) Suppose −→p : I→R
3 is a continuous, one-to-one vector-valued

function on the closed interval I = [a, b] with image the arc C,
and suppose −→p (ti)→ −→p (t0) ∈ C. Show that ti → t0 in I. (Hint:
Show that the sequence ti must have at least one accumulation
point t∗ in I, and that for every such accumulation point t∗, we
must have −→p (t∗) = −→p (t0). Then use the fact that −→p is
one-to-one to conclude that the only accumulation point of ti is
t∗ = t0. But a bounded sequence with exactly one accumulation
point must converge to that point.)

(b) Show that this property fails for the parametrization of the
circle by −→p (θ) = (cos θ, sin θ), 0 ≤ θ < 2π.



2.4. REGULAR CURVES 189

(c) Show that the graph of a continuous function f(x) defined on a
closed interval [a, b] is an arc.

(d) Give an example of an arc in space whose projections onto the
three coordinate planes are not arcs. (This is a caution
concerning how you answer the next question.) Note: this
particular part of the problem is especially challenging,
technically. If necessary, skip it and later read one solution, in
the solution manual.

(e) In particular, it follows from Proposition 2.4.7 that every
regular curve in the plane is locally an arc. Show that every
regular curve in space is also locally an arc.

(f) Show that, as in Lemma 2.4.2, any two regular parametrizations
of the same arc in the plane are reparametrizations of each
other. (Hint: First, prove that if one of the parametrizations is
assumed to be globally one-to-one, and defined on [a, b], then
there is a unique recalibration function relating the two
parametrizations; then use composition to show that this
assumption involves no loss of generality. Then mimic the proof
in Lemma 2.4.2 that the recalibration function must be C1 with
non-vanishing derivative. )

14. Partition into arcs: Suppose −→p (t), t ∈ I is a regular vector-valued
function defined on the interval I. In this exercise, we show that I
can be partitioned into closed intervals on each of which −→p is
one-to-one.

(a) Our first goal is to show that if I = [a, b] is a closed interval
then there exist finitely many points

a = t0 < t1 < · · · < tn = b

such that the restriction of −→p to each of the intervals [ti−1, ti] is
one-to-one. To this end, we first establish the following general
fact: Show that if −→p : I→R

2 is continuous, then the set of pairs
of parameter values with the same image,
S = {(t1, t2) ∈ I × I | −→p (t1) = −→p (t2)}, is closed: if a sequence of
pairs in this set converges, then the limit pair converges.

(b) Now assume that −→p isn’t already one-to-one. Since −→p (t) is
regular, it is locally one-to-one—that is, for each t ∈ I there
exists ε(t) > 0 such that −→p is one-to-one on the interval
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(t− ε(t) , t+ ε(t)). Show that if we pick ε(t) to be the largest
such value, then there exist t′ 6= t′′ ∈ I with |t− t′| ≤ ε(t) and
|t− t′′| ≤ ε(t) ( with at least one equality) such that
−→p (t′) = −→p (t′′)). (Hint: If there exist t′ < t < t′′ with either
t− t′ = t′′ = ε > 0 or one of these equal to ε and the other an
endpoint of I such that v′ is one-to-one on [t′, t′′], then we can
find new points with analogous properties but with ε replaced
by a strictly larger number, thus contradicting maximality of
ε(t).)

(c) Next consider ε = inft∈I ε(t). If ε > 0 then Show that if ε > 0,
any partition for which |ti − ti−1| < ε for each i will work.

(d) Prove by contradiction that ε > 0: if not, there exist pairs
t′i 6= t′′i with |t′i − t′′i | < 1

i
−→p (t′i) = −→p (t′′i ). By going to a

subsequence, assume t′i → t0. Show that also t′′i → t0. But then−→p is not locally one-to-one at t0.

(e) Now, let I be any interval (open, closed, or half-open). Show
that there is a bisequence of points ti, i ∈ Z such that ti−1 < ti
and −→p is one-to-one on [ti−1, ti] (Hint: By the preceding, we can
partition any closed bounded subinterval of I into finitely many
arcs. Use this to show that all of I can be partitioned into a
possibly infinite collection of abutting arcs.)

15. Recall the four-petal rose illustrated in Figure 2.20 on p. 149, whose
polar equation is

r = sin 2θ.

This is the locus of the equation

(x2 + y2)3 = 4x2y2.

The parametrization −→p (θ) associated to the polar equation is

{

x = sin 2θ cos θ = 2 sin θ cos2 θ
y = sin 2θ sin θ = 2 sin2 θ cos θ

(a) Verify that as θ runs through the interval θ ∈ [0, 2π], the origin
is crossed four times, at θ = 0, θ = π

2 , θ = π, θ = 3π
2 , and again

at θ = 2π, with a horizontal velocity when θ = 0 or π and a
vertical one when θ = π

2 or 3π
2 . Verify also that the four “petals”

are traversed in the order i, ii, iii, iv as indicated in Figure 2.20.
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(b) Now consider the vector-valued function −→q (σ) defined in pieces
by

{

x = sin 2σ cos σ = 2 sin σ cos2 σ
y = sin 2σ sinσ = 2 sin2 σ cos σ

0 ≤ t ≤ π
{

x = sin 2σ cos σ = −2 sin σ cos2 σ
y = − sin 2σ sinσ = −2 sin2 σ cos σ π ≤ t ≤ 2π.

(2.33)

Verify that this function is regular (the main point is
differentiability and continuity of the derivative at the crossings
of the origin).

(c) Verify that the image of −→q (σ) is also the four-leaf rose. In what
order are the loops traced by −→q (σ) as σ goes from 0 to 2π?

(d) Show that −→p (θ) and −→q (σ) cannot be reparametrizations of each
other. (Hint: Consider short open intervals about each of the
parameter values where the origin is crossed, and show that
their images under −→p (θ) cannot match those under −→q (σ).)

History note:

16. Bolzano’s curve: A version of the following was constructed by
Bernhard Bolzano (1781-1848) in the 1830’s; a more complete study
is given in (Calculus Deconstructed, §4.11).

(a) Start with the following: suppose we have an affine function f ,
defined over the interval [a, b], with f(a) = c and f(b) = d; thus
its graph is the straight line segment from (a, c) to (b, d).
Construct a new, piecewise-affine function f̄ by keeping the
endpoint values, but interchanging the values at the points
one-third and two-thirds of the way across (see Figure 2.31).

Thus, originally

f(x) = c+m(x− a)

where

m =
d− c
b− a,
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f̄ f

(a, c) (b, c)

(a, d) (b, d)

Figure 2.31: The basic construction

and in particular

f(a) = c

f(a1) =
2a+ b

3
=

2c+ d

3

f(a2) =
a+ 2b

3
=
c+ 2d

3
f(b) = d.

Now, f̄ is defined by

f̄(a) = c

f̄(a1) = c1 =
c+ 2d

3

f̄(a2) = c2 =
2c+ d

3
f̄(b) = d

and f̄ is affine on each of the intervals I1 = [a, a1], I2 = [a1, a2],
and I3 = [a2, b]. Show that the slopes mj of the graph of f̄ on
Ij satisfy

m1 = m3 = 2m

m2 = −m.
(b) Now, we construct a sequence of functions fk on [0, 1] via the

recursive definition

f0 = id

fk+1 = f̄k.
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Show that

|fk(x)− fk+1(x)| ≤
(

2

3

)k+1

(2.34)

for all x ∈ [0, 1]. This implies that for each x ∈ [0, 1],

f(x) := lim fk(x)

is well-defined for each x ∈ [0, 1]. We shall accept without proof
the fact that Equation (2.34) (which implies a property called
uniform convergence) also guarantees that f is continuous on
[0, 1]. Thus its graph is a continuous curve—in fact, it is an arc.

(c) Show that if x0 is a triadic rational (that is, it has the form
x0 =

p
3j

for some j) then fk+1(x0) = fk(x0) for k sufficiently
large, and hence this is the value f(x0). In particular, show
that f has a local extremum at each triadic rational. (Hint: x0
is a local extremum for all fk once k is sufficiently large;
furthermore, once this happens, the sign of the slope on either
side does not change, and its absolute value is increasing with k.
)

This shows that f has infinitely many local extrema—in fact,
between any two points of [0, 1] there is a local maximum (and a
local minimum); in other words, the curve has infinitely many
“corners”. It can be shown (see (Calculus Deconstructed, §4.11)) that
the function f , while it is continuous on [0, 1], is not differentiable at
any point of the interval. In Exercise 5 in § 2.5, we will also see that
this curve has infinite “length”.

2.5 Integration along Curves

Arclength

How long is a curve? While it is clear that the length of a straight line
segment is the distance between its endpoints, a rigorous notion of the
“length” for more general curves is not so easy to formulate. We will
formulate a geometric notion of length for arcs, essentially a modernization
of the method used by Archimedes of Syracuse (ca. 287-212 BC) to
measure the circumference of a circle. Archimedes realized that the length
of an inscribed (resp. circumscribed) polygon is a natural lower (resp.
upper) bound on the circumference, and also that by using polygons with
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many sides, the difference between these two bounds could be made as
small as possible. Via a proof by contradiction he established in [2] that
the area of a circle is the same as that of a triangle whose base equals the
circumference and whose height equals the radius.21 By using regular
polygons with 96 sides, he was able to establish that π, defined as the ratio
of the circumference to the diameter, is between 22

7 and 221
71 . Archimedes

didn’t worry about whether the length of the circumference makes sense;
he took this to be self-evident. His argument about the lengths of polygons
providing bounds for the circumference was based on a set of axioms
concerning convex curves; this was needed most for the use of the
circumscribed polygons as an upper bound. The fact that inscribed
polygons give a lower bound follows from the much simpler assumption,
which we take as self-evident, that the shortest curve between two points is
a straight line segment.

Suppose that C is an arc parametrized by −→p :R→R
3 and let

P = {a = t0 < t1 < · · · < tn = b} be a partition of the domain of −→p . The
sum

ℓ (P,−→p ) =
n
∑

j=1

‖−→p (tj)−−→p (tj−1)‖

is the length of a path consisting of straight line segments joining
successive points along C. It is clear that any reasonable notion of the
“length” of C at least equals ℓ (P,−→p ). We would also think intuitively that
a partition with small mesh size should give a good approximation to the
“true” length of C. We therefore say C is rectifiable if the values of
ℓ (P,−→p ) among all partitions are bounded, and then we define the
arclength of C to be

s (C) = sup
P
ℓ (P,−→p ) .

Not every curve is rectifiable. Two examples of non-rectifiable curves are
the the graph of Bolzano’s nowhere-differentiable function, constructed in
Exercise 16 in § 2.4 (see Exercise 5) and the graph of y = x sin 1

x (see
Exercise 4). In such cases, there exist partitions P for which ℓ (P,−→p ) is
arbitrarily high.

We need to show that the arclength s (C) does not depend on the
parametrization we use to construct C. Suppose −→p ,−→q :R→R

3 are two
one-to-one continuous functions with the same image C. As noted in § 2.4,

21In our language, the circumference is 2πr, where r is the radius, so the area of such a
triangle is 1

2
(2πr)(r) = πr2.
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we can find a strictly monotone recalibration function t(s) from the
domain of −→q to the domain of −→p so that

−→p (t(s)) = −→q (s)
for all parameter values of −→q . If P is a partition of the domain of −→p , then
there is a unique sequence of parameter values for −→q defined by

t(sj) = tj;

this sequence is either strictly increasing (if t(s) ։) or strictly decreasing (if
t(s)

։

); renumbering if necessary in the latter case, we see that the sj form
a partition Ps of the domain of −→q , with the same succession as the tj; in
particular,

ℓ (Ps,−→q ) = ℓ (P,−→p )
and so the supremum of ℓ (P ′,−→q ) over all partitions P ′ of the domain of
−→q is at least the same as that over partitions of the domain of −→p .
Reversing the roles of the two parametrizations, we see that the two
suprema are actually the same.
This formulation of arclength has the advantage of being clearly based on
the geometry of the curve, rather than the parametrization we use to
construct it. However, as a tool for computing the arclength, it is as useful
(or useless) as the definition of the definite integral via Riemann sums is
for calculating definite integrals. Fortunately, for regular curves, we can
use definite integrals to calculate arclength.

Theorem 2.5.1. Every regular arc is rectifiable, and if −→p : [a, b]→R
3 is a

regular one-to-one function with image C, then

s (C) =
∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥
dt.

This can be understood as saying that the length of a regular curve is the
integral of its speed, which agrees with our understanding (for real-valued
functions representing motion along an axis) that the integral of speed is
the total distance traveled. If we consider the function s (t) giving the
arclength (or distance travelled) between the starting point and the point
−→p (t), then our notation for the speed is naturally suggested by applying
the Fundamental Theorem of Calculus to the formula above

d

dt
[s (t)] =

d

dt

∫ t

a

∥

∥

∥

−̇→p (t)
∥

∥

∥
dt

=
d

dt

∥

∥

∥

−̇→p (t)
∥

∥

∥
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or

ds

dt
=
∥

∥

∥

−̇→p (t)
∥

∥

∥ .

Before proving Theorem 2.5.1, we establish a technical estimate.

Lemma 2.5.2. Suppose −→p : [a, b]→R
3 is a regular, one-to-one function

and that P = {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] such that
the speed varies by less than δ > 0 over each atom22 Ij:

∣

∣

∣

∥

∥

∥

−̇→p (t)
∥

∥

∥
−
∥

∥

∥

−̇→p
(

t′
)

∥

∥

∥

∣

∣

∣
< δ whenever tj−1 ≤ t, t′ ≤ tj.

Then

∣

∣

∣

∣

∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥ dt− ℓ (P,−→p )
∣

∣

∣

∣

< 3δ(b − a).

Proof. For the moment, let us fix an atom Ij = [tj−1, tj ] of P. Applying
the Mean Value Theorem to each of the component functions, there exist
parameter values si, i = 1, 2, 3 such that

x(tj)− x(tj−1) = ẋ(s1)δj

y(tj)− y(tj−1) = ẏ(s2)δj

z(tj)− z(tj−1) = ż(s3)δj .

Then the vector

−→vj = (ẋ(s1), ẏ(s2), ż(s3))

satisfies

−→p (tj)−−→p (tj−1) =
−→vj δj

and hence

‖−→p (tj)−−→p (tj−1)‖ = ‖−→vj‖ δj .
22The intervals Ij were called component intervals in Calculus Deconstructed ; however

the possible confusion surrounding the use of the word “component” convinced us to
instead use the term atom, which is standard in other contexts where partitions arise
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But also, for any t ∈ Ij,
∥

∥

∥

−̇→p (t)−−→vj
∥

∥

∥
≤ |ẋ(t)− ẋ(s1)|+ |ẏ(t)− ẏ(s2)|+ |ż(t)− ż(s3)|
< 3δ

Now, an easy application of the Triangle Inequality says that the lengths of
two vectors differ by at most the length of their difference; using the above
this gives us

∣

∣

∣

∥

∥

∥

−̇→p (t)
∥

∥

∥− ‖−→vj‖
∣

∣

∣ < 3δ for all t ∈ Ij.

Picking −→vj , j = 1, . . . , n as above, we get

∣

∣

∣

∣

∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥ dt− ℓ (P,−→p )
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

j=1

(

∫

Ij

∥

∥

∥

−̇→p (t)
∥

∥

∥ dt

)

− ‖−→vj‖ δj

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

∫

Ij

∣

∣

∣

∥

∥

∥

−̇→p (t)
∥

∥

∥
− ‖−→vj‖

∣

∣

∣
dt

< 3δ

n
∑

j=1

δj

= 3δ(b − a).

Proof of Theorem 2.5.1. We will use the fact that since the speed is
continuous on the closed interval [a, b], it is uniformly continuous, which
means that given any δ > 0, we can find µ > 0 so that it varies by at most
δ over any subinterval of [a, b] of length µ or less. Put differently, this says
that the hypotheses of Lemma 2.5.2 are satisfied by any partition of mesh
size µ or less. We will also use the easy observation that refining the
partition raises (or at least does not lower) the “length estimate” ℓ (P,−→p )
associated to the partition.
Suppose now that Pk is a sequence of partitions of [a, b] for which
ℓk = ℓ (Pk,−→p ) is strictly increasing with limit s (C) (which, a priori may
be infinite). Without loss of generality, we can assume (refining each
partition if necessary) that the mesh size of Pk goes to zero monotonically.
Given ε > 0, we set

δ =
ε

3(b− a)
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and find µ > 0 such that every partition with mesh size µ or less satisfies
the hypotheses of Lemma 2.5.2; eventually, Pk satisfies mesh(Pk) < µ, so

∣

∣

∣

∣

∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥ dt− ℓ (Pk,−→p )
∣

∣

∣

∣

< 3δ(b − a) = ε.

This shows first that the numbers ℓk converge to
∫ b
a

∥

∥

∥

−̇→p (t)
∥

∥

∥
dt—but by

assumption, lim ℓk = s (C), so we are done.

The content of Theorem 2.5.1 is encoded in a notational device: given a
regular parametrization −→p :R→R

3 of the curve C, we define the
differential of arclength, denoted ds, to be the formal expression

ds :=
∥

∥

∥

−̇→p (t)
∥

∥

∥ dt =
√

ẋ(t)2 + ẏ(t)2 + ż(t)2 dt.

This may seem a bit mysterious at first, but we will find it very useful;
using this notation, the content of Theorem 2.5.1 can be written

s (C) =
∫ b

a
ds.

As an example, let us use this formalism to find the length of the helix
parametrized by

x(t) = cos 2πt

y(t) = sin 2πt

z(t) = t

or

−→p (t) = (cos 2πt, sin 2πt, t) 0 ≤ t ≤ 2 :

we have

ẋ(t) = −2π sin 2πt
ẏ(t) = 2π cos 2πt

ż(t) = 1

so

ds =
√

(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt

=
√

(−2π sin 2πt)2 + (2π cos 2πt)2+)(1)2 dt

=
√

4π2 + 1 dt
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and

s (C) =
∫ 2

0
ds

=

∫ 2

0

√

4π2 + 1 dt

= 2
√

4π2 + 1.

As a second example, the arclength of the parabola

y = x2

between (0, 0) and (12 ,
1
4) can be calculated using x as a parameter

−→p (x) = (x, x2) 0 ≤ t ≤ 1

with

ds =
√

1 + (2x)2 dx

=
√

1 + 4x2 dx.

Thus

s (C) =
∫ 1

2

0

√

1 + 4x2 dx

which is best done using the trigonometric substitution

2x = tan θ

2 dx = sec2 θ dθ

dx =
1

2
sec2 θ dθ

√

1 + 4x2 = sec θ

x = 0↔ θ = 0

x =
1

2
↔ θ =

π

4

and
∫ 2

0

√

1 + 4x2 dx =

∫ π/4

0
(sec θ)(

1

2
sec2 θ dθ)

=

∫ π/4

0

1

2
sec3 θ dθ
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integration by parts (or cheating and looking it up in a table) yields

∫ π/4

0

1

2
sec3 θ dθ =

1

2

(

1

2
sec θ tan θ +

1

2
ln |sec θ + tan θ|

)π/4

0

=
1

4
(
√
2 + ln(1 +

√
2).

As another example, let us use this formalism to compute the
circumference of a circle. The circle is not an arc, but the domain of the
standard parametrization

−→p (t) = (cos t, sin t) 0 ≤ t ≤ 2π

can be partitioned via

P = {0, π, 2π}

into two semicircles, Ci, i = 1, 2, which meet only at the endpoints; it is
natural then to say

s (C) = s (C1) + s (C2) .

We can calculate that

ẋ(t) = − sin t

ẏ(t) = cos t

so

ds =
√

(− sin t)2 + (cos t)2 dt

= dt

and thus

s (C) = s (C1) + s (C2)

=

∫ π

0
dt+

∫ 2π

π
dt

=

∫ 2π

0
dt

= 2π.
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The example of the circle illustrates the way that we can go from the
definition of arclength for an arc to arclength for a general curve. By
Exercise 14 in § 2.4, any parametrized curve C can be partitioned into arcs
Ck, and the arclength of C is in a natural way the sum of the arclengths of
these arcs:

s (C) =
∑

k

s (Ck) ;

when the curve is parametrized over a closed interval, this is a finite sum,
but it can be an infinite (positive) series when the domain is an open
interval. Notice that a reparametrization of C is related to the original one
via a strictly monotone, continuous function, and this associates to every
partition of the original domain a partition of the reparametrized domain
involving the same segments of the curve, and hence having the same value
of ℓ (P,−→p ). Furthermore, when the parametrization is regular, the sum
above can be rewritten as a single (possibly improper) integral. This shows

Remark 2.5.3. The arclength of a parametrized curve C does not change
under reparametrization. If the curve is regular, then the arclength is given
by the integral of the speed (possibly improper if the domain is open)

s (C) =
∫ b

a
ds

=

∫ b

a

(

ds

dt

)

dt

=

∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥
dt.

for any regular parametrization of C.

In retrospect, this justifies our notation for speed, and also fits our
intuitive notion that the length of a curve C is the distance travelled by a
point as it traverses C once.
As a final example, we calculate the arclength of one “arch” of the cycloid

x = θ − sin θ

y = 1− cos θ

or

−→p (θ) = (θ − sin θ, 1− cos θ), 0 ≤ θ ≤ 2π.
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Differentiating, we get

−→v (θ) = (1− cos θ, sin θ)

so

ds =

√

(1− cos θ)2 + sin2 θ dθ

=
√
2− 2 cos θ dθ.

The arclength integral

s (C) =
∫ 2π

0

√
2− 2 cos θ dθ

can be rewritten, multiplying and dividing the integrand by
√
1 + cos θ, as

=
√
2

∫ 2π

0

√
1− cos2 θ√
1 + cos θ

dθ

which suggests the substitution

u = 1 + cos θ

du = − sin θ dθ

since the numerator of the integrand looks like sin θ. However, there is a
pitfall here: the numerator does equal

√
sin2 θ, but this equals sin θ only

when sin θ ≥ 0, which is to say over the first half of the curve, 0 ≤ θ ≤ π;
for the second half, it equals − sin θ. Therefore, we break the integral in
two:

√
2

∫ 2π

0

√
1− cos θ dθ =

√
2

∫ π

0

sin θ dθ√
1 + cos θ

−
√
2

∫ 2π

π

sin θ dθ√
1 + cos θ

=
√
2

∫ 0

2
−u−1/2 du−

√
2

∫ 2

0
u−1/2 du

= 2
√
2

∫ 2

0
u−1/2 du

= 4
√
2u1/2

∣

∣

∣

2

0

= 8.
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We note one technical point here: strictly speaking, the parametrization of
the cycloid is not regular: while it is continuously differentiable, the
velocity vector is zero at the ends of the arch. To get around this problem,
we can think of this as an improper integral, taking the limit of the
arclength of the curve −→p (θ), ε ≤ θ ≤ 2π − ε as ε→ 0. The principle here
(similar, for example, to the hypotheses of the Mean Value Theorem) is
that the velocity can vanish at an endpoint of an arc in Theorem 2.5.1, or
more generally that it can vanish at a set of isolated points of the curve23

and the integral formula still holds, provided we don’t “back up” after that.

Integrating a Function along a Curve (Path Integrals)

Suppose we have a wire which is shaped like an arc, but has variable
thickness, and hence variable density. If we know the density at each point
along the arc, how do we find the total mass? If the arc happens to be an
interval along the x-axis, then we simply define a function f(x) whose
value at each point is the density, and integrate. We would like to carry
out a similar process along an arc or, more generally, along a curve.
Our abstract setup is this: we have an arc, C, parametrized by the
(continuous, one-to-one) vector-valued function −→p (t), a ≤ t ≤ b, and we
have a (real-valued) function which assigns to each point −→p of C a number
f(−→p ); we want to integrate f along C. The process is a natural
combination of the Riemann integral with the arclength calculation of
§ 2.5. Just as for arclength, we begin by partitioning C via a partition of
the domain [a, b] of our parametrization

P = {a = t0 < t1 < · · · < tn = b} .

For a small mesh size, the arclength of C between successive points −→p (tj)
is well approximated by

△sj = ‖−→p (tj−1)−−→p (tj)‖

and we can form lower and upper sums

L(P, f) =
n
∑

j=1

inf
t∈Ij

f(−→p (t))△sj

U(P, f) =
n
∑

j=1

sup
t∈Ij

f(−→p (t))△sj.

23With a little thought, we see that it can even vanish on a nontrivial closed interval.
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As in the usual theory of the Riemann integral, we have for any partition
P that

L(P, f) ≤ U(P, f);
it is less clear that refining a partition lowers U(P, f) (although it clearly
does increase L(P, f)), since the quantity ℓ (P,−→p ) increases under
refinement. However, if the arc is rectifiable, we can modify the upper sum
by using s (−→p (Ij)) in place of △sj; denoting this by

U∗(P, f) =
n
∑

j=1

sup
t∈Ij

f(−→p (t)) s (−→p (Ij))

we have, for any two partitions Pi, i = 1, 2,

L(P1, f) ≤ U∗(P2, f)

We will say the function f(−→p ) is integrable over the arc C if

sup
P
L(P, f) = inf

P
U∗(P, f)

and in this case the common value is called the path integral or integral
with respect to arclength of f along the arc C, denoted

∫

C
f ds.

As in the case of the usual Riemann integral, we can show that if f is
integrable over C then for any sequence Pk of partitions of [a, b] with
mesh(Pk)→ 0, the Riemann sums using any sample points t∗j ∈ Ij
converge to the integral:

R(Pk, f,
{

t∗j
}

) =

n
∑

j=1

f
(

t∗j
)

△sj →
∫

C
f ds.

It is easy to see that the following analogue of Remark 2.5.3 holds for path
integrals:

Remark 2.5.4. The path integral of a function over a parametrized curve
is unchanged by reparametrization; when the parametrization −→p :R→R

3 is
regular, we have

∫

C
f ds =

∫ b

a
f(−→p (t))

∥

∥

∥

−̇→p (t)
∥

∥

∥
dt.
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As two examples, let us take C to be the parabola y = x2 between (0, 0)
and (1, 1), and compute the integral

∫

C f ds for the function f(x, y) = x.
To compute this integral, we use the standard parametrization in terms of
x

−→p (x) = (x, x2), 0 ≤ x ≤ 1;

then the element of arclength is given by

ds =
√

(ẋ)2 + (ẏ)2 dx

=
√

1 + (2x)2 dx

=
√

1 + 4x2 dx

so
∫

C
f ds =

∫

C
x ds =

∫ 1

0
(x)(

√

1 + 4x2 dx)

which we can do using the substitution

u = 1 + 4x2

du = 8x dx

x dx =
1

8
du

x = 0↔ u = 1

x = 1↔ u = 5

and
∫ 1

0
x
√

1 + 4x2 dx =
1

8

∫ 5

1
u1/2 du

=
1

12
u3/2

∣

∣

∣

5

1

=
5
√
5− 1

12
.

Now let us calculate
∫

C f ds for the function f(x, y) = y over the same
curve. If we try to use the same parametrization, we have

∫

C
f ds =

∫

C
y ds =

∫

C
x2 ds

=

∫ 1

0
x2
√

1 + 4x2 dx



206 CHAPTER 2. CURVES

which, while not impossible, is a lot harder. However, we can also express
C as the graph of x =

√
y and parametrize in terms of y; this yields

ds =

√

(

1

2
√
y

)2

+ 1 dy

=

√

1

4y
+ 1 dy

so

∫

C
y ds =

∫ 1

0
y

√

1

4y
+ 1 dy

=

∫ 1

0

√

y

4
+ y2 dy

which, completing the square,

=

∫ 1

0

√

(

y +
1

8

)2

− 1

64
dy

=
1

8

∫ 1

0

√

(8y + 1)2 − 1 dy

and the substitution

8y + 1 = sec θ

changes this into

1

64

∫ arcsec 9

0
(sec3θ − sec θ) dθ =

1

128
(tan θ sec θ − ln(sec θ + tan θ))arcsec 90

=
9
√
5

32
− 1

128
ln(9 + 4

√
5).

Exercises for § 2.5

Practice problems:

1. Set up an integral expressing the arc length of each curve below. Do
not attempt to integrate.
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(a) y = xn, 0 ≤ x ≤ 1 (b) y = ex, 0 ≤ x ≤ 1

(c) y = lnx, 1 ≤ x ≤ e (d) y = sinx, 0 ≤ x ≤ π

(e)

{

x = a cos θ
y = b sin θ

, 0 ≤ θ ≤ 2π

(f)

{

x = et + e−t

y = et − e−t , −1 ≤ t ≤ 1

2. Find the length of each curve below.

(a) y = x3/2, 0 ≤ x ≤ 1

(b) y = x2/3, 0 ≤ x ≤ 1

(c) y =
x3

3
+

1

4x
, 1 ≤ x ≤ 2

(d) y =

∫ x

1

√

t4 − 1 dt, 1 ≤ x ≤ 2

(e)

{

x = sin3 t
y = cos3 t

, 0 ≤ t ≤ π

4

(f)







x = 9t2

y = 4t3

z = t4
, 0 ≤ t ≤ 1

(g)







x = 8t3

y = 15t4

z = 15t5
, 0 ≤ t ≤ 1

(h)







x = t2

y = ln t
z = 2t

, 1 ≤ t ≤ 2

(i)

{

x = sin θ
y = θ + cos θ

, 0 ≤ θ ≤ π

2

(j)







x = 3t
y = 4t sin t
z = 4t cos t

, 0 ≤ t ≤ 5

4

3. Calculate
∫

C f ds:

(a) f(x, y) = 36x3, C is y = x3 from (0, 0) to (1, 1).

(b) f(x, y) = 32x5, C is y = x4 from (0, 0) to (1, 1).

(c) f(x, y) = x2 + y2, C is y = 2x from (0, 0) to (1, 2).
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(d) f(x, y) = 4(x+
√
y), C is y = x2 from (0, 0) to (1, 1).

(e) f(x, y) = x2, C is the upper half circle x2 + y2 = 1, y ≥ 0.

(f) f(x, y) = x2 + y2, C is given in parametric form as
{

x = t

y =
√
1− t2 , 0 ≤ t ≤ 1.

(g) f(x, y) = (1− x2)3/2, C is upper half of the circle x2 + y2 = 1.

(h) f(x, y) = x3 + y3, C is given in parametric form as
{

x = 2cos t
y = 2 sin t

, 0 ≤ t ≤ π.

(i) f(x, y) = xy, C is y = x2 from (0, 0) to (1, 1).

(j) f(x, y, z) = xy, C is given in parametric form as






x = cos t
y = sin t
z = t

, 0 ≤ t ≤ π.

(k) f(x, y, z) = x2y, C is given in parametric form as






x = cos t
y = sin t
z = t

, 0 ≤ t ≤ π.

(l) f(x, y, z) = z, C is given in parametric form as






x = cos t
y = sin t
z = t

, 0 ≤ t ≤ π.

(m) f(x, y, z) = 4y, C is given in parametric form as






x = t
y = 2t
z = t2

, 0 ≤ t ≤ 1.

(n) f(x, y, z) = x2 − y2 + z2, C is given in parametric form as






x = cos t
y = sin t
z = 3t

, 0 ≤ t ≤ π.
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(o) f(x, y, z) = 4x+ 16z, C is given in parametric form as







x = 2t
y = t2

z = 4t3

9

, 0 ≤ t ≤ 3.

Theory problems:

4. Consider the graph of the function

f(x) =

{

x sin 1
x for x > 0,

0 for x = 0

over the interval [0, 1].

(a) Show that

|f(x)| ≤ |x|

with equality at 0 and the points

xk :=
2

(2k − 1)π
, k = 1, . . . .

(b) Show that f is continuous. (Hint: the issue is x = 0) . Thus, its
graph is a curve. Note that f is differentiable except at x = 0.

(c) Consider the piecewise linear approximation to this curve (albeit
with infinitely many pieces) consisting of joining (xk, f(xk)) to
(xk+1, f(xk+1)) with straight line segments: note that at one of
these points, f(x) = x while at the other f(x) = −x. Show
that the line segment joining the points on the curve
corresponding to x = xk and x = xk+1 has length at least

△sk = |f(xk+1)− f(xk)|
= xk+1 + xk

=
2

(2k + 1)π
+

2

(2k − 1)π

=
2

π

(

4k

4k2 − 1

)

.
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(d) Show that the sum
∞
∑

k=1

△sk

diverges. This means that if we take (for example) the piecewise
linear approximations to the curve obtained by taking the
straight line segments as above to some finite value of k and
then join the last point to (0, 0), their lengths will also diverge
as the finite value increases. Thus, there exist partitions of the
curve whose total lengths are arbitrarily large, and the curve is
not rectifiable.

Challenge problem:

5. Bolzano’s curve (continued): We continue here our study of the
curve described in Exercise 16 in § 2.4; we keep the notation of that
exercise.

(a) Show that the slope of each straight piece of the graph of fk
has the form m = ±2n for some integer 0 ≤ n ≤ k. Note that
each interval over which fk is affine has length 3−k.

(b) Show that if two line segments start at a common endpoint and
end on a vertical line, and their slopes are 2n and 2n+1

respectively, then the ratio of the second to the first length is

ℓ2
ℓ1

=

√

1 + 2n+1

1 + 2n

(c) Show that this quantity is non-decreasing, and that therefore it
is always at least equal to

√

5/3.

(d) Use this to show that the ratio of the lengths of the graphs of
fk+1 and fk are bounded below by 2

√
5/3
√
3 + 1/3 ≥ 1.19.

(e) How does this show that the graph of f is non-rectifieable?



3
Differential Calculus for Real-Valued

Functions of Several Variables

In this chapter and in Chapter 5, we consider functions whose input
involves several variables—or equivalently, whose input is a vector—and
whose output is a real number.
We shall restrict ourselves to functions of two or three variables, where the
vector point of view can be interpreted geometrically.
A function of two (resp. three) variables can be viewed in two slightly
different ways, reflected in two different notations.
We can think of the input as three separate variables; often it will be
convenient to use subscript notation xi (instead of x, y, z) for these
variables, so we can write

f(x, y) = f(x1, x2)

in the case of two variables and

f(x, y, z) = f(x1, x2, x3)

in the case of three variables.
Alternatively, we can think of the input as a single vector −→x formed from
listing the variables in order:

−→x = (x, y) = (x1, x2)

211
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or

−→x = (x, y, z) = (x1, x2, x3)

and simply write our function as

f(−→x ) .

A third notation which is sometimes useful is that of mappings: we write

f:Rn→R

(with n = 2 or n = 3) to indicate that f has inputs coming from R
n and

produces outputs that are real numbers.1

In much of our expositon we will deal explicitly with the case of three
variables, with the understanding that in the case of two variables one
simply ignores the third variable. Conversely, we will in some cases
concentrate on the case of two variables and if necessary indicate how to
incorporate the third variable. Much of what we will do has a natural
extension to any number of input variables, but we will limit our
discussion to these cases, which we can visualize in the plane or in space.
In this chapter, we consider the definition and use of derivatives in this
context.

3.1 Continuity and Limits

Recall from § 2.3 that a sequence of vectors converges if it converges
coordinatewise. Using this notion, we can define continuity of a real-valued
function of three (or two) variables f(−→x ) by analogy to the definition for
real-valued functions f(x) of one variable:

Definition 3.1.1. A real-valued function f(−→x ) is continuous on a subset
D ⊂ R

3 of its domain if whenever the inputs converge in D (as points in
R
3) the corresponding outputs also converge (as numbers):

−→xk → −→x0 ⇒ f(−→xk)→ f(−→x0) .

It is easy, using this definition and basic properties of convergence for
sequences of numbers, to verify the following analogues of properties of
continuous functions of one variable. First, the composition of continuous
functions is continuous (Exercise 5):

1When the domain is an explicit subset D ⊂ R
n we will write f:D→R.
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Remark 3.1.2. Suppose f(−→x ) is continuous on D ⊂ R
3.

1. If g:R→R is continuous on G ⊂ R and f(−→x ) ∈ G for every
−→x = (x, y, z) ∈ D, then the composition g ◦ f:R3→R, defined by

(g ◦ f)(−→x ) = g(f(−→x ))

i.e.,

(g ◦ f)(x, y, z) = g(f(x, y, z))

is continuous on D.

2. If −→g :R→R
3 is continuous on [a, b] and −→g (t) ∈ D for every t ∈ [a, b],

then f ◦−→g :R→R, defined by

(f ◦−→g )(t) = f(−→g (t))

i.e.,

(f ◦−→g )(t) = f(g1(t) , g2(t) , g3(t))

is continuous on [a, b]

Second, functions defined by reasonable formulas are continuous where
they are defined:

Lemma 3.1.3. If f(x, y, z) is defined by a formula composed of arithmetic
operations, powers, roots, exponentials, logarithms and trigonometric
functions applied to the various components of the input, then f(x, y, z) is
continuous where it is defined.

Proof. Consider the functions on R
2

add(x1, x2) = x1 + x2

sub(x1, x2) = x1 − x2
mul(x1, x2) = x1x2

div(x1, x2) =
x1
x2

;

each of the first three is continuous on R
2, and the last is continuous off

the x1-axis, because of the basic laws about arithmetic of convergent
sequences (Calculus Deconstructed, Theorem 2.4.1).
But then application of Remark 3.1.2 to these and powers, roots,
exponentials, logarithms and trigonometric functions (which are all
continuous where defined) yields the lemma.
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Remark 3.1.2 can also be used to get a weak analogue of the Intermediate
Value Theorem (Calculus Deconstructed, Theorem 3.2.1). Recall that this
says, for f:R→R continuous on [a, b], that if f(a) = A and f(b) = B then
for every C between A and B the equation f(x) = C has at least one
solution between a and b. Since the notion of a point in the plane or in
space being “between” two others doesn’t really make sense, there isn’t
really a direct analogue of the Intermediate Value Theorem, either for−→
f :R→R

3 or for f:R3→R. However, we can do the following: Given two

points −→a ,−→b ∈ R
3, we define a path from −→a to

−→
b to be the image of any

locally one-to-one continuous function −→p :R→R
3, parametrized so that

−→p (a) = −→a and −→p (b) = −→b . Then we can talk about points “between” −→a
and
−→
b along this curve.

Proposition 3.1.4. If f:R3→R is continuous on a set D ⊂ R
3 and −→a

and
−→
b are points of D that can be joined by a path in D, then for every

number C between f(−→a ) and f
(−→
b
)

the equation

f(−→x ) = C

has at least one solution between −→a and
−→
b along any path in D which

joins the two points.

The proof of this is a simple application of Remark 3.1.2 to f ◦−→p
(Exercise 6).

For example, if f(−→x ) is continuous on R
3 and f(−→a ) is positive while

f
(−→
b
)

is negative, then the function must equal zero somewhere on any

path from −→a to
−→
b .

To study discontinuities for a real-valued function of one variable, we
defined the limit of a function at a point. In this context, we always
ignored the value of the function at the point in question, looking only at
the values at points nearby. The old definition carries over verbatim:

Definition 3.1.5. Suppose the function f(−→x ) is defined on a set D ⊂ R
3

and −→x0 is an accumulation point2 of D; we say that the function
converges to L ∈ R as −→x goes to −→x0 if whenever {−→xk} is a sequence of
points in D, all distinct from −→x0, which converges to −→x0, the corresponding

2A point −→x0 is an accumulation point of the set D ⊂ R
3 if there exists a sequence of

points in D, all distinct from −→x0, which converge to −→x0.
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sequence of values of f(x0) converges to L:

−→x0 6= −→xk → −→x0 ⇒
f(−→xk)→ L.

The same arguments that worked before show that a function converges to
at most one number at any given point, so we can speak of “the” limit of
the function at −→x = −→x0, denoted

L = lim−→x→−→x0
f(−→x ) .

For functions of one variable, we could consider “one-sided” limits, and
this often helped us understand (ordinary, two-sided) limits. Of course,
this idea does not really work for functions of more than one variable, since
the “right” and “left” sides of a point in the plane or space don’t make
much sense. One way we might try to adapt this idea is to think in terms
of limits from different “directions”, that is, we might test what happens
as we approach the point along different lines through the point. For
example, the function defined for −→x 6= −→0 ∈ R

2 by

f(x, y) =
xy

x2 + y2
, (x, y) 6= (0, 0)

is constant (and hence approaches a limit) along each line through the
origin, but these limits depend on the slope of the line (Exercise 3), and so
the limit lim−→x→−→

0
f(−→x ) does not exist. However, this kind of test may not

be enough. For example, the function defined on the plane except the
origin by

f(x, y) =
x2y

x4 + y2
, (x, y) 6= (0, 0)

approaches 0 along every line through the origin, but along the parabola
y = mx2 we see a different behavior: the function has a constant value
which unfortunately depends on the parameter m (Exercise 3). Thus the
limit along a parabola depends on which parabola we use to approach the
origin. In fact, we really need to require that the limit of the function
along every curve through the origin is the same. This is even harder to
think about than looking at every sequence converging to

−→
0 .

The definition of limits in terms of δ’s and ε’s, which we downplayed in the
context of single variable calculus, is a much more useful tool in the
context of functions of several variables.
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Remark 3.1.6. (ε-δ Definition of limit:)
For a function f(−→x ) defined on a set D ⊂ R

3 with −→x0 an accumulation
point of D, the following conditions are equivalent:

1. For every sequence {−→xk} of points in D distinct from −→x0,

f(−→xk)→ L;

2. For every ε > 0 there exists δ > 0 such that for points −→x ∈ D

0 < dist(−→x ,−→x0) < δ guarantees |f(−→x )− L| < ε.

The ε-δ formulation can sometimes be awkward to apply, but for finding
limits of functions of two variables at the origin in R

2, we can sometimes
use a related trick, based on polar coordinates. To see how it works,
consider the example

f(x, y) =
x3

x2 + y2
, (x, y) 6= (0, 0).

If we express this in the polar coordinates of (x, y)

x = r cos θ

y = r sin θ

we have

f(r cos θ, r sin θ) =
r3 cos3 θ

r2 cos2+r2 sin2

=
r3 cos3 θ

r2

= r cos3 θ.

Now, the distance of (x, y) from the origin is r, so convergence to a limit at
the origin would mean that by making

r < δ

we can insure that

|f(x, y)− L| < ε;
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in other words, we want to know whether r cos3 θ approaches a limit as
r → 0, regardless of the behavior of θ. But this is clear: since

∣

∣cos3 θ
∣

∣ ≤ 1,

any sequence of points −→pi with respective polar coordinates (ri, θi) satisfies

ri cos
3 θi → 0

and so

lim
(x,y)→−→

0

x3

x2 + y2
= 0.

We explore some features of this method in Exercise 4.
Recall that a function is continuous at a point x0 in its domain if

lim
x→x0

f(x) = f(x0) .

This carries over verbatim to functions of several variables: a function
f:R3→R is continuous at a point −→x0 in its domain if

lim−→x→−→x0
f(−→x ) = f(−→x0) .

If a function has a limit at −→x0 but fails to be continuous at −→x0 either
because the limit as −→x → −→x0 differs from the value at −→x = −→x0, or because
f(−→x0) is undefined, then we can restore continuity at −→x = −→x0 simply by
redefining the function at −→x = −→x0 to equal its limit there; we call this a
removable discontinuity. If on the other hand the limit as −→x → −→x0 fails
to exist, there is no way (short of major revisionism) of getting the function
to be continuous at −→x = −→x0, and we have an essential discontinuity.
Our divergent examples above show that the behavior of a rational
function (a ratio of polynomials) in several variables near a zero of its
denominator can be much more complicated than for one variable, if the
discontinuity is essential.

Exercises for § 3.1

Practice problems:

1. For each function below, find its limit as (x, y)→ (0, 0):

(a)
sin(x2 + y2)

x2 + y2
(b)

x2
√

x2 + y2
(c)

x2

x2 + y2
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(d)
2x2y

x2 + y2
(e) exy (f)

(x+ y)2 − (x− y)2
xy

(g)
x3 − y3
x2 + y2

(h)
sin(xy)

y
(i)

exy − 1

y

(j)
cos(xy)− 1

x2y2
(k)

xy

x2 + y2 + 2
(l)

(x− y)2
x2 + y2

2. Find the limit of each function as (x, y, z)→ (0, 0, 0):

(a)
2x2y cos z

x2 + y2
(b)

xyz

x2 + y2 + z2

Theory problems:

3. (a) Show that the function f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) is
constant along each line y = mx through the origin, but that
the constant value along each such line is different.

(b) Show that the function f(x, y) = x2y
x4+y2

for (x, y) 6= (0, 0)
approaches zero along any line through the origin.

(c) Show that the function f(x, y) = x2y
x4+y2

for (x, y) 6= (0, 0) is

constant along each of the parabolas y = mx2 going through the
origin, but that this constant value varies with the parameter m.

4. (a) Use polar coordinates to show that the function
f(x, y) = xy

x2+y2
, (x, y) 6= (0, 0) diverges at the origin.

(b) Explore what happens when you try the “polar trick” on the

function f(x, y) = x2y
x4+y2

.

5. Prove Remark 3.1.2.

6. Prove Proposition 3.1.4.

3.2 Linear and Affine Functions

So far we have seen the derivative in two settings. For a real-valued
function f(x) of one variable, the derivative f ′(x0) at a point x0 first
comes up as a number, which turns out to be the slope of the tangent line.
This in turn is the line which best approximates the graph y = f(x) near
the point, in the sense that it is the graph of the polynomial of degree one,
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Tx0f = f(x0) + f ′(x0) (x− x0), which has first-order contact with the
curve at the point (x0, f(x0)):

∣

∣f(x)− Tx0f(x)
∣

∣ = o(|x− x0|)

or

∣

∣f(x)− Tx0f(x)
∣

∣

|x− x0|
→ 0 as x→ x0.

If we look back at the construction of the derivative ~p ′(t) of a vector-valued
function −→p :R→R

3 in § 2.3, we see a similar phenomenon: ~p ′(t0) =
−→v (t0)

is the direction vector for a parametrization of the tangent line, and the
resulting vector-valued function, Tt0

−→p (t) = −→p (t0) +−→v (t0) (t− t0),
expresses how the point would move if the constraints keeping it on the
curve traced out by −→p (t) were removed after t = t0. In complete analogy
to the real-valued case, Tt0

−→p (t) has first-order contact with −→p (t) at t = t0:

∥

∥

−→p (t)− Tt0
−→p (t)

∥

∥

|t− t0|
→ 0 as t→ t0

or, in “little oh” notation,

∥

∥

−→p (t)− Tt0−→p (t)
∥

∥ = o(|t− t0|).

It is really this last approximation property of the derivative in both cases
that is at the heart of the way we use derivatives. So it would be useful to
find an analogous formulation for derivatives in the case of a real-valued
function f(−→x ) of a vector variable. This section is devoted to formulating
what kind of approximation we are looking for (the analogue of having a
parametrization of a line in the vector-valued case); then in the next
section we will see how this gives us the right kind of approximation to
f(−→x ).

Linearity

In both of the cases reviewed above, the tangent approximation to a
function (real- or vector-valued) is given by polynomials of degree one in
the variable. Analogously, in trying to approximate a function f(x1, x2, x3)
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of 3 variables, we would expect to look for a polynomial of degree one in
these variables:

p(x1, x2, x3) = a1x1 + a2x2 + a3x3 + c

where the coefficients ai, i = 1, 2, 3 and c are real constants. To formulate
this in vector terms, we begin by ignoring the constant term (which in the
case of our earlier approximations is just the value of the function being
approximated, at the time of approximation). A degree one polynomial
with zero constant term (also called a homogeneous polynomial of
degree one)

h(x1, x2, x3) = a1x1 + a2x2 + a3x3

has two important properties:

Scaling: If we multiply each variable by some common real number α, the
value of the function is multiplied by α:

h(αx1, αx2, αx3) = (a1)(αx1) + (a2)(αx2) + (a3)(αx3)

= (α)(a1x1 + a2x2 + a3x3)

= α · h(x1, x2, x3) ;

in vector terms, this can be written

h(α−→x ) = αh(−→x ) .

This property is often referred to as homogeneity of degree one.

Additivity: If the value of each variable is a sum of two values, the value
of the function is the same as its value over the first summands plus
its value over the second ones:

h(x1 + y1, x2 + y2, x3 + y3)

= (a1)(x1 + y1) + (a2)(x2 + y2) + (a3)(x3 + y3)

= (a1x1 + a2x2 + a3x3) + (a1y1 + a2y2 + a3y3)

= h(x1, x2, x3) + h(y1, y2, y3)

or in vector terms

h(−→x +−→y ) = h(−→x ) + h(−→y ) .
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These two properties together can be summarized by saying that h(−→x )
respects linear combinations: for any two vectors −→x and −→y and any
two numbers α and β,

h(α−→x + β−→y ) = αh(−→x ) + βh(−→y ) .

A function which respects linear combinations is called a linear function.

The preceding discussion shows that every homogeneous polynomial of
degree one is a linear function.

Recall that the standard basis for R3 is the collection −→ı ,−→ ,−→k of unit
vectors along the three positive coordinate axes; we will find it useful to
replace the “alphabetical” notation for the standard basis with an indexed
one:

−→e1 = −→ı
−→e2 = −→
−→e3 =

−→
k .

The basic property3 of the standard basis is that every vector −→x ∈ R
3 is,

in a standard way, a linear combination of these specific vectors:

−→x = (x, y, z) = x−→ı + y−→ + z
−→
k

or

(x1, x2, x3) = x1
−→e1 + x2

−→e2 + x3
−→e3 .

Then combining this with the fact that linear functions respect linear
combinations, we easily see (Exercise 8) that all linear functions are
homogeneous polynomials in the coordinates of their input:

Remark 3.2.1. Every linear function ℓ:R3→R is determined by its effect
on the elements of the standard basis for R

3: if

ℓ(−→ei ) = ai, for i = 1, 2, 3

then ℓ(x1, x2, x3) is the degree one homogeneous polynomial

ℓ(x1, x2, x3) = a1x1 + a2x2 + a3x3.

3No pun intended
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Matrix Representation of Linear Functions

We are now going to set up what will at first look like an unnecessary
complication of the picture above, but in time it will open the door to
appropriate generalizations. The essential data concerning a linear
function (a.k.a. a homogeneous polynomial of degree one) is the set of
values taken by ℓ on the standard basis of R3:

ai = ℓ(−→ei ) , i = 1, 2, 3.

We shall form these numbers into a 1× 3 matrix (a row matrix), called
the matrix representative of ℓ:

[ℓ] =
[

a1 a2 a3
]

.

We shall also create a 3× 1 matrix (a column matrix) whose entries are
the components of the vector −→x , called the coordinate matrix of −→x :

[−→x ] =





x1
x2
x3



 .

We then define the product of a row with a column as the result of
substituting the entries of the column into the homogeneous polynomial
whose coefficients are the entries of the row; equivalently, we match the ith

entry of the row with the ith entry of the column, multiply each matched
pair, and add:

[

a1 a2 a3
]





x1
x2
x3



 = a1x1 + a2x2 + a3x3.

Of course, in this language, we are representing the linear function
ℓ:R3→R as the product of its matrix representative with the coordinate
matrix of the input

ℓ(−→x ) = [ℓ] [−→x ] .
Another way to think of this representation is to associate, to any row, a
vector −→a (just put commas between the entries of the row matrix), and
then to notice that the product of the row with the coordinate matrix of
−→x is the same as the dot product of the vector −→a with −→x :

[

a1 a2 a3
]





x1
x2
x3



 = (a1, a2, a3) · (x1, x2, x3)

= −→a · −→x .
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Thus we see that there are three ways to think of the action of the linear
function ℓ:R3→R on a vector −→x ∈ R

3:

• Substitute the components of −→x into a homogeneous polynomial of
degree one, whose coefficients are the values of ℓ on the standard
basis;

• Multiply the coordinate matrix of −→x by the matrix representative of
ℓ;

• Take the dot product of the vector −→a (obtained from the row matrix
[ℓ] by introducing commas) with the vector −→x .

Affine Functions

Finally, we introduce one more piece of terminology: an affine function is
the sum of a constant and a linear function:

φ(−→x ) = c+ ℓ(−→x ) .

In other words, an affine function is the same thing as a polynomial of
degree one (with no homogeneity conditions—that is, without any
restriction on the constant term).

Note that if φ(−→x ) = c+ ℓ(−→x ) is an affine function, then for any two
vectors −→x and −→y ,

φ(−→y )− φ(−→x ) = ℓ(−→y )− ℓ(−→x )

= ℓ(−→y −−→x ) .

Let

△−→x = −→y −−→x

be the displacement of −→y from −→x

−→y = −→x +△−→x .

Then we can write

φ(−→x +△−→x ) = φ(−→x ) + ℓ(△−→x ) . (3.1)
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Remark 3.2.2. Given any −→x0 ∈ R
3, the affine function φ:R3→R can be

written in the form of Equation (3.1), as its value at −→x0 plus a linear
function of the displacement from −→x0:

φ(−→x0 +△−→x ) = φ(−→x0) + ℓ(△−→x )

or, stated differently,

φ(−→x0 +△−→x )− φ(−→x0) = ℓ(△−→x ) ;

the displacement of φ(−→x ) from φ(−→x0) is a linear function of the
displacement of −→x from −→x0.

In light of this observation, we can use Remark 3.2.1 to determine an affine
function from its value at a point −→x0 together with its values at the points
−→x0 +−→ej obtained by displacing the original point in a direction parallel to
one of the coordinate axes. A brief calculation shows that

φ(−→x0 +△−→x ) = a0 +

3
∑

j=1

aj△xj (3.2)

where

△−→x = (△x1,△x2,△x3)
a0 = φ(−→x0)

and for j = 1, 2, 3

aj = φ(−→x0 +−→ej )− φ(−→x0) .

Finally, we note that, in addition to the one-dimensional examples of
derivatives and of tangent lines to graphs of functions, our standard
approach to parametrizing a plane in R

3, as given in Equation (1.25)
expresses each of the three coordinates x, y and z as affine functions of the
two parameters s and t. In fact, it would be natural to think of
Equation (1.24) as defining an affine vector-valued function of the vector
(s, t) ∈ R

2—a viewpoint we will adopt in Chapter 4.

Exercises for § 3.2

Practice problems:
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1. For each linear function ℓ(−→x ) below, you are given the values on the
standard basis. Find ℓ(1,−2, 3) and ℓ(2, 3,−1).

(a) ℓ(−→ı ) = 2, ℓ(−→ ) = −1, ℓ
(−→
k
)

= 1.

(b) ℓ(−→ı ) = 1, ℓ(−→ ) = 1, ℓ
(−→
k
)

= 1.

(c) ℓ(−→ı ) = 3, ℓ(−→ ) = 4, ℓ
(−→
k
)

= −5.

2. Is there a linear function ℓ:R3→R for which

ℓ(1, 1, 1) = 0

ℓ(1,−1, 2) = 1

ℓ(2, 0, 3) = 2?

Why or why not? Is there an affine function with these values? If so,
give one. Are there others?

3. If ℓ:R3→R is linear and

ℓ(1, 1, 1) = 3

ℓ(1, 2, 0) = 5

ℓ(0, 1, 2) = 2

then

(a) Find ℓ(−→ı ), ℓ(−→ ), and ℓ
(−→
k
)

.

(b) Express ℓ(x, y, z) as a homogeneous polynomial.

(c) Express ℓ(−→x ) as a matrix multiplication.

(d) Express ℓ(−→x ) as a dot product.

4. Consider the affine function φ:R3→R given by the polynomial

3x− 2y + z + 5.

Express φ(−→x ) in the form given by Remark 3.2.2, when −→x0 is each of
the vectors given below:

(a) −→x0 = (1, 2, 1)

(b) −→x0 = (−1, 2, 1)
(c) −→x0 = (2, 1, 1).
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Theory problems:

5. Show that an affine function f:R2→R is determined by its values
on the vertices of any nondegenerate triangle.

6. Suppose −→p (s, t) is a parametrization of a plane in R
3 of the form

given by Equation (1.24) and Equation (1.25) in § 1.5, and f:R3→R

is linear. Show that f ◦−→p :R2→R is an affine function.

7. A level set of a function is the set of points where the function takes
a particular value. Show that any level set of an affine function on R

2

is a line, and a level set of an affine function on R
3 is a plane. When

does the line/plane go through the origin?

8. Prove Remark 3.2.1.

9. Prove Remark 3.2.2.

10. Carry out the calculation that establishes Equation (3.2).

3.3 Derivatives

In this section we carry out the program outlined at the beginning of § 3.2,
trying to formulate the derivative of a real-valued function of several
variables f(−→x ) in terms of an affine function making first-order contact
with f(−→x ).

Definition 3.3.1. A real-valued function of three variables f:R3→R is
differentiable at −→x0 ∈ R

3 if f is defined for all −→x sufficiently near −→x0 and
there exists an affine function T−→x0f(

−→x ) :R3→R which has first-order

contact with f(−→x ) at −→x = −→x0:
∣

∣

∣f(−→x )− T−→x0f(
−→x )
∣

∣

∣ = o(‖−→x −−→x0‖) (3.3)

which is to say

lim−→x→−→x0

∣

∣

∣f(−→x )− T−→x0f(
−→x )
∣

∣

∣

‖−→x −−→x0‖
= 0. (3.4)

When such an affine function exists, we call it the linearization of f(−→x )
or the linear approximation to f(−→x ), at −→x = −→x0.4

4Properly speaking, it should be called the affine approximation.
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Since functions with first-order contact must agree at the point of contact,
we know that

T−→x0f(
−→x0) = f(−→x0) ;

then Remark 3.2.2 tells us that

T−→x0f(
−→x0 +△−→x ) = f(x0) + ℓ(△−→x ) . (3.5)

Furthermore, since ℓ(△−→x ) is a polynomial, it is continuous, so that

lim
△−→x→−→

0

ℓ(△−→x ) = 0

and

lim−→x→−→x0

(

f(−→x )− T−→x0f(
−→x )
)

= lim−→x→−→x0
[f(−→x )− f(−→x0)− ℓ(△−→x )]

= lim−→x→−→x0
[f(−→x )− f(−→x0)]− lim

△−→x→−→
0
ℓ(△−→x )

= lim−→x→−→x0
[f(−→x )− f(−→x0)] .

But since the denominator in Equation (3.4) goes to zero, so must the
numerator, which says that the limit above is zero. This shows

Remark 3.3.2. If f(−→x ) is differentiable at −→x = −→x0 then it is continuous
there.

To calculate the “linear part” ℓ(△−→x ) of T−→x0f(
−→x ) (if it exists), we consider

the action of f(−→x ) along the line through −→x0 with a given direction vector
−→v : this is parametrized by

−→p (t) = −→x0 + t−→v

and the restriction of f(−→x ) to this line is given by the composition

f(−→p (t)) = f(−→x0 + t−→v ) .

Then setting △−→x = t−→v in Equation (3.5) we have

T−→x0f(
−→x0 + t−→v ) = f(−→x0) + ℓ(t−→v )

= f(−→x0) + tℓ(−→v ) .
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Equation (3.4) then says that, if we let t→ 0,

|f(−→x0 + t−→v )− f(−→x0)− tℓ(−→v )|
‖t−→v ‖ → 0,

from which it follows that

ℓ(−→v ) = lim
t→0

1

t
(f(−→x0 + t−→v )− f(−→x0)) .

This formula shows that, if it exists, the affine approximation to f(−→x ) at
−→x = −→x0 is unique; we call the “linear part” ℓ(△−→x ) of T−→x0f(

−→x ) the
derivative or differential of f(−→x ) at −→x = −→x0, and denote it d−→x0f . Note
that this equation can also be interpreted in terms of the derivative at
t = 0 of the composite function f(−→p (t)):

d−→x0f(
−→v ) = lim

t→0

1

t
(f(−→x0 + t−→v )− f(−→x0))

=
d

dt

∣

∣

∣

∣

t=0

[f(−→x0 + t−→v )] .
(3.6)

For example, if

f(x, y) = x2 − xy

and

−→x0 = (3, 1)
−→v = (v1, v2)

then, using the limit formula,

d(3,1)f((v1, v2)) = lim
t→0

1

t
[f(3 + v1t, 1 + v2t)− f(3, 1)]

= lim
t→0

1

t

[

(3 + v1t)
2 − (3 + v1t)(1 + v2t)− 6

]

= lim
t→0

1

t

[

(9 + 6v1t+ t2v21)− (3 + v1t+ 3v2t+ t2v1v2)− 6
]

= lim
t→0

[

(5v1 − 3v2) + t(v21 − v1v2)
]

= 5v1 − 3v2
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or, alternatively, we could use the differentiation formula:

d(3,1)f((v1, v2)) =
d

dt

∣

∣

∣

∣

t=0

[f(3 + v1t, 1 + v2t)]

=
d

dt

∣

∣

∣

∣

t=0

[

6 + (5v1 − 3v2)t+ (v21 − v1v2)t2
]

= (5v1 − 3v2) + 2(v21 − v1v2) · 0
= 5v1 − 3v2.

Partial Derivatives

Equation (3.6), combined with Remark 3.2.1, gives us a way of expressing
the differential d−→x0f(

−→v ) as a homogeneous polynomial in the components
of −→v . The quantity given by Equation (3.6) in the special case that
−→v = −→ej is an element of the standard basis for R3, is called a partial
derivative. It corresponds to moving through −→x0 parallel to one of the
coordinate axes with unit speed—that is, the motion parametrized by

−→pj (t) = −→x0 + t−→ej :

Definition 3.3.3. The jth partial derivative (or partial with respect

to xj) of a function f(x1, x2, x3) of three variables at −→x = −→x0 is the
derivative5 (if it exists) of the function (f ◦−→pj )(t) obtained by fixing all
variables except the jth at their values at −→x0, and letting xj vary:

fxj(
−→x0) :=

∂f

∂xj
(−→x0) =

d

dt

∣

∣

∣

∣

t=0

[f(−→pj (t))]

=
d

dt

∣

∣

∣

∣

t=0

[f(−→x0 + t−→ej )]

or

fx(x, y, z) :=
∂f

∂x
(x, y, z) = lim

t→0

1

t
[f(x+ t, y, z)− f(x, y, z)]

fy(x, y, z) :=
∂f

∂y
(x, y, z) = lim

t→0

1

t
[f(x, y + t, z)− f(x, y, z)]

fz(x, y, z) :=
∂f

∂z
(x, y, z) = lim

t→0

1

t
[f(x, y, z + t)− f(x, y, z)] .

5The symbol ∂f

∂xj
is pronounced as if the ∂’s were d’s.
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In practice, partial derivatives are easy to calculate: we just differentiate,
treating all but one of the variables as a constant. For example, if

f(x, y) = x2y + 3x+ 4y

then ∂f
∂x , the partial with respect to x, is obtained by treating y as the

name of some constant:

fx(x, y) :=
∂f

∂x
(x, y) = 2xy + 3

while the partial with respect to y is found by treating x as a constant:

fy(x, y) :=
∂f

∂y
(x, y) = x2 + 4;

similarly, if

g(x, y, z) = sin 2x cos y + xyz2

then

gx(x, y, z) :=
∂g

∂x
(x, y, z) = 2 cos 2x cos y + yz2

gy(x, y, z) :=
∂g

∂y
(x, y, z) = − sin 2x sin y + xz2

gz(x, y, z) :=
∂g

∂z
(x, y, z) = 2xyz.

Remark 3.2.1 tells us that the differential of f , being linear, is determined
by the partials of f :

d−→x0f(
−→v ) =

(

∂f

∂x1
(−→x0)

)

v1 +

(

∂f

∂x2
(−→x0)

)

v2 +

(

∂f

∂x3
(−→x0)

)

v3

=

3
∑

j=1

∂f

∂xj
vj.

So far, we have avoided the issue of existence: all our formulas above
assume that f(−→x ) is differentiable at −→x = −→x0. Since the partial derivatives
of a function are essentially derivatives as we know them from
single-variable calculus, it is usually pretty easy to determine whether they
exist and if so to calculate them formally. However, the existence of the
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partials is not by itself a guarantee that the function is differentiable. For
example, the function we considered in § 3.1

f(x) =

{

xy
x2+y2

if (x, y) 6= (0, 0),

0 at (0, 0)

has the constant value zero along both axes, so certainly its two partials at
the origin exist and equal zero

∂f

∂x
(0, 0) = 0

∂f

∂y
(0, 0) = 0

but if we try to calculate d(0,0)f(
−→v ) for the vector −→v = (1,m) using

Equation (3.6),

d(0,0)f(1,m) = lim
t→0

1

t
(f(t,mt)− f(0, 0))

then, since along the line y = mx the function has a constant value

f(t,mt) =
m

1 +m2

—which is nonzero if m is—but f(0, 0) = 0, we see that the limit above
does not exist:

lim
t→0

1

t
(f(t,mt)− f(0, 0)) = lim

t→0

1

t

(

m

1 +m2

)

diverges, and the differential cannot be evaluated along the vector
−→v = −→ı +m−→ if m 6= 0. In fact, we saw before that this function is not
continuous at the origin, which already contradicts differentiability, by
Remark 3.3.2.

Another example, this time one which is continuous at the origin, is

f(x, y) =







2xy√
x2+y2

if (x, y) 6= (0, 0),

0 at (0, 0)
.
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This function is better understood when expressed in polar coordinates,
where it takes the form

f(r cos θ, r sin θ) =
2r2 cos θ sin θ

r
= 2r cos θ sin θ

= r sin 2θ.

From this we see that along the line making angle θ with the x-axis,
f(x, y) is a constant (sin 2θ) times the distance from the origin:
geometrically, the graph of f(x, y) over this line is itself a line through the
origin of slope m = sin 2θ. Along the two coordinate axes, this slope is
zero, but for example along the line y = x (θ = π/4), the slope is
sinπ/2 = 1. So this time, the function defined by Equation (3.6) (without
asking about differentiability) exists at the origin, but it is not linear
(since again it is zero on each of the standard basis elements −→ı and −→ ).
A third example is defined by a straightforward formula (no “cases”):

f(x, y) = x1/3y1/3.

Again, the function is constant along the coordinate axes, so both partials
are zero. However, if we try to evaluate the limit in Equation (3.6) using
any vector not pointing along the axes, we get

d(0,0)f(α
−→ı + β−→ ) = d

dt

∣

∣

∣

∣

t=0

[

α1/3β1/3t2/3
]

;

since t2/3 is definitely not differentiable at t = 0, the required linear map
d(0,0)f(α

−→ı + β−→ ) cannot exist.
From all of this, we see that having the partials at a point −→x0 is not enough
to guarantee differentiability of f(−→x ) at −→x = −→x0. It is not even enough to
also have partials at every point near −→x0—all our examples above have this
property. However, a slight tweaking of this last condition does guarantee
differentiability. We call f(−→x ) continuously differentiable at −→x0 if all
the partial derivatives exist for every point near −→x0 (including −→x0 itself),
and are continuous at −→x0. Then we can assert

Theorem 3.3.4. If f(−→x ) is continuously differentiable at −→x0, then it is
differentiable there.

Proof. For notational convenience, we concentrate on the case of a
function of two variables; the modification of this proof to the case of three
variables is straightforward (Exercise 11).
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We know that, if it exists, the linearization of f(−→x ) at −→x = −→x0 = (x, y) is
determined by the partials to be

T−→x0f(x+△x, y +△y) = f(x, y) +
∂f

∂x
(x, y)△x+

∂f

∂y
(x, y)△y; (3.7)

so we need to show that

1

‖(△x,△y)‖

∣

∣

∣

∣

f(x+△x, y +△y)−
(

f(x, y) +
∂f

∂x
(x, y)△x+

∂f

∂y
(x, y)△y

)∣

∣

∣

∣

→ 0

(3.8)
as (△x,△y)→ 0. When we remove the parentheses inside the absolute
value, we have an expression whose first two terms are
f(x+△x, y +△y)− f(x, y); we rewrite this as follows. By adding and
subtracting the value of f at a point that shares one coordinate with each
of these two points—say f(x, y +△y)—we can write

f(x+△x, y +△y)− f(x, y) = (f(x+△x, y +△y)− f(x, y +△y))
+ (f(x, y +△y)− f(x, y))

and then proceed to analyze each of the two quantities in parentheses.
Note that the first quantity is the difference between the values of f along
a horizontal line segment, which can be parametrized by

−→p (t) = (x+ t△x, y +△y), 0 ≤ t ≤ 1;

the composite function

g(t) = f(−→p (t))
= f(x+ t△x, y +△y)

is an ordinary function of one variable, whose derivative is related to a
partial derivative of f (Exercise 6):

g′(t) =
∂f

∂x
(x+ t△x, y +△y)△x.

Thus, we can apply the Mean Value Theorem to conclude that there is a
value t = t1 between 0 and 1 for which

g(1) − g(0) = g′(t1) .
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Letting t1△x = δ1, we can write

f(x+△x, y +△y)− f(x, y +△y) = g(1)− g(0)
= g′(t1)

=
∂f

∂x
(x+ δ1, y +△y)△x

where

|δ1| ≤ |△x| .

A similar argument applied to the second term in parentheses (Exercise 6)
yields

f(x, y +△y)− f(x, y) = ∂f

∂y
(x, y + δ2)△y

where

|δ2| ≤ |△y| .

This allows us to rewrite the quantity inside the absolute value in
Equation (3.8) as

f(x+△x, y +△y)−
(

f(x, y) +
∂f

∂x
(x, y)△x+

∂f

∂y
(x, y)△y

)

=

(

f(x+△x, y +△y)− f(x, y)
)

−
(

∂f

∂x
(x, y)△x+

∂f

∂y
(x, y)△y

)

=

(

∂f

∂x
(x+ δ1, y +△y)△x+

∂f

∂y
(x, y + δ2)△y

)

−
(

∂f

∂x
(x, y)△x+

∂f

∂y
(x, y)△y

)

=

(

∂f

∂x
(x+ δ1, y +△y)−

∂f

∂x
(x, y)

)

△x+

(

∂f

∂y
(x, y + δ2)−

∂f

∂y
(x, y)

)

△y.

Now, we want to show that this quantity, divided by
‖(△x,△y)‖ =

√

△x2 +△y2, goes to zero as (△x,△y)→ (0, 0). Clearly,

|△x|
√

△x2 +△y2
≤ 1

|△y|
√

△x2 +△y2
≤ 1,
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so it suffices to show that each of the quantities in parentheses goes to
zero. But as (△x,△y)→ 0, all of the quantities △x, △y, δ1 and δ2 go to
zero, which means that all of the points at which we are evaluating the
partials are tending to −→x0 = (x, y); in particular, the difference inside each
pair of (large) parentheses is going to zero. Since each such quantity is
being multiplied by a bounded quantity (△x/

√

△x2 +△y2, or
△y/

√

△x2 +△y2), the whole mess goes to zero.

This proves our assertion, that the affine function T−→x0f(
−→x ) as defined by

Equation (3.7) has first-order contact with f(−→x ) at −→x = −→x0.

This result ensures that functions defined by algebraic or analytic
expressions such as polynomials (in two or three variables) or combinations
of trigonometric, exponential, logarithmic functions and roots are generally
differentiable, since by the formal rules of differentiation the partials are
again of this type, and hence are continuous wherever they are defined; the
only difficulties arise in cases where differentiation introduces a
denominator which becomes zero at the point in question.

The Gradient and Directional Derivatives

Recall from § 3.2 that a linear function can be viewed in three different
ways: as a homogeneous polynomial of degree one, as multiplication of the
coordinate matrix by its matrix representative, and as the dot product of
the input with a fixed vector. We have seen that when f(−→x ) is
differentiable at −→x = −→x0, then the coefficients of the differential d−→x0f(

−→v ),
as a polynomial in the entries of −→v , are the partial derivatives of f at
−→x = −→x0; this tells us that the matrix representative of d−→x0f is

[

d−→x0f

]

=

[

∂f

∂x
(−→x0) ,

∂f

∂y
(−→x0) ,

∂f

∂z
(−→x0)

]

.

This matrix is sometimes referred to as the Jacobian of f at −→x = −→x0, and
denoted Jf . Equivalently, when we regard this row as a vector, we get the
gradient6 of f :

−→∇f(−→x0) =
(

∂f

∂x
(−→x0) ,

∂f

∂y
(−→x0) ,

∂f

∂z
(−→x0)

)

.

6The symbol
−→
∇f is pronounced “grad f”; another notation for the gradient is grad f .
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That is, the gradient is the vector whose entries are the partials. It is
worth reiterating how these two objects represent the differential:

d−→x0f(
−→v ) = (Jf(−→x0)) [−→v ] (Matrix product) (3.9)

=
−→∇f(−→x0) · −→v (Dot Product). (3.10)

These ways of representing the differential carry essentially the same
information. However, the gradient in particular has a nice geometric
interpretation.
Recall that we represent a direction in the plane or space by means of a
unit vector −→u . When the differential is applied to such a vector, the
resulting number is called the directional derivative of the function at
the point. From Equation (3.6), we see that the directional derivative gives
the rate at which f(−→x ) changes as we move in the direction −→u at speed
one. In the plane, a unit vector has the form

−→uα = (cosα)−→ı + (sinα)−→
where α is the angle our direction makes with the x-axis. In this case, the
directional derivative in the direction given by α is

d−→x0f(
−→uα) =

∂f

∂x
(−→x0) cosα+

∂f

∂y
(−→x0) sinα.

Equation (3.10) tells us that the directional derivative in the direction of
the unit vector −→u is the dot product

d−→x0f(
−→u ) = −→∇f · −→u

which is related to the angle θ between the two vectors, so also

−→∇f · −→u =
∥

∥

∥

−→∇f(−→x0)
∥

∥

∥
‖−→u ‖ cos θ

=
∥

∥

∥

−→∇f(−→x0)
∥

∥

∥
cos θ

since −→u is a unit vector. Now, cos θ reaches its maximum value, which is 1,

when θ = 0, which is to say when −→u points in the direction of
−→∇−→x0, and its

minimum value of −1 when −→u points in the opposite direction. This gives
us a geometric interpretation of the gradient, which will prove very useful.

Remark 3.3.5. The gradient vector
−→∇f(−→x0) points in the direction in

which the directional derivative has its highest value, known as the
direction of steepest ascent, and its length is the value of the
directional derivative in that direction.



3.3. DERIVATIVES 237

As an example, consider the function

f(x, y) = 49− x2 − 3y2

at the point

−→x0 = (4, 1).

The graph of this function is an elliptic paraboloid opening down; that is,
it can be viewed as a hill whose peak is above the origin, at height
f(0, 0) = 49. The gradient of this function is

−→∇f(x, y) = (−2x)−→ı + (−6x)−→ ;

at the point (4, 1),

−→∇f(4, 1) = −8−→ı − 6−→

has length

∥

∥

∥

−→∇f(4, 1)
∥

∥

∥
=
√

82 + 62

= 10

and the unit vector parallel to
−→∇f(4, 1) is

−→u = −4

5
−→ı − 3

5
−→ .

This means that at the point 4 units east and one unit north of the peak, a
climber who wishes to gain height as fast as possible should move in the
direction given on the map by −→u ; by moving in this direction, the climber
will be ascending at 10 units of height per unit of horizontal motion from
an initial height of f(4, 1) = 30. Alternatively, if a stream flowing down the
mountain passes the point 4 units east and one unit north of the peak, its
direction of flow on the map will be in the opposite direction, the direction
of steepest descent.
The analogue of Remark 3.3.5 for a function of three variables holds for the
same reasons. Note that in either case, the gradient “lives” in the domain
of the function; thus, although the graph of a function of two variables is a
surface in space, its gradient vector at any point is a vector in the plane.
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Chain Rules

For two differentiable real-valued functions of a (single) real variable, the
Chain Rule tells us that the derivative of the composition is the product of
the derivatives of the two functions:

d

dt

∣

∣

∣

∣

t=t0

[f ◦ g] = f ′(g(t0)) · g′(t0) .

Similarly, if g is a differentiable real-valued function of a real variable and−→
f is a differentiable vector-valued function of a real variable, the

composition
−→
f ◦ g is another vector-valued function, whose derivative is the

product of the derivative of
−→
f (i.e., , its velocity) and the derivative of g:

d

dt

∣

∣

∣

∣

t=t0

[−→
f ◦ g

]

= ~f ′(g(t0)) · g′(t0) .

We would now like to turn to the case when −→g is a vector-valued function
of a real variable, and f is a real-valued function of a vector variable, so
that their composition f ◦−→g is a real-valued function of a real variable.
We have already seen that if −→g is steady motion along a straight line, then
the derivative of the composition is the same as the action of the
differential of f on the derivative (i.e., the velocity) of −→g . We would like
to say that this is true in general. For ease of formulating our result, we
shall use the notation −→p (t) in place of −→g (t), −→v for the velocity of −→p (t) at
t = t0, and the representation of d−→x0f(

−→v ) as −→∇f(−→x0) · −→v .

Proposition 3.3.6 (Chain Rule for R→ R
3 → R). Suppose f:R3→R is

differentiable at −→x = −→x0 and −→p :R→R
3 is a vector-valued function which is

differentiable at t = t0, where
−→p (t0) = −→x0.

Then the composite function (f ◦−→p ) :R→R, (f ◦−→p )(t) = f(−→p (t)) is
differentiable at t = t0, and

d

dt

∣

∣

∣

∣

t=t0

[f ◦−→p ] = −→∇f(−→x0) · −→v

where

−→v = −̇→p (t0)

is the velocity with which the curve passes −→x0 at t = t0.
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Proof. For the purpose of this proof, it will be convenient to write the
condition that f(−→x ) and T−→x0f(

−→x ) have first-order contact at −→x = −→x0 in a
somewhat different form. If we set

ε =
f(−→x0 +△−→x )− T−→x0f(

−→x0 +△−→x )
‖△−→x ‖

where △−→x = −→x −−→x0, then Equation (3.4) can be rewritten in the form

f(−→x0 +△−→x ) = T−→x0f(
−→x0 +△−→x ) + ‖△−→x ‖ ε,

where |ε| → 0 as △−→x → −→0 .
If we substitute into this the expression for the affine approximation

T−→x0f(
−→x0 +△−→x ) = f(−→x0) + d−→x0f(△

−→x )

we obtain the following version of Equation (3.4):

f(−→x0 +△−→x )− f(−→x0) = d−→x0f(△−→x ) + ‖△−→x ‖ ε,
where ε→ 0 as △−→x → −→0 .

Using the representation of d−→x0f(△
−→x ) as a dot product, we can rewrite

this in the form

f(−→x0 +△−→x )− f(−→x0) =
−→∇f(−→x0) · △−→x + ‖△−→x ‖ ε,

where ε→ 0 as △−→x → −→0 .

In a similar way, we can write the analogous statement for −→p (t), using
−→v = −̇→p (t0):

−→p (t0 +△t)−−→p (t0) = −→v △t+ |△t|
−→
δ ,

where
−→
δ → −→0 as △t→ 0.

Now, we consider the variation of the composition f(−→p (t)) as t goes from
t = t0 to t = t0 +△t:

f(−→p (t0 +△t))− f(−→p (t0)) =
−→∇f(−→x0) ·

(−→v △t+ |△t| −→δ
)

+ ‖△−→x ‖ ε

=
−→∇f(−→x0) · (−→v △t) + |△t|

−→∇f(−→x0) ·
−→
δ + ‖△−→x ‖ ε.

Subtracting the first term on the right from both sides, we can write

f(−→p (t0 +△t))− f(−→p (t0))−
−→∇f(−→x0) · (−→v △t)

= (△t)−→∇f(−→x0) ·
−→
δ + |△t|

∥

∥

∥

∥

△−→x
△t

∥

∥

∥

∥

ε.
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Taking the absolute value of both sides and dividing by |△t|, we get

1

|△t|

∣

∣

∣

∣

f(−→p (t0 +△t))−f(−→p (t0))−
−→∇f(−→x0) · (△t−→v )

∣

∣

∣

∣

=

∣

∣

∣

∣

−→∇f(−→x0) ·
−→
δ ±

∥

∥

∥

∥

△−→x
△t

∥

∥

∥

∥

ε

∣

∣

∣

∣

≤
∥

∥

∥

−→∇f(−→x0)
∥

∥

∥

∥

∥

∥

−→
δ
∥

∥

∥
+

∥

∥

∥

∥

△−→x
△t

∥

∥

∥

∥

|ε| .

In the first term above, the first factor is fixed and the second goes to zero
as △t→ 0, while in the second term, the first factor is bounded (since
△−→x /△t converges to −→v ) and the second goes to zero. Thus, the whole
mess goes to zero, proving that the affine function inside the absolute value
in the numerator on the left above represents the linearization of the
composition, as required.

An important aspect of Proposition 3.3.6 (perhaps the important aspect)
is that the rate of change of a function applied to a moving point depends
only on the gradient of the function and the velocity of the moving point
at the given moment, not on how the motion might be accelerating, etc.

For example, consider the distance from a moving point −→p (t) to the point
(1, 2): the distance from (x, y) to (1, 2) is given by

f(x, y) =
√

(x− 1)2 + (y − 2)2

with gradient

−→∇f(x, y) = (x− 1)
√

(x− 1)2 + (y − 1)2
−→ı +

(y − 2)
√

(x− 1)2 + (y − 1)2
−→ .

If at a given moment our point has position

−→p (t0) = (5,−3)

and velocity

−→v (t0) = −2−→ı − 3−→
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then regardless of acceleration and so on, the rate at which its distance
from (1, 2) is changing is given by

d

dt

∣

∣

∣

∣

t=t0

[f(−→p (t))] = −→∇f(5,−3) · −→v (t0)

=

(

4

5
−→ı − 3

5
−→
)

· (−2−→ı − 3−→ )

= −8

5
+

9

5

=
1

5
.

The other kind of chain rule that can arise is when we compose a
real-valued function f of a vector variable with a real-valued function g of
a real variable:

Proposition 3.3.7 (Chain Rule R
3 → R→ R). Suppose f(−→x ) is a

real-valued function of three variables, differentiable at v=
−→x0, and g(y) is a

real-valued function of a real variable, differentiable at y = y0 = f(−→x0).
Then the composition (g ◦ f)(−→x ) is differentiable at −→x = −→x0, and

−→∇(g ◦ f)(−→x0) = g′(y0)
−→∇f(−→x0) .

Proof. This is formally very similar to the preceding proof. Let

△y = f(−→x0 +△−→x )− f(−→x0)

then

△y =
−→∇f(−→x0) · △−→x + δ ‖△−→x ‖

where δ → 0 as △−→x → −→0 . Note for future reference that

|△y| ≤
(∥

∥

∥

−→∇f(−→x0)
∥

∥

∥
+ δ
)

‖△−→x ‖ .

Now,

g(f(−→x0 +△−→x )) = g(y0 +△y)
= g(y0) + g′(y0)△y + ε |△y|
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where ε→ 0 as △y → 0. From this we can conclude

g(f(−→x0 +△−→x ))− g(f(−→x0))−
[

g′(y0)
−→∇f(−→x0)

]

= g′(y0) δ ‖△−→x ‖+ ε |△y| .
Taking absolute values and dividing by ‖△−→x ‖, we have

1

△−→x
∣

∣

∣
g(f(−→x0 +△−→x ))− g(f(−→x0))−

[

g′(y0)
−→∇f(−→x0)

]∣

∣

∣

≤
∣

∣g′(y0)
∣

∣ |δ| + ε
|△y|
‖△−→x ‖

=
∣

∣g′(y0)
∣

∣ |δ|+ ε
(∥

∥

∥

−→∇f(−→x0)
∥

∥

∥
+ δ
)

.

Both terms consist of a bounded quantity times a quantity that goes to
zero as △−→x → −→0 , and we are done.

Finally, we note that, as a corollary of Proposition 3.3.7, we get a formula
for the partial derivatives of the composite function g ◦ f :

∂g ◦ f
∂xi

(−→x0) = g′(y0)
∂f

∂xi
(−→x0) . (3.11)

For example, suppose we consider the function that expresses the
rectangular coordinate y in terms of spherical coordinates:

f(ρ, φ, θ) = ρ sinφ sin θ;

its gradient is

−→∇f(ρ, φ, θ) = (sinφ sin θ, ρ cosφ sin θ, ρ sinφ cos θ).

Suppose further that we are interested in

z = g(y)

= ln y.

To calculate the partial derivatives of z with respect to the spherical
coordinates when

ρ = 2

φ =
π

4

θ =
π

3
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we calculate the value and gradient of f at this point:

f
(

2,
π

4
,
π

3

)

= (2)

(

1√
2

)

(
1

2
) =

1√
2

−→∇f
(

2,
π

4
,
π

3

)

=

( √
3

2
√
2
,

√
3√
2
,
1√
2

)

or

∂f

∂ρ
=

√
3

2
√
2

∂f

∂φ
=

√
3√
2

∂f

∂θ
=

1√
2
.

The value and derivative of g(y) at y = f
(

2, π4 ,
π
3

)

= 1√
2
are

g

(

1√
2

)

= −1

2
ln 2;

g′
(

1√
2

)

=
√
2
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and from this we get

∂z

∂ρ
= g′

(

1√
2

)

∂f

∂ρ

=
√
2

( √
3

2
√
2

)

=

√
3

2
∂z

∂φ
= g′

(

1√
2

)

∂f

∂φ

=
√
2

(√
3√
2

)

=
√
3

∂z

∂θ
= g′

(

1√
2

)

∂f

∂θ

=
√
2

(

1√
2

)

= 1.

Note that this formula could have been found directly, using
Definition 3.3.3 (Exercise 7): the substantive part of the proof above was
to show that the composite function is differentiable.

Approximation and Estimation

Just as for functions of one variable, the linearization of a function can be
used to get “quick and dirty” estimates of the value of a function when the
input is close to one where the exact value is known.
For example, consider the function

f(x, y) =
√

x2 + 5xy + y2;

you can check that f(3, 1) = 5; what is f(2.9, 1.2)? We calculate the
partial derivatives at (3, 1):

∂f

∂x
(x, y) =

2x+ 5y

2
√

x2 + 5xy + y2

∂f

∂y
(x, y) =

5x+ 2y

2
√

x2 + 5xy + y2
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so

∂f

∂x
(3, 1) =

11

10
= 1.1

∂f

∂y
(3, 1) =

17

10
= 1.7;

since

(2.9, 1.2) = (3, 1) + (−0.1, 0.2)

we use

△x = −0.1,
△y = 0.2

to calculate the linearization

T(3,1)f(2.9, 1.2) = f(3, 1) +
∂f

∂x
(3, 1)△x+

∂f

∂y
(3, 1)△y

= 5 + (1.1)(−0.1) + (1.7)(0.2)

= 5− 0.11 + 0.34

= 5.23.

This is an easy calculation, but the answer is only an estimate; by
comparison, a calculator “calculation” of f(2.9, 1.2) gives

√
27.25 ≈ 5.220.

As a second example, we consider the accuracy of the result of the
calculation of a quantity whose inputs are only known approximately.
Suppose, for example, that we have measured the height of a rectangular
box as 2 feet, with an accuracy of ±0.1ft, and its a base as 5× 10 feet,
with an accuracy in each dimension of ±0.2ft. We calculate the volume as
100ft3; how accurate is this? Here we are interested in how far the actual
value of f(x, y, z) = xyz can vary from f(5, 10, 2) = 100 when x and y can
vary by at most △x = △y = ±0.2 and z can vary by at most △z = ±0.1.
The best estimate of this is the differential:

f(x, y, z) = xyz

∂f

∂x
(x, y, z) = yz

∂f

∂y
(x, y, z) = xz

∂f

∂z
(x, y, z) = xy
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and at our point

∂f

∂x
(5, 10, 2) = 20

∂f

∂y
(5, 10, 2) = 10

∂f

∂z
(5, 10, 2) = 50

so the differential is

d(5,10,2)f(△x,△y,△z) = 20△x+ 10△y + 50△z

which is at most

(20)(0.2) + (10)(0.2) + (50)(0.1) = 4 + 2 + 5

= 11.

We conclude that the figure of 100 cubic feet is correct to within ±11 cubic
feet.

Exercises for § 3.3

Practice problems:

1. Find all the partial derivatives of each function below:

(a) f(x, y) = x2y − 2xy2 (b) f(x, y) = x cos y + y sinx

(c) f(x, y) = ex cos y + y tanx (d) f(x, y) = (x+ 1)2y2 − x2(y − 1)2

(e) f(x, y, z) = x2y3z (f) f(x, y, z) =
xy + xz + yz

xyz

2. For each function below, find its derivative d−→a f(△−→x ), the

linearization T−→a f(
−→x ), and the gradient grad f(−→a ) = −→∇f(−→a ) at the

given point −→a .

(a) f(x, y) = x2 + 4xy + 4y2, −→a = (1,−2)
(b) f(x, y) = cos(x2 + y), −→a = (

√
π,
π

3
)

(c) f(x, y) =
√

x2 + y2, −→a = (1,−1)
(d) f(x, y) = x cos y − y cos x, −→a = (

π

2
,−π

2
)
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(e) f(x, y, z) = xy + xz + yz, −→a = (1,−2, 3)
(f) f(x, y, z) = (x+ y)2 − (x− y)2 + 2xyz, −→a = (1, 2, 1)

3. (a) Use the linearization of f(x, y) =
√
xy at −→a = (9, 4) to find an

approximation to
√

(8.9)(4.2). (Give your approximation to
four decimals.)

(b) A cylindrical tin can is h = 3 inches tall and its base has radius
r = 2 inches. If the can is made of tin that is 0.01 inches thick,
use the differential of V (r, h) = πr2h to estimate the total
volume of tin in the can.

4. If two resistors with respective resistance R1 and R2 are hooked up
in parallel, the net resistance R is related to R1 and R2 by

1

R
=

1

R1
+

1

R2
.

(a) Show that the differential of R = R(R1, R2), as a function of the
two resistances, is given by

dR =

(

R

R1

)2

△R1 +

(

R

R2

)2

△R2.

(b) If we know R1 = 150 ohms and R2 = 400 ohms, both with a
possible error of 10%, what is the net resistance, and what is
the possible error?

5. A moving point starts at location (1, 2) and moves with a fixed
speed; in which of the following directions is the sum of its distances
from (−1, 0) and (1, 0) increasing the fastest?

−→v1 is parallel to −→ı
−→v2 is parallel to −→
−→v3 is parallel to −→ı +−→
−→v4 is parallel to −→ −−→ı .

In what direction (among all possible directions) will this sum
increase the fastest?

Theory problems:
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6. Fill in the following details in the proof of Theorem 3.3.4:

(a) Show that if f(x, y) is differentiable at (x, y) and g(t) is defined
by

g(t) = f(x+ t△x, y +△y)

then g is differentiable at t = 0 and

g′(t) =
∂f

∂x
(x+ t△x, y +△y)△x.

(b) Show that we can write

f(x, y +△y)− f(x, y) = ∂f

∂y
(x, y + δ2)△y

where

|δ2| ≤ |△y| .

7. (a) Use Proposition 3.3.7 to prove Equation (3.11).

(b) Use Definition 3.3.3 to prove Equation (3.11) directly.

8. Show that if f(x, y) and g(x, y) are both differentiable real-valued
functions of two variables, then so is their product

h(x, y) = f(x, y) g(x, y)

and the following Leibniz formula holds:

−→∇h = f
−→∇g + g

−→∇f.

Challenge problem:

9. Show that the if f(x, y) = g(ax+ by) where g(t) is a differentiable
function of one variable, then for every point (x, y) in the plane with

equation ax+ by = c (for some constant c),
−→∇f is perpendicular to

this plane.

10. (a) Show that if f(x, y) is a function whose value depends only on
the product xy then

x
∂f

∂x
= y

∂f

∂y
.
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(b) Is the converse true? That is, suppose f(x, y) is a function
satisfying the condition above on its partials. Can it be
expressed as a function of the product

f(x, y) = g(xy)

for some real-valued function g(t) of a real variable? (Hint:
First, consider two points in the same quadrant, and join them
with a path on which the product xy is constant. Note that this
cannot be done if the points are in different quadrants.)

11. Adapt the proof of Theorem 3.3.4 given in this section for functions
of two variables to get a proof for functions of three variables.

3.4 Level Curves

A level set of a function f is any subset of its domain of the form

L(f, c) := {−→x | f(−→x ) = c}

where c ∈ R is some constant. This is nothing other than the solution set
of the equation in two or three variables

f(x, y) = c

or

f(x, y, z) = c.

For a function of two variables, we expect this set to be a curve in the
plane and for three variables we expect a surface in space.

Level Curves and Implicit Differentiation

For a function of two variables, there is another way to think about the
level set, which in this case is called a level curve: the graph of f(x, y) is
the locus of the equation

z = f(x, y)

which is a surface in space, and L(f, c) is found by intersecting this surface
with the horizontal plane z = c, and then projecting the resulting curve
onto the xy-plane. Of course, this is a “generic” picture: if for example the



250 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

function itself happens to be constant, then its level set is the xy-plane for
one value, and the empty set for all others. We can cook up other
examples for which the level set is quite exotic. However, for many
functions, the level sets really are curves.
For example (see Figure 3.1:

• The level curves of a non-constant affine function are parallel straight
lines.

• The level curves of the function

f(x, y) = x2 + y2

are concentric circles centered at the origin for c > 0, just the origin
for c = 0, and the empty set for c < 0.

• For the function

f(x, y) =
x2

4
+ y2

the level sets L(f, c) for c > 0 are the ellipses centered at the origin

x2

a2
+
y2

b2
= 1

where a = 2
√
c and b =

√
c, which all have the same eccentricity. For

c = 0, we again get just the origin, and for c < 0 the empty set.

• The level curves of the function

f(x, y) = x2 − y2

are hyperbolas:

for c = a2 > 0, L(f, c) is the hyperbola

x2

a2
− y2

a2
= 1

which “opens” left and right,

and for c = −a2 < 0 we have

x2

a2
− y2

a2
= −1

which “opens” up and down.

For c = 0 we have the common asymptotes of all these hyperbolas.
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•

(a) f(x, y) = x2 + y2

•

(b) f(x, y) = x2

4
+ y2 (c) f(x, y) = x2 − y2

Figure 3.1: Level Curves

We would like to establish criteria for when a level set of a function f(x, y)
will be a regular curve. This requires in particular that the curve have a
well-defined tangent line. We have often found the slope of the tangent to
the locus of an equation via implicit differentiation: for example to find the
slope of the tangent to the ellipse (Figure 3.2)

x2 + 4y2 = 8 (3.12)

at the point (2,−1), we think of y as a function of x and differentiate both

•
(2,−1)

•
(2
√
2, 0)

Figure 3.2: The Curve x2 + 4y2 = 8

sides to obtain

2x+ 8y
dy

dx
= 0; (3.13)

then substituting x = 2 and y = −1 yields

4− 8
dy

dx
= 0
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which we can solve for dy/dx:

dy

dx
=

4

8
=

1

2
.

However, the process can break down: at the point (2
√
2, 0), substitution

into (3.13) yields

4
√
2 + 0

dy

dx
= 0

which has no solutions. Of course, here we can instead differentiate (3.12)
treating x as a function of y, to get

2x
dx

dy
+ 8y = 0.

Upon substituting x = 2
√
2, y = 0, this yields

4
√
2
dx

dy
+ 0 = 0

which does have a solution,

dx

dy
= 0.

In this case, we can see the reason for our difficulty by explicitly solving
the original equation (3.12) for y in terms of x: near (2,−1), y can be
expressed as the function of x

y = −
√

8− x2
4

= −
√

2− x2

4
.

(We need the minus sign to get y = −1 when x = 2.) Note that this
solution is local : near (2, 1) we would need to use the positive root. Near
(2
√
2, 0), we cannot solve for y in terms of x, because the “vertical line

test” fails: for any x-value slightly below x = 2
√
2, there are two distinct

points with this abcissa (corresponding to the two signs for the square
root). However, near this point, the “horizontal line test” works: to each
y-value near y = 0, there corresponds a unique x-value near x = 2

√
2

yielding a point on the ellipse, given by

x =
√

8− 4y2
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While we are able in this particular case to determine what works and
what doesn’t, in other situations an explicit solution for one variable in
terms of the other is not so easy. For example, the curve

x3 + xy + y3 = 13 (3.14)

contains the point (3,−2). We cannot easily solve this for y in terms of x,
but implicit differentiation yields

3x2 + y + x
dy

dx
+ 3y2

dy

dx
= 0 (3.15)

and substituting x = 3, y = −2 we get the equation

27− 2 + 3
dy

dx
+ 12

dy

dx
= 0

which is easily solved for dy/dx:

15
dy

dx
= −25

dy

dx
= −5

3
.

It seems that we have found the slope of the line tangent to the locus of
Equation (3.14) at the point (3,−2); but how do we know that this line
even exists? Figure 3.3 illustrates what we think we have found.

•
(3,−2)

Figure 3.3: The Curve x3 + y3 + xy = 13

A clue to what is going on can be found by recasting the process of
implicit differentiation in terms of level curves. Suppose that near the
point (x0, y0) on the level set L(f, c)

f(x, y) = c (3.16)
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we can (in principle) solve for y in terms of x:

y = φ(x) .

Then the graph of this function can be parametrized as

−→p (x) = (x, φ(x)).

Since this function is a solution of Equation (3.16) for y in terms of x, its
graph lies on L(f, c):

f(−→p (x)) = f(x, φ(x)) = c.

Applying the Chain Rule to the composition, we can differentiate both
sides of this to get

∂f

∂x
+
∂f

∂y

dy

dx
= 0

and, provided the derivative ∂f/∂y is not zero, we can solve this for
φ′(x) = dy/dx:

φ′(x) =
dy

dx
= −∂f/∂x

∂f/∂y
.

This process breaks down if ∂f/∂y = 0: either there are no solutions, if
∂f/∂x 6= 0, or, if ∂f/∂x = 0, the equation tells us nothing about the slope.
Of course, as we have seen, even when ∂f/∂y is zero, all is not lost, for if
∂f/∂x is nonzero, then we can interchange the roles of y and x, solving for
the derivative of x as a function of y. So the issue seems to be: is at least
one of the partials nonzero? If so, we seem to have a perfectly reasonable
way to calculate the direction of a line tangent to the level curve at that
point. All that remains is to establish our original assumption—that one of
the variables can be expressed as a function of the other—as valid. This is
the purpose of the Implicit Function Theorem.

The Implicit Function Theorem in the Plane

We want to single out points for which at least one partial is nonzero, or
what is the same, at which the gradient is a nonzero vector. Note that to
even talk about the gradient or partials, we need to assume that f(x, y) is
defined not just at the point in question, but at all points nearby: such a
point is called an interior point of the domain.
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Definition 3.4.1. Suppose f(x, y) is a differentiable function of two
variables. An interior point −→x of the domain of f is a regular point if

−→∇f(−→x ) 6= −→0 ,

that is, at least one partial derivative at −→x is nonzero. −→x is a critical

point of f(x, y) if
∂f

∂x
(−→x ) = 0 =

∂f

∂y
(−→x ) .

Our result will be a local one, describing the set of solutions to the
equation f(x, y) = c near a given solution. Our earlier examples showed
completely reasonable curves with the exception (in each case except the
affine one) of the origin: for the first two functions, the level “curve”
corresponding to c = 0 is a single point, while for the last function, it
crosses itself at the origin. These are all cases in which the origin is a
critical point of f(x, y), where we already know that the formal process of
implicit differentiation fails; we can only expect to get a reasonable result
near regular points of f(x, y).
The following result will reappear in § 4.4, in more a elaborate form; it is a
fundamental fact about regular points of functions.7

Theorem 3.4.2 (Implicit Function Theorem for R2 → R). The level set of
a continuously differentiable function f:R2→R can be expressed near each
of its regular points as the graph of a function.
Specifically, suppose

f(x0, y0) = c

and

∂f

∂y
(x0, y0) 6= 0.

Then there exists a rectangle

R = [x0 − δ1, x0 + δ1]× [y0 − δ2, y0 + δ2]

centered at −→x0 = (x0, y0)(where δ1, δ2 > 0), such that the intersection of
L(f, c) with R is the graph of a C1 function φ(x), defined on
[x0 − δ1, x0 + δ1] and taking values in [y0 − δ2, y0 + δ2].

7For a detailed study of the Implicit Function Theorem in its many incarnations, in-
cluding some history, and the proof on which the one we give is modeled, see [34].
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In other words, if (x, y) ∈ R, (i.e., |x− x0| ≤ δ1 and |y − y0| ≤ δ2), then

f(x, y) = c ⇐⇒ φ(x) = y. (3.17)

Furthermore, at any point x ∈ (x0 − δ1, x0 + δ1), the derivative of φ(x) is

dφ

dx
= −

[

∂f

∂x
(x, φ(x))

]/[

∂f

∂y
(x, φ(x))

]

. (3.18)

Proof. The proof will be in two parts.
First we show that Equation (3.17) determines a well-defined function
φ(x):
For notational convenience, we assume without loss of generality that

f(x0, y0) = 0

(that is, c = 0), and
∂f

∂y
(x0, y0) > 0.

Since f(x, y) is continuous, we know that ∂f
∂y (
−→x ) > 0 at all points

−→x = (x, y) sufficiently near −→x0, say for |x− x0| ≤ δ and |y − y0| ≤ δ2. For
any a ∈ [x− δ, x + δ], consider the function of y obtained by fixing the
value of x at x = a:

ga(y) = f(a, y) ;

then

g′a(y) =
∂f

∂y
(a, y) > 0

so ga(y) is strictly increasing on [y − δ2, y + δ2]. In particular, when a = x0,

gx0(y0 − δ2) < 0 < gx0(y0 + δ2)

and we can pick δ1 > 0 (δ1 ≤ δ) so that

ga(y0 − δ2) < 0 < ga(y0 + δ2)

for each a ∈ [x0 − δ1, x0 + δ1]. The Intermediate Value Theorem insures
that for each such a there is at least one y ∈ [y0 − δ2, y0 + δ2] for which
ga(y) = f(a, y) = 0, and the fact that ga(y) is strictly increasing insures
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that there is precisely one. Writing x in place of a, we see that the
definition

φ(x) = y ⇐⇒ f(a, y) = 0 and |y − y0| < δ2

gives a well-defined function φ(x) on [x0 − δ1, x0 + δ1] satisfying
Equation (3.17).

Second we show that this function satisfies Equation (3.18).

We fix

(x, y) = (x, φ(x))

in our rectangle and consider another point

(x+△x, y +△y) = (x+△x, φ(x+△x))

on the graph of φ(x).

Since f is differentiable,

f(x+△x, y +△y)− f(x, y) = △x∂f
∂x

(x, y) +△y∂f
∂y

(x, y) + ‖(△x,△y)‖ ε

where ε→ 0 as (△x,△y)→ (0, 0).

Since both points lie on the graph of φ(x), and hence on the same level set
of f , the left side of this equation is zero:

0 = △x∂f
∂x

(x, y) +△y∂f
∂y

(x, y) + ‖(△x,△y)‖ ε. (3.19)

We will exploit this equation in two ways. For notational convenience, we
will drop reference to where a partial is being taken: for the rest of this
proof,

∂f

∂x
=
∂f

∂x
(x, y)

∂f

∂y
=
∂f

∂y
(x, y)

where −→x = (x, y) is the point at which we are trying to prove
differentiability of φ.
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Moving the first two terms to the left side, dividing by (△x)(∂f∂y ), and
taking absolute values, we have

∣

∣

∣

∣

△y
△x +

∂f/∂x

∂f/∂y

∣

∣

∣

∣

=
|ε|

|∂f/∂y|
‖(△x,△y)‖
|△x|

≤ |ε|
|∂f/∂y|

[

1 +

∣

∣

∣

∣

△y
△x

∣

∣

∣

∣

]

(3.20)

(since ‖(△x,△y)‖ ≤ |△x|+ |△y|). To complete the proof, we need to find

an upper bound for
∣

∣

∣
1 + △y

△x

∣

∣

∣
on the right side.

To this end, we come back to Equation (3.19), this time moving just the
second term to the left, and then take absolute values, using the triangle
inequality (and ‖(△x,△y)‖ ≤ |△x|+ |△y|):

|△y|
∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

≤ |△x|
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

+ |ε| |△x|+ |ε| |△y| .

Gathering the terms involving △x on the left and those involving △y on
the right, we can write

|△y|
(∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

− |ε|
)

≤ |△x|
(∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

+ |ε|
)

or, dividing by the term on the left,

|△y| ≤ |△x|
( |∂f/∂x|+ |ε|
|∂f/∂y| − |ε|

)

. (3.21)

Now, since ε→ 0, the ratio on the right converges to the ratio of the
partials, and so is bounded by, say that ratio plus one, for △x sufficiently
near zero:

∣

∣

∣

∣

△y
△x

∣

∣

∣

∣

≤
(∣

∣

∣

∣

∂f/∂x

∂f/∂y

∣

∣

∣

∣

+ 1

)

.

This in turn says that the term multiplying |ε| in Equation (3.20) is
bounded, so ε→ 0 implies the desired equation

φ′(x) = lim
△x→0

△y
△x = −∂f/∂x

∂f/∂y
.

This shows that φ is differentiable, with partials given by Equation (3.18),
and since the right hand side is a continuous function of x, φ is
continuously differentiable.
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We note some features of this theorem:

• The statement that L(f, c) ∩R is the graph of φ(x) means that the
function φ(x) is uniquely determined by Equation (3.17).

• Equation (3.18) is simply implicit differentiation: using

y = φ(x)

and setting

z = f(x, y)

we can differentiate the relation

z = f(x, φx)

using the Chain Rule and the fact that z is constant to get

0 =
dz

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

=
∂f

∂x
+
∂f

∂y
φ′(x)

or

∂f

∂y
φ′(x) = −∂f

∂x

φ′(x) = −∂f/∂x
∂f/∂y

as required.

A mnemonic device to remember which partial goes on top of this
fraction and which goes on the bottom is to write Equation (3.18)
formally as

dy

dx
= −dy

dz

dz

dx

–that is, we formally (and unjustifiably) “cancel” the dz terms of the
two “fractions”. (Of course, we have to remember separately that we
need the minus sign up front.)
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• Equation (3.18) can also be interpreted as saying that a vector
tangent to the level curve has slope

φ′(x) = −
[

∂f

∂x
(x, φ(x))

]/[

∂f

∂y
(x, φ(x))

]

,

which means that it is perpendicular to
−→∇f(x, φ(x)). Of course, this

could also be established using the Chain Rule (Exercise 3); the
point of the proof above is that one can take a vector tangent to
L(f, c), or equivalently that φ(x) is differentiable.

• In the statement of the theorem, the roles of x and y can be
interchanged: if ∂f∂x (x0, y0) 6= 0, then the level set can be expressed as
the graph of a function x = ψ(y).

At a regular point, at least one of these two situations occurs: some
partial is nonzero. The theorem says that if the partial of f at −→x0
with respect to one of the variables is nonzero, then near −→x0 we can
solve the equation

f(x, y) = f(x0, y0)

for that variable in terms of the other.

As an illustration of this last point, we again consider the function

f(x, y) = x2 + y2.

The level set L(f, 1) is the circle of radius 1 about the origin

x2 + y2 + 1.

We can solve this equation for y in terms of x on any open arc which does
not include either of the points (±1, 0): if the point (x0, y0) with |x0| < 1
has y0 > 0, the solution near (x0, y0) is

φ(x) =
√

1− x2

whereas if y0 < 0 it is

φ(x) = −
√

1− x2.

Since

∂f

∂y
= 2y,
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at the two points (±1, 0)

∂f

∂y
(±1, 0) = 0

and the theorem does not guarantee the possibility of solving for y in terms
of x; in fact, for x near ±1 there are two values of y giving a point on the
curve, given by the two formulas above. However, since at these points

∂f

∂x
(±1, 0) = ±2 6= 0,

the theorem does guarantee a solution for x in terms of y; in fact, near any
point other than (0,±1) (the “north pole” and “south pole”) we can write
x = ψ(y), where

ψ(y) =
√

1− y2

for points on the right semicircle and

ψ(y) = −
√

1− y2

on the left semicircle.

Reconstructing Surfaces from Slices

The level curves of a function f(x, y) can be thought of as a
“topographical map” of the graph of f(x, y): a sketch of several level
curves L(f, c), labeled with their corresponding c-values, allows us to
formulate a rough idea of the shape of the graph: these are “slices” of the
graph by horizontal planes at different heights. By studying the
intersection of the graph with suitably chosen vertical planes, we can see
how these horizontal pieces fit together to form the surface.
Consider for example the function

f(x, y) = x2 + y2.

We know that the horizontal slice at height c = a2 > 0 is the circle

x2 + y2 = a2
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of radius a =
√
c about the origin; in particular, L

(

f, a2
)

crosses the y-axis
at the pair of points (0,±a). To see how these circles fit together to form
the graph of f(x, y), we consider the intersection of the graph

z = x2 + y2

with the yz-plane

x = 0;

the intersection is found by substituting the second equation in the first to
get

z = y2

and we see that the “profile” of our surface is a parabola, with vertex at
the origin, opening up. (See Figure 3.4)
If instead we consider the function

f(x, y) = 4x2 + y2,

the horizontal slice at height c = a2 > 0 is the ellipse

x2

(a/2)2
+
y2

a2
= 1

centered at the origin, with major axis along the y-axis and minor axis
along the x-axis. L

(

f, a2
)

again crosses the y-axis at the pair of points
(0,±a), and it crosses the x-axis at the pair of points (±a/2, 0). To see
how these ellipses fit together to form the graph of f(x, y), we consider the
intersection of the graph

z = 4x2 + y2

with the yz-plane

x = 0;

the intersection is found by substituting the second equation in the first to
get the parabola

z = y2.
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Slices

x

y

a

z = a2 : x2 + y2 = a2

y

z

x = 0 : y2 = z

Combined Slices

x

y

z

The Surface

x
y

z

Figure 3.4: The Surface x2 + y2 = z
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Similarly, the intersection of the graph with the xz-plane

y = 0

is a different parabola

z = 4x2.

One might say that the “shadow” of the graph on the xz-plane is a
narrower parabola than the shadow on the yz-plane. (See Figure 3.34.)
This surface is called an elliptic paraboloid.
A more interesting example is given by the function

f(x, y) = x2 − y2.

The horizontal slice at height c 6= 0 is a hyperbola which opens along the
x-axis if c > 0 and along the y-axis if c < 0; the level set L(f, 0) is the pair
of diagonal lines

y = ±x
which are the common asymptotes of each of these hyperbolas.
To see how these fit together to form the graph, we again slice along the
coordinate planes. The intersection of the graph

z = x2 − y2

with the xz-plane

y = 0

is a parabola opening up: these points are the “vertices” of the hyperbolas
L(f, c) for positive c. The intersection with the yz-plane

x = 0

is a parabola opening down, going through the vertices of the hyperbolas
L(f, c) for negative c.

Fitting these pictures together, we obtain a surface shaped like a saddle
(imagine the horse’s head facing parallel to the x-axis, and the rider’s legs
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Slices

x

y

a/2

a

z = a2 : 4x2 + y2 = a2

y

z

x = 0 : y2 = z

x

z

y = 0 : 4x2 = z

Combined Slices

x
y

z

The Surface

x
y

z

Figure 3.5: Elliptic Paraboloid 4x2 + y2 − z = 0
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Slices

x

y

z = c > 0 : x2 − y2 = c

x

y

z = c < 0 : x2 − y2 = − |c|

y

z

x = 0 : z = −y2

x

z

y = 0 : z = x2

Combined Slices, and Surface

x

y

z

x

y

z

Figure 3.6: Hyperbolic Paraboloid x2 − y2 − z = 0
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parallel to the yz-plane). It is often called the saddle surface, but its
official name is the hyperbolic paraboloid. (See Figure 3.6.)
These slicing techniques can also be used to study surfaces given by
equations in x, y and z which are not explicitly graphs of functions. We
consider three examples.
The first is given by the equation

x2

4
+ y2 + z2 = 1.

The intersection of this with the xy-plane z = 0 is the ellipse

x2

4
+ y2 = 1

centered at the origin and with the ends of the axes at (±2, 0, 0) and
(0,±1, 0); the intersection with any other horizontal plane z = c for which
|c| < 1 is an ellipse similar to this and with the same center, but scaled
down:

x2

4
+ y2 = 1− c2

or

x2

4(1− c2) +
y2

1− c2 = 1.

There are no points on this surface with |z| > 1.
Similarly, the intersection with a vertical plane parallel to the xz-plane,
y = c (again with |c| < 1) is a scaled version of the same ellipse, but in the
xz-plane

x2

4
+ z2 = 1− c2

and again no points with |y| > 1.
Finally, the intersection with a plane parallel to the yz-plane, x = c, is
nonempty provided

∣

∣

x
2

∣

∣ < 1 or |x| < 2, and in that case is a circle centered

at the origin in the yz-plane of radius r =
√

1− c2

4

y2 + z2 = 1− c2

4
.

For sketching purposes, it is enough to sketch the intersections with the
three coordinate planes. This surface is like a sphere, but “elongated” in
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Slices

x

y

z = 0 :

x2

4 + y2 = 1

x

z

y = 0 :

x2

4 + z2 = 1

y

z

x = 0 :

y2 + z2 = 1

Combined Slices

x
y

z

The Surface

x

y

Figure 3.7: The Surface x2

4 + y2 + z2 = 1
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the direction of the x-axis by a factor of 2 (see Figure 3.7); it is called an
ellipsoid.
Our second example is the surface given by the equation

x2 + y2 − z2 = 1.

The intersection with any horizontal plane

z = c

is a circle

x2 + y2 = c2 + 1

of radius r =
√
c2 + 1 about the origin (actually, about the intersection of

the plane z = c with the z-axis). Note that always r ≥ 1; the smallest
circle is the intersection with the xy-plane.

If we slice along the xz-plane

y = 0

we get the hyperbola

x2 − z2 = 1

whose vertices lie on the small circle in the xy-plane. Slicing along the
yz-plane we get a similar picture, since x and y play exactly the same role
in the equation. The shape we get, like a cylinder that has been squeezed
in the middle, is called a hyperboloid of one sheet (Figure 3.8).
Now, let us simply change the sign of the constant in the previous equation:

x2 + y2 − z2 = −1.

The intersection with the horizontal plane

z = c

is a circle

x2 + y2 = c2 − 1
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Slices

x

y
√
1 + a2

z = a :
x2 + y2 = 1 + a2

z

x = 0 : y2 − z2 = 1

z

y = 0 : x2 − z2 = 1

Combined Slices

x
y

z

The Surface

x y

Figure 3.8: The Surface x2 + y2 − z2 = 1
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of radius r =
√
c2 + 1 about the “origin”, provided c2 > 1; for c = ±1 we

get a single point, and for |c| < 1 we get the empty set. In particular, our
surface consists of two pieces, one for z ≥ 1 and another for z ≤ −1.

If we slice along the xz-plane

y = 0

we get the hyperbola

x2 − z2 = −1

or

z2 − x2 = 1

which opens up and down; again, it is clear that the same thing happens
along the yz-plane. Our surface consists of two “bowl”-like surfaces whose
shadow on a vertical plane is a hyperbola. This is called a hyperboloid
of two sheets (see Figure 3.9).

The reader may have noticed that the equations we have considered are
the three-variable analogues of the model equations for parabolas, ellipses
and hyperbolas, the quadratic curves; in fact, these are the basic models
for equations given by quadratic polynomials in three coordinates, and are
known collectively as the quadric surfaces.

Exercises for § 3.4

Practice problems:

1. For each curve defined implicitly by the given equation, decide at
each given point whether one can solve locally for (a) y = φ(x), (b)
x = ψ(y), and find the derivative of the function if it exists:

(a) x3 + 2xy + y3 = −2, at (1,−1) and at (2,−6).
(b) (x− y)exy = 1, at (1, 0) and at (0,−1).
(c) x2y + x3y2 = 0, at (1,−1) and at (0, 1)
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Slices

x

y
√
c2 − 1

z = c, |c| > 1 :
x2 + y2 = c2 − 1

y

z

x = 0 :
y2 − z2 = 1

x

z

y = 0 :
x2 − z2 = 1

Combined Slices

x
y

z

The Surface

x
y

z

Figure 3.9: The Surface x2 + y2 − z2 = −1
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2. For each equation below, investigate several slices and use them to
sketch the locus of the equation. For quadric surfaces, decide which
kind it is (e.g., hyperbolic paraboloid, ellipsoid, hyperboloid of one
sheet, etc.)

(a) z = 9x2 + 4y2 (b) z = 1− x2 − y2

(c) z = x2 − 2x+ y2 (d) x2 + y2 − z = 1

(e) 9x2 = y2 + z (f) x2 − y2 − z2 = 1

(g) x2 − y2 + z2 = 1 (h) z2 = x2 + y2

(i) x2 + 4y2 + 9z2 = 36

Theory problems:

3. Show that the gradient vector
−→∇f is perpendicular to the level

curves of the function f(x, y), using the Chain Rule instead of
implicit differentiation.

3.5 Surfaces and Tangent Planes I: Graphs and
Level Surfaces

In this and the next section, we study various ways of specifying a surface,
and finding its tangent plane (when it exists) at a point. We deal first with
surfaces defined as graphs of functions of two variables.

Graph of a Function

The graph of a real-valued function f(x) of one real variable is the subset
of the plane defined by the equation

y = f(x) ,

which is of course a curve—in fact an arc (at least if f(x) is continuous,
and defined on an interval). Similarly, the graph of a function f(x, y) of
two real variables is the locus of the equation

z = f(x, y) ,

which is a surface in R
3, at least if f(x, y) is continuous and defined on a

reasonable region in the plane.
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For a curve in the plane given as the graph of a differentiable function
f(x), the tangent to the graph at the point corresponding to x = x0 is the
line through that point, P (x0, f(x0)), with slope equal to the derivative
f ′(x0). Another way to look at this, though, is that the tangent at x = x0
to the graph of f(x) is the graph of the linearization Tx0f(x) of f(x) at
x = x0. We can take this as the definition in the case of a general graph:

Definition 3.5.1. The tangent plane at −→x = −→x0 to the graph z = f(−→x )
of a differentiable function f:R3→R is the graph of the linearization of
f(−→x ) at −→x = −→x0; that is, it is the locus of the equation

z = T−→x0f(
−→x ) = f(−→x0) + d−→x0f(△−→x )

where △−→x = −→x −−→x0.
Note that in the definition above we are specifying where the tangent
plane is being found by the value of the input −→x ; when we regard the
graph as simply a surface in space, we should really think of the plane at
(x, y) = (x0, y0) as the tangent plane at the point P (x0, y0, z0) in space,
where z0 = f(x0, y0).
For example, consider the function

f(x, y) =
x2 − 3y2

2
:

the partials are

∂f

∂x
= x

∂f

∂y
= −3y

so at the point

−→x0 =
(

1,
1

2

)

,

we find

f

(

1,
1

2

)

=
1

8

∂f

∂x

(

1,
1

2

)

= 1

∂f

∂y

(

1,
1

2

)

= −3

2
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and the linearization of f(x, y) at −→x = (1, 12) is

T
(1, 1

2
)
f(x, y) =

1

8
+ (x− 1)− 3

2

(

y − 1

2

)

.

If we use the parameters

s = △x = x− 1

t = △y = y − 1

2

then the tangent plane is parametrized by

x = 1 +s
y = 1

2 +t
z = 1

8 +s −3
2t;

(3.22)

the basepoint of this parametrization is P (1, 12 ,
1
8).

If we want to express this tangent plane by an equation, we need to find a
normal vector. To this end, note that the parametrization above has the
natural direction vectors

−→v1 = −→ı +
−→
k

−→v2 = −→ − 3

2

−→
k .

Thus, we can find a normal vector by taking their cross product

−→
N = −→v1 ×−→v2

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 0 1
0 1 −3

2

∣

∣

∣

∣

∣

∣

= −−→ı +
3

2
−→ +

−→
k .

It follows that the tangent plane has the equation

0 = −(x− 1) +
3

2

(

y − 1

2

)

+

(

z − 1

8

)
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which we recognize as a restatement of Equation (3.22) identifying this
plane as a graph:

z =
1

8
+ (x− 1) − 3

2

(

y − 1

2

)

= T
(1, 1

2
)
f(x, y) .

These formulas have a geometric interpretation. The parameter s = x− 1
represents a displacement of the input from the base input (1, 12) parallel
to the x-axis—that is, holding y constant (at the base value y = 1

2). The
intersection of the graph z = f(x, y) with this plane y = 1

2 is the curve

z = f

(

x,
1

2

)

which is the graph of the function

z =
x2

2
− 3

8
;

at x = 1, the derivative of this function is

dz

dx

∣

∣

∣

∣

1

=
∂f

∂x

(

1,
1

2

)

= 1

and the line through the point x = 1, z = 9
4 in this plane with slope 1 lies in

the plane tangent to the graph of f(x, y) at (1, 12); the vector −→v1 = −→ı +
−→
k

is a direction vector for this line: the line itself is parametrized by

x = 1 +s
y = 1

2
z = 1

8 +s

which can be obtained from the parametrization of the full tangent plane
by fixing t = 0. (see Figure 3.10.)
Similarly, the intersection of the graph z = f(x, y) with the plane x = 1 is
the curve

z = f(1, y)



3.5. GRAPHS AND LEVEL SURFACES 277

-1 0 1 2
-3

-2

-1

0

1

b

−→vy

Figure 3.10: Slicing the graph of x
2−3y2

2 at x = 1

which is the graph of the function

z =
1

2
− 3y2

2
;

at y = 1
2 , the derivative of this function is

dz

dy

∣

∣

∣

∣

1
2

=
∂f

∂y

(

1,
1

2

)

= −3

2

and −→v2 = −→ − 3
2

−→
k is the direction vector for the line of slope −3

2 through
y = 1

2 , z =
1
8 in this plane—a line which also lies in the tangent plane.

This line is parametrized by

x = 1
y = 1

2 +t
z = 1

8 −3
2t
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which can be obtained from the parametrization of the full tangent plane
by fixing s = 0. (See Figure 3.11.)

-1 0 1 2
-1

0

1

2

b −→vx

Figure 3.11: Slicing graph of x2−3y2

2 at y = 1
2

The combined picture, together with the normal vector and tangent plane,
is given in Figure 3.12.

The alert reader (this means you!) will have noticed that the whole
discussion above could have been applied to the graph of any differentiable
function of two variables. We summarize it below.

Remark 3.5.2. If the function f(x, y) is differentiable at −→x0 = (x0, y0),
then the plane tangent to the graph

z = f(x, y)

at

x = x0

y = y0,
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−→
N

−→vy

−→vx

Figure 3.12: Tangent plane and normal vector to graph of x
2−3y2

2

which is the graph of the linearization of f(x, y)

z = T(x0,y0)f(x, y)

= f(x0, y0) +
∂f

∂x
(x0, y0) (x− x0) +

∂f

∂y
(x0, y0) (y − y0),

is the plane through the point

P (x0, y0, z0),

where

z0 = f(x0, y0) ,

with direction vectors

−→v1 = −→ı +
∂f

∂x
(x0, y0)

−→
k

and

−→v2 = −→ +
∂f

∂y
(x0, y0)

−→
k .
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These represent the direction vectors of the lines tangent at P (x0, y0, z0) to
the intersection of the planes

y = y0

and

x = x0,

respectively, with our graph.

A parametrization of the tangent plane is

x = x0 + s

y = y0 + t

z = z0 +
∂f

∂x
(x0, y0) s+

∂f

∂y
(x0, y0) t

and the two lines are parametrized by setting t (resp. s) equal to zero.

A vector normal to the tangent plane is given by the cross product

−→n = −→v1 ×−→v2

= −∂f
∂x

(x0, y0)
−→ı − ∂f

∂y
(x0, y0)

−→ +
−→
k .

The adventurous reader is invited to think about how this extends to
graphs of functions of more than two variables.

Level Surfaces: The Implicit Function Theorem in R
3

For a real-valued function f(x, y, z) of three variables, the level set L(f, c) is
defined by an equation in three variables, and we expect it to be a surface.
For example, the level sets L(f, c) of the function

f(x, y, z) = x2 + y2 + z2

are spheres (of radius
√
c) centered at the origin if c > 0; again for c = 0

we get a single point and for c < 0 the empty set: the origin is the one
place where −→∇f(x, y, z) = 2x−→ı + 2y−→ + 2z

−→
k
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vanishes.

Similarly, the function

f(x, y, z) = x2 + y2 − z2

can be seen, following the analysis in § 3.4, to have as its level sets L(f, c)
a family of hyperboloids8—of one sheet for c > 0 and two sheets for c < 0.
(See Figure 3.13.)

Figure 3.13: Level Sets of f(x, y, z) = x2 + y2 − z2

For c = 0, the level set is given by the equation

x2 + y2 = z2

which can be rewritten in polar coordinates

r2 = z2;

we recognize this as the conical surface we used to study the conics in
§ 2.1. This is a reasonable surface, except at the origin, which again is the
only place where the gradient grad f vanishes.

This might lead us to expect an analogue of Theorem 3.4.2 for functions of
three variables. Before stating it, we introduce a useful bit of notation. By

8Our analysis in § 3.4 clearly carries through if 1 is replaced by any positive number
|c|
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the ε-ball or ball of radius ε about −→x0, we mean the set of all points at
distance at most ε > 0 from −→x0:

Bε (
−→x0) := {−→x | dist(−→x ,−→x0) ≤ ε} .

For points on the line, this is the interval [x0 − ε, x0 + ε]; in the plane, it is
the disc

{

(x, y) | (x − x0)2 + (y − y0)2 ≤ ε2
}

, and in space it is the actual
ball

{

(x, y, z) | (x − x0)2 + (y − y0)2 + (z − z0)2 ≤ ε2
}

.

Theorem 3.5.3 (Implicit Function Theorem for R3 → R). The level set of
a continuously differentiable function f:R3→R can be expressed near each
of its regular points as the graph of a function.
Specifically, suppose that at

−→x0 = (x0, y0, z0)

we have

f(−→x0) = c

and

∂f

∂z
(−→x0) 6= 0.

Then there exists a set of the form

R = Bε ((x0, y0))× [z0 − δ, z0 + δ]

(where ε > 0 and δ > 0), such that the intersection of L(f, c) with R is the
graph of a C1 function φ(x, y), defined on Bε ((x0, y0)) and taking values in
[z0 − δ, z0 + δ]. In other words, if −→x = (x, y, z) ∈ R, then

f(x, y, z) = c ⇐⇒ z = φ(x, y) . (3.23)

Furthermore, at any point (x, y) ∈ Bε (−→x0), the partial derivatives of φ are

∂φ
∂x = −∂f/∂x

∂f/∂z
∂φ
∂y = −∂f/∂y

∂f/∂z

(3.24)

where the partial on the left is taken at (x, y) ∈ Bε ⊂ R
2 and the partials

on the right are taken at (x, y, φ(x, y)) ∈ R ⊂ R
3.
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Note that the statement of the general theorem says when we can solve for
z in terms of x and y, but an easy argument (Exercise 7) shows that we
can replace this with any variable whose partial is nonzero at −→x = −→x0.

Proof sketch: This is a straightforward adaptation of the proof of
Theorem 3.4.2 for functions of two variables.
Recall that the original proof had two parts. The first was to show simply
that L(f, c) ∩R is the graph of a function on Bε (

−→x0). The argument for
this in the three-variable case is almost verbatim the argument in the
original proof: assuming that

∂f

∂z
> 0

for all −→x near −→x0, we see that F is strictly increasing along a short vertical
line segment through any point (x′, y′, z′) near −→x0,

I(x′,y′) =
{

(x′, y′, z) | z′ − δ ≤ z ≤ z′ + δ
}

.

In particular, assuming c = 0 for convenience, we have at (x0, y0)

f(x0, y0, z0 − δ) < 0 < f(x0, y0, z0 − δ)

and so for x = x0 +△x, y = y0 +△y, △x and △y small (‖(△x,△y)‖ < ε),
we also have f positive at the top and negative at the bottom of the
segment I(x0+△x,y0+△y):

f(x0 +△x, y0 +△y, z0 − δ) < 0 < f(x0 +△x, y0 +△y, z0 + δ) .

The Intermediate Value Theorem then guarantees that f = 0 for at least
one point on each vertical segment in R, and the strict monotonicity of f
along each segment also guarantees that there is precisely one such point
along each segment. This analogue of the “vertical line test” proves that
the function φ(x, y) is well-defined in Bε (x0, y0).
The second part of the original proof, showing that this function φ is
continuously differentiable, could be reformulated in the three variable
case, although it is perhaps less clear how the various ratios could be
handled. But there is an easier way. The original proof that φ′(x) is the
negative ratio of ∂f/∂x and ∂f/∂y in the two variable case is easily
adapted to prove that the restriction of our new function φ(x, y) to a line
parallel to either the x-axis or y-axis is differentiable, and that the
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derivative of the restriction (which is nothing other than a partial of
φ(x, y)) is the appropriate ratio of partials of f , as given in
Equation (3.24). But then, rather than trying to prove directly that φ is
differentiable as a function of two variables, we can appeal to
Theorem 3.3.4 to conclude that, since its partials are continuous, the
function is differentiable. This concludes the proof of the Implicit Function
Theorem for real-valued functions of three variables.

As an example, consider the level surface (Figure 3.14) L(f, 1), where

x

y

z

b

(1,−1, 2)

b

(0, 1, 0)

Figure 3.14: The Surface L
(

4x2 + y2 − z2, 1
)

f(x, y, z) = 4x2 + y2 − z2 :

The partial derivatives of f(x, y, z) are

∂f

∂x
(x, y, z) = 8x

∂f

∂y
(x, y, z) = 2y

∂f

∂z
(x, y, z) = −2z;
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at the point (1,−1, 2), these values are

∂f

∂x
(1,−1, 2) = 8

∂f

∂y
(1,−1, 2) = −2

∂f

∂z
(1,−1, 2) = −4

so we see from the Implicit Function Theorem that we can solve for any
one of the variables in terms of the other two. For example, near this point
we can write

z = φ(x, y)

where

4x2 + y2 − φ(x, y)2 = 1

and

φ(1,−1) = 2;

the theorem tells us that φ(x, y) is differentiable at x = 1, y = −1, with

∂φ

∂x
(1,−1) = −∂f/∂x

∂f/∂z

= − 8

−4
= 2

and

∂φ

∂y
(1,−1) = −∂f/∂y

∂f/∂z

= −−2−4
=

1

2
.



286 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

Of course, in this case, we can verify the conclusion by solving explicitly:

φ(x, y) =
√

4x2 + y2 − 1;

you should check that the properties of this function are as advertised.
However, at (0, 1, 0), the situation is different: since

∂f

∂x
(0, 1, 0) = 0

∂f

∂y
(0, 1, 0) = −2

∂f

∂z
(0, 1, 0) = 0

we can only hope to solve for y in terms of x and z; the theorem tells us
that in this case

∂y

∂x
(0, 0) = 0

∂y

∂z
(0, 0) = 0.

We note in passing that Theorem 3.5.3 can be formulated for a function of
any number of variables, and the passage from three variables to more is
very much like the passage from two to three. However, some of the
geometric setup to make this rigorous would take us too far afield. There
is also a very slick proof of the most general version of this theorem based
on the “contraction mapping theorem”; this is the version that you will
probably encounter in higher math courses.

Tangent Planes of Level Surfaces

When a surface is defined by an equation in x, y and z, it is being
presented as a level surface of a function f(x, y, z). Theorem 3.5.3 tells us
that in theory, we can express the locus of such an equation near a regular
point of f as the graph of a function expressing one of the variables in
terms of the other two. From this, we can in principle find the tangent
plane to the level surface at this point. However, this can be done directly
from the defining equation, using the gradient or linearization of f .

Suppose P (x0, y0, z0) is a regular point of f , and suppose −→p (t) is a
differentiable curve in the level surface L(f, c) through P (so c = f(P )),
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with −→p (0) = P . Then the velocity vector ~p ′(0) lies in the plane tangent to
the surface L(f, c) at −→p (0).
Now on one hand, by the Chain Rule (3.3.6) we know that

d

dt

∣

∣

∣

∣

t=0

[f(−→p (t))] = −→∇f(P ) · ~p ′(0) ;

on the other hand, since −→p (t) lies in the level set L(f, c), f(−→p (t)) = c for
all t, and in particular,

d

dt

∣

∣

∣

∣

t=0

[f(−→p (t))] = 0.

It follows that

−→∇f(P ) · ~p ′(0) = 0

for every vector tangent to L(f, c) at P ; in other words,9

Remark 3.5.4. If P is a regular point of f(x, y, z), then the tangent plane
to the level set L(f, c) through P is the plane through P perpendicular to

the gradient vector
−→∇f(P ) of f at P .

If we write this out in terms of coordinates, we find that a point
(x, y, z) = (x0 +△x, y0 +△y, z0 +△z) lies on the plane tangent at
(x0, y0, z0) to the surface f(x, y, z) = c = f(x0, y0, z0) if and only if
(

∂f

∂x
(x0, y0, z0)

)

△x+

(

∂f

∂y
(x0, y0, z0)

)

△y +
(

∂f

∂z
(x0, y0, z0)

)

△z = 0,

in other words, if

d(x0,y0,z0)f(x− x0, y − y0, z − z0) = 0.

Yet a third way to express this is to add c = f(x0, y0, z0) to both sides,
noting that the left side then becomes the linearization of f at P :

T(x0,y0,z0)f(x, y, z) = f(x0, y0, z0) .

We summarize all of this in
9Strictly speaking, we have only shown that every tangent vector is perpendicular to

−→
∇f ; we need to also show that every vector which is perpendicular to

−→
∇f is the velocity

vector of some curve in L(f, c) as it goes through P . See Exercise 7.
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Proposition 3.5.5. Suppose P (x0, y0, z0) is a regular point of the
real-valued function f(x, y, z) and f(x0, y0, z0) = c. Then the level set of f
through P

L(f, c) := {(x, y, z) | f(x, y, z) = c}
has a tangent plane P at P , which can be characterized in any of the
following ways:

• P is the plane through P with normal vector
−→∇f(P );

• P is the set of all points P +−→v where

dP f(
−→v ) = 0;

• P is the level set L(TP f, f(P )) through P of the linearization of f at
P .

Let us see how this works out in practice for a few examples.
First, let us find the plane tangent to the ellipsoid

x2 + 3y2 + 4z2 = 20

at the point P (2,−2,−1) (Figure 3.15).

b(2,−2,−1)
x

y

z

Figure 3.15: The surface x2+3y2+4z2 = 20 with tangent plane at (2,−2,−1)

This can be regarded as the level set L(f, 20) of the function

f(x, y, z) = x2 + 3y2 + 4z2.
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We calculate the partials

∂f

∂x
= 2x

∂f

∂y
= 6y

∂f

∂z
= 8z

which gives the gradient

−→∇f(2,−2,−1) = 4−→ı − 12−→ − 8
−→
k .

Thus the tangent plane is the plane through P (2,−2,−1) perpendicular to
4−→ı − 12−→ − 8

−→
k , which has equation

4(x− 2)− 12(y + 2)− 8(z + 1) = 0

or

4x− 12y − 8z = 8 + 24 + 8 = 40.

We note that this is the same as

d(2,−2,−1)f(△x,△y,△z) = 0

with

△x = x− 2

△y = y − (−2)
△z = z − (−1),

or, calculating the linearization

T(2,−2,−1)f(x, y, z) = 20 + 4(x− 2)− 12(y + 2)− 8(z + 1)

= 4x− 12y − 8z − 20

the tangent plane is the level set of the linearization

L
(

T(2,−2,−1)f, 20
)

=
{

(x, y, z) |T(2,−2,−1)f(x, y, z) = 20
}

.
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We note in passing that in this case we could also have solved for z in
terms of x and y:

4z2 = 20− x2 − 3y2

z2 = 5− x2

4
− 3y2

4

z = ±
√

5− x2

4
− 3y2

4

and since at our point z is negative, the nearby solutions are

z = −
√

5− x2

4
− 3y2

4
.

This would have given us an expression for the ellipsoid near (2,−2,−1) as
the graph z = φ(x, y) of the function of x and y

φ(x, y) = −
√

5− x2

4
− 3y2

4
.

The partials of this function are

∂φ

∂x
= − −x/4

√

5− x2

4 −
3y2

4

∂φ

∂y
= − −3y/4

√

5− x2

4 −
3y2

4

;

at our point, these have values

∂φ

∂x
(2,−2) = 1

2
∂φ

∂y
(2,−2) = −3

2

so the parametric form of the tangent plane is







x = 2 +s
y = −2 +t
z = −1 + s

2 −3t
2
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while the equation of the tangent plane can be formulated in terms of the
normal vector

−→n = −→vx ×−→vy
= (−→ı +

1

2

−→
k )× (−→ − 3

2

−→
k )

= −
(

1

2

)

−→ı −
(

−3

2

)

−→ +
−→
k

as

−1

2
(x− 2) +

3

2
(y + 2) + (z + 1) = 0

or

−1

2
x+

3

2
y + z = −1− 3− 1 = −5

which we recognize as our earlier equation, divided by −8.
As a second example, we consider the surface

x3y2z + x2y3z + xyz3 = 30

near the point P (−2, 3, 1). This time, it is not feasible to solve for any one
of the variables in terms of the others; our only choice is to work directly
with this as a level surface of the function

f(x, y, z) = x3y2z + x2y3z + xyz3.

The partials of this function are

∂f

∂x
= 3x2y2z + 2zy3z + yz3

∂f

∂y
= 2x3yz + 3x2y2z + xz3

∂f

∂z
= x3y2 + x2y3 + 3xyz2.

The values of these at our point are

∂f

∂x
(−2, 3, 1) = 3

∂f

∂y
(−2, 3, 1) = 58

∂f

∂z
(−2, 3, 1) = 18
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giving as the equation of the tangent plane

3(x+ 2) + 58(y − 3) + 18(z − 1) = 0

or

3x+ 58y + 18z = 186.

You should check that this is equivalent to any one of the forms of the
equation given in Proposition 3.5.5.

Exercises for § 3.5

Practice Problems:

For each given surface, express the tangent plane (a) as the locus of an
equation in x, y and z (b) in parametrized form:

1. z = x2 − y2, (1,−2,−3), (2,−1, 3)

2. z2 = x2 + y2, (1, 1,
√
2), (2,−1,

√
5)

3. x2 + y2 − z2 = 1, (1,−1, 1), (
√
3, 0,
√
2)

4. x2 + y2 + z2 = 4, (1, 1,
√
2), (
√
3, 1, 0)

5. x3 + 3xy + z2 = 2, (1, 13 , 0), (0, 0,
√
2)

Theory problems:

6. For each surface defined implicitly, decide at each given point
whether one can solve locally for (i) z in terms of x and y; (ii) x in
terms of y and z; (iii) y in terms of x and z. Find the partials of the
function if it exists.

(a) x3z2 − z3xy = 0 at (1, 1, 1) and at (0, 0, 0).

(b) xy + z + 3xz5 = 4 at (1, 0, 1)

(c) x3 + y3 + z3 = 10 at (1, 2, 1) and at ( 3
√
5, 0, 3
√
5).

(d) sinx cos y − cos x sin z = 0 at (π, 0, π2 ).

7. Mimic the argument for Theorem 3.5.3 to show that we can solve for
any variable whose partial does not vanish at our point.
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3.6 Surfaces and Tangent Planes II:

Parametrized Surfaces

Regular Parametrizations

In § 2.2 we saw how to go beyond graphs of real-valued functions of a real
variable to express more general curves as images of vector-valued
functions of a real variable. In this subsection, we will explore the
analogous representation of a surface in space as the image of a
vector-valued function of two variables. Of course, we have already seen
such a representation for planes.

Just as continuity and limits for functions of several variables present new
subtleties compared to their single-variable cousins, an attempt to
formulate the idea of a “surface” in R

3 using only continuity notions will
encounter a number of difficulties. We shall avoid these by starting out
immediately with differentiable parametrizations.

Definition 3.6.1. A vector-valued function

−→p (s, t) = (x1(s, t) , x2(s, t) , x3(s, t))

of two real variables is differentiable (resp. continuously

differentiable, or C1) if each of the coordinate functions xj:R
2→R is

differentiable (resp. continuously differentiable). We know from
Theorem 3.3.4 that a C1 function is automatically differentiable.

We define the partial derivatives of a differentiable function −→p (s, t) to
be the vectors

∂−→p
∂s

=

(

∂x1
∂s

,
∂x2
∂s

,
∂x3
∂s

)

∂−→p
∂t

=

(

∂x1
∂t

,
∂x2
∂t

,
∂x3
∂t

)

.

We will call −→p (s, t) regular if it is C1 and at every pair of parameter
values (s, t) in the domain of −→p the partials are linearly independent—that
is, neither is a scalar multiple of the other. The image of a regular
parametrization

S := {−→p (s, t) | (s, t) ∈ dom(−→p )}

is a surface in R
3, and we will refer to −→p (s, t) as a regular

parametrization of S.
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As an example, you should verify (Exercise 4a) that the graph of a
(continuously differentiable) function f(x, y) is a surface parametrized by

−→p (s, t) = (s, t, f(s, t)).

As another example, consider the function

−→p (θ, t) = (cos θ, sin θ, t);

this can also be written

x = cos θ

y = sin θ

z = t.

The first two equations give a parametrization of the circle of radius one
about the origin in the xy-plane, while the third moves such a circle
vertically by t units: we see that this parametrizes a cylinder with axis the
z-axis, of radius 1 (Figure 3.16).

x

y

z

θ
t

Figure 3.16: Parametrized Cylinder

The partials are

∂−→p
∂θ

(θ, t) = −(sin θ)−→ı + (cos θ)−→
∂−→p
∂t

(θ, t) =
−→
k

Another function is

−→p (r, θ) = (r cos θ, r sin θ, 0)
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or

x = r cos θ

y = r sin θ

z = 0

which describes the xy-plane in polar coordinates; the partials are

∂−→p
∂r

(r, θ) = (cos θ)−→ı + (sin θ)−→
∂−→p
∂θ

(r, θ) = −(r sin θ)−→ı + (r cos θ)−→ ;

these are independent unless r = 0, so we get a regular parametrization of
the xy-plane provided we stay away from the origin.

We can similarly parametrize the sphere of radius R by using spherical
coordinates:

−→p (θ, φ) = (R sinφ cos θ,R sinφ sin θ,R cosφ) (3.25)

or

x = R sinφ cos θ

y = R sinφ sin θ

z = R cosφ;

the partials are

∂−→p
∂φ

(φ, θ) = (R cosφ cos θ)−→ı + (R cosφ sin θ)−→ − (R sinφ)
−→
k

∂−→p
∂θ

(φ, θ) = −(R sinφ sin θ)−→ı + (R sinφ cos θ)−→

which are independent provided R 6= 0 and φ is not a multiple of π; the
latter is required because

∂−→p
∂θ

(nπ, θ) = −(R sin(nπ) sin θ)−→ı − (R sin(nπ) cos θ)−→

=
−→
0 .
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Regular parametrizations of surfaces share a pleasant property with
regular parametrizations of curves:

Proposition 3.6.2. A regular function −→p :R2→R
3 is locally

one-to-one—that is, for every point (s0, t0) in the domain there exists
δ > 0 such that the restriction of −→p (s, t) to parameter values with

|s− s0| < δ

|t− t0| < δ

is one-to-one:

(s1, t1) 6= (s2, t2)

guarantees that

−→p (s1, t1) 6= −→p (s2, t2) .

Note as before that the condition (s1, t1) 6= (s2, t2) allows one pair of
coordinates to be equal, provided the other pair is not; similarly,
−→p (s1, t1) 6= −→p (s2, t2) requires only that they differ in at least one
coordinate.
A proof of Proposition 3.6.2 is sketched in Exercise 6, based on the
following technical lemma, whose proof is sketched in Exercise 5.

Lemma 3.6.3. Suppose −→v and −→w are linearly independent vectors. Then
there exists a number K(−→v ,−→w ) > 0, depending continuously on −→v and −→w ,
such that for any θ

‖(cos θ)−→v + (sin θ)−→w‖ ≥ K(−→v ,−→w ).

The significance of this particular combination of −→v and −→w is that the
coefficients, regarded as a vector (cos θ, sin θ), form a unit vector. Any
other combination of −→v and −→w is a scalar multiple of one of this type.
The parametrization of the sphere (Equation (3.25)) shows that the
conclusion of Proposition 3.6.2 breaks down if the parametrization is not
regular: when φ = 0 we have

−→p (φ, θ) = (0, 0, 1)

independent of θ; in fact, the curves corresponding to fixing φ at a value
slightly above zero are circles of constant latitude around the North Pole,
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while the curves corresponding to fixing θ are great circles, all going
through this pole. This is reminiscent of the breakdown of polar
coordinates at the origin. A point at which a C1 function −→p :R2→R

3 has
dependent partials (including the possibility that at least one partial is the
zero vector) is called a singular point; points at which the partials are
independent are regular points. Proposition 3.6.2 can be rephrased as
saying that −→p :R2→R

3 is locally one-to-one at each of its regular points.
Of course, continuity says that every point sufficiently near a given regular
point (that is, corresponding to nearby parameter values) is also regular; a
region in the domain of −→p :R2→R

3 consisting of regular points, and on
which −→p is one-to-one is sometimes called a coordinate patch for the
surface it is parametrizing.

We consider one more example. Let us start with a circle in the xy-plane
of radius a > 0, centered at the origin: this can be expressed in cylindrical
coordinates as

r = a,

and the point on this circle which also lies in the vertical plane
corresponding to a fixed value of θ has rectangular coordinates

(a cos θ, a sin θ, 0).

We are interested, however, not in this circle, but in the surface consisting
of points in R

3 at distance b from this circle, where 0 < b < a; this is called
a torus. It is reasonable to assume (and this will be verified later) that for
any point P not on the circle, the nearest point to to P on the circle lies in
the vertical plane given by fixing θ at its value for P , say θ = α. This
means that if P has cylindrical coordinates (r, α, z) then the nearest point
to P on the circle is the point Q(a cosα, a sinα, 0) as given above. The

vector
−−→
QP lies in the plane θ = α; its length is, by assumption, b, and if we

denote the angle it makes with the radial line OQ by β (Figure 3.17), then
we have

−−→
QP = (b cos β)−→vα + (b sin β)

−→
k

where

−→vα = (cosα)−→ı + (sinα)−→
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x y

z

Q

P
α

a
b
Q

P

β

Figure 3.17: Parametrization of Torus

is the horizontal unit vector making angle α with the x-axis. Since

−−→OQ = a−→vα
= (a cosα)−→ı + (a sinα)−→

we see that the position vector of P is

−−→OP =
−−→OQ+

−−→
QP

= [(a cosα)−→ı + (a sinα)−→ ] + [(b cos β)−→vα + (b sin β)
−→
k ]

= [(a cosα)−→ı + (a sinα)−→ ] + (b cos β)[(cosα)−→ı + (sinα)−→ ] + (b sin β)
−→
k

so the torus (sketched in Figure 3.18) is parametrized by the vector-valued
function

−→p (α, β) = (a+ b cos β)[(cosα)−→ı + (sinα)−→ ] + (b sin β)
−→
k (3.26)

The partial derivatives of this function are

∂−→p
∂α

= (a+ b cos β)[(− sinα)−→ı + (cosα)−→ ]
∂−→p
∂β

= (−b sin β)[(cosα)−→ı + (sinα)−→ ] + (b cos β)
−→
k .
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Figure 3.18: Torus

To see that these are independent, we note first that if cos β 6= 0 this is
obvious, since ∂−→p

∂β has a nonzero vertical component while ∂−→p
∂α does not. If

cos β = 0, we simply note that the two partial derivative vectors are
perpendicular to each other (in fact, in retrospect, this is true whatever
value β has). Thus, every point is a regular point. Of course, increasing
either α or β by 2π will put us at the same position, so to get a coordinate
patch we need to restrict each of our parameters to intervals of length
< 2π.
To define the tangent plane to a regularly parametrized surface, we can
think, as we did for the graph of a function, in terms of slicing the surface
and finding lines tangent to the resulting curves. A more fruitful view,
however, is to think in terms of arbitrary curves in the surface. Suppose
−→p (r, s) is a C1 function parametrizing the surface S in R

3 and
P = −→p (r0, s0) is a regular point; by restricting the domain of −→p we can
assume that we have a coordinate patch for S. Any curve in S can be
represented as

−→γ (t) = −→p (r(t) , s(t))

or

x = x(r(t) , s(t))

y = y(r(t) , s(t))

z = z(r(t) , s(t))

—that is, we can “pull back” the curve on S to a curve in the parameter
space. If we want the curve to pass through P when t = 0, we need to
require

r(0) = r0

s(0) = s0.
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If r(t) and s(t) are differentiable, then by the Chain Rule γ(t) is also
differentiable, and its velocity vector can be found via

−→v (t) = −̇→γ (t)

=

(

dx

dt
,
dx

dt
,
dx

dt

)

where

dx

dt
=
∂x

∂r

dr

dt
+
∂x

∂s

ds

dt
dy

dt
=
∂y

∂r

dr

dt
+
∂y

∂s

ds

dt
dz

dt
=
∂z

∂r

dr

dt
+
∂z

∂s

ds

dt
.

We expect that for any such curve, −→v (0) will be parallel to the tangent
plane to S at P . In particular, the two curves obtained by holding one of
the parameters constant will give a vector in this plane: holding s constant
at s = s0, we can take r = r0 + t to get

−→γ (t) = −→p (r0 + t, s0)

whose velocity at t = t0 is

−→vr(0) =
∂−→p
∂r

and similarly, the velocity obtained by holding r = r0 and letting s = s0 + t
will be

−→vs(0) =
∂−→p
∂s

.

Because P is a regular point, these are linearly independent and so form
direction vectors for a parametrization of a plane

T(r0,s0)
−→p (r0 +△r, s0 +△s) = −→p (r0, s0) +△r

∂−→p
∂r

+△s∂
−→p
∂s

.
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By looking at the components of this vector equation, we easily see that
each component of T(r0,s0)

−→p (r0 +△r, s0 +△s) is the linearization of the

corresponding component of −→p (r, s), and so has first order contact with it
at t = 0. It follows, from arguments that are by now familiar, that for any
curve in S

−→γ (t) = −→p (r(t) , s(t))
= (x(r(t) , s(t)) , y(r(t) , s(t)) , z(r(t) , s(t)))

the velocity vector

−→v (0) = ∂−→p
∂r

dr

dt
+
∂−→p
∂s

ds

dt

lies in the plane parametrized by T−→p . It is also a straightforward
argument to show that this parametrization of the tangent plane has first
order contact with −→p (r, s) at (r, s) = (r0, s0), in the sense that

∥

∥

∥

−→p (r0 +△r, s0 +△s)− T(r0,s0)
−→p (r0 +△r, s0 +△s)

∥

∥

∥ = o(‖(△r,△s)‖) as (△r,△s)→ −→0 .

The parametrization T(r0,s0)
−→p assigns to each vector −→v ∈ R

2 a vector

T(r0,s0)
−→p (−→v ) in the tangent plane at (r0, s0): namely if γ(τ) is a curve in

the (s, t)-plane going through (r0, s0) with velocity −→v then the
corresponding curve −→p (γ(τ)) in S goes through −→p (r0, s0) with velocity
T(r0,s0)

−→p (−→v ). T(r0,s0)
−→p is sometimes called the tangent map at (r0, s0)

of the parametrization −→p .
We can also use the two partial derivative vectors ∂−→p

∂r and ∂−→p
∂s to find an

equation for the tangent plane to S at P . Since they are direction vectors
for the plane, their cross product gives a normal to the plane:

−→
N =

∂−→p
∂r
× ∂−→p

∂s

and then the equation of the tangent plane is given by

−→
N · [(x, y, z) −−→p (r0, s0)] = 0.

You should check that in the special case when S is the graph of a
function f(x, y), and −→p is the parametrization of S as

−→p (x, y) = (x, y, f(x, y))
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then

∂−→p
∂x

= −→ı +
∂f

∂x

−→
k

∂−→p
∂y

= −→ +
∂f

∂y

−→
k

−→
N = −∂f

∂x
−→ı − ∂f

∂y
−→ +

−→
k

yielding the usual equation for the tangent plane.
We summarize these observations in the following

Remark 3.6.4. If −→p :R2→R
3 is regular at (r0, s0), then

1. The linearization of −→p (r, s) at r = r0, s = s0

T(r0,s0)
−→p (r0 +△r, s0 +△s) = −→p (r0, s0) +△r

∂−→p
∂r

+△s∂
−→p
∂s

has first-order contact with −→p (r, s) at r = r0, s = s0;

2. it parametrizes a plane through P = −→p (r0, s0) = (x0, y0, z0) which
contains the velocity vector of any curve passing through P in the
surface S parametrized by −→p ;

3. the equation of this plane is

−→
N · (x− x0, y − y0, z − z0) = 0

where
−→
N =

∂−→p
∂r
× ∂−→p

∂s
.

This plane is the tangent plane to S at P .

Let us consider two quick examples.
First, we consider the sphere parametrized using spherical coordinates in
Equation (3.25); using R = 1 we have

−→p (θ, φ) = (sin φ cos θ, sinφ sin θ, cosφ)

(see Figure 3.19).
Let us find the tangent plane at

P

( √
3

2
√
2
,−
√
3

2
√
2
,
1

2

)
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bc

−→
N

x

y

z

Figure 3.19: Tangent Plane to Sphere at
( √

3
2
√
2
,−

√
3

2
√
2
, 12

)

which corresponds to

φ =
π

3

θ = −π
4
.

The partials are

∂−→p
∂φ

(π

3
,−π

4

)

=
(

cos
π

3
cos
(

−π
4

))−→ı +
(

cos
π

3
sin
(

−π
4

))−→ −
(

sin
π

3

)−→
k

=
1

2
√
2
−→ı − 1

2
√
2
−→ −

√
3

2

−→
k

∂−→p
∂θ

(π

3
,−π

4

)

=
(

− sin
π

3
sin
(

−π
4

))−→ı +
(

sin
π

3
cos
(

−π
4

))−→

= −
√
3

2
√
2
−→ı +

√
3

2
√
2
−→
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so a parametrization of the tangent plane is given by

x =

√
3

2
√
2
+

(

1

2
√
2

)

△r +
( √

3

2
√
2

)

△s

y = −
√
3

2
√
2
−
(

1

2
√
2

)

△r +
( √

3

2
√
2

)

△s

z =
1

2
+

(√
3

2

)

△r;

to find an equation for the tangent plane, we compute the normal

−→
N =

(

1

2
√
2
−→ı − 1

2
√
2
−→ −

√
3

2

−→
k

)

×
(

−
√
3

2
√
2
−→ı +

√
3

2
√
2
−→
)

=
3

4
√
2
−→ı − 3

4
√
2
−→ +

√
3

4

−→
k

so the equation of the tangent plane is

3

4
√
2

(

x−
√
3

2
√
2

)

− 3

4
√
2

(

y +

√
3

2
√
2

)

+

√
3

4

(

z − 1

2

)

= 0.

Next, we consider the torus with outer radius a = 2 and inner radius b = 1
parametrized by

−→p (α, β) = (2 + cos β)[(cosα)−→ı + (sinα)−→ ] + (sin β)
−→
k

at

P

(

5
√
3

4
,
5

4
,

√
3

2

)

which corresponds to

α =
π

6

β =
π

3
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bc

−→
N

Figure 3.20: Tangent Plane to Torus at
(

5
√
3

4 , 54 ,
√
3
2

)

(seeFigure 3.20).

The partials are

∂−→p
∂α

=
(

2 + cos
π

3

) [(

− sin
π

6

)−→ı +
(

cos
π

6

)−→
]

=

(

2 +
1

2

)

[

−1

2
−→ı +

√
3

2
−→
]

= −
(

5

4

)

−→ı +

(

5
√
3

4

)

−→

∂−→p
∂β

=
(

2− sin
π

3

) [(

cos
π

6

)−→ı +
(

sin
π

6

)−→
]

+
(

cos
π

3

)−→
k

=

(

2−
√
3

2

)[√
3

2
−→ı +

1

2
−→
]

+
1

2

−→
k

=

(√
3− 3

4

)

−→ı +

(

1−
√
3

4

)

−→ +
1

2

−→
k
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so a parametrization of the tangent plane is

x =
5
√
3

4
−
(

5

4

)

△α+

(√
3− 3

4

)

△β

y =
5

4
+

(

5
√
3

4

)

△α+

(

1−
√
3

4

)

△β

z =

√
3

2
△α+

1

2
△β.

The normal to the tangent plane is

−→
N =

(

−
(

5

4

)

−→ı +

(

5
√
3

4

)

−→
)

×
(

(√
3− 3

4

)

−→ı +

(

1−
√
3

4

)

−→ +
1

2

−→
k

)

=

(

5
√
3

8

)

−→ı +

(

5

8

)

−→ +

(

65
√
3

16
− 5

)

−→
k

so an equation for the plane is

(

5
√
3

8

)(

x− 5
√
3

4

)

+

(

5

8

)(

y − 5

4

)

+

(

65
√
3

16
− 5

)(

z −
√
3

2

)

= 0.

Exercises for § 3.6

Practice Problems:

For each given surface, express the tangent plane (a) as the locus of an
equation in x, y and z (b) in parametrized form:

1.






x = s
y = s2 + t
z = t2 + 1

at (−1, 0, 2)

2.






x = u2 −v2
y = u +v
z = u2 +4v

at (−1

4
,
1

2
, 2).
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3.






x = (2− cos v) cos u
y = (2− cos v) sinu
z = sin v

at any point (give in terms of u and v).

Theory problems:

4. (a) Verify that −→p (s, t) = (s, t, f(s, t)) is a regular parametrization of
the graph z = f(x, y) of any C1 function f(x, y) of two variables.

(b) What is the appropriate generalization for n > 2 variables?

5. Prove Lemma 3.6.3 as follows:

(a) Show that, for any θ,

‖(cos θ)−→v + (sin θ)−→w ‖2 = 1

2
‖−→v ‖ (1+cos 2θ)+−→v ·−→w sin 2θ+

1

2
‖−→w ‖ (1−cos 2θ).

(b) Show that the extreme values of this function occur when

tan 2θ =
2−→v · −→w

‖−→v ‖2 − ‖−→w ‖2
.

(c) Denote by θ0 the value where the minimum occurs. It is clear
that we can express θ0 as a function of −→v and −→w ; let

K(−→v ,−→w ) = ‖(cos θ0)−→v + (sin θ0)
−→w ‖ .

Since −→v and −→w are linearly independent, we automatically have

K(−→v ,−→w ) > 0.

6. Prove Proposition 3.6.2 as follows:

(a) Apply Lemma 3.6.3 to the vectors

−→v =
∂−→p
∂s

−→w =
∂−→p
∂t
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to find a positive, continuous function K(s, t) defined on the
domain of −→p such that for every θ the vector

−→v (s, t, θ) = (cos θ)
∂−→p
∂s

(s, t) + (sin θ)
∂−→p
∂t

(s, t)

has

‖−→v (s, t, θ)‖ ≥ K(s, t).

In particular, show that, given s, t, and an angle θ, some
component of the vector −→v (s, t, θ) must have absolute value
exceeding K(s, t)/2:

|vj(s, t, θ)| >
K(s, t)

2
.

(b) Identify three (overlapping) sets of θ-values, say Θj (j = 1, 2, 3)
such that every θ belongs to at least one of them, and for every
θ ∈ Θj the estimate above works at (s0, t0) using the jth

coordinate:

|vj(s0, t0, θ)| >
K

2
,

and by continuity this continues to hold if (s, t) is sufficiently
close to (s0, t0).

(c) Suppose (si, ti), i = 1, 2 are distinct pairs of parameter values
near (s0, t0), and consider the straight line segment joining them
in parameter space; parametrize this line segment by τ . Assume
without loss of generality that θ ∈ Θ1, and show that

x′ (τ) = △s∂x
∂s

(s(τ), t(τ)) +△t∂x
∂t

(s(τ), t(τ))

=
(

√

△s2 +△t2
)

vj(s, t, θ)

which has absolute value at least (K/2)
√

△s2 +△t2, and in
particular is nonzero.

(d) Explain why this shows the points −→p (s1, t1) and −→p (s2, t2) are
distinct.

Challenge problem:
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7. Suppose P (x0, y0, z0) is a regular point of the C1 function f(x, y, z);
for definiteness, assume ∂f

∂z (P ) 6= 0. Let −→v be a nonzero vector

perpendicular to
−→∇f(P ).

(a) Show that the projection −→w = (v1, v2) of
−→v onto the xy-plane is

a nonzero vector.

(b) By the Implicit Function Theorem, the level set L(f, c) of f
through P near P can be expressed as the graph z = φ(x, y) of
some C1 function φ(x, y). Show that (at least for |t| < ε for some
ε > 0) the curve −→p (t) = (x0 + v1t, y0 + v2t, φ(x0 + v1t, y0 + v2t))
lies on L(f, c), and that ~p ′(0) = −→v .

(c) This shows that every vector in the plane perpendicular to the
gradient is the velocity vector of some curve in L(f, c) as it goes
through P , at least if

−→∇f(P ) has a nonzero z-component. What

do you need to show this assuming only that
−→∇f(P ) is a

nonzero vector?

3.7 Extrema

Bounded Functions

Recall the following definitions from single-variable calculus:

Definition 3.7.1. Suppose S is a set of real numbers.

1. α ∈ R is a lower bound for S if

α ≤ s for every s ∈ S.

The set S is bounded below if there exists a lower bound for S.

2. β ∈ R is an upper bound for S if

s ≤ β for every s ∈ S.

The set S is bounded above if there exists an upper bound for S.

3. A set of real numbers is bounded if it is bounded below and bounded
above.
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4. If S is bounded below, there exists a unique lower bound A for S such
that every lower bound α for S satisfies α ≤ A; it is called the
infimum of S, and denoted inf S.

A lower bound α for S equals inf S precisely if there exists a sequence
{si} of elements of S with si → α.

5. If S is bounded above, there exists a unique upper bound B for S
such that every upper bound β for S satisfies β ≥ B; it is called the
supremum of S, and denoted supS.

An upper bound β for S equals supS precisely if there exists a
sequence {si} of elements of S with si → β.

6. A lower (resp. upper) bound for S is the minimum (resp.
maximum) of S if it belongs to S. When it exists, the minimum
(resp. maximum) of S is also its infimum (resp. supremum).

These notions can be applied to the image, or set of values taken on by a
real-valued function on a set of points in R

2 or R3 (we shall state these for
R
3; the two-dimensional analogues are essentially the same):

Definition 3.7.2. Suppose f:R3→R is a real-valued function with domain
dom(f) ⊂ R

3, and let S ⊂ dom(f) be any subset of the domain of f . The
image of S under f is the set of values taken on by f among the points of
S:

f(S) := {f(s) | s ∈ S} .

1. f is bounded (resp. bounded below, bounded above) on S if f(S)
is bounded (resp. bounded below, bounded above).

2. The supremum (resp. infimum) of f on S is defined by

sup
x∈S

f(x) = sup f(S)

inf
x∈S

f(x) = inf f(S) .

3. The function f achieves its maximum (resp. achieves its

minimum) on S at x ∈ S if

f(x) ≥ (resp. ≤) f(s) for all s ∈ S.
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We shall say that x is an extreme point of f(x) on S if f(x) achieves its
maximum or minimum on S at x; the value f(x) will be referred to as an
extreme value of f(x) on S.

In all the statements above, when the set S is not mentioned explicitly, it is
understood to be the whole domain of f .

The Extreme Value Theorem

A basic result in single-variable calculus is the Extreme Value Theorem,
which says that a continuous function achieves its maximum and minimum
on any closed, bounded interval [a, b]. We wish to extend this to result to
real-valued functions defined on subsets of R3. First, we need to set up
some terminology.

Definition 3.7.3. A set S ⊂ R
3 of points in R

3 is closed if for any
convergent sequence si of points in S, the limit also belongs to S:

si → L and si ∈ S for all i ⇒ L ∈ S.

It is an easy exercise (Exercise 9) to show that each of the following are
examples of closed sets:

1. closed intervals [a, b] in R, as well as half-closed intervals of the form
[a,∞) or (−∞, b];

2. level sets L(g, c) of a continuous function g, as well as sets defined by
weak inequalities like

{

x ∈ R
3 | g(x) ≤ c

}

or
{

x ∈ R
3 | g(x) ≥ c

}

;

3. any set consisting of a convergent sequence si together with its limit,
or any set consisting of a sequence together with all of its
accumulation points.

We also want to formulate the idea of a bounded set in R
3. We cannot talk

about such a set being “bounded above” or “bounded below”; the
appropriate definition is

Definition 3.7.4. A set S ⊂ R
3 is bounded if the set of lengths of

elements of S {‖s‖ | s ∈ S} is bounded—that is, if there exists M ∈ R such
that

‖s‖ ≤M for all s ∈ S.
(This is the same as saying that there exists some ball Bε (O)—where
ε > 0 is in general not assumed small—which contains S.)
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A basic and important property of R3 is stated in the following.

Proposition 3.7.5. For a subset S ⊂ R
3, the following are equivalent:

1. S is closed and bounded;

2. S is sequentially compact: every sequence si of points in S has a
subsequence which converges to a point of S.

We shall abuse terminology and refer to such sets as compact sets.10

Proof. If S is bounded, then by the Bolzano-Weierstrass Theorem
(Proposition 2.3.7) every sequence in S has a convergent subsequence, and
if S is also closed, then the limit of this subsequence must also be a point
of S.

Conversely, if S is not bounded, it cannot be sequentially compact since
there must exist a sequence sk of points in S with ‖sk‖ > k; such a
sequence has no convergent subsequence. Similarly, if S is not closed, there
must exist a convergent sequence sk of points in S whose limit L lies
outside S; since every subsequence also converges to L, S cannot be
sequentially compact.

With these definitions, we can formulate and prove the following.

Theorem 3.7.6 (Extreme Value Theorem). If S ⊂ R
3 is compact, then

every real-valued function f which is continuous on S achieves its
minimum and maximum on S.

Note that this result includes the Extreme Value Theorem for functions of
one variable, since closed intervals are compact, but even in the single
variable setting, it applies to functions continuous on sets more general
than intervals.

Proof. The strategy of this proof is: first, we show that f must be
bounded on S, and second, we prove that there exists a point s ∈ S where
f(s) = supx∈S f(x) (resp. f(s) = infx∈S f(x)).11

Step 1: f(x) is bounded on S: Suppose f(x) is not bounded on S: this
means that there exist points in S at which |f(x)| is arbitrarily high: thus

10The property of being compact has a specific definition in very general settings; how-
ever, in the context of R3, this is equivalent to either sequential compactness or being
closed and bounded.

11A somewhat different proof, based on an idea of Daniel Reem, is worked out in Exer-
cise 13.
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we can pick a sequence sk ∈ S with |f(sk)| > k. Since S is (sequentially)
compact, we can find a subsequence—which without loss of generality can
be assumed to be the whole sequence—that converges to a point of S:
sk → s0 ∈ S. Since f(x) is continuous on S, we must have f(sk)→ f(s0);
but this contradicts the assumption that |f(sk)| > k.

Step 2: f(x) achieves its maximum and minimum on S: We will show
that f(x) achieves its maximum on S; the case of the minimum is entirely
analogous. Since f(x) is bounded on S, the set of values on S has a
supremum, say supx∈S f(x) = A; by the remarks in Definition 3.7.1, there
exists a sequence f(si) converging to A, where si all belong to S; pick a
subsequence of si which converges to s0 ∈ S; by continuity f(s0) = A and
we are done.

Local Extrema

How do we find the extreme values of a function on a set? For a function
of one variable on an interval, we looked for local extrema interior to the
interval and compared them to the values at the ends. Here we need to
formulate the analogous items. The following is the natural
higher-dimension analogue of local extrema for single-variable functions.

Definition 3.7.7. The function f(x) has a local maximum (resp. local

minimum) at −→x0 ∈ R
3 if there exists a ball Bε (

−→x0), ε > 0, such that

1. f(x) is defined on all of Bε (
−→x0); and

2. f(x) achieves its maximum (resp. minimum) on Bε (
−→x0) at −→x = −→x0.

A local extremum of f(x) is a local maximum or local minimum.

To handle sets more complicated than intervals, we need to formulate the
analogues of interior points and endponts.

Definition 3.7.8. Let S ⊂ R
3 be any set in R

3.

1. A point −→x ∈ R
3 is an interior point of S if S contains some ball

about −→x :

Bε (
−→x ) ⊂ S.

The set of all interior points of S is called the interior of S, denoted
int S.

A set S is open if every point is an interior point: S = int S.
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2. A point −→x ∈ R
3 is a boundary point of S if every ball Bε (

−→x ),
ε > 0 contains points in S as well as points not in S:

Bε (
−→x ) ∩ S 6= ∅, but Bε (

−→x ) 6⊂ S.

The set of boundary points of S is called the boundary and denoted
∂S.

The following are relatively easy observations (Exercise 10):

Remark 3.7.9. 1. For any set S ⊂ R
3,

S ⊆ int S ∪ ∂S.

2. The boundary ∂S of any set is closed.

3. S is closed precisely if it contains its boundary points:

S closed⇔ ∂S ⊂ S.

4. S ⊂ R
3 is closed precisely if its complement

R
3 \ S :=

{

x ∈ R
3 |x /∈ S

}

is open.

The lynchpin of our strategy for finding extrema in the case of
single-variable functions was that every local extremum is a critical point,
and in most cases there are only finitely many of these. The analogue for
our present situation is the following.

Theorem 3.7.10 (Critical Point Theorem). If f:R3→R has a local
extremum at −→x = −→x0 and is differentiable there, then −→x0 is a critical point
of f(−→x ): −→∇f(−→x0) =

−→
0 .

Proof. If
−→∇f(−→x0) is not the zero vector, then some partial derivative, say

∂f
∂xj

, is nonzero. But this means that along the line through −→x0 parallel to

the xj-axis, the function is locally monotone:

d

dt
[f(−→x0 + t−→ej )] =

∂f

∂xj
(−→x0) 6= 0

means that there are nearby points where the function exceeds, and others
where it is less than, the value at −→x0; therefore −→x0 is not a local extreme
point of f(−→x ).
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Finding Extrema

Putting all this together, we can formulate a strategy for finding the
extreme values of a function on a subset of R3, analogous to the strategy
used in single-variable calculus:
Given a function f(−→x ) defined on the set S ⊂ R

3, search for extreme
values as follows:

1. Critical Points: Locate all the critical points of f(−→x ) interior to S,
and evaluate f(−→x ) at each.

2. Boundary Behavior: Find the maximum and minimum values of
f(−→x ) on the boundary ∂S; if the set is unbounded, study the
limiting values as ‖−→x ‖ → ∞ in S.

3. Comparison: Compare these values: the lowest (resp. highest) of
all the values is the infimum (resp. supremum), and if the point at
which it is achieved lies in S, it is the minimum (resp. maximum)
value of f on S.

In practice, this strategy is usually applied to sets of the form
S =

{−→x ∈ R
3 | g(−→x ) ≤ c

}

. We consider a few examples.
First, let us find the maximum and minimum of the function

f(x, y) = x2 − 2x+ y2

inside the disc of radius 2
x2 + y2 ≤ 4.

(See Figure 3.21.)
Critical Points:

−→∇f(x, y) = (2x− 2)−→ı + 2y−→

this vanishes only at the point

x = 1

y = 0

and the value of f(x, y) at the critical point (1, 0), which lies inside the
disc, is

f(1, 0) = 1− 2 + 0

= −1.



316 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

x2 + y2 = 4

x2 + y2 < 4

b

f(1, 0) = −1
b

f(−2, 0) = −1
b
f(2, 0) = 0

Figure 3.21: Critical Points and Boundary Behavior
of f(x, y) = x2 − 2x+ y2 on

{

(x, y) |x2 + y2 ≤ 4
}

Boundary Behavior:

The boundary is the circle of radius 2

x2 + y2 = 4

which we can parametrize as

x = 2cos θ

y = 2 sin θ

so the function restricted to the boundary can be written

g(θ) = f(2 cos θ, 2 sin θ)

= 4 cos2−4 cos θ + 4 sin2 θ

= 4− 4 cos θ.

To find the extrema of this, we can either use common sense (how?) or
take the derivative:

dg

dθ
= 4 sin θ.
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This vanishes when

θ = 0, π.

The values at these places are

g(0) = 4− 4

= 0

g(π) = 4 + 4

= 8

and we see that

max
x2+y2≤4

x2 − 2x+ y2 = 8

= g(π)

= f(−2, 0)
min

x2+y2≤4
x2 − 2x+ y2 = −1

= f(1, 0) .

Next, let’s find the extreme values of the same function on the unbounded
set (see Figure 3.22) defined by

x ≤ y :

here, the lone critical point (1, 0) lies outside the set, so all the extreme
behavior is “at the boundary”. There are two parts to this: first, we look
at the behavior on the boundary points of S, which is the line

x = y.

Along this line we can write

g(x) = f(x, x)

= 2x2 − 2x;

g′(x) = 4x− 2

vanishes at

x =
1

2
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x2 + y2 = 4

f →∞

f →∞

x ≤ y
b
Critical Point not in Domain

b
f
(

−1
2 ,

1
2

)

= −1
2

Figure 3.22: Critical Points and Boundary Behavior of f(x, y) = x2−2x+y2
on {(x, y) |x ≤ y}

and the value there is

g

(

1

2

)

= f

(

1

2
,
1

2

)

= −1

2
.

But we also need to consider what happens when ‖(x, y)‖ → ∞ in our set.
It is easy to see that for any point (x, y), f(x, y) ≥ x2 − 2x ≥ −1, and also
that x2 − 2x→∞ if |x| → ∞. For any sequence (xj , yj) with
‖(xj, yj)‖ → ∞, either |x| → ∞ (so f(x, y) ≥ x2 − 2x→∞) or |y| → ∞ (so
f(x, y) ≥ y2 − 1→∞); in either case, f(xj, yj)→∞. Since there exist
such sequences with xj ≤ yj, the function is not bounded above. Now, if
−→si = (xi, yi) is a sequence with xi ≤ yi and f(−→si )→ infx≤y f(x, y), either−→si have no convergent subsequence, and hence ‖−→si ‖ → ∞, or some
accumulation point of −→si is a local minimum for f . The first case is
impossible, since we already know that then f(−→si )→∞, while in the
second case this accumulation point must be

(

1
2 ,

1
2

)

, and then f(−→si )→ 1
2 .

From this it follows that

min
x≤y

(x2 − 2x+ y2) = −1

2
= f

(

1

2
,
1

2

)

.
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Lagrange Multipliers

For problems in two variables, the boundary is a curve, which can often be
parametrized, so that the problem of optimizing the function on the
boundary is reduced to a one-variable problem. However, when three or
more variables are involved, the boundary can be much harder to
parametrize. Fortunately, there is an alternative approach, pioneered by
Joseph Louis Lagrange (1736-1813) in connection with isoperimetric
problems (for example, find the triangle of greatest area with a fixed
perimeter)12

The method is applicable to problems of the form: find the extreme values
of the function f(−→x ) on a level set L(g, c) of the differentiable function
g(−→x ) containing no critical points of g (we call c a regular value of g(−→x )

if
−→∇g(−→x ) 6= −→0 whenever g(−→x ) = c). These are sometimes called

constrained extremum problems.

The idea is this: suppose the function f(−→x ) when restricted to the level set
L(g, c) has a local maximum at −→x0: this means that, while it might be
possible to find nearby points where the function takes values higher than
f(−→x0), they cannot lie on the level set. Thus, we are interested in finding
those points for which the function has a local maximum along any curve
through the point which lies in the level set. Suppose that −→p (t) is such a
curve; that is, we are assuming that

g(−→p (t)) = c

for all t, and that

−→p (0) = −→x0.

in order for f(−→p (t)) to have a local maximum at t = 0, the derivative must
vanish—that is,

0 =
d

dt

∣

∣

∣

∣

t=0

[f(−→p (t))]

=
−→∇f(−→x0) · −→v

12According to [50, pp. 169-170], when Lagrange communicated his method to Euler in
1755 (at the age of 18!), the older master was so impressed that he delayed publication
of some of his own work on inequalities to give the younger mathematician the credit he
was due for this elegant method.
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where

−→v = −̇→p (0)

is the velocity vector of the curve as it passes −→x0: the velocity must be
perpendicular to the gradient of f . This must be true for any curve in the
level set as it passes through −→x0, which is the same as saying that it must
be true for any vector in the plane tangent to the level set L(g, c) at −→x0: in
other words,

−→∇f(−→x0) must be normal to this tangent plane. But we
already know that the gradient of g is normal to this tangent plane; thus
the two gradient vectors must point along the same line—they must be
linearly dependent! This proves (see Figure 3.23)

b

−→∇g

−→∇fb

b

b

b

b

b

b

b

b

b

b

b b

b
b

Figure 3.23: The Geometry of Lagrange Multipliers

Proposition 3.7.11 (Lagrange Multipliers). If −→x0 is a local extreme point
of the restriction of the function f(−→x ) to the level set L(g, c) of the

function g(−→x ), and c is a regular value of g, then
−→∇f(−→x0) and

−→∇g(−→x0)
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must be linearly dependent:

−→∇f(−→x0) = λ
−→∇g(−→x0) (3.27)

for some real number λ.

The number λ is called a Lagrange multiplier. We have formulated the

linear dependence of the gradients as
−→∇f being a multiple of

−→∇g, rather
than the other way around, because we assume that

−→∇g is nonvanishing,

while this formulation allows
−→∇f to vanish—that is, this equation holds

automatically if −→x0 is a genuine critical point of f . We will refer to this
weaker situation by saying −→x0 is a relative critical point of f(−→x )—that
is, it is critical relative to the constraint g(−→x ) = c.
To see this method in practice, we consider a few examples.
First, let us find the extreme values of

f(x, y, z) = x− y + z

on the sphere
x2 + y2 + z2 = 4

(see Figure 3.24). We have

−→∇f(x, y, z) = −→ı −−→ +
−→
k

and g(x, y, z) = x2 + y2 + z2, so

−→∇g(x, y, z) = 2x−→ı + 2y−→ + 2z
−→
k .

The Lagrange Multiplier equation

−→∇f(−→x0) = λ
−→∇g(−→x0)

amounts to the three scalar equations

1 = 2λx

−1 = 2λy

1 = 2λz

which constitute 3 equations in 4 unknowns; a fourth equation is the
specification that we are on L(g, 4):

x2 + y2 + z2 = 4.
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x

y

z

b

Figure 3.24: Level Curves of f(x, y, z) = x− y + z
on the Sphere x2 + y2 + z2 = 4
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Note that none of the four variables can equal zero (why?), so we can
rewrite the three Lagrange equations in the form

x =
1

2λ

y = − 1

2λ

z =
1

2λ
.

Substituting this into the fourth equation, we obtain

1

4λ2
+

1

4λ2
+

1

4λ2
= 4

or

3 = 16λ2

λ = ±
√
3

4
.

This yields two relative critical points:

λ =

√
3

4

gives the point

(

2√
3
,− 2√

3
,
2√
3

)

where

f

(

2√
3
,− 2√

3
,
2√
3

)

= 2
√
3

while

λ = −
√
3

4

gives the point

(

− 2√
3
,
2√
3
,− 2√

3

)
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where

f

(

− 2√
3
,
2√
3
,− 2√

3

)

= −2
√
3.

Thus,

max
x2+y2+z2

f(x, y, z) = f

(

2√
3
,− 2√

3
,
2√
3

)

= 2
√
3

max
x2+y2+z2

f(x, y, z) = f

(

− 2√
3
,
2√
3
,− 2√

3

)

= −2
√
3.

As a second example, let us find the point on the surface

xyz = 1

closest to the origin. We characterize the surface as L(g, 1), where

g(x, y, z) = xyz
−→∇g(x, y, z) = (yz, xz, xy).

As is usual in distance-optimizing problems, it is easier to work with the
square of the distance; this is minimized at the same place(s) as the
distance, so we take

f(x, y, z) = dist((x, y, z), (0, 0, 0))2

= x2 + y2 + z2

−→∇f(x, y, z) = (2x, 2y, 2z).

(See Figure 3.26)
The Lagrange Multiplier Equation

−→∇f = λ
−→∇g

reads

2x = λyz

2y = λxz

2z = λxy.
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b

x

y

z

Figure 3.25: Level Curves of f(x, y, z) = x2+ y2+ z2 on the surface xyz = 1
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Note first that if xyz = 1, all three coordinates must be nonzero. Thus, we
can solve each of these equations for λ:

λ =
2x

yz

λ =
2y

xz

λ =
2z

xy
.

Thus, we can eliminate λ—whose value is of no direct importance to
us—by setting the three right-hand sides equal:

2x

yz
=

2y

xz
=

2z

xy
.

Cross-multiplying the first equation yields

2x2z = 2y2z

and since z 6= 0 (why?)

x2 = y2;

similarly, we cross-multiply the second equation to get

y2 = z2.

In particular, all three have the same absolute value, so

|x|3 = 1

implies

|x| = |y| = |z| = 1

and an even number of the variables can be negative. This yields four
relative critical points, at all of which f(x, y, z) = 3:

(1, 1, 1),

(1,−1,−1),
(−1,−1, 1),
(−1, 1,−1).
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To see that they are the closest (not the furthest) from the origin, simply
note that there are points on this surface arbitrarily far from the origin, so
the distance to the origin is not bounded above.
Finally, let us consider a “full” optimization problem: to find the extreme
values of

f(x, y, z) = 2x2 + y2 − z2

inside the unit ball
x2 + y2 + z2 ≤ 1

(see Figure 3.26).

•
f(x, y, z) = 0

•
f(x, y, z) = 2

•
f(x, y, z) = 1

•
f(x, y, z) = −1

x

y

z

Figure 3.26: Critical Points of f(x, y) = 2x2 + y2 − z2 inside the Ball x2 +
y2 + z2 ≤ 1

We begin by looking for the Critical Points of f :

∂f

∂x
= 4x

∂f

∂y
= 2y

∂f

∂z
= 2z

all vanish only at the origin, and

f(0, 0, 0) = 0.
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as to Boundary Behavior:

−→∇f(x, y, z) = 4x−→ı + 2y−→ − 2z
−→
k

−→∇g(x, y, z) = 2x−→ı + 2y−→ + 2z
−→
k

and the Lagrange Multiplier Equations read

4x = 2λx

2y = 2λy

−2z = 2λz.

The first equation tells us that either

λ = 2

or

x = 0;

the second says that either

λ = 1

or

y = 0

while the third says that either

λ = −1

or

z = 0.

Since only one of the three named λ-values can hold, two of the coordinates
must be zero, which means in terms of the constraint that the third is ±1.
Thus we have six relative critical points, with respective f -values

f(±1, 0, 0) = 2

f(0,±1, 0) = 1

f(0, 0,±1) = −1.
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Combining this with the critical value 0 at the origin, we have

min
x2+y2+z2≤1

(2x2 + y2 − z2) = f(0, 0,±1) = −1

max
x2+y2+z2≤1

(2x2 + y2 − z2) = f(±1, 0, 0) = 2.

Multiple Constraints

The method of Lagrange Multipliers can be extended to problems in which
there is more than one constraint present. We illustrate this with a single
example, involving two constraints.
The intersection of the cylinder

x2 + y2 = 4

with the plane
x+ y + z = 1

is an ellipse; we wish to find the points on this ellipse nearest and farthest
from the origin. Again, we will work with the square of the distance from
the origin:

f(x, y, z) = x2 + y2 + z2

−→∇f(x, y, z) = (2x, 2y, 2z).

We are looking for the extreme values of this function on the curve of
intersection of two level surfaces. In principle, we could parametrize the
ellipse, but instead we will work directly with the constraints and their
gradients:

g1(x, y, z) = x2 + y2

−→∇g1 = (2x, 2y, 0)

g2(x, y, z) = x+ y + z
−→∇g2 = (1, 1, 1).

Since our curve lies in the intersection of the two level surfaces L(g1, 4) and
L(g2, 1), its velocity vector must be perpendicular to both gradients:

−→v · −→∇g1 = 0

−→v · −→∇g2 = 0.
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At a place where the restriction of f to this curve achieves a local (relative)
extremum, the velocity must also be perpendicular to the gradient of f :

−→v · −→∇f = 0.

But the two gradient vectors
−→∇g1 and

−→∇g2 are linearly independent, and

hence span the plane perpendicular to −→v . It follows that −→∇f must lie in
this plane, or stated differently, it must be a linear combination of the−→∇g’s:

−→∇f = λ1
−→∇g1 + λ2

−→∇g2.

(See Figure 3.27.)

Written out, this gives us three equations in the five unknowns x, y, z, λ1
and λ2:

2x = 2λ1x+ λ2

2y = 2λ1y + λ2

2z = λ2.

The other two equations are the constraints:

x2 + y2 = 4

x+ y + z = 1.

We can solve the first three equations for λ2 and eliminate it:

(1− λ1)x = (1− λ1)y
= 2z.

The first of these equations says that either

λ1 = 1

or

x = y.
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b

b

b

−→∇f

−→∇g1

−→∇g2

min

−→∇f

−→∇g1

max

−→∇g2

−→∇f

−→∇g1

−→∇g2

noncrit. pt.

Figure 3.27: Lagrange Multipliers with Two Constraints
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If λ1 = 1, then the second equality says that z = 0, so y = 1− x. In this
case the first constraint gives us

x2 + (1− x)2 = 4

2x2 − 2x− 3 = 0

x =
1

2
(1±

√
7)

y =
1

2
(1∓

√
7)

yielding two relative critical points, at which the function f has value

f

(

1

2
(1±

√
7),

1

2
(1∓

√
7), 0

)

=
9

4
.

If x = y, then the first constraint tells us

x2 + x2 = 4

x = y = ±
√
2

and then the second constraint says

z = 1− 2x

= 1∓ 2
√
2

yielding another pair of relative critical points, with respective values for f

f
(√

2,
√
2, 1− 2

√
2
)

= 13− 4
√
2

f
(

−
√
2,−
√
2, 1 + 2

√
2
)

= 13 + 4
√
2.

Comparing these various values, we see that the point farthest from the
origin is (−

√
2,−
√
2, 1 + 2

√
2) and the closest are the two points

(

1
2(1±

√
7), 12(1∓

√
7), 0

)

.

Exercises for § 3.7

Practice problems:
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1. Find the minimum and maximum values of

f(x, y) = x2 + xy + 2y2

inside the unit disc

x2 + y2 ≤ 1.

2. Find the minimum and maximum values of

f(x, y) = x2 − xy + y2

inside the disc

x2 + y2 ≤ 4.

3. Find the minimum and maximum values of

f(x, y) = x2 − xy + y2

inside the elliptic disc

x2 + 4y2 ≤ 4.

4. Find the minimum and maximum values of

f(x, y) = sinx sin y sin(x+ y)

inside the square

0 ≤ x ≤ π
0 ≤ y ≤ π

5. Find the minimum and maximum values of

f(x, y) = (x2 + 2y2)e−(x2+y2)

in the plane.
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6. Find the minimum and maximum values of

f(x, y, z) = xyz

on the sphere

x2 + y2 + z2 = 1.

7. Find the point on the sphere

x2 + y2 + z2 = 1

which is farthest from the point (1, 2, 3).

8. Find the rectangle of greatest perimeter inscribed in the ellipse

x2

a2
+
y2

b2
= 1.

Theory problems:

9. Show that each of the following is a closed set, according to
Definition 3.7.3:

(a) Any closed interval [a, b] in R;

(b) any half-closed interval of the form [a,∞) or (−∞, b];
(c) any level set L(g, c) of a continuous function g;

(d) any set defined by weak inequalities like
{

x ∈ R
3 | g(x) ≤ c

}

or
{

x ∈ R
3 | g(x) ≥ c

}

;

10. Prove Remark 3.7.9:

(a) For any set S ⊂ R
3,

S ⊆ int S ∪ ∂S.
(b) The boundary ∂S of any set is closed.

(c) S is closed precisely if it contains its boundary points:

S closed⇔ ∂S ⊂ S.
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(d) S ⊂ R
3 is closed precisely if its complement

R
3 \ S :=

{

x ∈ R
3 |x /∈ S

}

is open.

Challenge problems:

11. (a) Show that any set consisting of a convergent sequence si
together with its limit is a closed set;

(b) Show that any set consisting of a (not necessarily convergent)
sequence together with all of its accumulation points is a closed
set.

12. Prove that if α, β > 0 satisfy

1

α
+

1

β
= 1

then for all x, y ≥ 0

xy ≤ 1

α
xα +

1

β
yβ

as follows:

(a) The inequality is clear for xy = 0, so we can assume xy 6= 0.

(b) If it is true (given α and β) for a given pair (x, y), then it is also
true for the pair (t1/αx, t1/βy) (verify this!), and so we can
assume without loss of generality that xy = 1

(c) Prove the inequality in this case by minimizing

f(x, y) =
1

α
xα +

1

β
yβ

over the hyperbola
xy = 1.

13. Here is a somewhat different proof of Theorem 3.7.6, based on an
idea of Daniel Reem [46]. Suppose S ⊂ R

3 is compact.

(a) Show that for every integer k = 1, 2, . . . there is a finite subset
Sk ⊂ S such that for every point x ∈ S there is at least one
point in Sk whose coordinates differ from those of x by at most
10−k. In particular, for every x ∈ S there is a sequence of points
{xk}∞k=1 such that xk ∈ Sk for k = 1, . . . and x = limxk.
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(b) Show that these sets can be picked to be nested: Sk ⊂ Sk+1 for
all k.

(c) Now, each of the sets Sk is finite, so f has a minimum
mins∈Sk

f(s) = f(mk) and a maximum maxs∈Sk
f(s) = f(Mk).

Show that

f(mk) ≥ f(mk+1)

f(Mk) ≤ f(Mk+1) .

(d) Also, by the Bolzano-Weierstrass Theorem, each of the
sequences {mk}∞k=1 and {Mk}∞k=1 has a convergent subsequence.
Let m (resp. M) be the limit of such a subsequence. Show that
m,M ∈ S and

f(m) = inf f(mk) = lim f(mk)

f(M) = sup f(Mk) = lim f(Mk) .

(e) Finally, show that

f(m) ≤ f(x) ≤ f(M)

for every x ∈ S, as follows: given x ∈ S, by part (a), there is a
sequence xk → x with xk ∈ Sk. Thus,

f(mk) ≤ f(xk) ≤ f(Mk)

and so by properties of limits (which?) the desired conclusion
follows.

14. Suppose −→a satisfies f(−→a ) = b and g(−→a ) = c and is not a critical

point of either function; suppose furthermore that
−→∇g 6= −→0

everywhere on the level set L(g, c) (that is, c is a regular value of g),
and

max
L(g,c)

f(x) = b.

(a) Show that L(f, b) and L(g, c) are tangent at −→a .
(b) As a corollary, show that the restriction of g(−→x ) to L(f, b) has a

local extremum at −→x = −→a .
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3.8 Higher Derivatives

For a function of one variable, the higher-order derivatives give more
subtle information about the function near a point: while the first
derivative specifies the “tilt” of the graph, the second derivative tells us
about the way the graph curves, and so on. Specifically, the second
derivative can help us decide whether a given critical point is a local
maximum, local minimum, or neither.
In this section we develop the basic theory of higher-order derivatives for
functions of several variables, which can be a bit more complicated than
the single-variable version. Most of our energy will be devoted to
second-order derivatives.

Higher-order Partial Derivatives

The partial derivatives of a function of several variables are themselves
functions of several variables, and we can try to find their partial
derivatives. Thus, if f(x, y) is differentiable, it has two first-order partials

∂f

∂x
,

∂f

∂y

and, if they are also differentiable, each has two partial derivatives, which
are the second-order partials of f :

∂2f

∂2x
=

∂

∂x

[

∂f

∂x

]

∂2f

∂y∂x
=

∂

∂y

[

∂f

∂x

]

∂2f

∂x∂y
=

∂

∂x

[

∂f

∂y

]

∂2f

∂2y
=

∂

∂y

[

∂f

∂y

]

.

In subscript notation, the above would be written

fxx = (fx)x
fxy = (fx)y

fyx = (fy)x
fyy = (fy)y .
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Notice that in the “partial” notation, the order of differentiation is
right-to-left, while in the subscript version it is left-to-right. (We shall see
shortly that for C2 functions, this is not an issue.)
For example, the function

f(x, y) = x2 + 2xy + y − 1 + xy3

has first-order partials

fx =
∂f

∂x
= 2x+ 2y + y3

fy =
∂f

∂y
= 2x+ 1 + 3xy2

and second-order partials

fxx =
∂2f

∂2x
= 2

fxy =
∂2f

∂y∂x
= 2 + 3y2

fyx =
∂2f

∂x∂y
= 2 + 3y2

fyy =
∂2f

∂2y
= 6xy.

It is clear that the game of successive differentiation can be taken further;
in general a sufficiently smooth function of two (resp. three) variables will
have 2r (resp. 3r) partial derivatives of order r. Recall that a function is
called continuously differentiable, or C1, if its (first-order) partials exist
and are continuous; Theorem 3.3.4 tells us that such functions are
automatically differentiable. We shall extend this terminology to higher
derivatives: a function is r times continuously differentiable or Cr if
all of its partial derivatives of order 1, 2, ..., r exist and are continuous. In
practice, we shall seldom venture beyond the second-order partials.
The alert reader will have noticed that the two mixed partials of the
function above are equal. This is no accident; the phenomenon was first
noted around 1718 by Nicolaus I Bernoulli (1687-1759);13 in 1734 Leonard
Euler (1707-1783) and Alexis-Claude Clairaut (1713-1765) published
proofs of the following result.

13There were at least six Bernoullis active in mathematics in the late seventeenth and
early eighteenth century: the brothers Jacob Bernoulli (1654-1705) and Johann Bernoulli
(1667-1748)—who was the tutor to L’Hôpital—their nephew, son of the painter Nicolaus
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Theorem 3.8.1 (Equality of Mixed Partials). If a real-valued function f
of two or three variables is twice continuously differentiable (C2), then for
any pair of indices i, j

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

While it is formulated for second-order partials, this theorem
automatically extends to partials of higher order (Exercise 6): if f is Cr,
then the order of differentiation in any mixed partial derivative of order up
to r does not affect its value. This reduces the number of different partial
derivatives of a given order tremendously.

Proof. We shall give the proof for a function of two variables; after
finishing the proof, we shall note how this actually gives the same
conclusion for three variables.

The proof is based on looking at second-order differences: given two
points (x0, y0) and (x1, y1) = (x0 +△x, y0 +△y), we can go from the first
to the second in two steps: increase one of the variables, holding the other
fixed, then increase the other variable. This can be done in two ways,
depending on which variable we change first; the two paths form the sides
of a rectangle with (xi, yi), i = 1, 2 at opposite corners (Figure 3.28). Let

(+f) (x0, y0) (−f) (x0 +△x, y0)

(−f) (x0, y0 +△y) (+f) (x0 +△x, y0 +△y)

Figure 3.28: Second order differences

us now consider the difference between the values of f(x, y) at the ends of
one of the horizontal edges of the rectangle: the difference along the
bottom edge

△xf (y0) = f(x0 +△x, y0)− f(x0, y0)

and also named Nicolaus—who is denoted Nicolaus I—and Johann’s three sons, Nicolaus II
Bernoulli (1695-1726), Daniel Bernoulli (1700-1782) and Johann II Bernoulli (1710-1790).
I am following the numeration given by [14, pp. 92-94], which has a brief biographi-
cal account of Nicolaus I in addition to a detailed study of his contributions to partial
differentiation.
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represents the change in f(x, y) when y is held at y = y0 and x increases
by △x from x = x0, while the difference along the top edge

△xf (y0 +△y) = f(x0 +△x, y0 +△y)− f(x0, y0 +△y)

represents the change in f(x, y) when y is held at y = y0 +△y and x
increases by △x from x = x0. We wish to compare these two changes, by
subtracting the first from the second:

△y△xf = △xf (y0 +△y)−△xf (y0)

= [f(x0 +△x, y0 +△y)− f(x0, y0 +△y)]
− [f(x0 +△x, y0)− f(x0, y0)]

= f(x0 +△x, y0 +△y)− f(x0, y0 +△y)
− f(x0 +△x, y0) + f(x0, y0) .

(Note that the signs attached to the four values of f(x, y) correspond to
the signs in Figure 3.28.) Each of the first-order differences △xf (y0) (resp.
△xf (y0 +△y)) is an approximation to ∂f

∂x at (x0, y0) (resp. (x0, y0 +△y)),
multiplied by △x; their difference is then an approximation to ∂2f

∂y∂x at
(x0, y0), multiplied by △y△x; we shall use the Mean Value Theorem to
make this claim precisely.

But first consider the other way of going: the differences along the two
vertical edges

△yf (x0) = f(x0, y0 +△y)− f(x0, y0)
△yf (x0 +△x) = f(x0 +△x, y0 +△y)− f(x0 +△x, y0)

represent the change in f(x, y) as x is held constant at one of the two
values x = x0 (resp. x = x0 +△x) and y increases by △y from y = y0; this
roughly approximates ∂f

∂y at (x0, y0) (resp. (x0 +△x, y0)), multiplied by
△y, and so the difference of these two differences

△x△yf = △yf (x0 +△x)−△yf (x0)

= [f(x0 +△x, y0 +△y)− f(x0 +△x, y0)]
− [f(x0, y0 +△y)− f(x0, y0)]

= f(x0 +△x, y0 +△y)− f(x0 +△x, y0)
− f(x0, y0 +△y) + f(x0, y0)
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approximates ∂2f
∂x∂y at (x0, y0), multiplied by △x△y. But a close perusal

shows that these two second-order differences are the same—and this will
be the punch line of our proof.

Actually, for technical reasons, we don’t follow the strategy suggested
above precisely. Let’s concentrate on the first (second-order) difference:
counterintuitively, our goal is to show that

∂2f

∂x∂y
(x0, y0) = lim

(△x,△y)→(0,0)

△y△xf

△y△x .

To this end, momentarily fix △x and △y and define

g(t) = △xf (y0 + t△y)
= f(x0 +△x, y0 + t△y)− f(x0, y0 + t△y) ;

then

g′(t) =

[

∂f

∂y
(x0 +△x, y0 + t△y)− ∂f

∂y
(x0, y0 + t△y)

]

△y.

Now,

△y△xf = g(1)− g(0)

and the Mean Value Theorem applied to g(t) tells us that for some
t̃ ∈ (0, 1), this difference

= g′
(

t̃
)

=

[

∂f

∂y

(

x0 +△x, y0 + t̃△y
)

− ∂f

∂y

(

x0, y0 + t̃△y
)

]

△y

or, writing ỹ = y0 + t̃△y, and noting that ỹ lies between y0 and y0 +△y,
we can say that

△y△xf =

[

∂f

∂y
(x0 +△x, ỹ)−

∂f

∂y
(x0, ỹ)

]

△y

where ỹ is some value between y0 and y0 +△y.
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But now apply the Mean Value Theorem to

h(t) =
∂f

∂y
(x0 + t△x, ỹ)

with derivative

h′(t) =
∂2f

∂x∂y
(x0 + t△x, ỹ)△x

so for some t′ ∈ (0, 1)

[

∂f

∂y
(x0 +△x, ỹ)−

∂f

∂y
(x0, ỹ)

]

= h(1)− h(0)

= h′
(

t′
)

=
∂2f

∂x∂y
(x0 + t′△x, ỹ)△x

and we can say that

△y△xf =

[

∂f

∂y
(x0 +△x, ỹ)−

∂f

∂y
(x0, ỹ)

]

△y

=
∂2f

∂x∂y
(x̃, ỹ)△x△y

where x̃ = x0 + t′△x is between x0 and x0 +△x, and ỹ = y0 + t̃△y lies
between y0 and y0 +△y. Now, if we divide both sides of the equation
above by △x△y, and take limits, we get the desired result:

lim
(△x,△y)→(0,0)

△y△xf

△x△y = lim
(△x,△y)→(0,0)

∂2f

∂x∂y
(x̃, ỹ)

=
∂2f

∂x∂y
(x0, y0)

because (x̃, ỹ)→ (x0, y0) as (△x,△y)→ (0, 0) and the partial is assumed
to be continuous at (x0, y0).

But now it is clear that by reversing the roles of x and y we get, in the
same way,

lim
(△x,△y)→(0,0)

△x△yf

△y△x =
∂2f

∂y∂x
(x0, y0)



3.8. HIGHER DERIVATIVES 343

which, together with our earlier observation that

△y△xf = △x△yf

completes the proof.

At first glance, it might seem that a proof for functions of more than two
variables might need some work over the one given above. However, when

we are looking at the equality of two specific mixed partials, say ∂2f
∂xi∂xj

and

∂2f
∂xj∂xi

, we are holding all other variables constant, so the proof above goes

over verbatim, once we replace x with xi and y with xj (Exercise 5).

Taylor Polynomials

The higher derivatives of a function of one variable can be used to
construct a polynomial that has high-order contact with the function at a
point, and hence is a better local approximation to the function. An
analogous construction is possible for functions of several variables,
however more work is needed to combine the various partial derivatives of
a given order into the appropriate polynomial.
A polynomial in several variables consists of monomial terms, each
involving powers of the different variables; the degree of the term is the
exponent sum: the sum of the exponents of all the variables appearing in
that term.14 Thus, each of the monomial terms 3x2yz3, 2xyz4 and 5x6 has
exponent sum 6. We group the terms of a polynomial according to their
exponent sums: the group with exponent sum k on its own is a
homogeneous function of degree k. This means that inputs scale via the
kth power of the scalar. We already saw that homogeneity of degree one is
exhibited by linear functions:

ℓ(c−→x ) = cℓ(−→x ) .

The degree k analogue is

ϕ(c−→x ) = ckϕ(−→x ) ;

for example,

ϕ(x, y, z) = 3x2yz3 + 2xyz4 + 5x6

14The variables that don’t appear have exponent zero
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satisfies

ϕ(cx, cy, cz) = 3(cx)2(cy)(cz)3 + 2(cx)(cy)(cz)4 + 5(cx)6

= c6(3x2yz3 + 2xyz4 + 5x6)

so this function is homogeneous of degree 6. In general, it is easy to see
that a polynomial (in any number of variables) is homogeneous precisely if
the exponent sum of each term appearing in it is the same, and this sum
equals the degree of homogeneity.

For functions of one variable, the kth derivative determines the term of
degree k in the Taylor polynomial, and similarly for a function of several
variables the partial derivatives of order k determine the part of the Taylor
polynomial which is homogeneous of degree k. Here, we will concentrate
on degree two.

For a C2 function f(x) of one variable, the Taylor polynomial of degree two

T2f (
−→a )−→x := f(a) + f ′(a) (x− a) + 1

2
f ′′(a) (x− a)2

has contact of order two with f(x) at x = a, and hence is a closer
approximation to f(x) (for x near a) than the linearization (or degree one
Taylor polynomial). To obtain the analogous polynomial for a function f
of two or three variables, given −→a and a nearby point −→x , we consider the
restriction of f to the line segment from −→a to −→x , parametrized as

g(t) = f(−→a + t△−→x ) , 0 ≤ t ≤ 1

where △−→x = −→x −−→a . Taylor’s Theorem with Lagrange Remainder for
functions of one variable ((Calculus Deconstructed, Theorem 6.1.7)) tells us
that

g(t) = g(0) + tg′(0) +
t2

2
g′′(s) (3.28)

for some 0 ≤ s ≤ t. By the Chain Rule (Proposition 3.3.6)

g′(t) =
−→∇f(−→a + t△−→x ) · △−→x =

∑

j

∂f

∂xj
(−→a + t△−→x )△j

−→x

and so

g′′(s) =
∑

i

∑

j

∂2f

∂xi∂xj
(−→a + s△−→x )△i

−→x△j
−→x .
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This is a homogeneous polynomial of degree two, or quadratic form, in
the components of △−→x . By analogy with our notation for the total
differential, we denote it by

d2−→a f(△−→x ) =
∑

i

∑

j

∂2f

∂xi∂xj
(−→a )△i

−→x△j
−→x .

We shall refer to this particular quadratic form—the analogue of the
second derivative—as the Hessian form of f , after Ludwig Otto Hesse
(1811-1874), who introduced it in 1857 [30].

Again by analogy with the single-variable setting, we define the degree two
Taylor polynomial of f at −→a as the sum of the function with its (total)
differential and half the quadratic form at −→a , both applied to
△−→x = −→x −−→a . Note that in the quadratic part, equality of cross-partials
allows us to combine any pair of terms involving distinct indices into one
term, whose coefficient is precisely the relevant partial derivative; we use
this in writing the last expression below. (We write the version for a
function of three variables; for a function of two variables, we simply omit
any terms that are supposed to involve x3.)

T2f (
−→a )−→x = f(a) + d−→a f(△−→x ) +

1

2
d2−→a f(△−→x )

= f(a) +

3
∑

j=1

∂f

∂xj
(−→a )△xj +

1

2

3
∑

i=1

3
∑

j=1

∂2f

∂xi∂xj
(−→a )△i

−→x△j
−→x

= f(a) +

3
∑

j=1

∂f

∂xj
(−→a )△j

−→x +
1

2

3
∑

i=1

∂2f

∂2xi
(−→a )△x2i +

∑

1≤i<j≤3

∂2f

∂xi∂xj
(−→a )△xi△xj.

We consider two examples.

The function

f(x, y) = e2x cos y
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has

∂f

∂x
(x0, y0) = 2e2x cos y

∂f

∂y
(x0, y0) = −e2x sin y

∂2f

∂2x
(x0, y0) = 4e2x cos y

∂2f

∂x∂y
(x0, y0) = −2e2x sin y

∂2f

∂2y
(x0, y0) = −e2x cos y.

At −→a =
(

0, π3
)

, these values are

f
(

0,
π

3

)

= e0 cos
π

3
=

1

2
∂f

∂x

(

0,
π

3

)

= 2e0 cos
π

3
= 1

∂f

∂y

(

0,
π

3

)

= −e0 sin π
3

= −
√
3

2

∂2f

∂2x

(

0,
π

3

)

= 4e0 cos
π

3
= 2

∂2f

∂x∂y

(

0,
π

3

)

= −2e0 sin π
3
= −
√
3

∂2f

∂2y

(

0,
π

3

)

= −e0 cos π
3

= −1

2

so the degree two Taylor polynomial at −→a =
(

0, π3
)

is

T2f
((

0,
π

3

))

△x,△y =
1

2
+△x−

(√
3

2

)

△y +△x2 − 1

4
△y2 −

√
3△x△y.

Let us compare the value f
(

0.1, π2
)

with f
(

0, π3
)

= 0.5:

• The exact value is

f
(

0.1,
π

2

)

= e0.2 cos
π

2
= 0.

• The linearization (degree one Taylor polynomial) gives an estimate of

T(0,π3 )
f
(

0.1,
π

6

)

=
1

2
+ 0.1 −

(√
3

2

)

π

6
≈ 0.14655.
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• The quadratic approximation (degree two Taylor polynomial) gives

T2f
((

0,
π

3

))

0.1,
π

6
=

1

2
+ 0.1 −

(√
3

2

)

π

6

+ (0.1)2 − 1

4

(π

6

)2
−
√
3(0.1)

(π

6

)

≈ −.00268

a much better approximation.

As a second example, consider the function

f(x, y, z) = x2y3z

which has

fx = 2xy3z, fy = 3x2y2z, fz = x2y3

fxx = 2y3z, fxy = 6xy2z, fxz = 2xy3

fyy = 6x2yz, fyz = 3x2y2

fzz = 0.
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Evaluating these at −→a =
(

1, 12 , 2
)

yields

f

(

1,
1

2
, 2

)

= (1)2
(

1

2

)3

(2) =
1

4

fx

(

1,
1

2
, 2

)

= 2(1)

(

1

2

)3

(2) =
1

2

fy

(

1,
1

2
, 2

)

= 3(1)2
(

1

2

)2

(2) =
3

2

fz

(

1,
1

2
, 2

)

= (1)2
(

1

2

)3

=
1

8

fxx

(

1,
1

2
, 2

)

= 2

(

1

2

)3

(2) =
1

2

fxy

(

1,
1

2
, 2

)

= 6(1)2
(

1

2

)2

(2) = 3

fxz

(

1,
1

2
, 2

)

= 2(1)

(

1

2

)3

=
1

4

fyy

(

1,
1

2
, 2

)

= 6(1)2
(

1

2

)

(2) = 6

fyz

(

1,
1

2
, 2

)

= 3(1)2
(

1

2

)2

=
3

4

fzz

(

1,
1

2
, 2

)

= 0.

The degree two Taylor polynomial is

T2f (
−→a )△x,△y,△z =

1

4
+

(

1

2
△x+

3

2
△y + 1

8
△z
)

+
1

2

(

2△x2 + 6△y2 + 0△z2
)

+ (6△x△y + 2△x△z + 3△y△z)
= 0.25 + 0.5△x+ 1.5△y + 0.125△z
+ 0.25△x2 + 0.25△x△z + 3△x△y + 3△y2 + 0.75△y△z.

Let us compare the value f(−→a ) = f(1, 0.5, 2.0) = .25 with f(1.1, 0.4, 1.8):

• The exact value is

f(1.1, 0.4, 1.8) = (1.1)2(0.4)3(1.8) = 0.139392.
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• The linear approximation, with −→a = (1.0, 0.5, 2.0), △x = 0.1,
△y = −0.1 and △z = −0.2 is

T−→a f(0.1,−0.1,−0.2)
= 0.25 + (0.5)(0.1) + (1.5)(−0.1) + (0.125)(−0.2)

= 0.125.

• The quadratic approximation is

T2f (
−→a ) 0.1,−0.1,−0.2

= 0.25 + (0.5)(0.1) + (1.5)(−0.1) + (0.125)(−0.2)
+ (0.25)(0.1)2 + (3)(−0.1)2

+ (3)(0.1)(−0.1) + (0.25)(0.1)(−0.2) + (0.75)(−0.1)(−0.2)
= 0.1375

again a better approximation.

These examples illustrate that the quadratic approximation, or degree two
Taylor polynomial T2f (

−→a )−→x , provides a better approximation than the
linearization T−→a f(

−→x ). This was the expected effect, as we designed
T2f (

−→a )−→x to have contact of order two with f(x) at −→x = −→a . Let us
confirm that this is the case.

Proposition 3.8.2 (Taylor’s Theorem for f:R3→R (degree 2)). If
f:R3→R is C2 (f has continuous second-order partials), then T2f (

−→a )−→x
and f(−→x ) have contact of order two at −→x = −→a :

lim−→x→−→a

|f(−→x )− T2f (−→a )−→x |
‖−→x −−→a ‖2

= 0.

Proof. Equation (3.28), evaluated at t = 1 and interpreted in terms of f ,
says that, fixing −→a ∈ R

3, for any −→x in the domain of f ,

f(−→x ) = f(−→a ) + d−→a f(△−→x ) +
1

2
d2~sf(△−→x )

where ~s lies on the line segment from −→a to −→x . Thus,

f(−→x )− T2f (−→a )−→x =
1

2

(

d2−→a f(△−→x )− d2~sf(△−→x )
)

=
1

2

3
∑

i=1

3
∑

j=1

(

∂2f

∂xi∂xj
(−→a )− ∂2f

∂xi∂xj
(~s)

)

△xi△xj
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and so

|f(−→x )− T2f (−→a )−→x |
‖−→x −−→a ‖2

≤ 1

2





3
∑

i=1

3
∑

j=1

∣

∣

∣

∣

∂2f

∂xi∂xj
(−→a )− ∂2f

∂xi∂xj
(~s)

∣

∣

∣

∣





|△xi△xj |
△−→x 2

≤ n2

2
max
i,j

∣

∣

∣

∣

∂2f

∂xi∂xj
(−→a )− ∂2f

∂xi∂xj
(~s)

∣

∣

∣

∣

max
i,j

|△xi△xj|
△−→x 2

. (3.29)

By an argument analogous to that giving Equation (2.18) on p. 159
(Exercise 7), we can say that

max
i,j

|△xi△xj |
‖△−→x ‖2

≤ 1

and by continuity of the second-order partials, for each i and j

lim−→x→−→a

∂2f

∂xi∂xj
(−→x ) =

∂2f

∂xi∂xj
(−→a ) .

Together, these arguments show that the right-hand side of Equation (3.29)
goes to zero as −→x → −→a (since also ~s→ −→a ), proving our claim.

We note in passing that higher-order “total” derivatives, and the
corresponding higher-degree Taylor polynomials, can also be defined and
shown to satisfy higher-order contact conditions. However, the formulation
of these quantities involves more complicated multi-index formulas, and
since we shall not use derivatives beyond order two in our theory, we leave
these constructions and proofs to your imagination.

Exercises for § 3.8

Practice problems:

1. Find ∂2f
∂2x ,

∂2f
∂2y , and

∂2f
∂y∂x for each function below:

(a) f(x, y) = x2y (b) f(x, y) = sinx+ cos y

(c) f(x, y) = x3y + 3xy2 (d) f(x, y) = sin(x2y)

(e) f(x, y) = sin(x2 + 2y) (f) f(x, y) = ln(x2y)

(g) f(x, y) = ln (x2y + xy2) (h) f(x, y) =
x+ y

x2 + y2
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(i) f(x, y) =
xy

x2 + y2

2. Find all second-order derivatives of each function below:

(a) f(x, y, z) = x2 + y2 + z2 (b) f(x, y, z) = xyz

(c) f(x, y, z) =
√
xyz (d) f(x, y, z) =

1

x2 + y2 + z2

(e) f(x, y, z) = ex
2+y2+z2 (f) f(x, y, z) =

xyz

x2 + y2 + z2

3. Find the degree two Taylor polynomial of the given function at the
given point:

(a) f(x, y) = x3y2 at (−1,−2).
(b) f(x, y) = x

y at (2, 3).

(c) f(x, y, z) = xy
z at (2,−3, 5).

4. Let
f(x, y) =

xy

x+ y
.

(a) Calculate an approximation to f(0.8, 1.9) using the degree one
Taylor polynomial at (1, 2), T(1,2)f(△x,△y).

(b) Calculate an approximation to f(0.8, 1.9) using the degree two
Taylor polynomial at (1, 2), T2f ((1, 2))△x,△y.

(c) Compare the two to the calculator value of f(0.8, 1.9); does the
second approximation improve the accuracy, and by how much?

Theory problems:

5. (a) Show that for any C2 function f(x, y, z),

∂2f

∂x∂z
(x0, y0, z0) =

∂2f

∂z∂x
(x0, y0, z0) .

(b) How many distinct partial derivatives of order 2 can a C2
function of n variables have?

6. (a) Show that for any C3 function f(x, y),

∂3f

∂x∂y∂x
(x0, y0) =

∂3f

∂y∂2x
(x0, y0).
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(b) How many distinct partial derivatives of order n can a Cn
function of two variables have?

(c) How many distinct partial derivatives of order n can a Cn
function of three variables have?

7. Prove the comment in the proof of Proposition 3.8.2, that

max
(i,j)

|△xi△xj |
‖△−→x ‖2

≤ 1.

Challenge problem:

8. Consider the function of two variables

f(x, y) =

{

xy(x2−y2)
x2+y2 if x2 + y2 6= 0,

0 at (x, y) = (0, 0).

(a) Calculate ∂f
∂x (x, y) and

∂f
∂y (x, y) for (x, y) 6= (0, 0).

(b) Calculate ∂f
∂x (0, 0) and

∂f
∂y (0, 0).

(c) Calculate the second-order partial derivatives of f(x, y) at
(x, y) 6= (0, 0).

(d) Calculate the second-order partial derivatives of f(x, y) at the
origin. Note that

∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0) .

Explain.

3.9 Local Extrema

The Critical Point Theorem (Theorem 3.7.10) tells us that a local
extremum must be a critical point: if a differentiable function f:R3→R

has a local maximum (or local minimum) at −→a , then d−→a f(−→v ) = 0 for all
−→v ∈ R

3. The converse is not true: for example, the function f(x) = x3 has
a critical point at the origin but is strictly increasing on the whole real
line. Other phenomena are possible for multivariate functions: for
example, the restriction of f(xy) = x2− y2 to the x-axis has a minimum at
the origin, while its restriction to the y-axis has a maximum there. So to
determine whether a critical point −→a is a local extremum, we need to
study the (local) behavior in all directions—in particular, we need to study
the Hessian d2−→a f .
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Definite Quadratic Forms

Since it is homogeneous, every quadratic form is zero at the origin. We call
the quadratic form Q definite if it is nonzero everywhere else: Q(−→x ) 6= 0

for −→x 6= −→0 . For example, the forms Q(x, y) = x2 + y2 and
Q(x, y) = −x2 − 2y2 are definite, while Q(x, y) = x2 − y2 and Q(x, y) = xy
are not. We shall see that the form

Q(x, y) = 2(x+ y)2 + y(y − 6x) = 2x2 − 2xy + 3y2

is definite, but a priori this is not entirely obvious.
A definite quadratic form cannot switch sign, since along any path where
the endpoint values of Q have opposite sign there would be a point where
Q = 0, and such a path could be picked to avoid the origin, giving a point
other than the origin where Q = 0:

Remark 3.9.1. If Q(−→x ) is a definite quadratic form, then one of the
following inequalities holds:

• Q(−→x ) > 0 for all −→x 6= −→0 (Q is positive definite), or

• Q(−→x ) < 0 for all −→x 6= −→0 (Q is negative definite)

Actually, in this case we can say more:

Lemma 3.9.2. If Q(−→x ) is a positive definite (resp. negative definite)
quadratic form, then there exists K > 0 such that

Q(−→x ) ≥ K ‖−→x ‖2 (resp. Q(−→x ) ≤ −K ‖−→x ‖2) for all x.

Proof. The inequality is trivial for −→x =
−→
0 . If −→x 6= −→0 , let −→u = −→x / ‖−→x ‖

be the unit vector parallel to −→x ; then
Q(−→x ) = Q(−→u ) ‖−→x ‖2

and so we need only show that |Q(−→x )| is bounded away from zero on the
unit sphere

S = {−→u | ‖−→u ‖ = 1} .
In the plane, S is the unit circle x2 + y2 = 1, while in space it is the unit
sphere x2 + y2 + z2 = 1. Since S is closed and bounded (Exercise 3), it is
sequentially compact, so |Q(−→x )| achieves its minimum on S, which is not
zero, since Q is definite. It is easy to see that

K = min
‖−→u ‖=1

|Q(−→u )|

has the required property.
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Using Lemma 3.9.2 and Taylor’s theorem (Proposition 3.8.2), we can show
that a critical point with definite Hessian is a local extremum.

Proposition 3.9.3. Suppose f is a C2 function and −→a is a critical point
for f where the Hessian form d2−→a f is definite.
Then f has a local extremum at −→a :
• If d2−→a f is positive definite, then f has a local minimum at −→a ;

• If d2−→a f is negative definite, then f has a local maximum at −→a .
Proof. The fact that the quadratic approximation T 2−→a f (

−→x ) has second
order contact with f(−→x ) at −→x = −→a can be written in the form

f(−→x ) = T 2−→a f (
−→x ) + ε(−→x ) ‖−→x −−→a ‖2 , where lim−→x→−→a

ε(−→x ) = 0.

Since −→a is a critical point, d−→a f(△−→x ) = 0, so

T 2−→a f (
−→x ) = f(−→a ) + 1

2
d2−→a f(△−→x ) ,

or

f(−→x )− f(−→a ) = 1

2
d2−→a f(△−→x ) + ε(−→x ) ‖△−→x ‖2 .

Suppose d2−→a f is positive definite, and let K > 0 be the constant given in
Lemma 3.9.2, such that

d2−→a f(△−→x ) ≥ K ‖△−→x ‖
2
.

Since ε(−→x )→ 0 as −→x → −→a , for ‖△−→x ‖ sufficiently small, we have

|ε(−→x )| < K

4

and hence

f(−→x )− f(−→a ) ≥ {K
2
− ε(−→x )} ‖△−→x ‖2 > K

4
‖△−→x ‖2 > 0

or
f(−→x ) > f(−→a ) for −→x 6= −→a (‖△−→x ‖ sufficiently small).

The argument when d2−→a f is negative definite is analogous
(Exercise 4a).

An analogous argument (Exercise 4b) gives

Lemma 3.9.4. If d2−→a f takes both positive and negative values at the
critical point −→x = −→a of f , then f does not have a local extremum at
−→x = −→a .
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Quadratic Forms in R
2

To take advantage of Proposition 3.9.3 we need a way to decide whether or
not a given quadratic form Q is positive definite, negative definite, or
neither.
In the planar case, there is an easy and direct way to decide this.
If we write Q(x1, x2) in the form

Q(x1, x2) = ax21 + 2bx1x2 + cx22

then we can factor out “a” from the first two terms and complete the
square:

Q(x1, x2) = a

(

(

x1 +
b

a
x2
)2 − b2

a2
x22

)

+ cx22

= a

(

x1 +
b

a
x2

)2

+

(

c− b2

a

)(

x2

)2

.

Thus, Q is definite provided the two coefficients in the last line have the
same sign, or equivalently, if their product is positive:15

(a)

(

c− b2

a

)

= ac− b2 > 0.

The quantity in this inequality will be denoted ∆2; it can be written as the
determinant of the matrix

[Q] =

[

a b
b c

]

which is the matrix representative of Q.
If ∆2 > 0, then Q is definite, which is to say the two coefficients in the
expression for Q(x1, x2) have the same sign; to tell whether it is positive
definite or negative definite, we need to decide if this sign is positive or
negative, and this is most easily seen by looking at the sign of a, which we
will denote ∆1. The significance of this notation will become clear later.
With this notation, we have

Proposition 3.9.5. A quadratic form

Q(x1, x2) = ax21 + 2bx1x2 + cx22

15Note that if either coefficient is zero, then there is a whole line along which Q = 0, so
it is not definite.



356 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

is definite only if

∆2 := ac− b2 > 0;

it is positive definite if in addition

∆1 := a > 0

and negative definite if

∆1 < 0.

If ∆2 < 0, then Q(−→x ) takes both (strictly) positive and (strictly) negative
values.

Let us see what this tells us about the forms we introduced at the
beginning of this section:

1. Q(x, y) = x2 + y2 has

A = [Q] =

[

1 0
0 1

]

so

∆1 = 1 > 0

∆2 = 1 > 0

and Q is positive definite.

2. Q(x, y) = −x2 − 2y2 has

A = [Q] =

[

−1 0
0 −2

]

so

∆1 = −1 < 0

∆2 = 2 > 0

and Q is negative definite.
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3. Q(x, y) = x2 − y2 has

A = [Q] =

[

1 0
0 −1

]

so

∆2 = −1 < 0

and Q is not definite.

4. Q(x, y) = xy has

A = [Q] =

[

0 1
1 0

]

so

∆2 = −1 < 0

and Q is not definite.

5. Finally, for the one we couldn’t decide in an obvious way:
Q(x, y) = 2x2 − 2xy + 3y2 has

A = [Q] =

[

2 −1
−1 3

]

so

∆1 = 2 > 0

∆2 = 5 > 0

and Q is positive definite.

When applied to the Hessian of f:R2→R, the matrix representative of the
Hessian form is the matrix of partials of f , sometimes called the Hessian
matrix of f :

Hf(−→a ) =
[

fxx(
−→a ) fxy(

−→a )
fxy(
−→a ) fyy(

−→a )

]

.

this gives us 16

16The Second Derivative Test was published by Joseph Louis Lagrange (1736-1813) in
his very first mathematical paper [35] ([22, p. 323]).
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Theorem 3.9.6 (Second Derivative Test, Two Variables). If f:R2→R is
C2 and has a critical point at −→x = −→a , consider the determinant of the
Hessian matrix 17

∆ = ∆2(
−→a ) = fxx(

−→a ) fyy(−→a )− fxy(−→a )2 ,

and its upper left entry
∆1(
−→a ) = fxx.

Then:

1. if ∆ > 0, then −→a is a local extremum of f :

(a) it is a local minimum if ∆1(
−→a ) = fxx > 0

(b) it is a local maximum if ∆1(
−→a ) = fxx < 0;

2. if ∆ < 0, then −→a is not a local extremum of f ;

3. ∆ = 0 does not give enough information to distinguish the
possibilities.

Proof. 1. We know that d2−→a f is positive (resp. negative) definite by
Proposition 3.9.5, and then apply Proposition 3.9.3.

2. Apply Proposition 3.9.5 and then Lemma 3.9.4 in the same way.

3. Consider the following three functions:

f(x, y) = (x+ y)2 = x2 + 2xy + y2

g(x, y) = f(x, y) + y4 = x2 + 2xy + y2 + y4

h(x, y) = f(x, y)− y4 = x2 + 2xy + y2 − y4.

They all have second order contact at the origin, which is a critical
point, and all have Hessian matrix

A =

[

1 1
1 1

]

so all have ∆ = 0. However:

• f has a weak local minimum at the origin: the function is
non-negative everywhere, but equals zero along the whole line
y = −x;

17sometimes called the discriminant of f
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• g has a strict minimum at the origin: g(−→x ) > 0 for all −→x 6= −→0 ,
and

• h has saddle behavior: its restriction to the x-axis has a
minimum at the origin, while its restriction to the line y = −x
has a maximum at the origin.

As an example, consider the function

f(x, y) = 5x2 + 6xy + 5y2 − 8x− 8y.

We calculate the first partials

fx(x, y) = 10x+ 6y − 8

fy(x, y) = 6x+ 10y − 8

and set both equal to zero to find the critical points:

10x+ 6y = 8

6x+ 10y = 8

has the unique solution

(x, y) =

(

1

2
,
1

2

)

.

Now we calculate the second partials

fxx(x, y) = 10

fxy(x, y) = 6

fyy(x, y) = 10.

Thus, the discriminant is

∆2(x, y) := fxxfyy − (fxy)
2 = (10) · (10) − (6)2 > 0

and since also

∆1(x, y) = fx(x, y) = 6 > 0
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the function has a local minimum at
(

1
2 ,

1
2

)

.
As another example,

f(x, y) = 5x2 + 26xy + 5y2 − 36x− 36y + 12

has

fx(x, y) = 10x+ 26y − 36

fy(x, y) = 26x+ 10y − 36

so the sole critical point is (1, 1); the second partials are

fxx(x, y) = 10

fxy(x, y) = 26

fyy(x, y) = 10

so the discriminant is

∆2(1, 1) = (10) · (10) − (26)2 < 0

and the function has a saddle point at (1, 1).
Finally, consider

f(x, y) = x3 − y3 + 3x2 + 3y.

We have

fx(x, y) = 3x2 + 6x = 3x(x+ 2)

fy(x, y) = −3y2 + 3

and these both vanish when x = 0 or −2 and y = ±1, yielding four critical
points. The second partials are

fxx(x, y) = 6x+ 6

fxy(x, y) = 0

fyy(x, y) = −6y

so the discriminant is

∆2(x, y) = (6x+ 6)(−6y) − 0

= −36(x+ 1)y.
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The respective values at the four critical points are

∆(2) 0,−1 = 36 > 0

∆(2) 0, 1 = −36 < 0

∆(2)−2,−1 = −36 < 0

∆(2)−2, 1 = 36 > 0

so (0, 1) and (−2,−1) are saddle points, while (0,−1) and (−2, 1) are local
extrema; for further information about the extrema, we consider the first
partials there:

∆1(0, 1) = fxx(0, 1) = 6 > 0

so f(x, y) has a local minimum there, while

∆1(−2, 1) = fxx(−2, 1) = −12 < 0

so f(x, y) has a local maximum there.
The situation for three or more variables is more complicated. In the next
section, we establish the Principal Axis Theorem which gives us more
detailed information about the behavior of quadratic forms. This will help
us understand the calculations in this section, and also the more subtle
considerations at play in R

3.

Exercises for § 3.9

Practice problems:

1. For each quadratic form below, find its matrix representative, and
use Proposition 3.9.5 to decide whether it is positive definite, negative
definite, or not definite.

(a) Q(x, y) = x2 − 2xy + y2 (b) Q(x, y) = x2 + 4xy + y2

(c) Q(x, y) = 2x2 + 2xy + y2 (d) Q(x, y) = x2 − 2xy + 2y2

(e) Q(x, y) = 2xy (f) Q(x, y) = 4x2 + 4xy

(g) Q(x, y) = 4x2 − 2xy (h) Q(x, y) = −2x2 + 2xy − 2y2

2. For each function below, locate all critical points and classify each as
a local maximum, local minimum, or saddle point.

(a) f(x, y) = 5x2 − 2xy + 10y2 + 1
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(b) f(x, y) = 3x2 + 10xy − 8y2 + 2

(c) f(x, y) = x2 − xy + y2 + 3x− 2y + 1

(d) f(x, y) = x2 + 3xy + y2 + x− y + 5

(e) f(x, y) = 5x2 − 2xy + y2 − 2x− 2y + 25

(f) f(x, y) = 5y2 + 2xy − 2x− 4y + 1

(g) f(x, y) = (x3 − 3x)(y2 − 1)

(h) f(x, y) = x+ y sinx

Theory problems:

3. Show that the unit sphere S is a closed and bounded set.

4. (a) Mimic the proof given in the positive definite case of
Proposition 3.9.3 to prove the negative definite case.

(b) Prove Lemma 3.9.4.

3.10 The Principal Axis Theorem (Optional)

In this section, we extend the analysis of quadratic forms from two to three
variables, which requires some new ideas.
First, we need to clarify the mysterious “matrix representative” that
appeared, for a quadratic form in two variables, in § 3.9.

Matrix Representative of a Quadratic Form

We saw in § 3.2 that a linear real-valued function ℓ(−→x ) can be expressed as
multiplication of the coordinate column [−→x ] of the input vector by a row of
coefficients; for R2, this reads

ℓ(−→x ) =
[

a1 a2
]

·
[

x1
x2

]

= a1 · x1 + a2x2 = a1x+ a2y

while for R3 it reads

ℓ(−→x ) =
[

a1 a2 a3
]

·





x1
x2
x3



 = a1 · x1 + a2x2 + a3x3. = a1x+ a2y+ a3z.

Analogously, we can express any quadratic form as a three-factor product,
using the basic matrix arithmetic which is reviewed in Appendix D. For
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example, there are four kinds of quadratic terms in the two variables x and
y: x2, y2, xy and yx (for the moment, let us ignore the fact that we can
combine the last two). Then in the expression

Q(x, y) = αx2 + βxy + γyx+ δy2

we can factor out the initial x factor from the first two terms and the
initial y factor from the last two to write

Q(x, y) = x(αx+ βy) + y(γx+ δy)

which can be written as the product of a row with a column

=
[

x y
]

[

αx+ βy
γx+ δy

]

.

The column on the right can be expressed in turn as the product of a 2× 2
matrix with a column, leading to the three-factor product

=
[

x y
]

[

α β
γ δ

] [

x
y

]

.

The two outside factors are clearly the coordinate column of (x, y) and its
transpose. The 2× 2 matrix in the middle could be regarded as a matrix
representing Q, but note that there is an ambiguity here: the two “mixed
product” terms βxy and γyx can be rewritten in many other ways without
changing their total value; all we need to do is to make sure that the sum
β + γ is unchanged. Thus, any other matrix with the same diagonal entries
α and δ, and whose off-diagonal entries add up to β + γ, leads to the same
function Q(x, y). To standardize things, we require that the matrix be
symmetric. This amounts to “balancing” the two mixed product terms:
each is equal to half will have some useful consequences down the road.
Thus the matrix representative of a quadratic form Q(x, y) in two
variables is the symmetric 2× 2 matrix [Q] satisfying

Q(−→x ) = [−→x ]T [Q] [−→x ] . (3.30)

You should confirm that this is the same as the matrix representative we
used in § 3.9.
When we apply Equation (3.30) to a quadratic form in three variables
Q(x1, x2, x3), we get a symmetric 3× 3 matrix. The diagonal entries of [Q]
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are the coefficients aii of the “square” terms x2i , and each off-diagonal
entry is half of the coefficient bij of a “mixed product” term xixj : if

Q(x1, x2, x3) = a11x
2
1 + b12x1x2 + b13x1x3

+ a22x
2
2 + b23x2x3 + a33x

2
3

then we rewrite it in “balanced” form

Q(x1, x2, x3) = a11x
2
1 + a12x1x2 + a13x1x3

+ a21x2x1 + a22x
2
2 + a23x2x3

+ a31x3x1 + a32x3x2 + a33x
2
3

where

a12 = a21 =
1

2
b12

a13 = a31 =
1

2
b13

a23 = a32 =
1

2
b23

and its matrix representative is

[Q] =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





a11
1
2b12

1
2b13

1
2b12 a22

1
2b23

1
2b13

1
2b23 a33



 .

The Principal Axis Theorem

Using the language of matrices, Proposition 3.9.5 can be rephrased as: Q is
positive (resp. negative) definite if the determinant of its matrix
representative is positive and its upper-lefthand entry a11 is positive (resp.
negative). This does not carry over to forms in three or more variables.
For example, the quadratic form

Q(x, y, z) = x2 − y2 − z2

which is clearly not definite, has a11 = 1 > 0 and

[Q] =





1 0 0
0 −1 0
0 0 −1
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with determinant 1 > 0. It turns out that we have to look at a minor of
the determinant, as well.

To understand this, we approach our problem differently, taking a clue
from the proof of Lemma 3.9.2: to know that Q is positive definite18 we
need to establish that the minimum value of its restriction to the unit
sphere

S2 =
{−→u ∈ R

3 | ‖−→u ‖ = 1
}

is positive. This means we need to consider the constrained optimization
problem: find the minimum of

f(−→x ) = Q(−→x )

subject to the constraint

g(−→x ) = −→x · −→x = 1.

This can be attacked using Lagrange multipliers: we know that the point
−→u ∈ S2 where the minimum occurs satisfies the condition

−→∇f(−→u ) = λ
−→∇g(−→u ) for some λ ∈ R.

We already know that
−→∇g(−→u ) = 2−→u ;

we need to calculate
−→∇f(−→u ).

To this end, we write f(x1, x2, x3) = Q(x1, x2, x3) in the matrix form

f(x1, x2, x3) =
[

x1 x2 x3
]





a11 a12 a13
a21 a22 a23
a31 a32 a33









x1
x2
x3



 =

3
∑

i=1

3
∑

j=1

aijxixj .

To find ∂f
∂x1

, we locate all the terms involving x1: they are

a11x
2
1 + a12x1x2 + a13x1x3 + a21x2x1 + a31x3x1;

using the symmetry of A we can combine some of these terms to get

a11x
2
1 + 2a12x1x2 + 2a13x1x3.

18we return to the negative definite case at the end of this subsection
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Differentiating with respect to x1, this gives

∂f

∂x1
= 2a11x1 + 2a12x2 + 2a13x3

= 2(a11x1 + a12x2 + a13x3).

Note that the quantity in parentheses is exactly the product of the first
row of A = [Q] with [−→x ], or equivalently the first entry of A [−→x ]. For
convenience, we will abuse notation, and write simply A−→x for the vector
whose coordinate column is A times the coordinate column of −→x :

[A−→x ] = A [−→x ] .

You should check that the other two partials of f are the other coordinates
of A−→x , so −→∇f(−→u ) = 2A−→u .
If we also recall that the dot product of two vectors can be written in
terms of their coordinate columns as

−→x · −→y = [−→x ]
T
[−→y ]

then the matrix form of f(−→x ) = Q(−→x ) becomes

f(−→x ) = −→x ·A−→x ;

we separate out this calculation as

Remark 3.10.1. The gradient of a function of the form

f(−→x ) = −→x · A−→x

is −→∇f(−→x ) = 2A−→x .

Note that, while our calculation was for a 3× 3 matrix, the analogous
result holds for a 2× 2 matrix as well.
Now, the Lagrange multiplier condition for extrema of f on S2 becomes

A−→u = λ−→u . (3.31)

Geometrically, this means that A−→u and −→u have the same direction (up to
reversal, or possibly squashing to zero). Such situations come up often in
problems involving matrices; we call a nonzero vector −→u which satisfies
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Equation (3.31) an eigenvector of A; the associated scalar λ is called the
eigenvalue of A associated to −→u .19
Our discussion has shown that every symmetric matrix A has an
eigenvector, corresponding to the minimum of the associated quadratic
form Q(−→x ) = −→x · A−→x on the unit sphere. In fact, we can say more:

Proposition 3.10.2 (Principal Axis Theorem for R3). If A is a
symmetric 3× 3 matrix, then there exist three mutually perpendicular unit
eigenvectors for A: −→ui , i = 1, 2, 3 satisfying

A−→ui = λi
−→ui for some scalars λi ∈ R, i = 1, 2, 3,

−→ui · −→uj =
{

0 if i 6= j,

1 if i = j.

Proof. Since the unit sphere S2 is sequentially compact, the restriction to
S2 of the quadratic form Q(−→x ) = −→x ·A−→x achieves its minimum
somewhere, say −→u1, and this is a solution of the equations

A−→u1 = λ1
−→u1 (some λ1)

−→u1 · −→u1 = 1.

Now, consider the plane P through the origin perpendicular to −→u1
P = −→u1⊥ =

{−→x ∈ R
3 | −→x · −→u = 0

}

and look at the restriction of Q to the circle

P ∩ S2 =
{−→u ∈ R

3 | −→u · −→u1 = 0 and −→u · −→u = 1
}

.

This has a minimum at −→u2 and a maximum at −→u3, each of which is a
solution of the Lagrange multiplier equations

−→∇f(−→u ) = λ
−→∇g1(−→u ) + µ

−→∇g2(−→u )
g1(
−→u ) = −→u · −→u = 1

g2(
−→u ) = −→u · −→u1 = 0.

Again, we have, for i = 1, 2, 3,

−→∇f(−→u ) = 2A−→u
−→∇g1(−→u ) = 2−→u

19Another terminology calls an eigenvector a characteristic vector and an eigenvalue
a characteristic value of A.
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and clearly

−→∇g2(−→u ) = −→u1,

so the first equation reads

2A−→u = 2λ−→u + µ−→u1.

If we take the dot product of both sides of this with −→u1, using the fact that
−→u · −→u1 = 0 and −→u1 · −→u1 = 1, we obtain

0 = µ

so for −→u = −→ui , i = 2, 3, the first equation, as before, is the eigenvector
condition

A−→ui = λi
−→ui .

We already know that −→u1 · −→u2 = −→u1 · −→u3 = 0 and −→u2 · −→u2 = −→u3 · −→u3 = 1, but
what about −→u2 · −→u3? If Q is constant on P ∩S2, then every vector in P ∩S2
qualifies as −→u2 and/or −→u3, so we simply pick these to be mutually
perpendicular. If not, then

λ2 =
−→u2 · (λ2−→u2) = Q(−→u2) = min−→u ∈P∩S2

Q(−→u )

< max−→u ∈P∩S2
Q(−→u )= Q(−→u3) = λ3

so λ2 6= λ3. So far, we haven’t used the symmetry of A, which gives us
(

[−→u2]T A [−→u3]
)T

= [−→u3]T A [−→u2] .

This can be reinterpreted as saying that

−→u2 · (A−→u3) = −→u3 · (A−→u2).

This lets us say that

(λ2
−→u2) · −→u3 = (A−→u2) · −→u3

= −→u2 · (A−→u3)
= −→u2 · (λ3−→u3)
= λ3

−→u2 · −→u3.

Since λ2 6= λ3, we must have −→u2 · −→u3 = 0, completing the proof of the
proposition.



3.10. THE PRINCIPAL AXIS THEOREM (OPTIONAL) 369

What does this result tell us about quadratic forms?

We start with some consequences of the second property of the
eigenvectors −→ui :

−→ui · −→uj =
{

0 if i 6= j,

1 if i = j.

Geometrically, this says two things: first (using i = j) they are unit vectors
(|−→ui |2 −−→ui · −→ui = 1), and second, they are mutually perpendicular. A
collection of vectors with both properties is called an orthonormal set of
vectors. Since they define three mutually perpendicular directions in space,
a set of three orthonormal vectors in R

3 can be used to set up a new
rectangular coordinate system: any vector −→x ∈ R

3 can be located by its
projections onto the directions of these vectors, which are given as the dot
products of −→x with each of the −→ui . You should check that using these
coordinates, we can express any vector −→x ∈ R

3 as a linear combination of
the −→ui : −→x = (−→x · −→u1)−→u1 + (−→x · −→u2)−→u2 + (−→x · −→u3)−→u3.
Any collection B = {−→v1 ,−→v2−→v3} of three vectors in R

3 with the property that
each 3-vector is a linear combination of them is called a basis for R3, and
the coordinates of −→x with respect to B are the coefficients in this
combination20; we arrange them in a column to form the coordinate
column of −→x with respect to B:

B[
−→x ] =





ξ1
ξ2
ξ3





where

−→x = ξ1
−→v1 + ξ2

−→v2 + ξ3
−→v3 .

The standard basis for R3 is E =
{−→ı ,−→ ,−→k

}

, and in the coordinate

column of any vector −→x = (x, y, z) with respect to the standard basis is
the one we have been using all along:

E [
−→x ] = [−→x ] =





x
y
z



 .

20which can be shown to be unique
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Now, using both properties given by Proposition 3.10.2 we can use the
coordinates with respect to the eigenvectors of [Q] to obtain a particularly
simple and informative expression for the quadratic form Q:

Corollary 3.10.3. If
B = {−→u1,−→u2,−→u3}

is the basis of unit eigenvectors for the matrix representative A = [Q] of a
quadratic form, with respective eigenvalues λi, i = 1, 2, 3, then the value
Q(−→x ) of Q at any vector can be expressed in terms of its coordinates with
respect to B as

Q(−→x ) = λ1ξ
2
1 + λ2ξ

2
2 + λ3ξ

2
3 (3.32)

where

B[
−→x ] =





ξ1
ξ2
ξ3





or in other words

ξi =
−→ui · −→x .

The expression for Q(−→x ) given by Equation (3.32) is called the weighted
squares expression for Q.
We note in passing that the analogous statements hold for two instead of
three variables. 21 The proof is a simplified version of the proofs above
(Exercise 3):

Remark 3.10.4 (Principal Axis Theorem for R2). Suppose A is a
symmetric 2× 2 matrix. Then:

1. A has a pair of mutually perpendicular unit eigenvectors −→ui , i = 1, 2,
with corresponding eigenvalues λi, i = 1, 2.

2. The quadratic form Q(x, y) with matrix representative [Q] = A has a
weighted squares expression

Q(−→x ) = λ1ξ
2
1 + λ2ξ

2
2

where

ξ1 =
−→u1 · −→x

ξ2 =
−→u2 · −→x .

21Indeed, there is a version for an arbitrary finite number of variables.
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Finding Eigenvectors

How do we find the eigenvectors of a matrix A? If we knew the
eigenvalues, then for each eigenvalue λ we would need to simply solve the
system of linear equations

A−→u = λ−→u

for −→u . To find the eigenvalues, we use our observations about singularity
and determinants in Appendix D. We rewrite the eigenvector equation in
the form

A−→u − λ−→u =
−→
0

or, using the distributive law for matrix multiplication,

(A− λI)−→u =
−→
0 . (3.33)

You should verify that the matrix A− λI is obtained from A by
subtracting λ from each diagonal entry, and leaving the rest alone. Now −→u
is by assumption a nonzero vector, and this means that the matrix A− λI
is singular (since it sends a nonzero vector to the zero vector). From
Appendix D, we see that this forces

det(A− λI) = 0. (3.34)

Now given a 3× 3 matrix A, Equation (3.34) is an equation in the unknown
λ; you should verify (Exercise 4) that the left side of this equation is a
polynomial of degree three in λ; it is called the characteristic
polynomial of A, and Equation (3.34) is called the characteristic
equation of A. As a corollary of Proposition 3.10.2 we have

Remark 3.10.5. Every eigenvalue of A is a zero of the characteristic
polynomial

p(λ) = det (A− λI).

If A is symmetric and 3× 3, then p(λ) is a cubic polynomial with three real
zeroes, and these are the eigenvalues of A.

Thus, we find the eigenvalues of A first, by finding the zeroes of the
characteristic polynomial (i.e., solving the characteristic equation (3.34));
then for each eigenvalue λ we solve the system of equations (3.33) to find
the corresponding eigenvectors.

Let us apply this to two examples.
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1. The quadratic form Q(x, y, z) = 2xy + 2xz + 2yz has matrix
representative

A = [Q] =

∣

∣

∣

∣

∣

∣

0 1 1
1 0 1
1 1 0





with characteristic polynomial

p(λ) = det

∣

∣

∣

∣

∣

∣

−λ 1 1
1 −λ 1
1 1 −λ





= (−λ) det
∣

∣

∣

∣

−λ 1
1 −λ

]

− (1) det

∣

∣

∣

∣

1 1
1 −λ

]

+ (1) det

∣

∣

∣

∣

1 −λ
1 1

]

= −λ(λ2 − 1)− (−λ− 1) + (1 + λ)

= (λ+ 1){−λ(λ − 1) + 1 + 1}
= (λ+ 1){−λ2 + λ+ 2}
= −(λ+ 1)2(λ− 2).

So the eigenvalues are

λ1 = 2, λ2 = −1.

The eigenvectors for λ1 = 2 satisfy

v2+v3= 2v1

v1 +v3= 2v2

v1+v2 = 2v3

from which we conclude that v1 = v2 = v3: so

−→u1 =
1√
3
(1, 1, 1).

For λ2 = −1, we need

v2+v3=− v1
v1 +v3=− v2
v1+v2 =− v3
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which amounts to v1 + v2 + v3 = 0. This defines a plane of solutions.
If we set v3 = 0, we get

−→u2 =
1√
2
(1,−1, 0).

This is automatically perpendicular to −→u1 (but check that it is!). We
need a third eigenvector perpendicular to both −→u1 and −→u2. We can
take their cross-product, which is

−→u3 = −→u1 ×−→u2

=
1√
6

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 1 1
1 −1 0

∣

∣

∣

∣

∣

∣

=
1√
6
(−→ı +−→ − 2

−→
k )

=
1√
6
(1, 1,−2).

You should check that −→u3 is an eigenvector with λ3 = λ2 = −1.

The weighted-sums expression for Q, then, is

Q(x, y, z) = 2

(

x+ y + z√
3

)2

−
(

x− y√
2

)2

−
(

x+ y − 2z√
6

)2

=
2

3
(x+ y + z)2 − 1

2
(x− y)2 − 1

6
(x+ y − 2z)2.

2. As another example, the form
Q(x, y, z) = 4x2− y2− z2− 4xy+4xz− 6yz has matrix representative

[Q] =

∣

∣

∣

∣

∣

∣

4 −2 2
−2 −1 −3
2 −3 −1
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with characteristic polynomial

p(λ) = det

∣

∣

∣

∣

∣

∣

4− λ −2 2
−2 −1− λ −3
2 −3 −1− λ





= (4− λ) det
∣

∣

∣

∣

−1− λ −3
−3 −1− λ

]

− (−2) det
∣

∣

∣

∣

−2 −3
2 −1− λ

]

+ (2) det

∣

∣

∣

∣

−2− λ −1− λ
2 −3

]

= (4− λ){(λ+ 1)2 − 9}+ 2{2(1 + λ) + 6}+ 2{6 + 2(1 + λ)}
= (4− λ){(λ+ 4)(λ − 2)}+ 2{2λ + 8} + 2{2λ + 8}
= (4− λ)(λ+ 4)(λ− 2) + 8(λ+ 4)

= (λ+ 4){(4 − λ)(λ− 2) + 8}
= (λ+ 4){−λ2 + 6λ}
= −λ(λ+ 4)(λ − 6).

The eigenvalues of [Q] are

λ1 = 0, λ2 = −4, λ3 = 6.

To find the eigenvectors for λ = 0, we need

4v1−2v2+2v3 = 0

−2v1 −v2−3v3 = 0

2v1−3v2 −v3 = 0.

The sum of the fist and second equations is the third, so we drop the
last equation; dividing the first by 2, we have

2v1−v2 +v3 = 0

−2v1−v2−3v3 = 0.

The first of these two equations gives

v2 = 2v1 + v3

and substituting this into the second gives

−4v1 − 4v2 = 0



3.10. THE PRINCIPAL AXIS THEOREM (OPTIONAL) 375

so

v1 + v3 = 0

or

v3 = −v1

and then

v2 = 2v1 + v3

= 2v1 − v1
= v1.

Setting v1 = 1 leads to

−→v = (1, 1,−1)

and the unit eigenvector

−→u1 =
1√
3
(1, 1,−1).

The eigenvectors for λ = −4 must satisfy

4v1−2v2+2v3 = −4v1
−2v1 −v2−3v3 = −4v2
2v1−3v2 −v3 = −4v3

or

8v1−2v2+2v3 = 0

−2v1+3v2−3v3 = 0

2v1−3v2+3v3 = 0.

The second and third equations are (essentially) the same; the first
divided by 2 is

4v1 − v2 + v3 = 0

so
v2 = 4v1 + v3.
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Substituting this into the second equation we have

−2v1 + 3(4v1 + v3)− 3v3 = 0

or

10v1 = 0.

Thus v1 = 0 and v2 = v3. We find

−→u2 =
1√
2
(0, 1, 1).

Finally, λ = 6 leads to

4v1−2v2+2v3 = 6v1

−2v1 −v2−3v3 = 6v2

2v1−3v2 −v3 = 6v3

or

−2v1−2v2+2v3 = 0

−2v1−7v2−3v3 = 0

2v1−3v2−7v3 = 0.

The first equation says

v1 = −v2 + v3

and substituting this into the other two yields two copies of

−5v2 − 5v3 = 0

or

v2 = −v3

so

v1 = 2v3
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and

−→u3 =
1√
6
(2,−1, 1).

The weighted squares expression for Q is

Q(x, y, z) = 0

(

x+ y + z√
3

)2

− 4

(

y + z√
2

)2

+ 6

(

2x− y + z√
6

)2

= −2(y + z)2 + (2x− y + z)2.

The Determinant Test for Three Variables

The weighted squares expression shows that the character of a quadratic
form as positive or negative definite (or neither) can be determined from
the signs of the eigenvalues of its matrix representative: Q is positive
(resp. negative) definite precisely if all three eigenvalues of A = [Q] are
strictly positive (resp. negative). We would like to see how this can be
decided using determinants, without solving the characteristic equation.
We will at first concentrate on deciding whether a form is positive definite,
and then at the end we shall see how to modify the test to decide when it
is negative definite.

The first step is to analyze what the determinant of A = [Q] tells us.
Recall from § 1.7 that a 3× 3 determinant can be interpreted as the signed
volume of the parallelipiped formed by its rows. In our case, since A is
symmetric, the rows are the same as the columns, and it is easy to check
(see Appendix D) that the columns of any 3× 3 matrix A are the positions
of the standard basis vectors after they have been multiplied by A. The
parallelipiped formed by the standard basis vectors is simply a unit cube,
and so we can interpret the determinant of A as the signed volume of the
parallelipiped created by the action of A on the unit cube with sides
parallel to the coordinate planes. If we slice along the directions of the
standard basis vectors to calculate volumes,, we see that we can interpret
the determinant of A more broadly as the factor by which any signed
volume is multiplied when we apply A—that is, for any region E ⊂ R

3, the

signed volume
−→V (E) of E and that of its image AE under multiplication

by A are related by −→V (AE) = detA
−→V (E) .

Now let us apply this to the parallelipiped E formed by the three
eigenvectors of A: since they are orthonormal, E is a unit cube (but its
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sides need not be parallel to the coordinate planes), and (changing the
numbering of the eigenvectors if necessary) we can assume that it is

positively oriented, so the signed volume of this cube is
−→V (E) = 1. It

follows that
−→V (AE) = detA. But the sides of AE are the vectors λi

−→ui , so
this is again a cube, whose signed volume is the product of the eigenvalues:−→V (AE) = λ1λ2λ3. Thus

det A = λ1λ2λ3

and we have the following observation:

If Q is positive-definite, then ∆3 = detA > 0.

Of course, the product of the eigenvalues (i.e., detA) can also be positive
if we have one positive and two negative eigenvalues, so we need to know
more to determine whether or not Q is positive-definite.
If Q is positive-definite, we know that its restriction to any plane in R

3 is
also positive-definite. In particular, we can consider its restriction to the
xy-plane, that is, to all vectors of the form −→x = (x, y, 0). It is easy to
check that for any such vector,

Q(−→x ) = −→x TA−→x

=
[

x y 0
]





a11 a12 a13
a21 a22 a23
a31 a32 a33









x
y
0





=
[

x y 0
]





a11x+ a12y
a21x+ a22y
a31x+ a32y





=
[

x y
]

[

a11 a12
a21 a22

] [

x
y

]

.

This shows that the restriction of Q to the xy-plane can be regarded as the
quadratic form in two variables whose matrix representative is obtained
from A by deleting the last row and last column—that is, the upper-left
2× 2 minor submatrix. But for a quadratic form in two variables, we know
that it is positive-definite precisely if the determinant of its matrix
representative as well as its upper-left entry are both positive. Thus if we
set ∆2 to be the upper left (2× 2) minor of detA and ∆1 to be the
upper-left entry, we have the necessity of the conditions in the following:

Proposition 3.10.6 (Determinant Test for Positive Definite Forms in
R
3). The quadratic form Q on R

3 is positive-definite if and only if its
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matrix representative

[Q] = A =





a11 a12 a13
a21 a22 a23
a31 a32 a33





satisfies

∆3 > 0, ∆2 > 0, and ∆1 > 0

where

∆3 = detA = det





a11 a12 a13
a21 a22 a23
a31 a32 a33





∆2 = det

[

a11 a12
a21 a22

]

and

∆1 = a11.

Proof. We have seen that the conditions are necessary. To see that they
are sufficient, suppose all three determinants are positive. Then we know
that the eigenvalues of A satisfy

λ1λ2λ3 > 0.

Assuming λ1 ≥ λ2 ≥ λ3, this means λ1 > 0 and the other two eigenvalues
are either both positive or both negative. Suppose they were both
negative: then the restriction of Q to the plane −→u1⊥ containing −→u2 and −→u3
would be negative definite. Now, this plane intersects the xy-plane in (at
least) a line, so the restriction of Q to the xy-plane couldn’t possibly be
positive definite, contradicting the fact that ∆1 > 0 and ∆2 > 0. Thus λ2
and λ3 are both positive, and hence Q is positive definite on all of R3.

What about deciding if Q is negative definite? The easiest way to get at
this is to note that Q is negative definite precisely if its negative
(Q̄)(−→x ) := −Q(−→x ) is positive definite, and that

[

Q̄
]

= − [Q]. Now, the
determinant of a k × k matrix M is related to the determinant of its
negative by

det (−M) = (−1)k detM
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so we see that for k = 1, 2, 3

∆k

(

Q̄
)

= (−1)k∆k(Q)

from which we easily get the following test for a quadratic form in three
variables to be negative definite:

Corollary 3.10.7 (Determinant Test for Negative Definite Forms in R
3).

The quadratic form Q in three variables is negative definite precisely if its
matrix representative A = [Q] satisfies

(−1)k∆k > 0 for k = 1, 2, 3

where ∆k are the determinants given in Proposition 3.10.6.

Let us see how this test works on the examples studied in detail earlier in
this section.

1. The form Q(x, y, z) = x2 − y2 − z2 has matrix representative

[Q] =





1 0 0
0 −1 0
0 0 −1





and it is easy to calculate that

∆1 = det [Q]

= (1)(−1)(−1)
= 1 > 0

...which, so far, tells us that the form is not negative definite...

∆2 = (1)(−1)
= −1 < 0

so that Q is also not positive definite. There is no further
information to be gained from calculating

∆1 = 1.
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2. The form Q(x, y, z) = 2xy + 2xz + 2yz has matrix representative

[Q] =





0 1 1
1 0 1
1 1 0





with determinant

∆1 = det [Q]

= 0− (1)(0 − 1) + 1(1− 0)

= 2 > 0

which again rules out the possibility that the form is not negative
definite,

∆2 = (0)(0) − (1)(1)

= −1 < 0

so that Q is also not positive definite. For completeness, we also note
that

∆1 = 0.

3. The form Q(x, y, z) = 4x2 − y2 − z2 − 4xy + 4xz − 6yz has matrix
representative

[Q] =





4 −2 2
−2 −1 −3
2 −3 −1





with determinant

∆1 = det [Q]

= 4[(−1)(−1) − (−3)(−3)] − (−2)[(−2)(−1) − (2)(−3)] + (2)[(−2)(−3) − (2)(−1)]
= 4[1− 9] + 2[2 + 6] + 2[6 + 2]

= −32 + 16 + 16

= 0.

This already guarantees that Q is not definite (neither positive nor
negative definite). In fact, this says that the product of the
eigenvalues is zero, which forces at least one of the eigenvalues to be
zero, something we saw earlier in a more direct way.
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4. None of these three forms is definite. As a final example, we consider
the form Q(x, y, z) = 2xy+ 8xz +4yz − 3x2 − 3y2 − 10z2 with matrix
representative

[Q] =





−3 1 4
1 −3 2
4 2 −10



 .

The determinant of this matrix is

∆3 = det [Q]

= (−3)[(−3)(−10) − (2)(2)] − (1)[(1)(−10) − (4)(2)] + (4)[(1)(2) − (4)(−3)]
= (−3)[26] − [−18] + (4)[2 + 12]

= −78 + 18 + 56

= −4 < 0

so the form is not positive definite;

∆2 = (−3)(−3) − (1)(1)

= 8 > 0

which is still consistent with being negative definite, and finally

∆1 = −3 < 0;

we see that Q satisfied the conditions of Corollary 3.10.7, and so it is
negative definite. Note that the characteristic polynomial of [Q] is

det





−3− λ 1 4
1 −3− λ 2
4 2 −10− λ



 = −(λ3 + 16λ2 + 48λ+ 4)

which has no obvious factorization (in fact, it has no integer zeroes).
Thus we can determine that the form is negative definite far more
easily than we can calculate its weighted squares expression.

Combining the analysis in Proposition 3.10.6 and Corollary 3.10.7 with
Proposition 3.9.3 and Lemma 3.9.4, we can get the three-variable analogue
of the Second Derivative Test which we obtained for two variables in
Theorem 3.9.6:
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Theorem 3.10.8 (Second Derivative Test, Three Variables). Suppose the
C2 function f(−→x ) = f(x, y, z) has a critical point at −→x = −→a . Consider the
following three quantities:

∆1 = fxx(
−→a )

∆2 = fxx(
−→a ) fyy(−→a )− fxy(−→a )2

∆3 = detHf(−→a ) .

1. If ∆k > 0 for k = 1, 2, 3, then f(−→x ) has a local minimum at −→x = −→a .

2. If (−1)k∆k > 0 for k = 1, 2, 3 (i.e., , ∆2 > 0 while ∆1 < 0 and
∆3 < 0), then f(−→x ) has a local maximum at −→x = −→a .

3. If all three quantities are nonzero but neither of the preceding
conditions holds, then f(−→x ) does not have a local extremum at
−→x = −→a .

A word of warning: when one of these quantities equals zero, this test gives
no information.
As an example of the use of Theorem 3.10.8, consider the function

f(x, y, z) = 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz − 6x+ 2y + 4z;

its partial derivatives are

fx(x, y, z) = 4x+ 2y + 2z − 6

fy(x, y, z) = 4y + 2x+ 2z + 2

fz(x, y, z) = 4z + 2y + 2x+ 4.

Setting all of these equal to zero, we have the system of equations







4x +2y +2z = 6
2x +4y +2z = −2
2x +2y +4z = −4

whose only solution is

x = 3

y = −1
z = −2.
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The second partials are

fxx = 4 fxy = 2 fxz = 2
fyy = 4 fyz = 2

fzz = 2

so

∆3 = det





4 2 2
2 4 2
2 2 2





= 4(8 − 4)− 2(4− 4) + 2(4− 8)

= 16 − 0− 8

= 8 > 0

∆2 = (4)(4) − (2)(2)

= 12

∆1 = 4 > 0

so the Hessian is positive definite, and f has a local minimum at
(3,−1,−2).

Exercises for § 3.10

Practice problems:

1. For each quadratic form Q below, (i) write down its matrix
representative [Q]; (ii) find all eigenvalues of [Q]; (iii) find
corresponding unit eigenvectors; (iv) write down the weighted
squares representative of Q.

(a) Q(x, y) = 17x2 + 12xy + 8y2

(b) Q(x, y) = 11x2 + 6xy + 19y2

(c) Q(x, y) = 3x2 + 4xy

(d) Q(x, y) = 19x2 + 24xy + y2

(e) Q(x, y, z) = 6x2 − 4xy + 6y2 + z2

(f) Q(x, y, z) = 2x2 + y2 + z2 + 2xy − 2xz

(g) Q(x, y, z) = 5x2 + 3y2 + 3z2 + 2xy − 2xz − 2yz

2. For each function below, find all critical points and classify each as
local minimum, local maximum, or neither.



3.10. THE PRINCIPAL AXIS THEOREM (OPTIONAL) 385

(a) f(x, y, z) = 5x2 + 3y2 + z2 − 2xy + 2yz − 6x− 8y − 2z

(b) f(x, y, z) = x2 + y2 + z2 + xy + yz + xz − 2x

(c) f(x, y, z) = x2 + y2 + z2 + xy + yz + xz − 3y − z
(d) f(x, y, z) = x2 + y2 + z2 + xy + yz + xz − 2x− 3y − z
(e) f(x, y, z) = 2x2 + 5y2 − 6xy + 2xz − 4yz − 2x− 2z

(f) f(x, y) = x3 + x2 − 3x+ y2 + z2 − 2xz

(g) f(x, y) = x3 + 2x2 − 12x+ y2 + z2 − 2xy − 2xz

Theory problems:

3. (a) Adapt the proof of Proposition 3.10.2 to show that if

M =

(

a b
b c

)

is a symmetric 2× 2 matrix, then there exist two unit vectors −→u1
and −→u2 and two scalars λ1 and λ2 satisfying

M−→ui = λi
−→ui for i = 1, 2.

(b) Show that if −→ui , i = 1, 2, 3 are orthonormal vectors, then an
arbitrary vector −→v ∈ R

3 can be expressed as

−→x = ξ1
−→u1 + ξ2

−→u2
where

ξi =
−→x · −→ui for i = 1, 2.

(c) Show that if M = [Q] and −→x = (x, y) then Q has the weighted
squares decomposition

Q(x, y) = λ1ξ
2
1 + λ2ξ

2
2 .

4. Let

A =

(

a b
c d

)

be any 2× 2 matrix.

(a) Show that the characteristic polynomial

det(A− λI)
is a polynomial of degree 2 in the variable λ.

(b) Show that if A is 3× 3, the same polynomial is of degree 3.
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3.11 Quadratic Curves and Surfaces (Optional)

In this section, we will use the Principal Axis Theorem to classify the
curves (resp. surfaces) which arise as the locus of an equation of degree
two in two (resp. three) variables.

Quadratic Curves

The general quadratic equation in x and y is

Ax2 +Bxy + Cy2 +Dx+ Ey = F. (3.35)

If all three of the leading terms vanish, then this is the equation of a line.
We will assume henceforth that at least one of A, B and C is nonzero.
In § 2.1 we identified a number of equations of this form as “model
equations” for the conic sections:

Parabolas: the equations

y = ax2 (3.36)

and its sister

x = ay2 (3.37)

are model equations for a parabola with vertex at the origin, focus
on the y-axis (resp. x-axis) and horizontal (resp. vertical) directrix.
These correspond to Equation (3.35) with B = 0, exactly one of A
and C nonzero, and the linear (degree one) term corresponding to
the “other” variable nonzero; you should check that moving the
vertex from the origin results from allowing both D and E, and/or
F , to be nonzero.

Ellipses and Circles: the model equation

x2

a2
+
y2

b2
= 1 (3.38)

for a circle (if a = b) or an ellipse with axes parallel to the coordinate
axes and center at the origin corresponds to B = 0, A, C and F of
the same sign, and D = E = 0. Again you should check that moving
the vertex results in the introduction of nonzero values for D and/or
E and simultaneously raises the absolute value of F . However, when
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the linear terms are present, one needs to complete the square(s) to
determine whether the given equation came from one of the type
above, or one with zero or negative right-hand side.

Hyperbolas: the model equations

x2

a2
− y2

b2
= ±1 (3.39)

for a hyperbola centered at the origin and symmetry about both
coordinate axes corresponds to B = 0, A and C of opposite signs,
F 6= 0, and D = 0 = E. When F = 0 but the other conditions
remain, we have the equation

x2

a2
− y2

b2
= 0 (3.40)

which determines a pair of lines, the asymptotes of the hyperbolas
with F 6= 0. As before, moving the center introduces linear terms,
but completing the square is needed to decide whether an equation
with either D or E (or both) nonzero corresponds to a hyperbola or
a pair of asymptotes.

In effect, the list above (with some obvious additional degenerate cases)
takes care of all versions of Equation (3.35) in which B = 0. Unfortunately,
when B 6= 0 there is no quick and easy way to determine which, if any, of
the conic sections is the locus. However, if it is, it must arise from rotation
of one of the model versions above.
We will see that the locus of every instance of Equation (3.35) with not all
leading terms zero has a locus fitting one of these descriptions (with
different centers, foci and directrices), or a degenerate locus (line, point or
empty set). To this end, we shall start from Equation (3.35) and show that
in an appropriate coordinate system the equation fits one of the molds
above.
Let us denote the polynomial on the left side of Equation (3.35) by p(x, y):

p(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey.

Assuming they don’t all vanish, the leading terms define a quadratic form

Q(x, y) = Ax2 +Bxy + Cy2

with matrix representative

A = [Q] =

[

A B/2
B/2 C

]

.
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By Remark 3.10.4, there is an orthonormal basis for R2 consisting of two
unit eigenvectors −→u1 and −→u2 (with eigenvalues λ1, λ2) for A. Note that the
negative of an eigenvector is also an eigenvector, so we can assume that −→u2
is the result of rotating −→u1 counterclockwise by a right angle. Thus we can
write

−→u1 = (c, s)
−→u2 = (−s, c)

where

c = cos θ

s = sin θ

(θ is the angle between −→u1 and the positive x-axis). These vectors define a
rectangular coordinate system (with coordinate axes rotated
counterclockwise from the standard axes) in which the point with standard
coordinates (x, y) has coordinates in the new system

ξ1 = −→u1 · −→x = cx+ sy
ξ2 = −→u2 · −→x = −sx+ cy

.

You should check that these equations can by solved for x and y in terms
of ξ1 and ξ2:

x = cξ1 − sξ2
y = sξ1 + cξ2

so that p(x, y) can be rewritten as

p(x, y) = Q(x, y) +Dx+ Ey

= λ1ξ
2
1 + λ2ξ

2
2 + αξ1 + βξ2

where

α = cD + sE

β = −sD + cE.

To finish our analysis, we distinguish two cases. By assumption, at least
one of the eigenvalues is nonzero. For notational convenience, assume
(renumbering if necessary) that |λ1| ≥ |λ2|.
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If only one of the eigenvalues is nonzero, then λ2 = 0; we can complete the
square in the terms involving ξ1 to write the equation in the form

λ1

(

ξ1 +
α

2λ1

)2

+ βξ2 = F +
α2

4λ1
;

The locus of this is a parabola as in Equation (3.36), but in the new
coordinate system, displaced so the vertex is at
ξ1 = −α/2λ1, ξ2 = (4λ1F + α2)/4λ1.
If both eigenvalues are nonzero, then we complete the square in the terms
involving ξ2 as well as in those involving ξ1 to obtain

λ1

(

ξ1 +
α

2λ1

)2

+ λ2

(

ξ2 +
β

2λ2

)2

= F +
α2

4λ1
+

β2

4λ2
.

This is Equation (C.6), Equation (3.39), or Equation (3.40), with x (resp.
y) replaced by ξ1 +

α
2λ1

(resp. ξ2 +
β

2λ2
), and so its locus is one of the other

loci described above, in the new coordinate system, displaced so the origin
moves to ξ1 = −α/2λ1, ξ2 = −β/2λ2.
We illustrate with two examples.
First, consider the curve

4xy − 6x+ 2y = 4.

The quadratic form
Q(x, y) = 4xy

has matrix representative

A = [Q] =

[

0 2
2 0

]

with eigenvalues λ1 = 2, λ2 = −1 and corresponding unit eigenvectors

−→u1 =
(

1√
2
,
1√
2

)

−→u2 =
(

− 1√
2
,
1√
2

)

;

thus

c = s =
1√
2
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and

ξ1 =
x+ y√

2

ξ2 =
−x+ y√

2

while

α =

(

1√
2

)

(−6) +
(

1√
2

)

(2)

= −2
√
2

β =

(

− 1√
2

)

(−6) +
(

1√
2

)

(2)

= 4
√
2.

This leads to the equation (in ξ1 and ξ2)

2

(

ξ1 −
1√
2

)2

− 2
(

ξ2 −
√
2
)2

= 4 + 1− 4 = 1.

We recognize this as a hyperbola with asymptotes

ξ2 = ξ1 +
1√
2

ξ2 = −ξ1 +
3√
2

or, in terms of x and y,

x = −1

2

y =
3

2
.

(See Figure 3.29.)
As a second example, consider the curve given by

x2 − 2xy + y2 + 3x− 5y + 5 = 0.

The quadratic form
Q(x, y) = x2 − 2xy + y2
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ξ1 − 1√
2ξ2 −

√
2

x

y

y = 3
2

x = −1
2

Figure 3.29: The curve 4xy − 6x+ 2y = 4

has matrix representative

A = [Q] =

[

1 −1
−1 1

]

with eigenvalues λ1 = 2, λ2 = 0 and corresponding unit eigenvectors

−→u1 =
(

1√
2
,− 1√

2

)

−→u2 =
(

1√
2
,
1√
2

)

;

thus

c =
1√
2

s = − 1√
2

and

ξ1 =
x− y√

2

ξ2 =
x+ y√

2



392 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

while

α =

(

1√
2

)

(3) +

(

− 1√
2

)

(−5)

= 4
√
2

β =

(

1√
2

)

(3) +

(

1√
2

)

(−5)

= −
√
2.

This leads to the equation (in ξ1 and ξ2)

2
(

ξ1 +
√
2
)2
−
√
2ξ2 = −5 + 4 = −1;

we can rewrite this as

ξ2 −
1√
2
=
√
2(ξ1 +

√
2)2

which we recognize as a parabola with vertex at

(ξ1, ξ2) =

(

−
√
2,

1√
2

)

that is,

(x, y) =

(

−1

2
, 1

)

,

and opening along the line

ξ1 = −
√
2

in the direction of ξ2 increasing, which in terms of x and y is the line

x− y = −1

i.e.,

y = x+ 1

in the direction of y increasing. (See Figure 3.30.)



3.11. QUADRATIC CURVES AND SURFACES (OPTIONAL) 393

ξ2 − 1√
2

ξ1 +
√
2

•(−1
2 , 1)

x

y

Figure 3.30: The curve x2 − 2xy + y2 + 3x− 5y + 5 = 0

Quadric Surfaces

The most general equation of degree two in x, y and z consists of three
“square” terms, three “mixed product” turns, three degree one terms
(multiples of a single variable), and a constant term. A procedure similar
to the one we used for two variables can be applied here: combining the six
quadratic terms (the three squares and the three mixed products) into a
quadratic form Q(x, y, z), we can express the general quadratic equation in
three variables as

Q(x, y, z) +Ax+By + Cz = D. (3.41)

Using the Principal Axis Theorem (Proposition 3.10.2) we can create a
new coordinate system, a rotation of the standard one, in which the
quadratic form can be written

Q(−→x ) = λ1ξ
2
1 + λ2ξ

2
2 + λ3ξ

2
3 (3.42)

where λi, i = 1, 2, 3 are the eigenvalues of [Q], with corresponding unit
eigenvectors −→ui , and ξi = −→ui · −→x are the coordinates of −→x with respect to
our rotated system. We can also solve the equations which define these
coordinates for the standard coordinates xi in terms of the rotated ones ξi,
and substitute these expressions in to the linear terms, to rewrite
Equation (3.41) as

λ1ξ
2
1 + λ2ξ

2
2 + λ3ξ

2
3 + α1ξ1 + α2ξ2 + α3ξ3 = D;
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by completing the square in each variable ξi for which λi 6= 0 we get an
equation in which each variable appears either in the form λi(ξi − ξi0)2 (if
λi 6= 0) or αi(ξi − ξi0) (if λi = 0). We shall not attempt an exhaustive
catalogue of the possible cases, but will consider five “model equations”
which cover all the important possibilities. In all of these, we will assume
that ξ10 = ξ20 = ξ30 = 0 (which amounts to displacing the origin); in many
cases we will also assume that the coefficient of each term is ±1. The latter
amounts to changing the scale of each coordinate, but not the general
shape-classification of the surface.

1. The easiest scenario to analyze is when z appears only to the first
power : we can then move everything except the “z” term to the right
side of the equation, and divide by the coefficient of z, to write our
equation as the expression for the graph of a function of x and y

z = f(x, y) .

In this scenario, the intersection of our surface with the horizontal
plane z = k is just the level set L(f, k) consisting of those points at
which f(x, y) takes the value k. For a quadratic equation, f(x, y)
takes one of three forms, corresponding to the three kinds of conic
sections:

(a) If another variable, say y, also appears to the first power,
f(x, y) has the form ax2 + y, so our our level set is given by
ax2 + by = k, which defines a parabola. In Figure 3.31 we sketch
the surface given by the “model equation”

x2 − y + z = 0 (3.43)

which corresponds to a = b = −1; the level sets are the
parabolas y = x2 + k. Note that these are all horizontal copies
of the “standard” parabola y = x2, but with their vertices lying
along the line z = y in the yz-plane.

(b) If both x and y appear squared, and their coefficients have the
same sign, then our level sets are ellipses (or circles) centered at
the origin, with axes (or radius) depending on z. For example,
the surface given by the “model equation”

4x2 + y2 − z = 0 (3.44)



3.11. QUADRATIC CURVES AND SURFACES (OPTIONAL) 395

x y

z

Figure 3.31: x2 − y + z = 0

intersects each horizontal plane z = k with k > 0 in an ellipse of
the form

x2 +
y2

4
=
k

4
;

it is immediate that the major axis is parallel to the y-axis,
while the minor axis is half as long, and is parallel to the x-axis
(Figure 3.32).

k=4
k=3
k=2

k=1

Figure 3.32: Level sets: x2 + y2

4 = k
4

To see how these ellipses fit together, we consider the
intersection of the surface with the two vertical coordinate
planes. The intersection with the xz-plane (y = 0) has equation

z = 4x2
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which is a parabola opening up from the origin, while the
intersection with the yz-plane (x = 0) has equation

z = y2

which also opens up from the origin, but is twice as “broad”(see
Figure 3.33).

x
y

z

Figure 3.33: Intersection with vertical planes

Fitting these pictures together, we see that the surface is a kind
of bowl shape, known as an elliptic paraboloid (Figure 3.34).

x
y

z

Figure 3.34: Elliptic Paraboloid 4x2 + y2 − z = 0

(c) If both x and y appear squared, and their coefficients have
opposite signs, then our level sets are hyperbolas centered at the
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origin. For example, the surface given by the “model equation”

x2 − y2 = z (3.45)

intersects the horizontal plane z = k in a hyperbola opening in
the direction of the x-axis (resp. y-axis) for z > 0 (resp. z < 0),
and in the common asymptotes of all these hyperbolas when
z = 0 (Figure 3.35).

x

y z = 0

z < 0

z < 0

z > 0z > 0

Figure 3.35: Level sets of z = x2 − y2

To see how these fit together, we note that the vertices of the
two branches lie on the curve z = x2 in the xz-plane for z > 0
and on the curve z = −y2 in the yz-plane for z < 0
(Figure 3.36).

The official name of this surface is a hyperbolic paraboloid,
but it is colloquially referred to as a saddle surface
(Figure 3.37).

2. If the form Q(x, y, z) is definite, then all of the eigenvalues λi have
the same sign, and we can model the locus (up to rotation and
displacement of the origin) by

x2

a2
+
y2

b2
+
z2

c2
= k;
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x y

z

Figure 3.36: Locus of vertices

x
y

z

Figure 3.37: Hyperbolic Paraboloid (Saddle Surface) x2 − y2 = z
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if k = 0 this is just the origin, and if k < 0 this gives an empty locus;
if k > 0, then we can divide by k and modify the divisors on the left
to get an equation of the form

x2

a2
+
y2

b2
+
z2

c2
= 1. (3.46)

We study the locus of this equation by slicing: that is, by looking at
how it intersects various planes parallel to the coordinate planes.
This is an elaboration of the idea of looking at level curves of a
function.

The xy-plane (z = 0) intersects the surface in the ellipse

x2

a2
+
y2

b2
= 1.

To find the intersection with another horizontal plane, z = k, we
substitute this into the equation of the surface, getting

x2

a2
+
y2

b2
= 1− k2

c2
;

to get a nonempty locus, we must have the right side nonnegative, or

|k| ≤ c.

When we have equality, the intersection is a single point, and
otherwise is an ellipse similar to that in Figure 3.38, but scaled
down: we have superimposed a few of these “sections” of the surface
in Figure 3.38. To see how these fit together, we can look at where

x
y

z

Figure 3.38: Horizontal sections
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x
y

z

Figure 3.39: Vertical sections

the “vertices”, or ends of the major and minor axes lie. These are
the intersections of our surface with the two vertical coordinate
planes (Figure 3.39). In Figure 3.40 we sketch the surface

4x2 + y2 + 16z2 = 4

which can be expressed more informatively as

x2

12
+
y2

22
+

z2

(1/2)2
= 1;

this is called an ellipsoid; note that the three “axes” of our figure
(along the coordinate axes) are precisely the square roots of the
denominators of the second expression: 1, 2, 12 respectively.

x
y

z

Figure 3.40: Ellipsoid 4x2 + y2 + 16z2 = 4
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3. When all three variables appear to the second power but the
quadratic form is not definite, there are three basic shapes that
occur. These are illustrated by “model equations” below. In each, we
assume that x2 occurs with coefficient 1 and z2 with coefficient −1.

(a) If there is no constant term, then we have an equation of the
form

x2 ± y2 − z2 = 0

which boils down to one of the two equations

x2 + y2 = z2

or

x2 = y2 + z2.

Since the second of these equations results from the first by
interchanging x with z, we will concentrate on the first.

The intersection of the surface

x2 + y2 = z2 (3.47)

with the horizontal plane z = k is a circle, centered at the
origin, of radius |k| (Figure 3.41).

x

y

z

Figure 3.41: Horizontal Sections

The intersection of this surface with each of the vertical
coordinate planes is a pair of lines (Figure 3.42)

and fitting this together, we see that this is just the conical
surface K of Archimedes (§ 2.1) which we refer to in this context
as simply a cone (Figure 3.43).
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x

y

z

Figure 3.42: Vertical Sections

x

y

z

Figure 3.43: The cone x2 + y2 = z2

(b) When there is a nonzero constant term, we will take it to be ±1,
and this leads to the possible equations

x2 ± y2 = z2 ± 1.

Again, up to interchange of variables, there are two possible
shapes, which can be modelled by the equation above with the
coefficient of y2 positive.

The surface given by

x2 + y2 = z2 + 1 (3.48)

intersects the horizontal plane z = k in the circle centered on
the z-axis of radius

√
1 + k2 (Figure 3.44)

To see how they fit together, we consider the intersection of the
surface with the two vertical coordinate planes, which are both
hyperbolas opening horizontally (Figure 3.45).

The resulting surface (Figure 3.46) is called a hyperboloid of
one sheet (Figure 3.46).

(c) The surface given by

x2 + y2 = z2 − 1 (3.49)
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x

y

z

Figure 3.44: Horizontal Sections

x

y

z

Figure 3.45: Vertical Sections

x

y

z

Figure 3.46: Hyperboloid of One Sheet x2 + y2 = z2 + 1
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intersects the horizontal plane z = k in the locus of the equation
x2 + y2 = k2 − 1; for |k| < 1 the right side is negative, so there is
no intersection; for |k| > 1 we again get a circle centered on the
z-axis, with radius

√
k2 − 1 (Figure 3.47).

x
y

z

Figure 3.47: Horizontal Sections

To see how these fit together, we intersect the surface with the
two vertical coordinate planes. The intersection with the
xz-plane has equation x2 = z2 − 1 or z2 − x2 = 1, which is a
hyperbola opening vertically; the intersection with the yz-plane
is essentially identical (Figure 3.48)

x
y

z

Figure 3.48: Vertical Sections
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The resulting surface consists of two bowl-like parts, and is
called a hyperboloid of two sheets (Figure 3.49).

x
y

z

Figure 3.49: Hyperboloid of Two Sheets x2 + y2 = z2 − 1

Exercises for § 3.11

Practice problems:

1. Identify each curve below; sketch if possible:

(a) 5x2 − 6xy + 5y2 = 8 (b) 17x2 − 12xy + 8y2 = 20

(c) 3x2 + 8xy − 3y2 = 1 (d) 3x2 − 8xy − 3y2 = 1

(e) 4xy = 16 (f) xy + y
√
2 = 1

(g) x2 − x+ y2 + y + 2xy = 0

(h) 5x2 + 5y2 + 6xy + 8x+ 8y − 12 = 0

2. For each equation below, take a few well-chosen slices and try to
sketch the surface it defines:

(a) x2 − y + 2z = 4 (b) x2 − y + 4z2 = 4

(c) x2 − y − z2 = 0 (d) x2 + 4y2 + 9z2 = 36

(e) x2 − 4y2 + 9z2 = 36 (f) x2 − 4y2 − 9z2 = 36

(g) x2 − 4y2 − 9z2 = 0 (h) x2 − 4y2 − 9z2 = −36



406 CHAPTER 3. REAL-VALUED FUNCTIONS: DIFFERENTIATION

3. For each equation below, complete the square, then take a few slices
and sketch the locus:

(a) x2 + y2 + z2 − 2x+ 4y + 2z = 1

(b) x2 + y2 + z2 − 2x+ 4y + 2z = 10

(c) 4x2 − y2 + 9z2 + 8x+ 2y + 18z = 12

(d) 4x2 − y2 + 9z2 + 8x+ 2y + 18z + 60 = 0

4. Use the Principal Axis Theorem to sketch the surface:

(a) 3x2 − 8xy + 3y2 + z2 = 1 (b) 17x2 − 12xy + 8y2 + z2 = 4

(c) 4xz + 4y2 = 4 (d) 5x2 + 3y2 + 3z2 + 2xy − 2xz − 2yz = 6



4
Mappings and Transformations:

Vector-Valued Functions of Several

Variables

In this chapter we extend differential calculus to vector-valued functions of
a vector variable. We shall refer to a rule (call it F ) which assigns to every
vector (or point) −→x in its domain an unambiguous vector (or point)
−→y = F (−→x ) as a mapping from the domain to the target (the plane or
space). This is of course a restatement of the definition of a function,
except that the input and output are both vectors instead of real
numbers.1 We shall use the arrow notation first adopted in § 2.2 to
indicate the domain and target of a mapping: using the notation R

2 for
the plane and R

3 for space, we will write

F:Rn→R
m

to indicate that the mapping F takes inputs from R
n (n ≤ 3) and yields

values in in R
m (m ≤ 3). If we want to specify the domain D ⊂ R

n, we
write

F:D→R
m.

1More generally, the notion of a mapping from any set of objects to any (other) set is
defined analogously, but this will not concern us.

407
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If we expand the superscript notation by thinking of numbers as
“1-vectors” (R1 = R), then this definition and notation embrace all of the
kinds of functions we have considered earlier. The term transformation
is sometimes used when the domain and target live in the same dimension
(m = n).

In Chapter 3 we identified the input to a function of several variables as a
vector, while in Chapter 2 we identified the output of a vector-valued
function F as a list of functions fi, giving the coordinates of the output. In
the present context, when we express the output as a list, we write down
the coordinate column of the output vector: for example, a mapping
F:R2→R

3 from the plane to space could be expressed (using vector
notation for the input) as

[F (−→x )] =





f1(
−→x )

f2(
−→x )

f3(
−→x )





or, writing the input as a list of numerical variables,

[F (x1, x2, x3)] =





f1(x1, x2)
f2(x1, x2)
f3(x1, x2)



 .

Often we shall be sloppy and simply write

F (−→x ) =





f1(x1, x2)
f2(x1, x2)
f3(x1, x2)



 .

We cannot draw (or imagine drawing) the “graph” of a mapping
F:Rn→R

m if m+ n > 3, but we can try to picture its action by looking at
the images of various sets. For example, one can view a change of
coordinates in the plane or space as a mapping: specifically, the calculation
that gives the rectangular coordinates of a point in terms of its polar
coordinates is the map P :R2→R

2 from the (r, θ)-plane to the (x, y)-plane
given by

P (r, θ) =

[

r cos θ
r sin θ

]

.

We get a picture of how it acts by noting that it takes horizontal (resp.
vertical) lines to rays from (resp. circles around) the origin (Figure 4.1).
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θ

r

P

y

x

Figure 4.1: Polar Coordinates as a mapping

It is also possible (and, as we shall see, useful) to think of a system of one
or more equations in several variables as a single equation involving a
mapping: for example, the system of two equations in three unknowns

{

x2 +y2 +z2 = 1
x +y −z = 0

which geometrically represents the intersection of the unit sphere with the
plane x+ y = z can also be thought of as finding a “level set” for the
mapping F:R3→R

2

F (x, y, z) =

[

x2 + y2 + z2

x+ y − z

]

corresponding to the value (1, 0).

4.1 Linear Mappings

Recall that a linear function L on 3-space is just a homogeneous
polynomial of degree one

L(x, y, z) = a1x+ a2y + a3z;

it is naturally defined on all of R3. These functions are the simplest to
calculate, and play the role of derivatives for more general functions of
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several variables. By analogy, we call a mapping L:R3→R
3 linear if each

of its component functions is linear:2

L(x, y, z) =











L1(x, y, z)
L2(x, y, z)

...
Lm(x, y, z)











=





a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z



 .

A more efficient way of writing this is via matrix multiplication: if we
form the 3× 3 matrix [L], called the matrix representative of L, whose
entries are the coefficients of the component polynomials

[L] =





a11 a12 a13
a21 a22 a23
a31 a32 a33





then the coordinate column of the image L(−→x ) is the product of [L] with
the coordinate column of −→x :

[L(−→x )] = [L] · [−→x ]

or

L(−→x ) =





a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z





=





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ·





x
y
z



 .

The last equation can be taken as the definition of the matrix product; if
you are not familiar with matrix multiplication, see Appendix D for more
details.
When a linear mapping is defined in some way other than giving the
coordinate polynomials, there is an easy way to find its matrix
representative. The proof of the following is outlined in Exercise 3:

Remark 4.1.1. The jth column of the matrix representative [L] of a
linear mapping L:R3→R

3 is the coordinate column of L(−→ej ), where
{−→e1 ,−→e2 ,−→e3} are the standard basis vectors for R

3.

2To avoid tortuous constructions or notations, we will work here with mappings of
space to space; the analogues when the domain or target (or both) lives in the plane or
on the line are straightforward.
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There is a more geometric characterization of linear mappings which is
often useful:

Remark 4.1.2. A mapping L:R3→R
3 is linear if and only if it preserves

linear combinations: that is, for any two vectors −→v and −→v ′ and any two
scalars α and β,

L
(

α−→x + β−→v ′) = αL(−→v ) + βL
(−→v ′) .

Geometrically, this means that the image under L of any triangle (with
vertex at the origin) is again a triangle (with vertex at the origin).

As an example, consider the mapping P :R3→R
3 that takes each vector −→x

to its perpendicular projection onto the plane

x+ y + z = 0

through the origin with normal vector −→n = −→ı +−→ +
−→
k (Figure 4.2). It is

x

y

z

−→n
−→x

P (−→x )

Figure 4.2: Projection onto a Plane

geometrically clear that this takes triangles through the origin to triangles
through the origin, and hence is linear. Since any vector is the sum of its
projection on the plane and its projection on the normal line, we know
that P can be calculated from the formula P (−→x ) = −→x − proj−→u

−→x
= −→x − (−→x · −→u )−→u , where −→u = −→n /

√
3 is the unit vector in the direction of
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−→n . Applying this to the three standard basis vectors

P (−→ı ) = −→ı − (−→ı · −→u )−→u

= −→ı − 1

3
(−→ı +−→ +

−→
k )

=





1− 1
3

−1
3
−1

3



 =





2
3
−1

3
−1

3





P (−→ ) = −→ − (−→ · −→u )−→u

=





−1
3

1− 1
3

−1
3



 =





−1
3
2
3
−1

3





P
(−→
k
)

=
−→
k − (

−→
k · −→u )−→u

=





−1
3
−1

3
1− 1

3



 =





−1
3
−1

3
2
3





so

[P ] =





2
3 −1

3 −− 1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3



 .

An example of a linear mapping L:R2→R
2 is rotation by α radians

counterclockwise; to find its matrix representative, we use Remark 4.1.1:
from the geometric definition of L, the images of −→ı and −→ are easy to
calculate (Figure 4.3):

−→ı

−→

L(−→ı )
L(−→ )

α

α

Figure 4.3: Rotating the Standard Basis
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L(−→ı ) =
[

cosα
sinα

]

L(−→ ) =
[

− sinα
cosα

]

so

[L] =

[

cosα − sinα
sinα cosα

]

.

Composition of Linear Mappings

Recall that the composition of two real-valued functions, say f and g, is
the function obtained by applying one of the functions to the output of the
other: (f ◦ g)(x) = f(g(x)) and (g ◦ f)(x) = g(f(x)). For the first of these
to make sense, of course, x must belong to the domain of g, but also its
image g(x) must belong to the domain of f (in the other composition, the
two switch roles). The same definition can be applied to mappings: in
particular, suppose L:Rn→R

m and L′:Rn
′→R

m′

are linear maps (so the
natural domain of L (resp. L′) is all of Rn (resp. Rn

′

)); then the
composition L ◦ L′ is defined precisely if n = m′. It is easy to see that this
composition is linear as well:

(L ◦ L′)
(

α−→x + β−→x ′) = L
(

L′(α−→x + β−→x ′))

= L
(

αL′(−→x ) + βL′(−→x ′))

= αL
(

L′(−→x )
)

+ βL
(

L′(−→x ′))

= α(L ◦ L′)(−→x ) + β(L ◦ L′)
(−→x ′) .

It is equally easy to see that the matrix representative [L ◦ L′] of a
composition is the matrix product of the matrix representatives of the two
maps:

[

(L ◦ L′)(−→x )
]

=
[

L
(

L′(−→x )
)]

= [L] ·
[

L′(−→x )
]

= [L] ·
([

L′] · [−→x ]
)

=
(

[L] ·
[

L′]) [−→x ] .

We formalize this in
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Remark 4.1.3. The composition of linear maps is linear, and the matrix
representative of the composition is the product of their matrix
representatives.

For example, suppose L′:R3→R
2 is defined by

L′









x
y
z







 =

[

x+ y
y + z

]

and L:R2→R
3 is defined by

L

([

x
y

])

=





x− y
x+ y
2x− y



 ;

then L ◦ L′:R3→R
3 is defined by

(L ◦ L′)









x
y
z







 = L

([

x+ y
y + z

])

=





(x+ y)− (y + z)
(x+ y) + (y + z)
2(x+ y)− (y + z)





=





x− z
x+ 2y + z
2x+ y − z





and the composition in the other order, L′ ◦ L:R2→R
2 is defined by

(L′ ◦ L)

([

x
y

])

= L′









x− y
x+ y
2x− y









=

[

(x− y) + (x+ y)
(x+ y) + (2x− y)

]

=

[

2x
3x+ 2y

]

.
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The respective matrix representatives are

[

L′] =

[

1 1 0
0 1 1

]

, [L] =





1 −1
1 1
2 −1





so

[L] ·
[

L′] =





1 −1
1 1
2 −1



 ·
[

1 1 0
0 1 1

]

=





1 0 −1
1 2 1
2 2 −1





and

[

L′] · [L] =
[

1 1 0
0 1 1

]

·





1 −1
1 1
2 −1



 =

[

2 0
3 2

]

.

You should verify that these last two matrices are, in fact the matrix
representatives of L ◦ L′ and L′ ◦ L, respectively.

Exercises for § 4.1

Practice problems:

1. Which of the following maps are linear? Give the matrix
representative for those which are linear.

(a) f(x, y) = (y, x) (b) f(x, y) = (x, x)

(c) f(x, y) =
(ex cos y, ex sin y)

(d) f(x, y) = (x2 + y2, 2xy)

(e) f(x, y) = (x+ y, x− y) (f) f(x, y) = (x, y, x2 − y2)
(g) f(x, y) =

(x+ y, 2x− y, x+ 3y)
(h) f(x, y) =

(x−2y, x+y−1, 3x+5y)

(i) f(x, y) = (x, y, x2 − y2) (j) f(x, y) = (x, y, xy)

(k) f(x, y, z) =
(2x+3y+4z, x+z, y+z)

(l) f(x, y, z) =
(y + z, x+ z, x+ y)

(m) f(x, y, z) = (x− 2y +
1, y − z + 2, x− y − z)

(n) f(x, y, z) =
(x+ 2y, z − y + 1, x)
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(o) f(x, y, z) =
(x+ y, 2x− y, 3x+ 2y)

(p) f(x, y, z) =
(x+ y + z, x− 2y + 3z)

(q) Projection of R3 onto the plane 2x− y + 3z = 0

(r) Projection of R3 onto the plane 3x+ 2y + z = 1

(s) Rotation of R3 around the z-axis by θ radians counterclockwise,
seen from above.

(t) Projection of R3 onto the line x = y = z.

2. Express each affine map T below as T (−→x ) = T (−→x0) + L(△−→x ) with
the given −→x0 and linear map L.

(a) T (x, y) = (x+ y − 1, x− y + 2), −→x0 = (1, 2)

(b) T (x, y) = (3x− 2y + 2, x− y), −→x0 = (−2,−1)
(c) T (x, y, z) = (3x− 2y + z, z + 2), −→x0 = (1, 1,−1)
(d) T (x, y) = (2x− y + 1, x− 2y, 2), −→x0 = (1, 1)

(e) T (x, y, z) = (x+ 2y, z − y + 1, x), −→x0 = (2,−1, 1)
(f) T (x, y, z) = (x− 2y + 1, y − z + 2, x− y − z), −→x0 = (1,−1, 2)
(g) T (x, y, z) = (x+ 2y − z − 2, 2x − y + 1, z − 2), −→x0 = (1, 1, 2)

(h) T is projection onto the line −→p (t) = (t, t+ 1, t− 1),
−→x0 = (1,−1, 2) (Hint: Find where the given line intersects the
plane through −→x perpendicular to the line.)

(i) T is projection onto the plane x+ y + z = 3, −→x0 = (1,−1, 2)
(Hint: first project onto the parallel plane through the origin,
then translate by a suitable normal vector.)

Theory problems:

3. Prove Remark 4.1.1. (Hint: What is the coordinate column of the
standard basis vector −→ej ?)

4. Show that the composition of two affine maps is again affine.

5. Find the matrix representative for each kind of linear map L:R2→R
2

described below:

(a) Horizontal Scaling: horizontal component gets scaled
(multiplied) by λ > 0, vertical component is unchanged.
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(b) Vertical Scaling: vertical component gets scaled
(multiplied) by λ > 0, horizontal component is unchanged.

(c) Horizontal Shear: Each horizontal line y = c is translated
(horizontally) by an amount proportional to c.

(d) Vertical Shear: Each vertical line x = c is translated
(vertically) by an amount proportional to c.

(e) Reflection about the Diagonal: x and y are interchanged.

(f) Rotation: Each vector is rotated θ radians counterclockwise.

Challenge problems:

6. Suppose L:R2→R
2 is linear.

(a) Show that the determinant of [L] is nonzero iff the image
vectors L(−→ı ) and L(−→ ) are independent.

(b) Show that if L(−→ı ) and L(−→ ) are linearly independent, then L
is an onto map.

(c) Show that if L(−→ı ) and L(−→ ) are linearly dependent, then L
maps R2 into a line, and so is not onto.

(d) Show that if L is not one-to-one, then there is a nonzero vector
−→x with L(−→x ) = −→0 .

(e) Show that if L is not one-to-one, then L(−→ı ) and L(−→ ) are
linearly dependent.

(f) Show that if L(−→ı ) and L(−→ ) are dependent, then there is

some nonzero vector sent to
−→
0 by L.

(g) Use this to prove that the following are equivalent:

i. the determinant of [L] is nonzero;

ii. L(−→ı ) and L(−→ ) are linearly independent;

iii. L is onto;

iv. L is one-to-one.

(h) L is invertible if there exists another map F:R2→R
2 such that

L(F (x, y)) = (x, y) = F (L(x, y)). Show that if F exists it must
be linear.

7. Show that every invertible linear map L:R2→R
2 can be expressed

as a composition of the kinds of mappings described in Exercise 5.
(Hint: Given the desired images L(−→ı ) and L(−→ ), first adjust the
angle, then get the lengths right, and finally rotate into position.)
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4.2 Differentiable Mappings

We have seen several versions of the notion of a derivative in previous
sections: for a real-valued function f of one real variable, the derivative is
a number, which gives the slope of the line tangent to the graph y = f(x)
at the given point; for a vector -valued function of one real variable, the
derivative is a vector, giving the velocity of the motion described by the
function, or equivalently giving the coefficients of the “time” variable in
the natural parametrization of the tangent line; for a real-valued function
of a vector variable, the derivative is the linear part of an affine function
making first-order contact with the function at the given point. We can
combine these last two interpretations to formulate the derivative of a
vector -valued function of a vector variable. Extending our terminology
from real-valued functions (as in § 3.2) to (vector-valued) mappings, we
define an affine mapping to be a mapping of the form
T (−→x ) = −→c + φ(−→x ), where φ is linear and −→c is a constant vector. If we
pick any point −→x0 in the domain, then we can write T in the form

T (−→x ) = T (−→x0) + φ(△−→x )

where

△−→x = −→x −−→x0.

Definition 4.2.1. A mapping3 F is differentiable at a point −→x0 interior
to its domain if there exists an affine mapping T which has first-order
contact with F at −→x = −→x0:

‖F (−→x )− T (−→x )‖ = o‖−→x −−→x0‖

as −→x → −→x0; in other words

lim−→x→−→x0

‖F (−→x )− T (−→x )‖
‖−→x −−→x0‖

= 0.

Arguments analogous to those for a real-valued map of several variables
(§ 3.3) show that at most one affine function T can satisfy the requirements
of this definition at a given point −→x0: we can write it in the form

T−→x0F (
−→x ) = F (−→x0) + φ(△−→x ) := F (−→x0) + φ(−→x −−→x0) .

3Of course, a mapping can be given either an upper- or lower-case name. We are
adopting an upper-case notation to stress that our mapping is vector-valued.
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The “linear part” φ is called the derivative or differential4 of F at −→x0
and denoted either d−→x0F or DF−→x0 ; we shall use the “derivative”
terminology and the “D” notation. The “full” affine map will be denoted
T−→x0F , in keeping with the notation for Taylor polynomials: this is

sometimes called the linearization of F at −→x0. Thus, the linearization of
the differentiable mapping F:Rn→R

m at −→x0 is

T−→x0F (
−→x ) = F (−→x0) +DF−→x0 (

−→x −−→x0) = F (−→x0) +DF−→x0 (△
−→x ) .

To calculate the derivative, let us fix a point −→x0 and a velocity vector −→v . If
we write a mapping F with values in space as a column of functions

F (−→x ) =





f1(
−→x )

f2(
−→x )

f3(
−→x )





then we can consider the action of the differentials at −→x0 of the various
component functions fi on

−→v : recall from § 3.3 that this can be
interpreted as the derivative

d−→x0(fi)(
−→v ) = d

dt

∣

∣

∣

∣

t=0

[fi(
−→x0 + t−→v )] .

We can consider the full function −→p (t) = F (−→x0 + t−→v ) as a parametrized
curve—that is, as t varies, the input into F is a point moving steadily
along the line in the domain of F which goes through −→x0 with velocity −→v ;
the curve −→p (t) is the image of this curve under the mapping, and its
velocity at t = 0 is the column consisting of the differentials above. If we
add the initial vector −→p (0) = F (−→x0), we obtain an affine map from R to R

3

which has first-order contact with −→p (t) at t = 0. From this we have

Remark 4.2.2. The derivative of a mapping F at −→x0 can be evaluated on
a vector −→v as the velocity of the image under F of the constant-velocity
curve −→p (t) = F (−→x0 + t−→v ) through −→x0 in R

3 with velocity −→v :

DF−→x0 (
−→v ) = d

dt

∣

∣

∣

∣

t=0

[F (−→x0 + t−→v )] =











d−→x0f1(
−→v )

d−→x0f2(
−→v )

...
d−→x0fm(

−→v )











. (4.1)

4It is also called the tangent mapping of F at −→x0.
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In particular, when −→v is the jth element of the standard basis for R3, this
gives us the velocity of the image of the jth coordinate axis, and as a
column this consists of the jth partial derivatives of the component
functions. But this column is the jth column of the matrix representative
of DF−→x0 , giving us5

Remark 4.2.3. The matrix representative of the derivative DF−→x0 of
F:R3→R

3 is the matrix of partial derivatives of the component functions
of F :

[DF ] =





∂f1/∂x ∂f1/∂y ∂f1/∂z
∂f2/∂x ∂f2/∂y ∂f2/∂z
∂f3/∂x ∂f3/∂y ∂f3/∂z



 .

The matrix above is called the Jacobian matrix of F , and denoted 6 JF .

As a special case, we note the following, whose (easy) proof is left to you
(Exercise 3):

Remark 4.2.4. If F:R3→R
3 is linear, then it is differentiable and

DF−→x0 = F

for every −→x0 ∈ R
3. In particular, the linearization (at any point) of an

affine map is the map itself.

The Chain Rule

We have seen several versions of the Chain Rule before. The setting of
mappings allows us to formulate a single unified version which includes the
others as special cases. In the statements below, we assume the dimensions
m, n and p are each 1, 2 or 3.

Theorem 4.2.5 (General Chain Rule). If F:Rn→R
m is differentiable at

−→y0 ∈ R
n and G:Rp→R

n is differentiable at −→x0 ∈ R
p where −→y0 = G(−→x0), then

the composition F ◦G:Rp→R
m is differentiable at −→x0, and its derivative is

the composition of the derivatives of G (at −→x0) and F (at −→y0 = G(−→x0)):

D(F ◦G)−→x0 = (DF−→y0) ◦ (DG−→x0);

5Again, the analogue when the domain or the target or both are the plane instead of
space is straightforward.

6An older, but sometimes useful notation, based on viewing F as an m-tuple of func-
tions, is ∂(f1,f2,f3)

∂(x,y,z)
.
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in matrix language, the Jacobian matrix of the composition is the product
of the Jacobian matrices:

J(F ◦G)(−→x0) = JF (−→y0) · JG(−→x0) .

Proof. We need to show that the “affine approximation” we get by
assuming that the derivative of F ◦G is the composition of the derivatives,
say

T (−→x0 +△−→x ) = (F ◦G)(−→x0) + (DF−→y0 ◦DG−→x0)(△−→x )

has first-order contact at △−→x =
−→
0 with (F ◦G)(−→x0 +△−→x ). The easiest

approach is to show that for every ε > 0 there exists δ > 0 such that

(F ◦G)(−→x0 +△−→x ) = (F ◦G)(−→x0) + (DF−→y0 ◦DG−→x0)(△−→x ) + E(△−→x ) (4.2)

such that ‖E(△−→x )‖ < ε ‖△−→x ‖ whenever ‖△−→x ‖ < δ.
To carry this out, we need first to establish an estimate on how much the
length of a vector can be increased when we apply a linear mapping.

Claim: If L:Rn→R
m is linear, then there exists a number7

M such that
‖L(−→x )‖ ≤M ‖−→x ‖

for every n ∈ R. This number can be chosen to satisfy the
estimate

M ≤ mnamax
where amax is the maximum absolute value of entries in the
matrix representative [L].

This is an easy application of the triangle inequality. Given a vector
−→x = (v1, . . . , vn), let vmax be the maximum absolute value of the
components of −→x , and let aij be the entry in row i, column j of [L], The
ith component of L(−→v ) is

(L(−→v ))i = ai1v1 + · · · + ainvn

so we can write

|(L(−→v ))i| ≤ |a1i| |v1|+ · · ·+ |ain| |vn|
≤ namaxvmax.

7The least such number is called the operator norm of the mapping, and is denoted
‖ L ‖
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Now we know that the length of a vector is less than the sum of (the
absolute values of) its components, so

‖L(−→x )‖ ≤ |(L(−→v ))1|+ · · ·+ |(L(−→v ))m|
≤ m(n amaxvmax)

≤ mnamax ‖−→x ‖

since the length of a vector is at least as large as any of its components.8

This proves the claim.

Now, to prove the theorem, set

−→y = G(−→x )
−→y0 = G(−→x0)

and

△−→y = G(−→x0 +△−→x )−G(−→x0) ,

that is,

G(−→x0 +△−→x ) = −→y0 +△−→y .

Then the differentiability of F at −→y0 says that, given ε1 > 0, we can find
δ1 > 0 such that ‖△−→y ‖ < δ1 guarantees

F (−→y ) = F (−→y0) +DF−→y0 (△
−→y ) + E1(△−→y )

where

‖E1(△−→y )‖ ≤ ε1 ‖△−→y ‖ .

Similarly, the differentiability of G at −→x0 says that, given ε2 > 0, for
‖△−→x ‖ < δ2 we can write

G(−→x0 +△−→x ) = −→y0 +DG−→x0 (△
−→x ) + E2(△−→x )

8 Another way to get at the existence of such a number (without necessarily getting
the estimate in terms of entries of [L]) is to note that the function f(−→x ) = ‖L(−→x )‖ is
continuous, and so takes its maximum on the (compact) unit sphere in R

n. We leave you
to work out the details (Exercise 4).
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where

‖E2(△−→x )‖ ≤ ε2 ‖△−→x ‖ .

Note that our expression for G(−→x0 +△−→x ) lets us express △−→y in the form

△−→y = DG−→x0 (△−→x ) + E2(△−→x ) .

Applying the claim to DG−→x0 we can say that for some M1 > 0

∥

∥DG−→x0 (△−→x )
∥

∥ ≤M1 ‖△−→x ‖

so

‖△−→y ‖ =
∥

∥DG−→x0 (△−→x ) + E2(△−→x )
∥

∥

≤ (M1 + ε2) ‖△−→x ‖ .

Thus for

‖△−→x ‖ ≤ max

(

δ2,
δ1

M1 + ε2

)

we have

‖△−→y ‖ ≤ δ1

so

F (−→y )− F (−→y0) = DF−→y0 (△−→y ) + E1(△−→y )

with ‖E1(△−→y )‖ < ε1. Substituting our expression for △−→y into this, and
using the linearity of DF−→y0 , we have

F (−→y )− F (−→y0) = DF−→y0
(

DG−→x0 (△−→x ) + E2(△−→x )
)

+ E1(△−→y )
= (DF−→y0 ◦DG−→x0)(△

−→x ) +DF−→y0 (E2(△
−→x )) + E1(△−→y )

so in Equation (4.2), we can write

E(△−→x ) = DF−→y0 (E2(△
−→x )) + E1(△−→y ) ;
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we need to estimate this in terms of ‖△−→x ‖. Now we know from the claim
that there exists M2 > 0 such that

∥

∥DF−→y0 (E2(△
−→x ))

∥

∥ ≤M2 ‖E2(△−→x )‖ ;

Using the triangle inequality as well as our previous estimates, we see that
for

‖△−→x ‖ ≤ max

(

δ2,
δ1

M1 + ε2

)

we have

‖E(△−→x )‖ ≤M2 ‖E2(△−→x )‖+ ‖E1(△−→y )‖
≤M2ε2 ‖△−→x ‖+M2ε1 ‖△−→y ‖
= [M2ε2 +M2ε1(M1 + ε2)] ‖△−→x ‖ .

Thus, if we pick

ε2 <
ε

2M2

and

ε1 <
ε

2M2M1

then

‖E(△−→x )‖ ≤ [M2ε2 +M2ε1(M1 + ε2)] ‖△−→x ‖
< [M2ε2 +M1M2ε1] ‖△−→x ‖
<
ε

2
‖△−→x ‖+ ε

2
‖△−→x ‖

= ε ‖△−→x ‖ ,
as required.

Let us consider a few special cases, to illustrate how this chain rule
subsumes the earlier ones.
First, a totally trivial example: if f and g are both real-valued functions of
one real variable, and y0 = g(x0), then the Jacobian matrix of each is a
1× 1 matrix

Jf(y0) = [f ′(y0)]

Jg(x0) = [g′(x0)]
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and the Jacobian of their composition is

[(f ◦ g)′(x0)] = J(f ◦ g)(x0)

= Jf(y0) · Jg(x0)
= [f ′(y0) g

′(x0)].

Second, if −→p :R→R
3 is a parametrization −→p (t) of the curve C and

f:R3→R is a function defined on C, then (f ◦−→p )(t) = f(−→p (t)) gives f as a
function of the parameter t: letting −→x = −→p (t),

Jf(−→x ) = [d−→x f ]

=

[

∂f

∂x

∂f

∂y

∂f

∂z

]

J−→p (t) =





x′

y′

z′





and
[

d

dt
[f(−→p (t))]

]

= J(f ◦−→p )(t)

= Jf(−→x ) · J−→p (t)

=

[

∂f

∂x
x′ +

∂f

∂y
y′ +

∂f

∂z
z′
]

.

Third, if again −→p :R→R
3 and −→q :R→R

3 are two parametrizations (−→p (t)
and −→q (s)) of the curve C, and τ:R→R is the change-of-parameter function
t = τ(s) (i.e., −→q (s) = −→p (τ(s)), or −→q = −→p ◦ τ), then

J−→p (t) =
[

dx

dt

dy

dt

dz

dt

]

J−→q (s) =
[

dx

ds

dy

ds

dz

ds

]

Jτ(s) =
[

τ ′(s)
]

=

[

dt

ds

]

and

J−→q (s) = J(−→p ◦ τ)(s)

= J−→p (t) · Jτ(s)

=

[

dx

dt

dt

ds

dy

dt

dt

ds

dz

dt

dt

ds

]
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in other words,

~q ′(s) = ~p ′(t)
dt

ds
.

The second and third examples above have further generalizations in light
of Theorem 4.2.5.
If f:R3→R is a function defined on the surface S and −→p (s, t) is a
parametrization of S (−→p :R2→R

3), then f ◦−→p expresses f as a function of
the two parameters s and t, and the Chain Rule gives the partials of f
with respect to them: setting −→x = −→p (s, t),

Jf(−→x ) =
[

∂f

∂x

∂f

∂y

∂f

∂z

]

J−→p (s, t) =





∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t
∂z/∂s ∂z/∂t





so

J(f ◦−→p )(s, t) = Jf(−→x ) · J−→p (s, t)

=

[

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t

]

;

the first entry says

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
+
∂f

∂z

∂z

∂s

while the second says

∂f

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
.

We can think of changing coordinates for a function of two variables as the
analogue of this when S is the xy-plane. In this case we drop the third
variable.
In particular, if a measurement is expressed as a function m = f(x, y) of
the rectangular coordinates, then its expression in terms of polar
coordinates is (f ◦ (Pol))(r, θ), where Pol:R2→R

2 is the
change-of-coordinates map

Pol(r, θ) =

[

r cos θ
r sin θ

]
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with Jacobian

J(Pol)(r, θ) =

[

cos θ −r sin θ
sin θ r cos θ

]

(4.3)

and the Chain Rule tells us that
[

∂m

∂r

∂m

∂θ

]

= J(f ◦ Pol)(r, θ)

= Jf(x, y) · J(Pol)(r, θ)

=

[

∂f

∂x

∂f

∂y

]

·
[

cos θ −r sin θ
sin θ r cos θ

]

=

[

∂f

∂x
cos θ +

∂f

∂y
sin θ − ∂f

∂x
r sin θ +

∂f

∂y
r cos θ

]

in other words,

∂m

∂r
=
∂m

∂x

∂x

∂r
+
∂m

∂y

∂y

∂r

= (cos θ)
∂f

∂x
+ (sin θ)

∂f

∂y

and

∂m

∂θ
=
∂m

∂x

∂x

∂θ
+
∂m

∂y

∂y

∂θ

= (−r sin θ)∂f
∂x

+ (r cos θ)
∂f

∂y
.

For example, if

m = f(x, y) =
y

x

then

m =
r sin θ

r cos θ
= tan θ;

using the Chain Rule, we have

∂m

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r

=
(

− y

x2

)

(cos θ) +

(

1

x

)

(sin θ)

=
−r sin θ cos θ
r2 cos2 θ

+
sin θ

r cos θ
= 0
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and

∂m

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ

=
(

− y

x2

)

(−r sin θ) +
(

1

x

)

(r cos θ)

=
r2 sin2 θ

r2 cos2 θ
+
r sin θ

r cos θ
= tan2 θ + 1

= sec2 θ.

While this may seem a long-winded way to go about performing the
differentiation (why not just differentiate tan θ?), this point of view has
some very useful theoretical consequences, which we shall see later.
Similarly, change-of-coordinate transformations in three variables can be
handled via their Jacobians.
The transformation Cyl:R3→R

3 going from cylindrical to rectangular
coordinates is just Pol together with keeping z unchanged:

Cyl(r, θ, z) =





r cos θ
r sin θ
z





with Jacobian

J(Cyl)(r, θ, z) =





cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1



 . (4.4)

(Note that the upper-left 2× 2 part of this is just J(Pol).)
The transformation Sph:R3→R

3 from spherical to rectangular coordinates
is most easily understood as the composition of the transformation
SC:R3→R

3 from spherical to cylindrical coordinates

SC(ρ, φ, θ) =





ρ sinφ
θ

ρ cosφ





with Jacobian

J(SC)(ρ, φ, θ) =





sinφ ρ cosφ 0
0 0 1

cosφ −ρ sinφ 0



 (4.5)
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and the transformation Cyl from cylindrical to rectangular coordinates,
which we studied above. Then Sph = (Cyl) ◦ (SC), and its Jacobian is

J(Sph)(ρ, φ, θ) = J((Cyl) ◦ (SC))(ρ, φ, θ)

= J(Cyl)(r, θ, z) · J(SC)(ρ, φ, θ)

=





cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1



 ·





sinφ ρ cosφ 0
0 0 1

cosφ −ρ sinφ 0





=





sinφ cos θ ρ cosφ cos θ −r sin θ
sinφ sin θ ρ cosφ sin θ r cos θ
cosφ −ρ sinφ 0





and substituting r = ρ sinφ,

J(Sph)(ρ, φ, θ) =





sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0



 . (4.6)

This can be used to study motion which is most easily expressed in
spherical coordinates. For example, suppose −→p (t), 0 < t < π is the curve
on the unit sphere consisting of latitude decreasing and longitude
increasing at a steady rate, given in spherical coordinates by

ρ = 1

φ = t

θ = 4t

(Figure 4.4). To find the velocity (in rectangular coordinates) of this
moving point as it crosses the equator at t = π

2 , we note that since

dρ

dt
= 0

dφ

dt
= 1

dθ

dt
= 4

and when t = π/2 (so φ = π/2 and θ = 2π),

sinφ = 1

sin θ = 0

cosφ = 0,

cos θ = 1,
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x y

z

φ = π
2

b
−→p (π/2)

~p ′(π/2)

Figure 4.4: Curve on the Sphere

so

J(Sph)(1, π/2, 2π) =





1 0 0
0 0 1
0 −1 0





and we have

[

~p ′(π/2)
]

=





0 0 −1
1 0 0
0 −1 0



 ·





0
1
4





=





0
4
−1



 .

Exercises for § 4.2

Practice problems:

1. For each mapping below, find the Jacobian matrix JF (−→x0) and the
linearization T−→x0F at the given point −→x0:

(a) F (x, y) = (y, x), −→x0 = (1, 2).

(b) F (x, y) = (ex cos y, ex sin y), −→x0 = (0, π3 ).



4.2. DIFFERENTIABLE MAPPINGS 431

(c) F (x, y) = (x2 + y2, 2xy), −→x0 = (−1, 1).
(d) F (x, y) = (x+ y, x− y), −→x0 = (−1, 2).
(e) F (x, y) = (x, y, x2 − y2), −→x0 = (2,−1).
(f) F (x, y) = (x, y, xy), −→x0 = (2,−1).
(g) F (x, y) = (x− 2y, x+ y − 1, 3x + 5y), −→x0 = (2,−1).
(h) F (x, y) = (x2, 2xy, y2), −→x0 = (1,−3).
(i) F (x, y, z) = (y + z, xy + z, xz + y), −→x0 = (2,−1, 3).
(j) F (x, y, z) = (xyz, x− y + z2), −→x0 = (2, 1,−1).

2. In each part below, you are given a mapping described in terms of
rectangular coordinates. Use the Chain Rule together with one of the
equations (4.3), (4.4), (4.5), or (4.6) to find the indicated partial
derivative when the input is given in one of the other coordinated
systems.

(a) F (x, y) = (x2 − y2, 2xy); find ∂F1
∂r and ∂F2

∂θ at the point with
polar coordinates r = 2 and θ = π

3 .

(b) F (x, y, z) = (x2 + y2 + z2, xyz); find ∂F1
∂r and ∂F2

∂θ at the point
with cylindrical coordinates r = 2, θ = 2π

3 , and z = 1.

(c) F (x, y, z) = ( x
1−z ,

y
1−z ); find

∂F1
∂ρ ,

∂F2
∂φ and ∂F2

∂θ at the point with
spherical coordinates ρ = 1, φ = π

2 , and θ =
π
3 .

(d) F (x, y, z) = (x2+ y2+ z2, xy+ yz, xyz); find ∂F1
∂ρ ,

∂F2
∂φ and ∂F3

∂θ at

the point with spherical coordinates ρ = 4, φ = π
3 , and θ =

2π
3 .

Theory problems:

3. Prove Remark 4.2.4.

4. Show that for any linear map L:Rn→R
m,

(a) the number

‖ L ‖= sup {‖L(−→u )‖ |−→u ∈ R
n and ‖−→u ‖ = 1} (4.7)

satisfies
‖L(−→x )‖ ≤‖ L ‖ ‖−→x ‖ (4.8)

for every vector −→x ∈ R
n;

(b) ‖ L ‖ is actually a maximum in Equation (4.7);
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(c) ‖ L ‖ is the least number satisfying Equation (4.8).

5. Find the operator norm ‖ L ‖ for each linear map L below:

(a) L(x, y) = (y, x).

(b) L(x, y) = (x+ y, x− y).
(c) L(x, y) = (x+ y

√
2, x).

(d) L:R2→R
2 is reflection across the diagonal x = y.

(e) L:R2→R
3 defined by L(x, y) = (x, x− y, x+ y).

(f) L:R3→R
3 defined by L(x, y, z) = (x, x− y, x+ y).

4.3 Linear Systems of Equations (Optional)

This section is used primarily in § 4.4. If the Implicit and Inverse
Mapping Theorems are not being covered, this section can also be skipped.
A system of equations can be viewed as a single equation involving a
mapping. For example, the system of two equations in three unknowns

{

x +2y +5z = 5
2x + y +7z = 4

(4.9)

can be viewed as the vector equation

L(−→x ) = −→y

where L:R3→R
2 is the mapping given by

[L(x, y, z)] =

[

x+ 2y + 5z
2x+ y + 7z

]

and the right-hand side is the vector with

[−→y ] =
[

5
4

]

;

we want to solve for the unknown vector with

[−→x ] =





x
y
z



 .

We can think of the solution(s) of this system as the “level set” of the
mapping corresponding to the output value −→y .
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Solving Linear Systems:
Row Reduction

When the mapping is linear, as above, we can use a process of
elimination to solve for some variables in terms of others, and ultimately
to exhibit all solutions of the system in a convenient form. The process can
be streamlined using matrix notation, and in this setting it is called row
reduction. We review and illustrate this process briefly below; if you are
not familiar with it, see § D.2 for a more detailed and motivated discussion.
The relevant data in a linear system consists of the coefficients of the
different variables together with the numbers to the right of the “equals”
signs. We display this in an array, called the augmented matrix, often
separating the coefficients from the right-hand sides using a vertical bar.
The augmented matrix of the system (4.9) is

[A|−→y ] =
[

1 2 5 5
2 1 7 4

]

.

The matrix of coefficients—the subarray to the left of the bar—is the
matrix representative of the linear mapping L

A = [L] =

[

1 2 5
2 1 7

]

,

while the array to the right is the coordinate column of the vector −→y ; we
will often refer to the augmented matrix using the notation [A|−→y ].
The process of row reduction uses three row operations on a matrix:

1. Multiply all entries of one row by the same nonzero number.

2. Add (or subtract) to a given row a multiple of another row (the
latter remains unchanged).

3. Occasionally, we need to rearrange the order in which the rows occur:
the basic operation is an interchange of two rows.

Our goal is to end up with a matrix in reduced row-echelon form (or,
informally, a reduced matrix), characterized by the following conditions:

• The leading entry9 in any (nonzero) row is a 1.

• The leading entries move right as one goes down the rows, with any
rows consisting entirely of zeroes appearing at the bottom.

9 The leading entry of a row is the first nonzero entry in it.
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• A leading entry is the only nonzero entry in its column.

When this process is applied to the augmented matrix of a system of linear
equations, the successive augmented matrices represent systems with
exactly the same set of solutions (Exercise 5). A system whose augmented
matrix is in reduced row-echelon form exhibits its solutions explicitly. We
illustrate with a few examples.

A reduction of the augmented matrix for Equation (4.9) can be
summarized as follows:

[

1 2 5 5
2 1 7 4

]

7→
[

1 2 5 5
0 −3 −3 −6

]

7→
[

1 2 5 5
0 1 1 2

]

7→
[

1 0 3 1
0 1 1 2

]

.

The steps here are the following:

1. Subtract twice row 1 from row 2 (leaving row 1 unchanged) to get 0
below the leading 1 in the first row.

2. Divide the second row by its leading entry (−3) to make its leading
entry 1.

3. Subtract twice row 2 from row 1 to get 0 above the leading 1 in row 2.

The system whose augmented matrix is the reduced one is

{

x +3z = 1
y +z = 2

.

This can be rewritten as expressing the leading variables x and y in
terms of z:

{

x = 1 −3z
y = 2 −z .

The value of z is not constrained by any equation in the system: it is a
free variable. As we pick different values for the free variable, we run
through all the possible solutions of the system. In other words, choosing a
parameter t and setting z equal to it we can exhibit the solutions of the
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system (4.9) (i.e., the level set L(L,−→y )) as the line in space parametrized
by







x = 1 −3t
y = 2 −t
z = t

or
−→p (t) = (1− 3t, 2− t, t).

As another example, consider the system






2y +z = 1
2x −y −z = 3
x +y +z = 0

.

The reduction of its augmented matrix is summarized below. The first step
is a row interchange, and in subsequent steps we have indicated in bold
face the leading entries being used to clear the various columns.





0 2 1 1
2 −1 −1 3
1 1 1 0



 7→





1 1 1 0
2 −1 −1 3
0 2 1 1





7→





1 1 1 0
0 −3 −3 3
0 2 1 1



 7→





1 1 1 0
0 1 1 −1
0 2 1 1





7→





1 0 0 1
0 1 1 −1
0 0 −1 3



 7→





1 0 0 1
0 1 0 2
0 0 1 −3



 .

The last matrix represents the system

x = 1
y = 2

z = −3

which clearly exhibits the unique solution

(x, y, z) = (1, 2,−3)

of the system.
The system

x + y −2z = 1
x −2y +z = 7
x +7y −8z = 4



436 CHAPTER 4. MAPPINGS AND TRANSFORMATIONS

has an augmented matrix which reduces according to




1 1 −2 1
1 −2 1 7
1 7 −8 4



 7→





1 1 −2 1
0 −3 3 6
0 6 −6 3



 7→

7→





1 1 −2 1
0 1 −1 −2
0 6 −6 3



 7→





1 0 −1 3
0 1 −1 −2
0 0 0 15



 7→

7→





1 0 −1 0
0 1 −1 0
0 0 0 1



 .

The last matrix represents the system

x −z = 0
y −z = 0

0 = 1.

The first two equations look fine—as in the first example, they express
their leading variables in terms of the free variable z. However, the third
equation, 0 = 1, has no solutions. Thus the full system of three equations
has no solutions, implying that the same is true of the original system: it
is inconsistent. You should check that this occurs precisely if the last
column contains a leading entry of some row in the reduced matrix.
You undoubtedly noted in this last example that the leading entries
skipped a column. This does not necessarily imply inconsistency of the
system: for example, you should check that if the right side of the third
equation in the original system of the last example had been −11 instead
of 4, the reduction would have led to





1 1 −2 1
1 −2 1 7
1 7 −8 −11



 7→ · · · 7→





1 0 −1 3
0 1 −1 −2
0 0 0 0



 .

The system corresponding to this matrix

x −z = 3
y −z = −2

0 = 0

has a line of solutions, determined by the first and second equations; the
third equation is always satisfied.
The scenarios we have seen in these examples reflect the different ways
that planes can intersect in space:
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• In general, a linear equation in three variables determines a plane in
R
3; thus two linear equations in three variables represent the

intersection of two planes, which we expect (with rare exceptions) to
be a line, as in our first example, and three equations are expected to
determine a single point, as in the second.

• However, if two of the equations represent the same plane, then
geometrically the solutions are really just the intersection of two
planes; in this case reduction will eventually lead to a row of zeroes.
If all three equations represent the same plane, reduction will lead to
two rows of zeroes.

• Even if the three planes are distinct, they can intersect along a
common line; in this case reduction will still result in a row of zeroes.
Algebraically, this means that one of the equations can be deduced
directly from the other two, so the situation is the same as if there
were only two equations present (this occurs in the last of our four
examples).

• If at least two of the planes are parallel, then algebraically we have
two equations which can be written with the same coefficients, but
different right-hand sides: this will result in a row which is zero,
except for a nonzero entry in the last column (so there will be a
leading entry in the last column, as in our third example).
Geometrically, no point belongs to all three planes, so there are no
solutions. Even if no two of the planes are parallel, two pairwise
intersection lines might be parallel. This will also yield a leading
entry in the last column, indicating that again there are no solutions
to the system.

You should work out the possibilities for systems of equations in two
unknowns, in terms of the arrangements of lines in the plane (Exercise 6).
Our intuition—that each equation of a system “eliminates” one variable, in
the sense that for three variables, a single equation should lead to a plane
of solutions, a pair leads to a line of solutions, and three equations have a
unique solution—needs to be modified, using the rank of a matrix. This
can be defined as the number of independent rows in the matrix,10 or

10Technically, “the number of independent rows” does not make sense, since any nonzero
row can be included in a set of independent rows. However, it can be shown that any two
such sets which are maximal–in the sense that any set of rows that contains all of these
but is larger must be dependent–have the same number of elements. See Appendix D,
especially § D.4, for more details.
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equivalently as the number of nonzero rows in the equivalent reduced
matrix. Interpreted in terms of a system of equations, the rank of the
augmented matrix is the same as the number of algebraically independent
equations in the system; if the number of rows (equations) exceeds the
rank, then some equations in the system can be algebraically obtained
from the others, and therefore are redundant, as far as solving the system
is concerned; the process of row reduction replaces these rows with rows of
zeroes.

The rank of a matrix is clearly no more than the total number of rows, or
“height” of the matrix. Thus, the solution set of a system of two equations
in three unknowns is at least a line (so uniqueness of solutions is
impossible), but it may happen that the two equations are multiples of
each other, so the solutions form a plane. There is also the possibility that
the left sides of the two equations are multiples of each other, but the right
sides are inconsistent with this, so that there are no solutions. One way to
codify this is to compare the rank of the coefficient matrix A with that of
the augmented matrix [A|−→y ]. Since row reduction proceeds from left to
right, a reduction of the augmented matrix [A|−→y ] includes a reduction of
the coefficient matrix A, so the rank of A equals the number of leading
entries occurring to the left of the vertical line in the reduced matrix
equivalent to [A|−→y ]. We see, then, that the rank of A either equals that of
[A|−→y ]—in which case the system is consistent, and the solution set is
nonempty—or it is one less—in which case the system is inconsistent, and
there are no solutions. When there are solutions, the geometric nature of
the solution set is determined by the rank of the coefficient matrix: the
rank of A equals the number of leading variables, which are determined as
affine functions of the remaining, free variables. So for a system of linear
equations in three variables whose coefficient matrix has rank r, there are
3− r free variables: when r = 3, solutions are unique, when r = 2, any
nonempty solution set is a line, and when r = 1, it is a plane in space.11

Linear Systems and Linear Mappings

When we think of a system of equations in terms of the level set of a linear
mapping, we use the fact that the coefficient matrix of the system
L(−→x ) = −→y is the matrix representative of the related mapping L, and refer
to the rank of the matrix representative A = [L] as the rank of L. While
this is by definition the number of independent rows in A, it can be shown

11Can the rank of a matrix equal zero? When? What happens then?
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(Exercise 7) that the rank also gives the number of independent columns
in A. A quick calculation (Exercise 8) shows that the columns of A are the
coordinate columns of the vectors L(−→ej ), the images under L of the
standard basis vectors −→ej , and the full image of L consists of all linear
combinations of these vectors. Looked at differently, the full image of L,
the set of all outputs of L, is the set of all possible right-hand sides −→y in
the output space for which the system L(−→x ) = −→y has at least one
solution, and this has dimension equal to the rank of L. On the input side,
for each such −→y the solution set of the system L(−→x ) = −→y is the preimage
of −→y under L,

(L)−1(−→y ) := {−→x |L(−→x ) = −→y } .
This set is parametrized by the number of free variables, which is the
difference between the “width” of A (the dimension of the input space) and
its rank: this is sometimes called the nullity of A; stated differently, the
rank of L is the difference between the dimension of (nonempty) preimages
under L and the dimension of the input space where they live—this is
sometimes called the codimension of the preimages. To summarize:

Remark 4.3.1. If A = [L] is the matrix representative of the linear
mapping L, then the rank of A is the dimension of the image of L, and for
every element −→y of the image, its preimage has codimension equal to this
rank.

In particular, the rank of A cannot exceed either the height of A (the
output dimension of L) or its width (the input dimension). When the rank
of L equals the output dimension, the mapping L is onto: every point in
the target is hit by at least one input via L—or equivalently, every system
of the form L(−→x ) = −→y has at least one solution. By contrast, when the
rank of A equals the input dimension, the solution to the system
L(−→x ) = −→y , if nonempty, is a single point: the mapping is one-to-one.

We see that the only way that both conditions can possibly hold is if the
matrix A (and, by abuse of language, the system) is square: its width
equals its height. Of course, the rank of a square matrix need not equal its
size–it could be less. But in a sense the “typical” matrix has rank as high
as its dimensions allow. When a square matrix has the maximal possible
rank, the corresponding map is both one-to-one and onto; using the
French-derived term, it is bijective. A bijective map L automatically has
an inverse L−1, defined by

−→x = (L)−1(−→y )⇔ L(−→x ) = −→y .
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In terms of equations, this is the map assigning to each −→y in the full range
of L the unique −→x satisfying L(−→x ) = −→y . It is fairly straightforward to see
that the inverse of a bijective linear mapping is itself also linear
(Exercise 9). The definition of the inverse can be formulated in terms of
two different equations:

(L ◦ L−1)(−→y ) = −→y

and

(L−1 ◦ L)(−→x ) = −→x .

If we define the identity map id to be the “trivial” map which uses its
input directly as output, we can express the defining equations of L−1 as

L ◦ L−1 = id = L−1 ◦ L. (4.10)

In matrix terms, we can define the identity matrix I, which has every
diagonal entry equal to 1 and every off-diagonal entry zero: the 3× 3
version is

I =





1 0 0
0 1 0
0 0 1



 .

The identity matrix has no effect on any vector: I−→x = −→x , so I is the
matrix representative of id, and Equation (4.10) can be written in terms of
matrix representatives: if A = [L] and B =

[

L−1
]

:

AB = I = BA. (4.11)

Given a 3× 3 matrix A of rank 3, there is a unique 3× 3 matrix B
satisfying Equation (4.11); it is called the inverse of A, and denoted A−1;
in this case A is called invertible or nonsingular.
One way to decide whether a matrix is invertible and, if it is, to find its
inverse, is to take advantage of Remark 4.1.1, which says that the columns
of the matrix representative [L] of a linear mapping are the coordinate
columns of the images L(−→ej ) of the standard basis. If A = [L], then the
columns of A−1 =

[

L−1
]

are the coordinate columns of the pre-images of
the standard basis elements −→ej ; that is, they are solutions of the systems of
equations L(−→x ) = −→ej . The coefficient matrix of all these systems (for
different j) is A, so we can attempt to simultaneously solve all of them
using the super-augmented matrix [A|I] consisting of A augmented by
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the coordinate columns of the standard basis, which together form the
identity matrix. If we try to row-reduce this matrix, one of two things will
happen: either we will end up with a leading entry to the right of the
vertical bar, indicating that at least one of the systems has no
solution—that is, one of the standard basis elements has no preimage
under the corresponding mapping L (and hence L is not onto), so the
matrix is not invertible, or the leading entries all appear to the left of the
vertical bar. In this case, the submatrix appearing to the left of the bar is
the identity matrix, and the submatrix to the right of the bar is A−1:

Remark 4.3.2. If A is invertible, then row-reduction of the
super-augmented matrix [A|I] results in the matrix [I|A−1].

Let us consider an example. To check whether the matrix

A =





1 1 1
1 1 2
2 0 1





is invertible, we form the super-augmented matrix

[A|I] =





1 1 1 1 0 0
1 1 2 0 1 0
2 1 1 0 0 1





and row-reduce:





1 1 1 1 0 0
1 1 2 0 1 0
2 1 1 0 0 1



 7→





1 1 1 1 0 0
0 0 1 −1 1 0
0 −1 −1 −2 0 1



 7→

7→





1 1 1 1 0 0
0 1 1 2 0 −1
0 0 1 −1 1 0



 7→





1 0 0 −1 0 1
0 1 1 2 0 −1
0 0 1 −1 1 0



 7→

7→





1 0 0 −1 0 1
0 1 0 3 −1 −1
0 0 1 −1 1 0



 .

Thus, we can read off that A is invertible, with inverse

A−1 =





−1 0 1
3 −1 −1
−1 1 0



 .
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Another useful criterion for invertibility of a matrix is via determinants.
Recall that the determinant of a 3× 3 matrix A is the signed volume of the
parallelepiped whose sides are the rows of A, regarded as vectors. A is
invertible precisely if it has rank 3, which is to say its rows are linearly
independent—and this in turn means that they span a parallelepiped of
nonzero volume. Thus

Remark 4.3.3. A 3× 3 matrix A is invertible if and only if its
determinant is nonzero.

An alternative argument for this is outlined in § E.3.

Exercises for § 4.3

Practice problems:

1. Which of the matrices below are in reduced row-echelon form?

(a)





1 2 3
1 2 3
1 2 3



 (b)





1 2 3
0 1 3
0 0 0





(c)





1 0 3
0 2 3
0 0 3



 (d)





1 0 3
0 1 3
0 0 0





(e)





1 2 0
0 0 1
0 0 0



 (f)





0 1 0
1 0 0
0 0 1





2. For each system of equations below, (i) write down the augmented
matrix; (ii) row-reduce it; (iii) write down the corresponding system
of equations; (iv) give the solution set in parametrized form, or
explain why there are no solutions.

(a)

{

2x −y = 3
x +3y = −2 (b)

{

4x +2y = 2
2x +y = 1

(c)

{

x +2y +8z = 5
2x +y +7z = 4

(d)







x +y +3z = 3
x +2y +5z = 4
2x +y +4z = 5

(e)







x +2y +5z = 4
2x +y 4z = 5
3x +2y +3z = 2

(f)







x +2y +3z = 6
2x −y z = 2
x +y +2z = 5

.
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3. Find the rank and nullity of each matrix below:

(a)





1 2 4
2 1 5
1 1 4



 (b)





1 2 3
2 4 6
−3 −6 −9





(c)





1 2 4
2 4 3
1 2 3



 (d)





1 2 3
3 1 2
1 1 1





4. Find the inverse of each matrix below, or show that none exists.

(a)





1 −1 1
2 −1 6
1 −1 2



 (b)





1 2 3
1 3 6
2 3 4





(c)





1 1 3
−1 2 0
2 −1 3



 (d)





4 1 5
3 1 3
3 1 4





(e)





2 3 1
4 4 3
3 3 2



 (f)





3 −1 1
1 1 3
1 2 5





Theory problems:

5. Show that row equivalent matrices represent systems with the same
set of solutions, as follows:

(a) Clearly, interchanging rows and multiplying a row by a nonzero
number corresponds to operations on the equations which don’t
change the solutions.

(b) Show that, if we replace a single equation in a system with the
difference between it and another equation (and leave all other
equations unchanged) then any solution of the old system is also
a solution of the new system. That is, we don’t lose any
solutions via this operation.

(c) Show that we can get from the new system in the previous item
to the old one by a similar operation. That is, every solution of
the new system also solves the old system—the original
operation did not create any new solutions.
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6. In general, a single linear equation in two variables determines a line
in the plane. Two equations then determine a pair of lines; describe
what the solution set of the resulting system is when the lines are the
same, parallel, or non-parallel. What are the possible configurations
for three equations in two variables?

7. (a) Show that, in a reduced matrix, the columns which contain the
leading entries of the rows are linearly independent.

(b) Show that, in a reduced matrix, a column which does not
contain a leading entry of some row is a linear combination of
the columns containing leading entries to its left.

(c) Conclude that the number of independent rows in a reduced
matrix equals the number of independent columns.

(d) Show that, if one column of a matrix is a linear combination of
other columns, then this relation is unchanged by row
operations.

(e) Conclude that the number of independent rows in any matrix
equals the number of independent columns in that matrix.

8. Show that the columns of the matrix representative A = [L] of a
linear mapping L:R3→R

3 are the coordinate columns of L(−→ı ),
L(−→ ) and L

(−→
k
)

. (Hint: What are the coordinate columns of −→ı , −→ ,
and
−→
k ?)

Challenge problem:

9. Suppose L:R3→R
3 is linear and bijective. Show that for any two

vectors −→x1 and −→x2 and scalars α1, α2,

(L)−1(α1
−→x1 + α2

−→x2) = α1 (L)
−1(−→x1) + α2 (L)

−1(−→x2) .

4.4 Nonlinear Systems of Equations: The
Implicit and Inverse Mapping Theorems

How does the discussion of linear systems in the preceding section extend
to non-linear systems of equations? We cannot expect to always solve such
equations by some systematic method analogous to row reduction.
However, we saw in § 3.4 that for a real-valued function of 2 or 3 variables,
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the level set corresponding to a regular value is locally the graph of a
function (Theorems 3.4.2 and 3.5.3, the Implicit Function Theorem).
This result can be generalized to arbitrary differentiable mappings: the
general philosophy is that the linearization of the mapping gives us local
information about the nonlinear mapping.
In this section, we stress the results and their use in the text, and relegate
the proofs of these theorems to Appendix F.

Two Equations in Two Unknowns:
The Inverse Mapping Theorem

A system of two equations in two unknowns
{

f1(x, y) = a
f2(x, y) = b

can be interpreted as the vector equation F (−→x ) = −→y , where

−→x =

[

x
y

]

, −→y =

[

a
b

]

,

and F:R2→R
2 is defined by

F (−→x ) =

[

f1(
−→x )

f2(
−→x )

]

.

The analogous situation for one equation in one unknown is that if the
real-valued function f of one real variable (i.e., f:R1→R

1) has
nonvanishing derivative f ′(x0) at x0 then it has an inverse g = f−1 defined
(at least) on a neighborhood (x0 − ε, x0 + ε) of x0, and the derivative of
the inverse is the reciprocal of the derivative: writing f(x0) = y0,

g′(y0) = 1/f ′(x0) .

In other words, if x0 is a regular point of f then f is locally invertible
there, and the derivative of the inverse is the inverse of the derivative.
To extend this to the situation of F:R2→R

2, we need first to define what
we mean by a regular point. Motivated by the linear situation, we take it
to mean that the rank of the derivative is as high as possible, given the
dimensions of input and output.

Definition 4.4.1. Suppose F:R2→R
2 is a differentiable mapping with

domain an open set D ⊂ R
2.
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1. A point −→x0 ∈ D is a regular point of F if the rank of DF−→x0 is 2.

2. It is a critical point of F otherwise—that is, if the rank of DF−→x0 is
1 or 0.

Recall that a point in the domain of a real-valued function f(−→x ) on R
2 is

regular if the gradient is nonvanishing there, which is the same as saying
that the rank of the derivative is 1, while it is critical if the gradient is the
zero vector (all partials are zero)—that is, the rank of the derivative is
zero. If the function is continuously differentiable, then all points near a
regular point are also regular.
For a mapping

F (−→x ) =

[

f1(
−→x )

f2(
−→x )

]

a point is regular if the two gradients
−→∇f1 and

−→∇f2 are linearly
independent. Thus a point can be critical in two ways: if it is a critical
point of one of the component functions, or if it is regular for both, but
their gradients at the point are parallel (this is equivalent to saying that
the two component functions have first-order contact at the point). Again,
if the mapping is continuously differentiable (i.e., both component
functions are C1), then every regular point has a neighborhood consisting
of regular points.

The two gradients
−→∇f1 and

−→∇f2 are linearly independent if and only if the
triangle they form has nonzero area , that is, if the determinant of partials
∣

∣

∣

∂(f1,f2)
∂(x,y)

∣

∣

∣
is nonzero:

∣

∣

∣

∣

∂ (f1, f2)

∂ (x, y)

∣

∣

∣

∣

:= det

[

∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]

=
∂f1
∂x

∂f2
∂y
− ∂f1

∂y

∂f2
∂x

6= 0.

To generalize the differentiation formula from one to two variables, we
should reinterpret the derivative f ′(x0) of a function of one
variable—which is a number—as the (1× 1) matrix representative of the
derivative “mapping” Dfx0:R

1→R
1, which multiplies every input by

f ′(x0). The inverse of multiplying by a number is dividing by it, which is
multiplying by its reciprocal. This point of view leads naturally to the
following formulation for plane mappings analogous to the situation for
mappings of the real line:
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Theorem 4.4.2 (Inverse Mapping Theorem for R2). Suppose

F (−→x ) =
[

f1(
−→x )

f2(
−→x )

]

is a C1 mapping of the plane to itself, and −→x0 is a regular point for F—that
is, its Jacobian determinant at −→x0 is nonzero:

∣

∣

∣

∣

∂ (f1, f2)

∂ (x, y)

∣

∣

∣

∣

(−→x0) := det

[

∂f1/∂x(
−→x0) ∂f1/∂y(

−→x0)
∂f2/∂x(

−→x0) ∂f2/∂y(
−→x0)

]

=
∂f1
∂x

(−→x0)
∂f2
∂y

(−→x0)−
∂f1
∂y

(−→x0)
∂f2
∂x

(−→x0)

6= 0.

Then F is locally invertible at −→x0: there exist neighborhoods V of −→x0 and
W of −→y0 = F (−→x0) = (c, d) such that F (V ) =W , together with a C1 mapping
G = F−1:W→V which is the inverse of F (restricted to V ):

G(−→y ) = −→x ⇔ −→y = F (−→x0) .

Furthermore, the derivative of G at y0 is the inverse of the derivative of F
at −→x0:

DF−1−→y0 =
(

DF−→x0
)−1

(4.12)

(equivalently, the linearization of the inverse is the inverse of the
linearization.)

A proof of ?? is given in § F.
Our prime example in § 3.4 of a regular (parametrized) surface was the
graph of a function of two variables. As an application of Theorem 4.4.2,
we see that every regular surface can be viewed locally as the graph of a
function.

Proposition 4.4.3. Suppose S is a regular surface in R
3, and −→x0 ∈ S is a

point on S. Let P be the plane tangent to S at −→x0.
Then there is a neighborhood V ⊂ R

3 of −→x0 such that the following hold:

1. If P is not vertical (i.e., P is not perpendicular to the xy-plane),
then S∩ V can be expressed as the graph z = ϕ(x, y) of a C1 function
defined on a neighborhood of (x0, y0), the projection of −→x0 on the
xy-plane. Analogously, if P is not perpendicularl to the xz-plane
(resp. yz-plane), then locally S is the graph of y (resp. x) as a
function of the other two variables. (Figure 4.5)
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x

y

z

S

Figure 4.5: S parametrized by projection on the xy-plane

2. S ∩ V can be parametrized via its projection on P : there is a
real-valued function f defined on P ∩ V such that

S ∩ V = {−→x + f(−→x )−→n | −→x ∈ V ∩ P}

where −→n is a vector normal to P (Figure 4.6).

x
y

z

b

PS

Figure 4.6: S parametrized by projection on the tangent plane P

We give a proof of Proposition 4.4.3 in § F.
As a corollary of Proposition 4.4.3, we can establish an analogue for
parametrized surfaces of Lemma 2.4.2. Recall that a coordinate patch
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for a parametrization −→p :R2→R
3 of a surface is a region in the domain of

−→p consisting of regular points, on which the mapping is one-to-one. By
abuse of terminology, we will also use this term to refer to the image of
such a region: that is, a (sub)surface such that every point is a regular
value, and such that no point corresponds to two different pairs of
coordinates. This is, of course, the two-dimensional analogue of an arc
(but with further conditions on the derivative).

Corollary 4.4.4. Suppose S is simultaneously a coordinate patch for two
regular parametrizations, −→p and −→q . Then there exists a differentiable
mapping T :R2→R

2 which has no critical points, is one-to-one, and such
that

−→q = −→p ◦ T. (4.13)

We will refer to T as a reparametrization of S.

Proof. Let us first assume that −→p is a parametrization by projection on
the xy-plane, as in the first part of Proposition 4.4.3, so −→p has the form

−→p (x, y) = (x, y, ϕ(x, y)).

If −→q has the form

−→q (s, t) = (x(s, t) , y(s, t) , z(s, t)),

then in particular

z(s, t) = ϕ(x(s, t) , y(s, t)) .

Let T :R2→R
2 be defined by

T (s, t) = (x(s, t) , y(s, t));

then clearly T is C1, with Jacobian matrix

JT =

(

∂x/∂s ∂x/∂t
∂y/∂s ∂y/∂t

)

.

Furthermore, since S can be parametrized as the graph of a function, the
tangent plane to S at each point is not vertical; in other words, its normal
has a component in the z direction. But in terms of −→q , this component is
given by the determinant of the matrix above, so that JT is invertible at
each point. It follows that every point is a regular point for T ; to see that
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it is one-to-one, we need only note that each point of S corresponds to a
unique pair of coordinates for either parametrization.
Note that F has a differentiable inverse by the Inverse Mapping Theorem.
Now for the general case, we first define T :R2→R

2 by Equation (4.13): to
see that this is well-defined, we note that since −→q is a coordinate patch,
the mapping that assigns to q(s, t) the point (s, t) ∈ R

2 is well-defined, and
T is by definition the composition of −→p with this mapping. Since both
factors are one-to-one, so is T . Finally, to see that T is differentiable at
each point, we find a neighborhood of −→p (u, v) = −→q (s, t) which can be
reparametrized by projection on one of the coordinate planes (say the
x, y-plane); call this new parametrization ρ: applying the first case to each
of −→p and −→q , we can write

−→p = ρ ◦ T1
−→q = ρ ◦ T2.

Then clearly,

T = T−1
1

◦ T2

is C1 and satisfies

−→q = ρ ◦ T2 = (ρ ◦ T1) ◦ (T−1
1

◦ T2) =
−→p ◦ T.

Two Equations in Three Unknowns:
The Implicit Mapping Theorem

We know that the solutions of a linear system of two equations in three
unknowns cannot be unique; the maximal possible rank for the matrix of
coefficients is 2, and in that case the solution sets are lines in R

3. Thus, we
expect the solutions of a typical system of two nonlinear equations in three
unknowns—in other words, the level sets of a typical mapping
F:R3→R

2—to be composed of curves in 3-space.
The definitions of critical and regular points F:R3→R

2 are essentially the
same as for mappings of the plane to itself:

Definition 4.4.5. Suppose F:R3→R
2 is a differentiable mapping with

domain an open set D ⊂ R
3.

1. A point −→x0 ∈ D is a regular point of F if the rank of DF−→x0 is 2.



4.4. NONLINEAR SYSTEMS (OPTIONAL) 451

2. It is a critical point of F otherwise—that is, if the rank of DF−→x0 is
1 or 0.

If the two gradients
−→∇f1 and

−→∇f2 are linearly independent, their
cross-product is nonzero, so one of its components is nonzero. We will
state and prove our theorem assuming the first component of

(
−→∇f1)× (

−→∇f2), sometimes denoted
∣

∣

∣

∂(f1,f2)
∂(y,z)

∣

∣

∣
, is nonzero:

∣

∣

∣

∣

∂ (f1, f2)

∂ (y, z)

∣

∣

∣

∣

:= det

[

∂f1/∂y ∂f1/∂z
∂f2/∂y ∂f2/∂z

]

=
∂f1
∂y

∂f2
∂z
− ∂f1

∂z

∂f2
∂y

6= 0.

Geometrically, this is the condition that the plane spanned by
−→∇f1(−→x0)

and
−→∇f2(−→x0) does not contain the vector −→ı or equivalently, that it

projects onto the yz-plane (Figure 4.7). Note that if F is continuously
differentiable, then this condition holds at all points sufficiently near −→x0, as
well.

x

y

z

−→∇f1

−→∇f2

−→∇f1 ×
−→∇f2

∣

∣

∣

∂(f1,f2)
∂(y,z)

∣

∣

∣

Figure 4.7:
∣

∣

∣

∂(f1,f2)
∂(y,z)

∣

∣

∣ 6= 0

Theorem 4.4.6 (Implicit Mapping Theorem for R3 → R
2). Suppose

F (−→x ) =
[

f1(
−→x )

f2(
−→x )

]
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is a continuously differentiable mapping from R
3 to R

2,

−→x0 = (x0, y0, z0)

is a regular point of F , and

F (−→x0) = (c, d).

Then there exists a neighborhood V of −→x0 = (x0, y0, z0) and a neighborhood
W of F (−→x0) = (c, d) such that F maps V onto W : for every −→y interior to
W the level set L(F,−→y ) := {−→x |F (−→x ) = −→y } intersects V in a regular
curve.
Stated more precisely, if the plane spanned by

−→∇f1(−→x0) and
−→∇f2(−→x0) does

not contain −→ı , that is,
∣

∣

∣

∣

∂ (f1, f2)

∂ (y, z)

∣

∣

∣

∣

:=
∂f1
∂y

∂f2
∂z
− ∂f1

∂z

∂f2
∂y
6= 0,

then there is a rectangular box

B = [x0 − ε1, x0 + ε1]× [y0 − ε2, y0 + ε2]× [z0 − ε3, z0 + ε3]

whose intersection with the level set

L(F, (c, d)) = {−→x |F (−→x ) = (c, d)}

is a regular curve parametrized by −→p (t), x0 − ε1 ≤ t ≤ x0 + ε1, in the form

x = t

y = γ1(t)

z = γ2(t) .

The line tangent to this curve at −→x0 is parallel to
−→∇f1(−→x0)×

−→∇f2(−→x0).

(See Figure 4.8.)

When the plane spanned by
−→∇f1(−→x0) and

−→∇f2(−→x0) does not contain −→
(resp.

−→
k ), then we can locally parametrize L(F, (c, d)) using y (resp. z) as

a parameter. You are asked to work out the details in Exercise 4.
A proof of Theorem 4.4.6 is given in § F.
There are several other ways to understand this result.
Geometrically, the level curve
L(F, (c, d)) = {−→x | f1(−→x ) = c and f2(

−→x ) = d} is the intersection of the two
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x

y

z

• −→∇f1

−→∇f2

L(F, (c, d))B

Figure 4.8: Implicit Mapping Theorem

level surfaces L(f1, c) and L(f2, d). Two regular surfaces are said to meet
transversally, or are transverse at a common point if their normal
vectors at that point are linearly independent. This is the same as saying
that the tangent planes to the two surfaces at that point are not parallel,
and hence intersect in a line. Theorem 4.4.6 is a special case of a general
statement (illustrated by Figure F.6):

If two regular surfaces meet transversally at a point, then their
intersection near this point is a regular arc, and the line
tangent to this arc is the intersection of the tangent planes to
the two surfaces at the point.

Algebraically, the statement of Theorem 4.4.6 says that if we have a
system of two (non-linear) equations in three unknowns and know one
solution, and if we can solve the linear system of equations coming from
replacing each function with its degree one Taylor polynomial (at this
point) for y and z in terms of x, then there is in principle also a solution of
the nonlinear system (at least near our point) for y and z in terms of x,
and furthermore these solutions have first order contact with the solutions
of the linearized system. Row reduction normally gives us the solution of a
linear system of this type for x and y in terms of z, and when we have that
form we naturally turn to one of the alternative statements of
Theorem 4.4.6 from Exercise 4.
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For example, one solution of the system

{

x3 +y3 +z3 = 1
2x3 +y +z2 = 2

is

x = 1

y = −1
z = 1.

The linearization of the left side of the first equation at −→x0 = (1,−1, 1) is

Tf1
−→x0(△−→x ) = f1(

−→x0) +
∂f1
∂x

(−→x0)△x+
∂f1
∂y

(−→x0)△y +
∂f1
∂z

(−→x0)△z

= 1 + 3(1)2△x+ 3(−1)2△y + 3(1)2△z
= 1 + 3△x− 3△y + 3△z

where

△x = x− 1

△y = y + 1

△z = z − 1.

Note that the constant term agrees with the right side of the equation
(since we are at a solution), so the linearization of the first equation is

d−→x0f1(△−→x ) = 0

or

3△x+ 3△y + 3△z = 0.

Similarly the linearization of the second equation is

∂f2
∂x

(−→x0)△x+
∂f2
∂y

(−→x0)△y +
∂f2
∂z

(−→x0)△z = 0

that is

6(1)2△x+△y + 2(1)2△z = 0
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or

6△x+△y + 2△z = 0.

Thus, the linearized system at (1,−1, 1) is
{

3△x +3△y +3△z = 0
6△x +△y +2△z = 0

.

Applying row reduction (or Gaussian elimination) to the linearized system,
we arrive at

△x = −1

5
△z

△y = −4

5
△z

or equivalently

△z = −5△x
△y = 4△x.

So for example, we expect the solution of the nonlinear system with
x = 1.1 (i.e., , △x = 0.1) to be approximated by

x = 1 + 0.1 = 1.1

y = −1 + (0.4) = −0.6
z = 1 + (−0.5) = 0.5.

We can try to see if this is close to a solution of the nonlinear system by
evaluating the two functions at (1.1,0.6,0.5): a quick calculation shows that

f1(1.1, 0.6, 0.5) = (1.1)3 + (−0.6)3 + (0.5)3

= 1.331 − 0.216 + 0.125

= 1.24

f2(1.1, 0.6, 0.5) = 2(1.1)3 − 0.6 + (0.5)2

= 2.662 − 0.6 + 0.25

= 2.312.

Similarly, △x = 0.01 leads to △−→x = (0.01, 0.04,−0.05), so
−→x = −→x0 +△−→x = (1.01,−0.96, 0.95), and

f1(1.01,−0.96, 0.95) = 1.003

f2(1.01,−0.96, 0.95) = 2.003.
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Theorem 4.4.6 tells us about level sets locally near a regular point.
However, if we happen to know that all points on a given level set are
regular points, then we can combine the local pictures into a global one.

Definition 4.4.7. Suppose F:R3→R
2 is a differentiable mapping with

domain an open set D ⊂ R
3.

1. A point −→y ∈ R
2 is a critical value of F if there exists at least one

critical point −→x of F with F (−→x ) = −→y .

2. A point −→y ∈ R
2 is a regular value if it is in the range of F (i.e.,

there is at least one point −→x ∈ D with −→y = F (−→x )) 12 and every such
point is a regular point of F .

Recall that a regular curve is one for which every point has a
neighborhood with a regular parametrization: in this light, an almost
immediate corollary of Theorem 4.4.6 is

Corollary 4.4.8. If F:R3→R
2 is a C1 mapping, and (c, d) is a regular

value of F , then L(F, (c, d)) is a regular curve in R
3.

Three Equations in Three Unknowns:
The Inverse Mapping Theorem Again

If we think in mapping terms, the situation for three equations in three
unknowns is analogous to that of two equations in two unknowns: the
coefficient matrix of a linear system in which the number of equations
equals the number of unknowns is square, and typically is nonsingular. In
this case, the linear mapping is invertible, which tells us that it is both
one-to-one and onto: every linear system with a nonsingular coefficient
matrix (regardless of the right-hand side) has a unique solution. For
nonlinear systems, we expect the analogous situation locally, provided the
derivative mapping is nonsingular.

Definition 4.4.9. Suppose F:R3→R
3 is differentiable.

1. A point −→x0 in the domain of F is a regular point for F if DF−→x0 is
invertible—that is, the Jacobian determinant is nonzero:

JF (−→x0) = det
[

DF−→x0
]

6= 0.

12That is, −→y must be a “value” of F . Some authors use the term “regular value” for
any point of the target space which is not a critical value, irrespective of whether it is the
image of some point under F .
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2. A point in the domain of F which is not regular is a critical point

for F .

As before, if F is continuously differentiable, then every point sufficiently
near a regular point is itself a regular point.

Theorem 4.4.10. If F:R3→R
3 is C1 and −→x0 is a regular point for F , then

F is locally invertible at −→x0: there exists a neighborhood V of −→x0 and a
neighborhood W of −→y0 = F (−→x0), and a C1 mapping G:RW→R

V such that

F (G(−→y )) = −→y for every −→y ∈W

and

G(F (−→x )) = −→x for every −→x ∈ V .

Furthermore, the linearization at −→y0 of G is the inverse of the linearization
of F at −→x0:

DG−→y0 =
(

DF−→x0
)−1

A proof of Theorem 4.4.10 is given in § F
We should stress that the conclusion of the Inverse Mapping Theorem is
strictly local. A mapping F:R3→R

3 whose derivative DF is invertible at
every point of its domain is guaranteed to be locally one-to-one and onto,
but this says nothing about its global properties. For example, the
change-of-coordinates transformation Cyl from cylindrical to rectangular
coordinates has an invertible derivative everywhere off the z-axis (r = 0); if
we compose this with the mapping E which leaves θ and z unchanged but
replaces r with its exponential

E





r
θ
z



 =





er

θ
z





then the composition

Sph ◦E





r
θ
z



 =





er cos θ
er sin θ
z





has an invertible derivative everywhere (so is one-to-one and onto near any
particular point) but it is neither globally onto (it misses the z-axis) nor
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globally one-to-one (increasing or decreasing θ by an integer multiple of 2π
gives the same image).

In our present context, the main part of Theorem 4.4.10 is the formula for
the derivative of the (local) inverse, Equation (F.1), which is the content of
Lemma F.0.3:

DF−1

F(−→x0)
=
(

DF−→x0
)−1

.

How do we use this? As an example, consider the change-of-coordinates
transformation Sph from spherical to rectangular coordinates, which we
found in § 4.2. While a bit tedious, it was relatively easy to calculate its
Jacobian matrix (Equation (4.6)). We can use this to translate differential
data back from rectangular to spherical coordinates without having to
solve explicitly for the spherical coordinates in terms of the rectangular.
For example, consider the curve (Figure 4.9) given in rectangular
coordinates by

x = t cos 2πt

y = t sin 2πt

z = 1− t2

with derivative

ẋ = cos 2πt− 2πt sin 2πt

ẏ = sin 2πt+ 2πt cos 2πt

ż = −2t.

x y

z

b

Figure 4.9: (x, y, z) = (t cos 2πt, t sin 2πt, 1− t2), −1.1 < t < 1.1

Suppose we want to find the rate of change of one or more of the spherical
coordinates as the curve crosses the xy-plane at t = 1 (so
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x = 1, y = z = 0). It is easy to see that this position is given in spherical
coordinates by ρ = 1, θ = 0, φ = π/2 and using this (together with
Equation (4.6)) we find that the derivative of Sph at this point has matrix
representative

JSph((1, 0, π/2)) =







1√
2

0 − 1√
2

1√
2

0 1√
2

0 −1 0






.

The inverse of this matrix (found by reducing the super-augmented matrix
[J |I]) is

(JSph((1, 0, π/2)))−1 =







1√
2

1√
2

0

0 0 −1
− 1√

2
1√
2

0







so we see that





ρ̇

φ̇

θ̇



 =







1√
2

1√
2

0

0 0 −1
− 1√

2
1√
2

0











ẋ = 1
ẏ = 2π
ż = −2



 =







2π+1√
2

2
2π−1√

2







and we can write

dρ

dt
= π
√
2 +

1√
2

dφ

dt
= 2

dθ

dt
= π
√
2− 1√

2
.

Exercises for § 4.4

Practice problems:

1. Find the critical points of each map F:R2→R
2 below.

(a) F (x, y) = (x+ y, xy) (b) F (x, y) = (x2 + y2, xy)

(c) F (x, y) = (x+ y2, x2 + y) (d) F (x, y) = (exy, e−yx)

(e) F (x, y) = (x2, y3) (f) F (x, y) = (x2 + y, y3)

2. Find the critical points of each map F:R3→R
3 below.
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(a) F (x, y, z) = (yz, xz, xy)

(b) F (x, y, z) = (y2 + z2, x2 + z2, x2 + y2)

(c) F (x, y, z) = (xey, yez , zex)

(d) F (x, y, z) = (x+ y + z, x2 + y2 + z2, x3 + y3 + z3)

(Hint: Write the Jacobian as a quadratic in one of the
variables (i.e., treat the other two variables as constants) and
use the quadratic formula to find its zeroes as a function of the
two “constant” variables.)

3. Find the critical points of each map F:R3→R
2 below, and identify

at which regular points one can locally parametrize the level curve
using z as the parameter.

(a) F (x, y, z) = (ezx, ezy)

(b) F (x, y, z) = (xz, yz)

(c) F (x, y, z) = (x+ y + z, x2 + y2 + z2)

(d) F (x, y, z) = (x2 + yz, xy + z2)

Theory problems:

4. (a) Show that a plane which does not contain a line with direction

vector −→ (resp.
−→
k ) projects onto the xz-plane (resp. yz-plane).

(b) Use this to discuss how the statement and proof of

Theorem 4.4.6, given in case the plane spanned by
−→∇f1(−→x0) and−→∇f2(−→x0) does not contain −→ı , can be adapted to the situations

when this plane does not contain −→ (resp.
−→
k ).

5. Prove Equation (F.10).

Challenge problem:

6. Consider the following variant on cylindrical coordinates: the
coordinates (R, θ, z) are assigned to the point with rectangular
coordinates

x = (R+ z2) cos θ

y = (R+ z2) sin θ

z = z.
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(a) Find the Jacobian determinant of the map F:R3→R
3 which

assigns to the triple (R, θ, z) the triple (x, y, z), according to the
equations above.

(b) Where does the system fail to yield a coordinate system, locally?

(c) Describe the level sets corresponding to a fixed value of R.

(d) If a moving object passes the point with rectangular coordinates

x =
√
2

y =
√
2

z = −1

so

R = 1

θ =
π

4

with velocity

dx

dt
=
√
2

dy

dt
=
√
2

dz

dt
= 1,

what is the rate of change of R?

7. Consider the mapping F:R3→R
2 defined by

F (x, y, z) = (x+ y + z, xyz).

(a) Verify that (1,−1, 1) is a regular point of F .

(b) Show that it is possible to parametrize the level curve through
this point using z as a parameter.

(c) Give an estimate of the x and y coordinates of the point on the
level set where z = 1.1.

8. Our proof of Theorem 4.4.2 (the Inverse Mapping Theorem for
F:R2→R

2) was based on the Implicit Function Theorem for
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f:R2→R (Theorem 3.4.2), and similarly, our proof of the Inverse
Mapping Theorem for F:R3→R

3 (Theorem 4.4.10) was based on the
Implicit Mapping Theorem for F:R3→R

2 (Theorem 4.4.6). In this
problem, you will show that in each of these instances we could have
used the Inverse Mapping Theorem to prove the Implicit one (if we
had an independent proof of the Inverse one).13

(a) Inverse Mapping for R
2 → R

2 implies Implicit Mapping for
R
2 → R: Suppose f: 2→R is a C1 function near the point (a, b),

with

f(a, b) = c

and

∂f

∂y
(a, b) 6= 0.

Define G:R2→R
2 by

G(x1, x2) = (x1, f(x1, x2)).

i. Show that the Jacobian determinant of G at (a, b) is
nonzero.

ii. Then by Theorem 4.4.2, G has a local inverse. Show that
such an inverse must have the form

G−1(y1, y2) = (y1, φ(y1, y2)).

iii. From this, conclude that if f(x1, x2) = c at a point in the
domain of G−1, then

x2 = φ(x1, c) .

iv. Explain how this proves Theorem 3.4.2.

13The proofs we gave in the text are similar to the original ones given in the 19th
century. Nowadays the normal procedure (which you will see in more advanced courses)
is to first prove the Inverse Mapping Theorem using the Banach Contraction Map-

ping Lemma— which is beyond the scope of this book—and then to prove the Implicit
Mapping Theorem by an argument similar to the one in this problem.
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(b) Inverse Mapping for R
3 → R

3 implies Implicit Mapping for
R
3 → R

2: Suppose F:R3→R
2 is a C1 function near the point

(a1, a2, a3), with

F (a1, a2, a3) = (b1, b2)

i.e.,

f1(a1, a2, a3) = b1

f2(a1, a2, a3) = b2

and also assume that

∣

∣

∣

∣

∂ (f1, f2)

∂ (y, z)
(a1, a2, a3)

∣

∣

∣

∣

6= 0.

Define G:R3→R
3 by

G(x, y, z) = (x, F (x, y, z)).

i. Show that the Jacobian determinant of G at (a1, a2, a3) is
nonzero.

ii. Then by Theorem 4.4.10, G has a local inverse. Show that
such an inverse must have the form

G−1
(

x′, y′, z′
)

= (x′, φ1
(

y′, z′
)

, φ2
(

y′, z′
)

).

iii. From this, conclude that if F (x, y, z) = (b1, b2) at a point in
the domain of G−1, then

y = φ1(x, b1, b2)

and

z = φ2(x, b1, b2)

iv. Explain how this proves Theorem 3.5.3.



464 CHAPTER 4. MAPPINGS AND TRANSFORMATIONS



5
Integral Calculus for Real-Valued

Functions of Several Variables

In this chapter, we consider integrals of functions of several variables.

5.1 Integration over Rectangles

In this section, we will generalize the process of integration from functions
of one variable to several variables. As we shall see, the passage from one
to several variables presents new difficulties, although the basic underlying
ideas from single-variable integration remain.

Integrals in One Variable: A Review

Let us recall the theory behind the Riemann integral for a function of one
variable, which is motivated by the idea of finding the area underneath the
graph.

Given a function f(x) defined and bounded on the closed interval [a, b], we
consider the partition of [a, b] into n subintervals via the partition points

P = {a = x0 < x1 < · · · < xn = b} ;

465
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the jth atom1 is then

Ij = [xj−1, xj ] ;

its length is denoted

△xj = ‖Ij‖ = xj − xj−1

and the mesh size of P is

mesh(P) = max
j=1,...,n

△xj.

From this data we form two sums: the lower sum

L(P, f) =
n
∑

j=1

(

inf
Ij
f

)

△xj

and the upper sum

U(P, f) =
n
∑

j=1

(

sup
Ij

f

)

△xj.

It is clear that the lower sum is less than or equal to the upper sum for P;
however, we can also compare the sums obtained for different partitions:
we show that every lower sum is lower than every upper sum: that is, for
any pair of partitions P and P ′,

L(P, f) ≤ U(P ′, f)

by comparing each of these to the lower (resp. upper) sum for their mutual
refinement P ∨ P ′ (the partition points of P ∨ P ′ are the union of the
partition points of P with those of P ′). In particular this means that we
can define the lower integral

∫

f(x) dx = sup
P
L(P, f)

and the upper integral

∫

f(x) dx = inf
P
U(P, f);

1In Calculus Deconstructed I used the term “component interval”, but since “compo-
nent” has a different meaning here, I am borrowing terminology from ergodic theory.
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clearly,

∫

f(x) dx ≤
∫

f(x) dx.

If the two are equal, we say that f(x) is Riemann integrable (or just
integrable) over [a, b], and define the definite integral (or Riemann
integral) of f(x) over [a, b] to be the common value of the lower and upper
integrals:

∫

[a,b]
f(x) dx =

∫

f(x) dx =

∫

f(x) dx.

A few important observations about the Riemann integral are:

• If f(x) is integrable over [a, b] then it is integrable over any
subinterval of [a, b].

• If f(x) is continuous on [a, b] (with the possible exception of a finite
number of points), then for any sequence of partitions Pk with
mesh(Pk)→ 0, the corresponding lower (or upper) sums converge to
the integral.

• In fact, for any partition we can replace the infimum (resp.
supremum) of f(x) in the lower (resp. upper) sum with its value at
an arbitrary sample point sj ∈ Ij to form a Riemann sum

R(P, f) = R(P, f, {sj}) :=
n
∑

j=1

f(sj) △xj.

Then, if f(x) is continuous at all but a finite number of points in
[a, b], and Pk is a sequence of partitions with mesh(Pk)→ 0, the
sequence of Riemann sums corresponding to any choice(s) of sample
points for each Pk converges to the integral:

R(Pk, f)→
∫

[a,b]
f(x) dx.

Integrals over Rectangles

Let us now see how this line of reasoning can be mimicked to define the
integral of a function f(x, y) of two variables. A major complication arises



468 CHAPTER 5. REAL-VALUED FUNCTIONS: INTEGRATION

at the outset: we integrate a function of one variable over an interval:
what is the analogue for functions of two variables? In different terms, a
“piece” of the real line is, in a natural way, a subinterval2, but a “piece” of
the plane is a region whose shape can be quite complicated. We shall start
with the simplest regions and then explore the generalization to other
regions later. By a rectangle in the plane we will mean something more
specific: a rectangle whose sides are parallel to the coordinate axes. This is
defined by its projections [a, b] onto the x-axis (resp. [c, d] onto the y-axis),
and is officially referred to as their product :3

[a, b]× [c, d] := {(x, y) |x ∈ [a, b] and y ∈ [c, d]} .

A natural way to partition the “product” rectangle [a, b]× [c, d] is to
partition each of the “factors” separately (see Figure 5.1): that is, a

a b

c

d

x0 x1 x2 · · · xmxm−1· · · P1

P2

xj−1 xj

Ii

y0

y1

yn
yn−1

yj−1

yj
Jj Rij

Figure 5.1: Partitioning the Rectangle [a, b]× [c, d]

partition P of the product rectangle [a, b]× [c, d] is defined by a partition
of [a, b]

P1 = {a = x0 < x1 < · · · < xm = b}
and a partition4 of [c, d]

P2 = {c = y0 < y1 < · · · < yn = d} .
2or maybe a union of subintervals
3In general, the product of two sets A and B is the set of pairs (a, b) consisting of an

element a of A and an element b of B.
4Note that the number of elements in the two partitions is not assumed to be the same.
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This defines a subdivision of [a, b]× [c, d] into mn subrectangles Rij,
i = 1, . . . ,m, j = 1, . . . , n:

Rij = Ii × Jj
= [xi−1, xi]× [yj−1, yj]

whose respective areas are

△Aij = △xi△yj
= (xi − xi−1)(yj − yj−1).

Now we can again form lower and upper sums5

L(P, f) =
i=m, j=n
∑

i,j=1

(

inf
Rij

f

)

△Aij

U(P, f) =
i=m, j=n
∑

i,j=1

(

sup
Rij

f

)

△Aij.

If f(x, y) > 0 over [a, b]× [c, d], we can picture the lower (resp. upper) sum
as the total volume of the rectilinear solid formed out of rectangles with
base Rij and height h−ij = infRij

f(x, y) (resp. h+ij = supRij
f(x, y)) (see

Figure 5.2 (resp. Figure 5.3)).
As before, we can show (Exercise 2) that for any two partitions P and P ′

of [a, b]× [c, d], L(P, f) ≤ U(P ′, f) and so can define f(x, y) to be
integrable if

∫∫

[a,b]×[c,d]

f(x, y) dA := sup
P
L(P, f)

and

∫∫

[a,b]×[c,d]
f(x, y) dA := inf

P
U(P, f)

are equal, in which case their common value is the integral6 of f(x, y)

5Of course, to form these sums we must assume that f(x, y) is bounded on [a, b]× [c, d].
6The double integral sign in this notation indicates that we are integrating over a

two-dimensional region; the significance of this notation will be clarified below, when we
consider how to calculate the definite integral using iterated integrals.
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x y

z

Figure 5.2: Lower sum

x y

z

Figure 5.3: Upper sum
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over the rectangle [a, b]× [c, d]
∫∫

[a,b]×[c,d]
f dA =

∫∫

[a,b]×[c,d]

f(x, y) dA

=

∫∫

[a,b]×[c,d]
f(x, y) dA.

Again, given a collection of sample points −→sij = (x∗ij , y
∗
ij) ∈ Rij,

i = 1, . . . ,m, j = 1, . . . , n, we can form a Riemann sum

R(P, f) = R(P, f, {−→sij}) =
m,n
∑

i=1,j=1

f(−→sij) dAij .

Since (Exercise 3) L(P, f) ≤ R(P, f) ≤ U(P, f) for every partition P (and
every choice of sample points), it follows (Exercise 4) that if f(x, y) is
integrable over [a, b]× [c, d] and Pk is a sequence of partitions with
L(Pk, f)→

∫∫

[a,b]×[c,d] f dA and U(Pk, f)→
∫∫

[a,b]×[c,d] f dA, then the
Riemann sums converge to the definite integral:

R(Pk, f)→
∫∫

[a,b]×[c,d]
f dA.

Which functions f(x, y) are Riemann integrable? For functions of one
variable, there are several characterizations of precisely which functions are
Riemann integrable; in particular, we know that every monotone function
and every continuous function (in fact, every function with a finite number
of points of discontinuity) is Riemann integrable (Calculus Deconstructed,
§5.2 and §5.9). We shall not attempt such a general characterization in the
case of several variables; however, we wish to establish that continuous
functions, as well as functions with certain kinds of discontinuity, are
integrable. To this end, we need to refine our notion of continuity. There
are two ways to define continuity of a function at a point −→x ∈ R

2: in terms
of sequences converging to −→x , or the “ε− δ” definition. It is the latter that
we wish to refine. Recall this definition:

Definition 5.1.1. f(x, y) is continuous at −→x0 = (x0, y0) if we can
guarantee any required accuracy in the output by requiring some specific,
related accuracy in the input: that is, given ε > 0, there exists δ > 0 such
that for every point −→x = (x, y) in the domain of f(x, y) with
dist(−→x ,−→x0) < δ, the value of f at −→x is within ε of the value at −→x0:

‖−→x −−→x0‖ < δ ⇒ |f(−→x )− f(−→x0)| < ε. (5.1)
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Suppose we know that f is continuous at every point of some set
S ⊂ dom(f) in the sense of the definition above. What this says, precisely
formulated, is

Given a point −→x0 in S and ε > 0, there exists δ > 0 such that
(5.1) holds.

The thing to note is that the accuracy required of the input—that is,
δ—depends on where we are trying to apply the definition: that is,
continuity at another point −→x1 may require a different value of δ to
guarantee the estimate |f(−→x )− f(−→x1)| < ε, even for the same ε > 0. (An
extensive discussion of this issue can be found in (Calculus Deconstructed,
§3.7).) We say that f is uniformly continuous on a set S if δ can be chosen
in a way that is independent of the “basepoint” −→x0; that is,7

Definition 5.1.2. f is uniformly continuous on a set S ⊂ dom(f) if,
given ε > 0, there exists δ > 0 such that |f(−→x )− f(−→x ′)| < ε whenever −→x
and −→x ′ are points of S satisfying ‖−→x −−→x ′‖ < δ:

−→x , −→x ′ ∈ S and
∥

∥

−→x −−→x ′∥
∥ < δ ⇒

∣

∣f(−→x )− f
(−→x ′)∣

∣ < ε. (5.2)

The basic fact that allows us to prove integrability of continuous functions
is the following.

Lemma 5.1.3. If S is a compact set and f is continuous on S, then it is
uniformly continuous on S.

Proof. The proof is by contradiction. Suppose that f is continuous, but
not uniformly continuous, on the compact set S. This means that for some
required accuracy ε > 0, there is no δ > 0 which guarantees (5.2). In other
words, no matter how small we pick δ > 0, there is at least one pair of
points in S with ‖−→x −−→x ′‖ < δ but |f(−→x )− f(−→x ′)| ≥ ε. More specifically,
for each positive integer k, we can find a pair of points −→xk and −→x ′

k in S
with ‖−→xk −−→x ′

k‖ < 1
k , but |f(−→x )− f(−→x ′)| ≥ ε. Now, since S is

(sequentially) compact, there exists a subsequence of the −→xk (which we can
assume is the full sequence) that converges to some point v0 in S;
furthermore, since ‖−→xk −−→x ′

k‖ → 0, the −→x ′
k also converge to the same limit

−→x0. Since f is continuous, this implies that f(−→xk)→ f(−→x0) and
f(−→x ′

k)→ f(−→x0). But this is impossible, since |f(−→xk − f(−→x ′
k))| ≥ ε > 0, and

provides us with the contradiction that proves the lemma.

7Technically, there is a leap here: when −→x0 ∈ S, the definition of continuity at −→x0 given
above allows the other point −→x to be any point of the domain, not just a point of S.
However, as we use it, this distinction will not matter.
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Using this, we can prove that continuous functions are Riemann integrable.
However, we need first to define one more notion generalizing the
one-variable situation: the mesh size of a partition. For a partition of an
interval, the length of a atom Ij also controls the distance between points
in that interval; however, the area of a rectangle Rij can be small and still
allow some pairs of points in it to be far apart (if, for example, it is tall
but extremely thin). Thus, we need to separate out a measure of distances
from area. The diameter of a rectangle (or of any other set) is the
supremum of the pairwise distances of points in it; for a rectangle, this is
the same as the length of the diagonal (Exercise 5). A more convenient
measure in the case of a rectangle, though, is the maximum of the lengths
of its sides, that is, we define

‖Rij = [xi−1, xi]× [yj−1, yj ]‖ := max{△xi,△yj}.

This is always less than the diagonal and hence also controls the possible
distance between pairs of points in Ri,j, but has the virtue of being easy to
calculate. Then we define the mesh size (or just mesh) of a partition P to
be the maximum of these “diameters”:

mesh(P) := max
i,j
‖Rij‖ = max

i≤m,j≤n
{△xi,△yj}.

With this, we can formulate the following.

Theorem 5.1.4. Every function f which is continuous on the rectangle
[a, b]× [c, d] is Riemann integrable on it. More precisely, if Pk is any
sequence of partitions of [a, b]× [c, d] for which mesh(Pk)→ 0, then the
sequence of corresponding lower sums (and upper sums—in fact any
Riemann sums) converges to the definite integral:

limL(Pk, f) = limU(Pk, f) = limR(Pk, f) =
∫∫

[a,b]×[c,d]
f dA.

Proof. Note first that it suffices to show that

U(Pk, f)− L(Pk, f)→ 0 (5.3)

since for every k

L(Pk, f) ≤ sup
P
L(P, f) ≤ inf

P
U(P, f) ≤ U(Pk, f)

and for every sample choice

L(Pk, f) ≤ R(Pk, f) ≤ U(Pk, f)
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(see Exercise 6 for details).

Now let A be the area of [a, b]× [c, d] (that is, A = |b− a| · |d− c|). Given
ε > 0, use the uniform continuity of f on the compact set [a, b]× [c, d] to
find δ > 0 such that

−→x ,−→x ′ ∈ S and
∥

∥

−→x −−→x ′∥
∥ < δ ⇒

∣

∣f(−→x )− f
(−→x ′)∣

∣ <
ε

A
.

Then if a partition P has mesh(P) < δ, we can guarantee that any two
points in the same subrectangle Rij are at distance at most δ apart, which
guarantees that the values of f at the two points are at most ε/A apart, so

U(P, f)− L(P, f) =
∑

i,j

(

sup
Rij

f − inf
Rij

f

)

△Aij

≤
( ε

A

)

∑

i,j

△Aij

=
ε

A
· A

= ε.

Thus if Pk are partitions satisfying mesh(Pk)→ 0, then for every ε > 0 we
eventually have mesh(Pk) < δ and hence U(Pk, f)− L(Pk, f) < ε; that is,
Equation (5.3) holds, and f is Riemann integrable.

Iterated Integrals

After all of this nice theory, we need to come back to Earth. How, in
practice, can we compute the integral

∫∫

[a,b]×[c,d] f dA of a given function f

over the rectangle [a, b]× [c, d]?

The intuitive idea is to consider how we might calculate a Riemann sum
for this integral. If we are given a partition P of [a, b]× [c, d] defined by
P1 = {a = x0 < x1 < · · · < xm = b} for [a, b] and
P2 = {c = y0 < y1 < · · · < yn = d} for [c, d], the simplest way to pick a
sample set {−→sij} for the Riemann sum R(P, f) is to pick a sample
x-coordinate x′i ∈ Ii in each atom of P1 and a sample y-coordinate y′j ∈ Jj
in each atom of P2, and then to declare the sample point in the
subrectangle Rij = Ii × Jj to be −→sij = (x′i, y

′
j) ∈ Rij (Figure 5.4).

Then we can sum R(P, f) by first adding up along the ith “column” of our



5.1. INTEGRATION OVER RECTANGLES 475

a b

c

d

x′1

•

•

•

x′2

•

•

•

· · · x′m

•

•

•

· · · P1

P2

x′j

•

•

•

Ii

y′1

y′n

y′jJj

−→sij

Figure 5.4: Picking a Sample Set

partition

Si =

n
∑

j=1

f
(

x′i, y
′
j

)

△Aij

=
n
∑

j=1

f
(

x′i, y
′
j

)

△xi△yj

= △xi
n
∑

j=1

f
(

x′i, y
′
j

)

△yj

and then adding up these column sums:

R(P, f) =
m
∑

i=1

Si

=

m
∑

i=1

n
∑

j=1

f
(

x′i, y
′
j

)

dAij

=
m
∑

i=1



△xi
n
∑

j=1

f
(

x′i, y
′
j

)

△yj





=

m
∑

i=1





n
∑

j=1

f
(

x′i, y
′
j

)

△yj



△xi
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Notice that in the sum Si, the x-value is fixed at x = x′i, and Si can be

viewed as △xi times a Riemann sum for the integral
∫ d
c g(y) dy, where

g(y) is the function of y alone obtained from f(x, y) by fixing the value of
x at x′i: we denote this integral by

∫ d

c
f
(

x′i, y
)

dy :=

∫ d

c
g(y) dy.

This gives us a number that depends on x′i; call it G(x
′
i).

For example, if

f(x, y) = x2 + 2xy

and

[a, b]× [c, d] = [0, 1] × [1, 2]

then fixing x = x′i for some x′i ∈ [0, 1],

g(y) = (x′i)
2 + 2x′iy

and

∫ d

c
g(y) dy =

∫ 2

1

(

(x′i)
2 + 2x′iy

)

dy

which, since x′i is a constant, equals

[

(x′i)
2y + 2x′i

y2

2

]2

1

=
[

2(x′i)
2 + 4x′i

]

−
[

(x′i)
2 + x′i

]

= (x′i)
2 + 3x′i;

that is,

G
(

x′i
)

= (x′i)
2 + 3x′i.

But now, when we sum over the ith “column”, we add up Si over all values
of i; since Si is an approximation of G(x′i)△xi, we can regard R(P, f) as a
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Riemann sum for the integral of the function G(x) over the interval [a, b].
In our example, this means

R(P, x2 + 2xy) =
m
∑

i=1

n
∑

j=1

[

(x′i)
2 + 2x′iy

′
j

]

△xi△yj

≈
m
∑

i=1

[∫ 2

1

(

(x′i)
2 + 2x′iy

)

dy

]

△xi

=

m
∑

i=1

[

(x′i)
2 + 3x′i

]

△xi

≈
∫ 1

0

[

x2 + 3x
]

dx

=

[

x3

3
+ 3

x2

2

]1

0

=

(

1

3
+

3

2

)

− (0)

=
11

6
.

Ignoring for the moment the fact that we have made two approximations
here, the process can be described as: first, we integrate our function
treating x as a constant, so that f(x, y) looks like a function of y alone:
this is denoted

∫ d

c
f(x, y) dy

and for each value of x, yields a number—in other words, this partial
integral is a function of x. Then we integrate this function (with respect
to x) to get the presumed value

∫∫

[a,b]×[c,d]
f dA =

∫ b

a

(
∫ d

c
f(x, y) dy

)

dx.

We can drop the parentheses, and simply write the result of our
computation as the iterated integral or double integral

∫ b

a

∫ d

c
f(x, y) dy dx.

Of course, our whole process could have started by summing first over the
jth “row”, and then adding up the row sums; the analogous notation
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would be another iterated integral,
∫ d

c

∫ b

a
f(x, y) dx dy.

In our example, this calculation would go as follows:
∫ 2

1

∫ 1

0
(x2 + 2xy) dx dy =

∫ 2

1

[
∫ 1

0
(x2 + 2xy) dx

]

dy

=

∫ 2

1

[

(

x3

3
+ x2y

)1

x=0

]

dy

=

∫ 2

1

[(

1

3
+ y

)

− (0)

]

dy

=

∫ 2

1

[

1

3
+ y

]

dy

=

[

y

3
+
y2

2

]2

1

=

[

2

3
+

4

2

]

−
[

1

3
+

1

2

]

=
16

6
− 5

6

=
11

6
.

Let us justify our procedure.

Theorem 5.1.5 (Fubini’s Theorem8). If f is continuous on [a, b]× [c, d],
then its integral can be computed via double integrals:

∫∫

[a,b]×[c,d]
f dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy. (5.4)

Proof. We will show the first equality above; the proof that the second
iterated integral equals the definite integral is analogous.
Define a function F (x) on [a, b] via

F (x) =

∫ d

c
f(x, y) dy.

8It is something of an anachronism to call this Fubini’s Theorem. The result actually
proved by Guido Fubini (1879-1943) [17] is far more general, and far more complicated
than this. However, “Fubini’s Theorem” is used generically to refer to all such results
about expressing integrals over multi-dimensional regions via iterated integrals.
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Given a partition P2 = {c = y0 < y1 < · · · < yn = d} of [c, d], we can break
the integral defining F (x) into the atoms Jj of P2

F (x) =
n
∑

j=1

∫ yj

yj−1

f(x, y) dy

and since f(x, y) is continuous, we can apply the Integral Mean Value
Theorem (Calculus Deconstructed, Proposition 5.2.10) on Jj to find a point
Yj(x) ∈ Jj where the value of f(x, y) equals its average (with x fixed) over
Jj ; it follows that the sum above

=

n
∑

j=1

f(x, Yj(x))△yj.

Now if P1 = {a = x0 < x1 < · · · < xm = b} is a partition of [a, b] then a

Riemann sum for the integral
∫ b
a F (x) dx, using the sample coordinates

xi ∈ Ii, is

m
∑

i=1

F (xi)△xi =
m
∑

i=1





n
∑

j=1

f(xi, Yj(xi))△yj



△xi;

but this is also a Riemann sum for the integral
∫∫

[a,b]×[c,d] f dA using the
“product” partition P generated by P1 and P2, and the sample coordinates

sij = (xi, Yi(xi)).

Thus, if we pick a sequence of partitions of [a, b]× [c, d] with mesh going to

zero, the left sum above converges to
∫ b
a F (x) dx while the right sum

converges to
∫∫

[a,b]×[c,d] f dA.

If the function f(x, y) is positive over the rectangle [a, b]× [c, d], then the
definite integral

∫∫

[a,b]×[c,d] f dA is interpreted as the volume between the

graph of f(x, y) and the xy-plane. In this case, the calculation via iterated
integrals can be interpreted as finding this volume by “slicing” parallel to
one of the vertical coordinate planes (see Figure 5.5) and “integrating” the
areas of the resulting slices; this is effectively an application of Cavalieri’s
Principle:
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x y

z

∫ b
a

f(x
,y

)d
x

Figure 5.5: Fubini’s Theorem: Volume via Slices

If two solid bodies intersect each of a family of parallel planes
in regions with equal areas, then the volumes of the two bodies
are equal.

Let us consider a few more examples of this process.

The integral

∫∫

[−1,1]×[0,1]
(x2 + y2) dA
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can be calculated via two different double integrals:
∫ 1

0

∫ 1

−1
(x2 + y2) dA =

∫ 1

0

[

x3

3
+ xy2

]1

x=−1

dy

=

∫ 1

0

[(

1

3
+ y2

)

−
(

−1

3
− y2

)]

dy

=

∫ 1

0

[

2

3
+ 2y2

]

dy

=

[

2

3
y +

2y3

3

]1

y=0

=
4

3

or

∫

−1
1

∫ 1

0

(

x2 + y2
)

dy dx =

∫ 1

−1

[

x2y +
y3

3

]1

y=0

dy

=

∫ 1

−1

[(

x2 +
1

3

)

− (0)

]

dy

=

[

x3

3
+
x

3

]1

x=−1

=

[

1

3
+

1

3

]

−
[

−1

3
− 1

3

]

=
4

3
.

A somewhat more involved example shows that the order in which we do
the double integration can affect the difficulty of the process. The integral

∫∫

[1,4]×[0,1]
y
√

x+ y2 dA

can be calculated two ways. To calculate the double integral
∫ 1

0

∫ 4

1
y
√

x+ y2 dx dy

we start with the “inner” partial integral, in which y is treated as a
constant: using the substitution

u = x+ y2

du = dx
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we calculate the indefinite integral as
∫

y
√

x+ y2 dx =

∫

y u1/2 du

=
2

3
y u3/2 + C

=
2

3
y(x+ y2)3/2 + C

so the (inner) definite integral is

∫ 4

1
y
√

x+ y2 dx =
2

3
y
(

y2 + x
)4

x=1

=
2

3

[

y(y2 + 4)3/2 − y(y2 + 1)3/2
]

.

Thus the “outer” integral becomes

2

3

∫ 1

0

[

y(y2 + 4)3/2 − y(y2 + 1)3/2
]

dy.

Using the substitution

u = y2 + 4

du = 2y dy

we calculate the indefinite integral of the first term as
∫

y(y2 + 4) dy =
1

2

∫

u3/2 du

=
1

5
u5/2 + C

=
1

5
(y2 + 4)5/2 + C;

similarly, the indefinite integral of the second term is
∫

y(y2 + 1) dy =
1

5
(y2 + 1)5/2 + C.

It follows that the whole “outer” integral is

2

3

∫ 1

0

[

y(y2 + 4)3/2 − y(y2 + 1)3/2
]

dy =
2

15

[

(y2 + 4)5/2 − (y2 + 1)5/2
]1

y=0

=
2

15

[(

55/2 − 25/2
)

−
(

45/2 − 15/2
)]

=
2

15

[

25
√
5− 4

√
2− 31

]

.
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If instead we perform the double integration in the opposite order

∫ 4

1

∫ 1

0
y
√

x+ y2 dy dx

the “inner” integral treats x as constant; we use the substitution

u = x+ y2

du = 2y dy

to find the “inner” indefinite integral

∫

y
√

x+ y2 dy =

∫

1

2
u1/2 du

=
1

3
u3/2 + C

=
1

3
(x+ y2)3/2 + C

so the definite “inner” integral is

∫ 1

0
y
√

x+ y2 dy =
1

3
(x+ y2)3/2

∣

∣

∣

1

y=0

=
1

3

[

(x+ 1)3/2 − (x)3/2
]

.

Now the “outer” integral is

1

3

∫ 4

1

[

(x+ 1)3/2 − (x)3/2
]

dx =
1

3

[

2

5
(x+ 1)5/2 − 2

5
x5/2

]4

x=1

=
2

15

[

(55/2 − 45/2)− (25/2 − 15/2)
]

=
2

15

[

25
√
5− 4

√
2− 31

]

.

As a final example, let us find the volume of the solid with vertical sides
whose base is the rectangle [0, 1] × [0, 1] in the xy-plane and whose top is
the planar quadrilateral with vertices (0, 0, 4), (1, 0, 2), (0, 1, 3), and
(1, 1, 1) (Figure 5.6).
First, we should find the equation of the top of the figure. Since it is
planar, it has the form

z = ax+ by + c;
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x
y

z

Figure 5.6: A Volume

substituting each of the four vertices into this yields four equations in the
three unknowns a, b and c

4 = c

2 = a+ c

3 = b+ c

1 = a+ b+ c.

The first three equations have the solution

a = −2
b = −1
c = 4

and you can check that this also satisfies the fourth equation; so the top is
the graph of

z = 4− 2x− 3y.
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Thus, our volume is given by the integral
∫∫

[0,1]×[0,1]
(4− 2x− 3y) dA =

∫ 1

0

∫ 1

0
(4− 2x− 3y) dx dy

=

∫ 1

0

[

4x− x2 − 3xy
]1

x=0

=

∫ 1

0
[(3− 3y)− (0)] dy

=

[

3y − 3y2

2

]1

y=0

=
3

2
.

Exercises for § 5.1

Practice problems:

1. Calculate each integral below:

(a)

∫∫

[0,1]×[0,2]
4x dA (b)

∫∫

[0,1]×[0,2]
4xy dA

(c)

∫∫

[0,1]×[0,π]
x sin y dA (d)

∫∫

[0,1]×[−π
2
,π
2 ]
ex cos y dA

(e)

∫∫

[0,1]×[1,2]
(2x+ 4y) dA (f)

∫∫

[1,2]×[0,1]
(2x+ 4y) dA

Theory problems:

2. Let P and P ′ be partitions of the rectangle [a, b]× [c, d].

(a) Show that if every partition point of P is also a partition point
of P ′ (that is, P ′ is a refinement of P) then for any function f

L(P, f) ≤ L(P ′, f) ≤ U(P ′, f) ≤ U(P, f).

(b) Use this to show that for any two partitions P and P ′,

L(P, f) ≤ U(P ′, f).

(Hint: Use the above on the mutual refinement P ∨ P ′, whose
partition points consist of all partition points of P together with
those of P ′.)
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3. Let P be a partition of [a, b]× [c, d] and f a function on [a, b]× [c, d].
Show that the Riemann sum R(P, f) corresponding to any choice of
sample points is between the lower sum L(P, f) and the upper sum
U(P, f).

4. Show that if Pk is a sequence of partitions of [a, b]× [c, d] for which
L(Pk, f) and U(Pk, f) both converge to

∫∫

[a,b]×[c,d] f dA then for any
choice of sample points in each partition, the corresponding Riemann
sums also converge there.

5. Show that the diameter of a rectangle equals the length of its
diagonal, and that this always lies between the maximum of the sides
and
√
2 times the maximum of the sides.

6. Let f be any function on [a, b]× [c, d].

(a) Show that for any partition P of [a, b]× [c, d],
L(P, f) ≤ supP L(P, f) and infP U(P, f) ≤ U(P, f).

(b) Use this, together with Exercise 3, to show that if

sup
P
L(P, f) = inf

P
U(P, f)

then there exists a sequence Pk of partitions such that

U(Pk, f)− L(Pk, f)→ 0

and conversely that the existence of such a sequence implies
that supP L(P, f) = infP U(P, f).

(c) Use this, together with Exercise 4, to show that if f is
integrable, then for any such sequence, the Riemann sums
corresponding to any choices of sample points converge to the
integral of f over [a, b]× [c, d].

5.2 Integration over General Planar Regions

In this section we extend our theory of integration to more general regions
in the plane. By a “region” we mean a bounded set defined by a finite set
of inequalities of the form gi(x, y) ≤ ci, i = 1, . . . , k, where the functions gi
are presumed to be reasonably well behaved. When the Implicit Function
Theorem (Theorem 3.4.2) applies, the region is bounded by a finite set of
(level) curves, each of which can be viewed as a graph of the form y = φ(x)
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or x = ψ(y). In fact, the most general kind of “region” over which such an
integration can be performed was the subject of considerable study in the
1880’s and early 1890’s [25, pp. 86-96]. The issue was finally resolved by
Camille Marie Ennemond Jordan (1838-1922) in 1892; his solution is well
beyond the scope of this book.

Discontinuities and Integration

The basic idea for integrating a function f(x, y) over a general region takes
its inspiration from our idea of the area of such a region: we try to
“subdivide” the region into rectangles (in the sense of the preceding
section) and add up the integrals over them. Of course, this is essentially
impossible for most regions, and instead we need to think about two kinds
of approximate calculations: “inner” ones using rectangles entirely
contained inside the region, and “outer” ones over unions of rectangles
which contain our region (rather like the inscribed and circumscribed
polygons used to find the area of a circle). For the theory to make sense,
we need to make sure that these two calculations give rise to the same
value for the integral. This is done via the following technical lemma.

Lemma 5.2.1. Suppose a curve C is the graph of a continuous function,
y = φ(x), a ≤ x ≤ b. Then given any ε > 0 we can find a finite family of
rectangles Bi = [ai, bi]× [ci, di], i = 1, . . . , k, covering the curve (Figure 5.7)

C ⊂
k
⋃

i=1

Bi

such that

1. Their total area is at most ε

k
∑

i=1

A (Bi) ≤ ε.

2. The horizontal edges of each Bi are disjoint from C

ci < φ(x) < di for ai ≤ x ≤ bi.

A proof of Lemma 5.2.1 is sketched in Exercise 7.
Using this result, we can extend the class of functions which are Riemann
integrable beyond those continuous on the whole rectangle (as given in
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B1

B2
B3

B4

C

Figure 5.7: Lemma 5.2.1

Theorem 5.1.4), allowing certain kinds of discontinuity. This will in turn
allow us to define the integral of a function over a more general region in
the plane.

Theorem 5.2.2. If a function f is bounded on [a, b]× [c, d] and
continuous except possibly for some points lying on a finite union of graphs
(curves of the form y = φ(x) or x = ψ(y)), then f is Riemann integrable
over [a, b]× [c, d].

Proof. For ease of notation, we shall assume that f is bounded on
[a, b]× [c, d] and that any points of discontinuity lie on a single graph
C : y = φ(x), a ≤ x ≤ b.
Given ε > 0, we need to find a partition P of [a, b]× [c, d] for which

U(P, f)− L(P, f) < ε.

First, since f is bounded on [a, b]× [c, d], pick an upper bound for |f | on
[a, b]× [c, d], say

M > max{1, sup[a,b]×[c,d] |f |}.
Next, use Lemma 5.2.1 to find a finite family Bi, i = 1, . . . , k, of rectangles
covering the graph y = φ(x) such that

k
∑

i=1

A (Bi) <
ε

2M
.

Now extend each edge of each Bi to go completely across the rectangle
[a, b]× [c, d] (horizontally or verticaly)—there are finitely many such lines,
and they define a partition P of [a, b]× [c, d] such that each Bi (and hence
the union of all the Bi) is itself a union of subrectangles Rij for P. Note
that if we refine this partition further by adding more (horizontal or
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vertical) lines, it will still be true that B =
⋃k
i=1Bi is a union of

subrectangles, and




∑

Rij⊂B
sup
Rij

f△Aij



−





∑

Rij⊂B
inf
Rij

f△Aij



 =
∑

Rij⊂B

(

sup
Rij

f − inf
Rij

f

)

△Aij

< M · A (B)
< M

( ε

2M

)

=
ε

2
.

Finally, consider the union D of the rectangles of P which are disjoint from
C. This is a compact set on which f is continuous, so f is uniformly
continuous on D; hence as in the proof of Theorem 5.1.4 we can find δ > 0
such that for any of the subrectangles Rij contained in D we have

sup
Rij

f − inf
Rij

f <
ε

2A ([a, b]× [c, d])

so that




∑

Rij⊂D
sup
Rij

f△Aij



−





∑

Rij⊂D
inf
Rij

f△Aij



 <
ε

2A ([a, b]× [c, d])
A (D) .

From this it follows that for our final partition,

U(P, f)− L(P, f) =
∑

Rij⊂B

(

sup
Rij

f − inf
Rij

f

)

△Aij +
∑

Rij⊂D

(

sup
Rij

f − inf
Rij

f

)

△Aij

<
ε

2
+

ε

2A ([a, b]× [c, d])
A (D)

<
ε

2
+
ε

2
= ε

as required.

Integration over Non-Rectangular Regions

Suppose we have a function f(x, y) defined and positive on a rectangle
[a, b]× [c, d], and we wish to find a volume under its graph—not the
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volume over the whole rectangle, but only the part above a subregion
D ⊂ [a, b]× [c, d]. One way to do this is to “crush” the part of the graph
outside D down to the xy-plane and integrate the resulting function
defined in pieces

f ↾D (−→x ) :=
{

f(−→x ) if −→x ∈ D,
0 otherwise.

Of course, this definition makes sense even if f is not positive on
[a, b]× [c, d]. And this process can be turned around: the definition above
extends any function which is defined at least on D to a function defined
on the whole plane.

Definition 5.2.3. If f(x, y) is defined at every point of the bounded set D,
then the integral of f over D is defined as

∫∫

D
f dA :=

∫∫

[a,b]×[c,d]
f ↾D dA

where [a, b]× [c, d] is any rectangle containing D (provided this integral
exists, i.e., provided f ↾D is Riemann integrable on [a, b]× [c, d]).

An immediate consequence of Theorem 5.2.2 is the following.

Remark 5.2.4. If f is continuous on a region D bounded by finitely many
graphs of continuous functions y = φ(x) or x = ψ(y), then Theorem 5.2.2
guarantees that

∫∫

D f dA is well-defined.

We shall only consider these kinds of regions. Any such region can be
broken down into regions of a particularly simple type:

Definition 5.2.5. A region D ⊂ R
2 is y-regular if it can be specified by

inequalities on y of the form

D = {(x, y) | c(x) ≤ y ≤ d(x) , a ≤ x ≤ b}

where c(x) and d(x) are continuous and satisfy c(x) ≤ d(x) on [a, b]. (See
Figure 5.8.)
It is x-regular if it can be specified by inequalities on x of the form

D = {(x, y) | a(y) ≤ x ≤ b(y) , c ≤ y ≤ d}

where a(y) and b(y) are continuous and satisfy a(y) ≤ b(y) on [c, d]. (See
Figure 5.9.)
A region which is both x- and y-regular is (simply) regular (see
Figure 5.10), and regions of either type are called elementary regions.
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y = d(x)

y = c(x)

a b

Figure 5.8: y-regular region

x = a(y) x = b(y)

c

d

Figure 5.9: x-regular region

a b

c

d

x = a(y)

x = b(y)

y = d(x)

y = c(x)

Figure 5.10: Regular region
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Basically, a region is y-regular if first, every line parallel to the y-axis
intersects the region, if at all, in a closed interval, and second, if each of
the endpoints of this interval vary continuously as functions of the
x-intercept of the line.
Integration over elementary regions can be done via iterated integrals. We
illustrate with an example.
Let D be the triangle with vertices (0, 0), (1, 0) and (1, 1). D is is a regular
region, bounded by the line y = x, the x-axis (y = 0) and the line x = 1
(Figure 5.11). Slicing vertically, it can be specified by the pair of
inequalities

0 ≤y ≤ x
0 ≤x ≤ 1

or, slicing horizontally, by the inequalities

y ≤x ≤ 1

0 ≤y ≤ 1.

D
y
=
x x

=
1

y = 0

(1, 1)

(1, 0)(0, 0)

Figure 5.11: The triangle D

To integrate the function f(x) = 12x2 +6y over D, we can enclose D in the
rectangle [0, 1]× [0, 1] and then integrate f ↾x,y over this rectangle, slicing
vertically. This leads to the double integral

∫ 1

0

∫ 1

0
f ↾D dy dx.

Now, since the function f ↾D is defined in pieces,

f ↾D (x, y) =

{

12x2 + 6y if 0 ≤ y ≤ x and x ∈ [0, 1] ,

0 otherwise,
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the “inner” integral
∫ 1
0 f ↾D dy (with x ∈ [0, 1] fixed) can be broken into

two parts

∫ 1

0
f ↾D dy =

∫ x

0
(12x2 + 6y) dy +

∫ 1

x
(12x2 + 6y) dy

and since the integrand is zero in the second integral, we can write

∫ 1

0
f ↾D dy =

∫ x

0
(12x2 + 6y) dy

which is a regular integral when x is treated as a constant:

=
(

12x2y + 3y2
)y=x

y=0

= (12x3 + 3x2)− (0).

Now, we can write the “outer” integral as

∫ 1

0

(∫ 1

0
f ↾D dy

)

dx =

∫ 1

0

∫ x

0
(12x2 + 6y) dy dx

=

∫ 1

0
(12x3 + 3x2) dx

= (3x4 + x3)x=1
x=0

= (3 + 1)− (0)

= 4.

Alternatively, if we slice horizontally, we get the “inner” integral (with
y ∈ [0, 1] fixed)

∫ 1

0
f ↾D dx =

∫ y

0
(12x2 + 6y) dy +

∫ 1

y
(12x2 + 6y) dx

=

∫ 1

y
(12x2 + 6y) dx

(since f ↾D (x) is zero to the left of x = y)

= (4x3 + 6xy)x=1
x=y

= (4 + 6y)− (4y3 + 6y2).
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Then the outer integral is

∫ 1

0

(∫ 1

0
f ↾D dx

)

dy =

∫ 1

0

∫ 1

y
(12x2 + 6y) dx dy

=

∫ 1

0
(4 + 6y − 4y3 − 6y2) dy

= (4y + 3y2 − y4 − 2y3)y=1
y=0

= (4 + 3− 1− 2)− (0)

= 4.

The procedure illustrated by this example is only a slight modification of
what we do to integrate over a rectangle. In the case of a rectangle, the
“inner” integral has fixed limits, and we integrate regarding all but one
variable in the integrand as constant. The result is a function of the other
variable. When integrating over a y-regular region, the limits of the inner
integration may also depend on x, but we regard x as fixed in both the
limits and the integrand; this still yields an integral that depends on the
value of x—that is, it is a function of x alone—and in the “outer” integral
we simply integrate this function with respect to x, with fixed (numerical)
limits. The analogous procedure, with the roles of x and y reversed, results
from slicing horizontally, when D is x-regular.
We illustrate with some further examples.
Let D be the region bounded by the curves

y = x+ 1

and

y = x2 − 1;

to find their intersection, we solve

x+ 1 = x2 − 1

or

x2 − x− 2 = 0

whose solutions are

x = −1, 2.
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D
(−1, 0)

(2, 3)

y = x+ 1

y = x2 − 1

Figure 5.12: The region D

(see Figure 5.12).

To calculate the integral

∫∫

D
(x+ 2y) dA

over this region, which is presented to us in y-regular form, we slice
vertically: a vertical slice is determined by an x-value, and runs from
y = x2 − 1 up to y = x+ 1; the possible x-values run from x = −1 to x = 2
(Figure 5.13).

y = x+ 1

y = x2 − 1

Figure 5.13: Vertical Slice
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This leads to the double integral

∫ 2

1

∫ x+1

x2−1
(x+ 2y) dy dx =

∫ 2

−1
(xy + y2)y=x+1

y=x2−1
dx

=

∫ 2

−1

[

{x(x+ 1) + (x+ 1)2} − {x(x2 − 1) + (x21)2}
]

dx

=

∫ 2

−1

[

{x2 + x+ x2 + 2x+ 1} − {x3 − x+ x4 − 2x2 + 1}
]

dx

=

∫ 2

−1

[

−x4 − x3 + 4x2 + 4x
]

dx

=

[

−x
5

5
− x4

4
+

4x3

3
+ 2x2

]2

−1

=

[

−32

5
− 4 +

32

3
+ 8

]

−
[

1

5
− 1

4
− 4

3
+ 2

]

=
153

20

= 7
13

20
.

Now technically, the region D is also x-regular, but horizontal slices are
much more cumbersome: horizontal slices below the x-axis run between the
two solutions of y = x2 − 1 for x in terms of y, which means the horizontal
slice at height −1 ≤ y ≤ 0 runs from x = −√y + 1 to x =

√
y + 1, while

horizontal slices above the x-axis at height 0 ≤ y ≤ 3 run from x = y − 1 to
x =
√
y + 1 (Figure 5.14).

x = y + 1 x =
√
y + 1

x = −√y + 1 x =
√
y + 1

Figure 5.14: Horizontal Slices
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This leads to the pair of double integrals

∫ 0

−1

∫

√
y+1

−√
y+1

(x+ 2y) dx dy +

∫ 3

0

∫

√
y+1

y−1
(x+ 2y) dx dy

which is a lot messier than the previous calculation.
As another example, let us find the volume of the simplex (or “pyramid” )
cut off from the first octant by the triangle with vertices one unit out along
each coordinate axis (Figure 5.15). The triangle is the graph of a linear

x y

z

(1, 0, 0)
(0, 1, 0)

(0, 0, 1)

Figure 5.15: Simplex

function

z = ax+ by + c

and satisfies

0 = a+ c

0 = b+ c

1 = c

so the graph in question is

z = −x− y + 1.

We are interested in the integral of this function over the triangle T in the
xy-plane with vertices at the origin, (1, 0) and (0, 1) (Figure 5.16). It is
fairly easy to see that the upper edge of this triangle has equation
x+ y = 1, so T is described by the (y-regular) inequalities

0 ≤y ≤ 1− x
0 ≤x ≤ 1;
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(0, 0)

(1, 0)

(0, 1)

Figure 5.16: The base of the simplex, the triangle T

that is, a vertical slice at 0 ≤ x ≤ 1 runs from y = 0 to y = 1− x. Hence
the volume in question is given by the integral

∫∫

T
(1− x− y) dA =

∫ 1

0

∫ 1−x

0
(1− x− y) dy dx

=

∫ 1

0

(

y − xy − y2

2

)y=1−x

y=0

dx

=

∫ 1

0

(

(1− x)− x(1− x)− (1− x)2
2

)

dx

=

∫ 1

0

(

(1− x)2
2

)

dx

= −(1− x)3
6

∣

∣

∣

1

0

=
1

6
.

Sometimes the integral dictates which way we slice. For example, consider
the integral

∫∫

D

√

a2 − y2 dA

where D is the part of the circle x2 + y2 = a2 in the first quadrant
(Figure 5.17). The y-regular description of this region is

(0, 0)

(a, 0)

(0, a)
x2 + y2 = a2

Figure 5.17: The quarter-circle D
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0 ≤y ≤
√

a2 − x2
0 ≤x ≤ a

which leads to the double integral

∫∫

D

√

a2 − y2 dA =

∫ a

0

∫

√
a2−x2

0

√

a2 − y2 dy dx;

the inner integral can be done, but requires a trigonometric substitution
(and the subsequent evaluation at the limits is a real mess). However, if we
consider the region as x-regular, with description

0 ≤x ≤
√

a2 − y2
0 ≤y ≤ a

we come up with the double integral

∫∫

D

√

a2 − y2 dA =

∫ a

0

∫

√
a2−y2

0

√

a2 − y2 dx dy;

since the integrand is constant as far as the inner integral is concerned, we
can easily integrate this:

∫ a

0

(

∫

√
a2−y2

0

√

a2 − y2 dx
)

dy =

∫ a

0

(

x
√

a2 − y2
)x=
√
a2−y2

x=0
dy

=

∫ a

0

(

√

a2 − y2
)2

dy

=

∫ a

0

(

a2 − y2
)

dy

=

(

a2y − y3

3

)a

y=0

=

(

a3 − a3

3

)

− (0)

=
2a3

3
.

This illustrates the usefulness of reinterpreting a double integral
geometrically and then switching the order of iterated integration. As
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another example, consider the double integral

∫ 1

0

∫ 1

y

sinx

x
dx dy.

Here, the inner integral is impossible.9 However, the double integral is the
x-regular version of

∫∫

D

sinx

x
dA

where D is the triangle in Figure 5.11, and D can also be described in
y-regular form

0 ≤y ≤ x
0 ≤x ≤ 1

leading to the double integral

∫∫

D

sinx

x
dA =

∫ 1

0

∫ x

0

sinx

x
dy dx.

Since the integrand in the inner integral is regarded as constant, this can
be integrated easily:

∫ 1

0

(
∫ x

0

sinx

x
dy

)

dx =

∫ 1

0

(

sinx

x
· y
)y=x

y=0

dx

=

∫ 1

0
sinx dx

= − cosx
∣

∣

∣

1

0

= 1− cos 1.

Symmetry Considerations

You may recall from single-variable calculus that some integrals can be
simplified with the help of symmetry considerations.

The clearest instance is that of an odd function—that is, a function
satisfying f(−x) = −f(x) for all x integrated over an interval that is
symmetric about the origin, [−a, a]: the integral is necessarily zero. To see

9Of course, it is also an improper integral.



5.2. INTEGRATION OVER PLANAR REGIONS 501

this, we note that given a partition P of [−a, a], we can refine it by
throwing in the negative of each point of P together with zero; for this
refinement, every atom Ij = [pj−1, pj ] to the right of zero (pj > 0) is
matched by another atom Ij∗ = [−pj,−pj−1] to the left of zero. If we use
sample points also chosen symmetrically (the point in Ij∗ is the negative of
the one in Ij), then in the resulting Riemann sum, the contributions of
matching atoms will cancel. Thus for example, even though we can’t find
an antiderivative for f(x) = sinx3, we know that it is odd, so
automatically

∫ 1
−1 sinx

3 dx = 0.
A related argument says that the integral of an even function over a
symmetric interval [−a, a] equals twice its integral over either of its halves,
say [0, a].
These kinds of arguments can be extended to multiple integrals. A planar
region D is x-symmetric if it is invariant under reflection across the
y-axis—that is, if (−x, y) ∈ D whenever (x, y) ∈ D. A function f(x, y) is
odd in x if f(−x, y) = −f(x, y) for all (x, y); it is even in x if
f(−x, y) = f(x, y) for all (x, y). In particular, a polynomial in x and y is
odd (resp. even) in x if every power of x which appears is odd (resp. even).
The one-variable arguments can be applied to an iterated integral
(Exercise 8) to give

Remark 5.2.6. If D is an x-regular region which is x-symmetric, then

1. For any function f(x, y) which is odd in x,
∫∫

D
f dA = 0.

2. If f(x, y) is even in x, then
∫∫

D
f(x, y) dA = 2

∫∫

D+

f(x, y) dA

where
D+ = {−→x = (x, y) ∈ D |x ≥ 0}

is the part of D to the right of the y-axis.

Of course, x can be replaced by y in the above definitions, and then also in
Remark 5.2.6. One can also consider symmetry involving both x and y; see
Exercise 11.

Exercises for § 5.2

Practice problems:
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1. In the following, specify any region which is elementary by
inequalities of the type given in Definition 5.2.5; subdivide any
non-elementary region into non-overlapping elementary regions and
describe each by such inequalities.

(a) The region bounded above by y = 9− x2, below by y = x2 − 1
and on the sides by the y-axis and the line x = 2.

(b) The unit disc
{

(x, y) |x2 + y2 ≤ 1
}

.

(c) The part of the unit disc above the x-axis.

(d) The part of the unit disc in the first quadrant.

(e) The part of the unit disc in the second quadrant (to the left of
the first).

(f) The triangle with vertices (0, 0), (1, 0), and (1, 3).

(g) The triangle with vertices (−1, 0), (1, 0), and (0, 1).

(h) The region bounded above by x+ y = 5 and below by
y = x2 − 1.

(i) The region bounded by y = x2 and x = y2.

(j) The region bounded by the curve y = x3 − 4x and the x-axis.

2. Each region described below is regular. If it is described as a
y-regular (resp. x-regular) region, give its description as an x-regular
(resp. y-regular) region.

(a)
{

0 ≤ y ≤ 2x
0 ≤ x ≤ 1

(b)
{

0 ≤ y ≤ 2− x
0 ≤ x ≤ 2

(c)
{

x2 ≤ y ≤ x
0 ≤ x ≤ 1

(d)
{

−
√

4− y2 ≤ x ≤
√

4− y2
−2 ≤ y ≤ 2



5.2. INTEGRATION OVER PLANAR REGIONS 503

(e)
{

0 ≤ x ≤
√

4− y2
−2 ≤ y ≤ 2

3. Calculate each iterated integral below.

(a)

∫ 1

0

∫ 1

x
(x2y + xy2) dy dx

(b)

∫ e

1

∫ lnx

0
x dy dx

(c)

∫ 2

1

∫ x2

x
(x− 5y) dy dx

(d)

∫ 2

0

∫ y

0
(2xy − 1) dx dy

4. Calculate
∫∫

D f dA as indicated.

(a) f(x, y) = 4x2 − 6y, D described by

{

0 ≤ y ≤ x
0 ≤ x ≤ 2

(b) f(x, y) = y
√
x2 + 1, D described by

{

0 ≤ y ≤ √
x

0 ≤ x ≤ 1

(c) f(x, y) = 4y + 15, D described by

{

y2 + 2 ≤ x ≤ 3y
1 ≤ y ≤ 2

(d) f(x, y) = x, D is the region bounded by y = sinx, the x-axis
and x = π/2.

(e) f(x, y) = xy, D is the region bounded by x+ y = 5 and
y = x2 − 1.

(f) f(x, y) = 1, D is the intersection of the discs given by
x2 + y2 ≤ 1 and x2 + (y − 1)2 ≤ 1.

5. Rewrite each iterated integral with the order of integration reversed,
and calculate it both ways (note that you should get the same
answer both ways!)
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(a)

∫ 2

0

∫ 2

x
xy dy dx (b)

∫ 1

0

∫

√
x

x2
x dy dx

(c)

∫ 1

0

∫

√
1−y2

1−y
y dx dy (d)

∫ 2

−1

∫

√
3−y

1
x dx dy

6. For each region below, decide whether it is x-symmetric,
y-symmetric, or neither:

(a)
{

(x, y) |x2 + y2 ≤ 1
}

(b)
{

(x, y) | x2
a2

+ y2

b2
≤ 1
}

(a2 6= b2)

(c) {(x, y) | − 1 ≤ xy ≤ 1}
(d) {(x, y) | 0 ≤ xy ≤ 1}
(e) {(x, y) | |y| ≤ |x| , |x| ≤ 1}
(f) The region bounded by the lines x+ y = 1, x+ y = −1, and the

coordinate axes.

(g) The region bounded by the lines x+ y = 1, x+ y = −1,
x− y = −1 and x− y = 1.

(h) The region bounded by the lines y = x+1, y = 1−x, and y = 0.

(i) The region bounded by the lines x = 1, y = 2, x = −1, and
y = −2.

(j) The triangle with vertices (−1, 0), (0,−1), and (1, 1).

(k) The triangle with vertices (−1,−1), (−1, 1), and (1, 0).

(l) The inside of the rose r = cos 2θ

(m) The inside of the rose r = sin 2θ

(n) The inside of the rose r = cos 3θ

(o) The inside of the rose r = sin 3θ

Theory problems:

7. Prove Lemma 5.2.1 as follows: Given ε > 0, use the uniform
continuity of the function φ to pick δ > 0 such that

∥

∥x− x′
∥

∥ < δ ⇒
∣

∣φ(x)− φ
(

x′
)∣

∣ <
ε

3 |b− a| ,
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and let P = {a = x0 < x1 < · · · < xk} be a partition of [a, b] with
mesh(P) < δ. Denote the atoms of P by Ii, i = 1, . . . , k. Then, for
each i = 1, . . . , k, let

Ji =

[

min
Ii

φ− ε

3 |b− a| ,max
Ii

φ+
ε

3 |b− a|

]

and set

Bi := Ii × Ji.

(a) Show that ‖Ji‖ ≤ ε
|b−a| for all i = 1, ..., k.

(b) Use this to show that

k
∑

i

A (Bi) ≤ ε.

(c) Show that for each i = 1, . . . , k,

ci < min
Ii

φ < max
Ii

φ < di.

8. (a) Show that a polynomial in x and y is odd (resp. even) in x if
and only if each power of x which appears is odd (resp. even).

(b) Prove Remark 5.2.6.

(c) Formulate the analogous concepts and results for regions
symmetric in y, etc.

9. (a) Show that if f(x, y) is even in x, then the region
{(x, y) | f(x, y) ≤ c} for any c is x-symmetric.

(b) Show that if f(x, y) is even, then the region {(x, y) | f(x, y) ≤ c}
for any c is symmetric with respect to the origin.

10. Use symmetry considerations either to conclude that the given
iterated integral is zero, or to rewrite it as twice a different iterated
integral.

(a)
∫ 1
−1

∫ 1−x2
x2−1 xy dy dx (b)

∫ 1
−1

∫ cos x
− cos x(x+ y) dy dx

(c)
∫ 1
−2

∫ x3+3x2+1
−x3−3x2−1 x

2y dy dx (d)
∫ 2
−2

∫ 2−x2
x2−6 (xy

2 +

x3y) dy dx
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(e)
∫ 1
−1

∫ 4−4x2

1−x2 x2y dy dx (f)
∫ 1
−1

∫ |1−x|
x2−1

sinx3 dy dx

Challenge problem:

11. (a) A planar region D is symmetric with respect to the origin
if (−x,−y) ∈ D whenever (x, y) ∈ D.
i. Show that a region which is both x-symmetric and
y-symmetric is also symmetric with respect to the origin.

ii. Give an example of a region which is symmetric with
respect to the origin but neither x-symmetric nor
y-symmetric.

(b) For each of the regions in Exercise 6, decide whether or not it is
symmetric about the origin.

(c) A function f(x, y) of two variables is odd (resp. even ) if

f(−x,−y) = −f(x, y) (resp. f(−x,−y) = f(x, y))

for all (x, y).

i. Show that a function which is both even in x and even in y
is even.

ii. What about a function which is both odd in x and odd in y?

iii. Show that a polynomial is odd (resp. even) precisely if each
term has even (resp. odd) degree (the degree of a term is
the sum of the powers appearing in it).

(d) Show that the integral of an odd function over an elementary
region which is symmetric with respect to the origin equals zero.

5.3 Changing Coordinates

Substitution in a Double Integral.

Recall that when we perform a substitution x = ϕ(t) inside an integral
∫ b
a f(x) dx, it is not enough to just rewrite f(x) in terms of t (as f(ϕ(t)));
we also need to express the limits of integration as well as the
“differential” term dx in terms of t. For double (and triple) integrals, this
process is a little more complicated; this section is devoted to
understanding what is needed.
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A substitution in a double integral
∫∫

D f(x, y) dA consists of a pair of
substitutions

x = ϕ1(s, t)

y = ϕ2(s, t) .

This can be viewed as a mapping ϕ:R2→R
2 from the (s, t)-plane the

(x, y)-plane . We need, however, to be able to solve these substitution
equations for s and t in terms of x and y, which means we must have a
mapping ϕ which is one-to-one: different pairs (s, t) of values for the
input must lead to different outputs. Furthermore, we will require this
mapping to be differentiable and, for technical reasons, to have no critical
points. We can think of this as a regular parametrization of the region
D ⊂ R

2 over which we are integrating, a view which will naturally carry
over to surface integrals in the next section.

We expect the integrand f(x, y) in our integral to be replaced by a
function of s and t; in fact it is pretty clear that the natural choice is
f(ϕ(s, t)). It is also pretty clear that we need to take as our new domain of
integration the domain of our parametrization. That is, we need to
integrate over a region Ds,t in the (s, t)-plane such that every point of D
(living in the (x, y)-plane ) is the image ϕ(s, t) of some point of Ds,t (which
lives in the (s, t)-plane ). When we apply the mapping ϕ:R2→R

2 to a
region D, the image of D under ϕ, denoted ϕ(D), is the set of all points
that are hit, under the action of ϕ, by points in D:

ϕ(D) := {ϕ(−→x ) | −→x ∈ D} .

We say that ϕ maps D onto a set E ⊂ R
2 if

E = ϕ(D) .

An example of such a substitution is the switch from rectangular to polar
coordinates,

x = r cos θ

y = r sin θ,

provided we stay within a region where θ does not increase by as much as
2π radians. We shall refer to all such mappings as coordinate
transformations.
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Definition 5.3.1. A coordinate transformation10 on a region D ⊂ R
2

is a C1 mapping ϕ:R2→R
2 satisfying:

1. ϕ has no critical points in D (i.e., its Jacobian determinant is
nonzero at every point of D).

2. ϕ maps D onto ϕ(D) in a one-to-one manner.

By the Inverse Mapping Theorem (Theorem 4.4.2), a diffeomorphism is
invertible: the mapping ϕ−1:R2→R

2 defined on ϕ(D) by

ϕ−1(x, y) = (s, t)⇔ (x, y) = ϕ(s, t)

is also C1, and its Jacobian matrix is the inverse of Jϕ: (Jϕ)(Jϕ−1) is the
identity matrix.

So far, we have seen how to express the integrand f(x, y) of a double
integral, as well as the domain of integration, in terms of s and t. It
remains to see what to do with the element of area dA. Recalling that this
corresponds to the areas △Aij of the atoms of a partition in the
construction of the double integral, we need to see how the change of
coordinates affects area. That is, we need to know the relation between the
area of a set D and that of its image ϕ(D) under a coordinate
transformation.

We begin with linear transformations.

Linear Transformations and Area

Suppose L:R2→R
2 is linear, and D is a region in the plane. What is the

relation between the area of D and the area of its image L(D)?
We already know the answer to our question for a special region
D—namely, the unit square (with corners at the origin and (1, 0), (0, 1),
and (1, 1)). The directed edges of this square emanating from the origin
are the basis vectors −→ı and −→ , and the image of the square is a
parallelogram with directed edges (also emanating from the origin, which
is fixed by L) given by the vectors L(−→ı ) and L(−→ ). We saw in § 1.6 that
the area of this parallelogram is given by the absolute value |det [L]| of the
determinant of [L], the (2× 2) matrix representative of L

[L] =

(

a b
c d

)

.

10 Another name for such a mapping is a diffeomorphism between D and ϕ(D).
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This quantity will play an important role in what follows, so let us denote
it by

∆ (L) = |det [L]| .

What about other regions? First we note that if we apply a displacement
to our square, moving the origin to (α, β), then the image of the displaced
square will be our parallelogram, displaced by L(α, β) (check this!–use
linearity), so the area is still given by ∆ (L). So if D is any square whose
sides are parallel to the axes and of length one, L(D) is a parallelogram
with area ∆ (L). What about triangles? Again, displacement does not
affect area (of either the region or its image), so we can think about
triangles with one vertex at the origin, and directed sides given by vectors
−→v and −→w . Let us write each of these as a combination of −→ı and −→ :

−→v = v1
−→ı + v2

−→
−→w = w1

−→ı + w2
−→ .

First of all, we know that the original triangle has, up to sign, area given by

±A (D) = 1

2
det

(

v1 v2
w1 w2

)

while the image is a triangle with edges given by the images of −→v and −→w

L(−→v ) = (av1 + bv2)
−→ı + (cv1 + dv2)

−→
L(−→w ) = (aw1 + bw2)

−→ı + (cw1 + dw2)
−→

and so has area (up to sign) given by

±A (L(D)) = 1

2
det

(

av1 + bv2 cv1 + dv2
aw1 + bw2 cw1 + dw2

)

.

Using the fact that the determinant is linear in its columns, we can rewrite
this as

det

(

av1 cv1
aw1 cw1

)

+det

(

av1 dv2
aw1 dw2

)

+det

(

bv2 cv1
bw2 cw1

)

+det

(

bv2 dv2
bw2 dw2

)

and then factoring the a’s, b’s, c’s and d’s from individual columns, as

acdet

(

v1 v1
w1 w1

)

+addet

(

v1 v2
w1 w2

)

+bcdet

(

v2 v1
w2 w1

)

+bddet

(

v2 v2
w2 w2

)

.
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The first and last determinants are zero (why?), and the two middle ones
are negatives of each other (why?), so we can finally write

±A (L(D)) = 1

2
(ad− bc) det

(

v1 v2
w1 w2

)

=
1

2
det

(

a b
c d

)

det

(

v1 v2
w1 w2

)

= ± det

(

a b
c d

)

A (D) = ±∆(L)A (D) .

From this calculation (and taking absolute values on both sides) we see

Lemma 5.3.2. For any triangle T in R
2, the area of its image under a

linear map L:R2→R
2 is the original area multiplied by the absolute value

of the determinant of the matrix representative of L:

A (L(T )) = ∆ (L)A (T )

In this calculation, we have ignored signs, but you are asked in Exercise 7
to retrace this argument and show that, had we paid attention to signs and
talked about oriented areas, then we would have seen that the oriented
area of any directed triangle is multiplied, under the action of a linear
transformation, by the determinant of its matrix representative.
Actually, as an aside, this calculation also yields another useful result.

Remark 5.3.3. The determinant of the product of two 2× 2 matrices
is the product of the determinants of the two matrices: for A and B
2× 2,

det (AB) = (det A) (det B) .

To see this, it suffices to note that (1) the original matrix whose
determinant gives A (L(D)) (up to sign) is the product

(

a b
c d

)(

v1 w1

v2 w2

)

and (2) that the determinant of the transpose is the same as the
determinant of the original matrix. Details in Exercise 8.
Having established that the area of an arbitrary triangle is multiplied by
∆ (L), we can proceed to general areas. The arguments involved are rather
long and technical; we consign them to Appendix G and concentrate here
on understanding the results and their uses.
The upshot of a sequence of technical arguments in § G.1 is the following
result, whose proof is also given there:



5.3. CHANGING COORDINATES 511

Theorem 5.3.4. If T :R2→R
2 is an affine map (T (−→x ) = −→y0 + L(−→x ),

where L is linear) and D is an elementary region in R
2,

A (T (D)) = ∆ (L) · A (D) .

To avoid having to specify the linear part of an affine map, we will often
write ∆ (T ) in place of ∆ (L).
Coming back to substitution in a double integral, we see that an affine
mapping T :R2→R

2 with nonzero determinant ∆ (T ) 6= 0 (which is the
same as an affine coordinate transformation) multiplies all areas uniformly
by ∆ (T ). Thus we expect that, when we make an affine substitution

x = a11s+ a12t+ b1

y = a21s+ a22t+ b2

in the double integral
∫∫

D f dA, the element of area dAx,y in the
(x, y)-plane (and hence the “differential” term dA) should be replaced by
the element of area dAs,t in the (s, t)-plane , which should be related to
the former by

dAx,y = ∆(T ) dAs,t.

To be more precise,

Proposition 5.3.5 (Affine Change of Variables). Suppose D is an
elementary region, T :R2→R

2 is an affine coordinate transformation
defined on D, and f:R2→R is a real-valued function which is integrable on
T (D).
Then

∫∫

T(D)
f(−→x ) dA =

∫∫

D
f(T (~s))∆ (T ) dA. (5.5)

This is proved in § G.1.
As an example, let us consider the integral

∫∫

D x dA, where D is the
parallelogram with vertices (2, 0), (3,-1), (4, 0), and (3, 1).
The region is the image of the unit rectangle [0, 1]× [0, 1] under the affine
coordinate transformation

x = s+ t

y = s− t

which has matrix

[L] =

(

1 1
1 −1

)
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with determinant −2, so

∆ (T ) = 2.

Thus we replace dA = dAx,y with dA = 2 dAs,t, x with s+ t, and the
domain of integration with [0, 1]× [0, 1], leading to the integral

∫∫

D
x dA =

∫ 1

0

∫ 1

0
(s+ t)(2 ds dt)

= 2

∫ 1

0

(

s2

2
+ st

)1

s=0

dt

= 2

∫ 1

0

(

1

2
+ t

)

dt

= 2

(

t

2
+
t2

2

)1

0

= 2.

Coordinate Transformations and Area

Our next goal is to decide what happens to areas under differentiable
maps. The description can be complicated for differentiable maps which
either have critical points or overlap images of different regions. Thus, we
will consider only coordinate transformations, as defined in
Definition 5.3.1.
Since the effect of a (nonlinear) coordinate transformation on area can be
different in different parts of a region, we expect to find the overall effect
by getting a good handle on the local effect and then integrating this over
the region. We also expect the local effect to be related to the linearization
of the transformation.
Note that ∆

(

T−→x F
)

= ∆(DF−→x ) is just the absolute value of the Jacobian
determinant:

∆
(

T−→x F
)

= ∆(DF−→x ) = |det JF (−→x )| ;
we will, for simplicity of notation, abuse notation and denote this by
|JF (−→x )|.
A long sequence of technical results established in § G.2 culminates in the
following formula for the local effect of a coordinate transformation on the
area of a region: given ε > 0, the area of F (R), where F is a coordinate
transformation and R is a sufficiently small square, satisfies

(1− ε)∆
(

DF−→x0
)

A (R) ≤ A (F (R)) ≤ (1 + ε)∆
(

DF−→x0
)

A (R) .
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This estimate is the content of Lemma G.2.3 in § G.2.

A further sequence of technical results in § G.2 leads to the following
calculation of the global effect of a coordinate transformation on area (in
keeping with the expectation expressed above).

Theorem 5.3.6. Suppose D ⊂ R
2 is an elementary region and F:R2→R

2

is a coordinate transformation defined on a neighborhood of D. Then

A (F (D)) =
∫∫

D
|JF (−→x )| dA (5.6)

Change of Coordinates in Double Integrals

A consequence of Theorem 5.3.6 is the following important result.

Theorem 5.3.7 (Change of Coordinates). Suppose D is an elementary
region, F:R2→R

2 is a coordinate transformation defined on D, and
f:R2→R is a real-valued function which is integrable on F (D).
Then

∫∫

F(D)
f(−→x ) dA =

∫∫

D
f(F (−→x )) |JF (−→x )| dA. (5.7)

A proof is given in § G.3.

The most frequent example of the situation in the plane handled by
Theorem 5.3.7 is calculating an integral in polar instead of rectangular
coordinates. You may already know how to integrate in polar coordinates,
but here we will see this as part of a larger picture.

Consider the mapping F taking points in the (r, θ)-plane to points in the
(x, y)-plane (Figure 5.18)

F

([

r
θ

])

=

[

r cos θ
r sin θ

]

;

this takes horizontal lines (θ constant) in the (r, θ)-plane to rays in the
(x, y)-plane and vertical lines (r constant) to circles centered at the origin.
Its Jacobian determinant is

JF (r, θ) =

∣

∣

∣

∣

cos θ sin θ
−r sin θ r cos θ

∣

∣

∣

∣

= r,

so every point except the origin is a regular point. It is one-to-one on any
region D in the (r, θ) plane for which r is always positive and θ does not
vary by 2π or more, so on such a region it is a coordinate transformation.
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θ

r

y

x

Figure 5.18: The Coordinate Transformation from Polar to Rectangular
Coordinates

Thus, to switch from a double integral expressing
∫∫

D f dA in rectangular
coordinates to one in polar coordinates, we need to find a region D′ in the
r, θ-plane on which F is one-to-one, and then calculate the alternate
integral

∫∫

D′(f ◦ F ) r dA. this amounts to expressing the quantity f(x, y)
in polar coordinates and then using r dr dθ in place of dx dy.
For example, suppose we want to integrate the function

f(x, y) = 3x+ 16y2

over the region in the first quadrant between the circles of radius 1 and 2,
respectively (Figure 5.19). In rectangular coordinates, this is fairly difficult

Figure 5.19: Region Between Concentric Circles in the First Quadrant

to describe. Technically, it is x-simple (every vertical line crosses it in an
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interval), and the top is easily viewed as the graph of y =
√
4− x2;

however, the bottom is a function defined in pieces:

y =

{√
1− x2 for 0 ≤ x ≤ 1,

0 for 1 ≤ x ≤ 2.

The resulting specification of D in effect views this as a union of two
regions:

{ √
1− x2 ≤ y ≤

√
4− x2

0 ≤ x ≤ 1

and
{

0 ≤ y ≤
√
4− x2

1 ≤ x ≤ 2
;

this leads to the pair of double integrals

∫∫

D
3x+ 16x2 dA =

∫ 1

0

∫

√
4−x2

√
1−x2

+

∫ 2

1

∫

√
4−x2

0
.

By contrast, the description of our region in polar coordinates is easy:

1 ≤ r ≤ 2

0 ≤ θ ≤ p

2

and (using the formal equivalence dx dy = r dr dθ) the integral is

∫∫

D
3x+ 16y2 dA =

∫ π/2

0

∫ 2

1
(3r cos θ + 16r2 sin2 θ) r dr dθ

=

∫ π/2

0

∫ 2

1
(3r2 cos θ + 16r3 sin2 θ) dr dθ

=

∫ π/2

0
(r3 cos θ + 4r4 sin2 θ)21 dθ

=

∫ π/2

0
(7 cos θ + 60 sin2 θ) dθ

= 7 sin θ
∣

∣

∣

π/2

0
+ 30

∫ π/2

0
(1− cos 2θ) dθ

= 7 + 30

(

θ − 1

2
sin 2θ

)π/2

0

= 7 + 15π.
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We note in passing that the requirement that the coordinate
transformation be regular and one-to-one on the whole domain can be
relaxed slightly: we can allow critical points on the boundary, and also we
can allow the boundary to have multiple points for the map. In other
words, we need only require that every interior point of D is a regular
point of F , and that the interior of D maps in a one-to-one way to its
image.

Remark 5.3.8. Suppose D is an elementary region (or is tiled by a finite
union of elementary regions) and F:R2→R

2 is a C1 mapping defined on D
such that

1. Every point interior to D is a regular point of F

2. F is one-to-one on the interior of D.

Then for any function f which is integrable on F (D), Equation (5.7) still
holds.

To see this, Let Pk ⊂ D be polygonal regions formed as nonoverlapping
unions of squares inside D whose areas converge to that of D. Then
Theorem 5.3.7 applies to each, and the integral on either side of
Equation (5.7) over Pk converges to the same integral over D (because the
function is bounded, and the difference in areas goes to zero).
For example, suppose we want to calculate the volume of the upper
hemisphere of radius R. One natural way to do this is to integrate the
function f(x, y) =

√

x2 + y2 over the disc D of radius R, which in
rectangular coordinates is described by

−
√

R2 − x2 ≤y ≤
√

R2 − x2
−R ≤x ≤ R

leading to the double integral

∫∫

D

√

x2 + y2 dA =

∫ R

−R

∫

√
R2−x2

−
√
R2−x2

√

x2 + y2 dy dx.

This is a fairly messy integral. However, if we describe D in polar
coordinates (r, θ), we have the much simpler description

0 ≤r ≤ R
0 ≤θ ≤ 2π.
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Now, the coordinate transformation F has a critical point at the origin,
and identifies the two rays θ = 0 and θ = 2π; however, this affects only the
boundary of the region, so we can apply our remark and rewrite the
integral in polar coordinates. The quantity

√

x2 + y2 expressed in polar
coordinates is

f(r, θ) =
√

(r cos θ)2 + (r sin θ)2

= r.

Then, replacing dx dy with r dr dθ, we have the integral

∫∫

D
(r)(r dr dθ) dA =

∫ 2π

0

∫ 1

0
r2 dr dθ

=

∫ 2π

0

(

r3

3

)R

0

dθ

=

∫ 2π

0

(

R3

3

)

dθ

=
2πR3

3
.

Exercises for § 5.3

Practice problems:

1. Use polar coordinates to calculate each integral below:

(a)
∫∫

D(x
2 + y2) dA where D is the annulus specified by

1 ≤ x2 + y2 ≤ 4.

(b) The area of one “petal” of the “rose” given in polar coordinates
as

r = sinnθ,

where n is a positive integer.

(c) The area of the lemniscate given in rectangular coordinates by

(x2 + y2)2 = 2a2(x2 − y2)

where a is a constant. (Hint: Change to polar coordinates, and
note that there are two equal “lobes”; find the area of one and
double.)
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2. Calculate the area of an ellipse in terms of its semiaxes. (Hint: There
is a simple linear mapping taking a circle centered at the origin to an
ellipse with center at the origin and horizontal and vertical axes.)

3. Calculate the integral

∫∫

[0,1]×[0,1]

1√
1 + 2x+ 3y

dA

using the mapping

ϕ(x, y) = (2x, 3y),

that is, using the substitution

{

u = 2x,
v = 3y.

4. Calculate
∫∫

D
(x2 + y2) dA,

where D is the parallelogram with vertices (0, 0), (2, 1), (3, 3), and
(1, 2), by noting that D is the image of the unit square by the linear
map

ϕ(s, t) = (2s+ t, s+ 2t).

5. Calculate
∫∫

D

1

(x+ y)2
dA,

where D is the region in the first quadrant cut off by the lines

x+ y = 1

x+ y = 2,

using the substitution

{

x = s− st,
y = st

.

Theory problems:



5.3. CHANGING COORDINATES 519

6. Normal Distribution: In probability theory, when the outcome of
a process is measured by a real variable, the statistics of the outcomes
is expressed in terms of a density function f(x): the probability of
an outcome occurring in a given interval [a, b] is given by the integral
∫ b
a f(x) dx. Note that since the probability of some outcome is 100%
(or, expressed as a fraction, 1), a density function must satisfy

∫ ∞

−∞
f(x) dx = 1. (5.8)

In particular, when a process consists of many independent trials of
an experiment whose outcome can be thought of as “success” or
“failure” (for example, a coin toss, where “success” is “heads”) then
a standard model has a density function of the form

f(x) = Ce−x
2/2a2 . (5.9)

The constants C and a determine the vertical and horizontal scaling
of the graph of f(x), which however is always a “bell curve”: the
function is positive and even (i.e., its graph is symmetric about
x = 0—which is the mean or expected value—where it has a
maximum), and f(x)→ 0 as x→ ±∞.

(a) Show that the function f(x) given by Equation (5.9) has
inflection points at x = ±a: this is called the standard
deviation of the distribution (a2 is the variance).

(b) Given the variance a, we need to normalize the distribution:
that is, we need to adjust C so that condition (5.8) holds. The
Fundamental Theorem of Calculus insures that the function
f(x) does have an antiderivative (i.e., indefinite integral), but
it is not elementary: it cannot be expressed by a formula using
only rational functions, exponentials and logarithms,
trigonometric functions and roots. Thus, the Fundamental
Theorem of Calculus can’t help us calculate C. However, the
definite integral can be computed directly without going
through the antiderivative, by means of a trick:

i. First, we can regard our integral (which is an improper
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integral) as coming from a double integral

∫ ∞

−∞

∫ ∞

−∞
f(x) f(y) dx dy

=

(
∫ ∞

−∞
f(x) dx

)(
∫ ∞

−∞
f(y) dy

)

.

This improper double integral can be interpreted as the
limit, as R→∞, of the integral of g(x, y) = f(x) f(y) over
the square with vertices at (±R,±R) (that is, the square of
side 2R centered at the origin:

∫ ∞

−∞

∫ ∞

−∞
f(x) f(y) dx dy = lim

R→∞

∫ R

−R

∫ R

−R
f(x) f(y) dx dy

= lim
R→∞

∫∫

[−R,R]×[−R,R]
f(x) f(y) dA

ii. Justify the claim that this limit is the same as the limit for
the double integrals over the circle of radius R centered at
the origin:

lim
R→∞

∫∫

[−R,R]×[−R,R]
f(x) f(y) dA

= lim
R→∞

∫∫

{(x,y) |x2+y2≤R2}
f(x) f(y) dA.

(Hint: For a given value of R, find R− and R+ so that the
circle of radius R lies between the two squares with sides
2R− and 2R+, respectively.)

iii. Calculate the second double integral using polar
coordinates, and find the limit as R→∞.

iv. This limit is the square of the original integral of f(x). Use
this to determine the value of C for which (5.8) holds.

7. Suppose L:R2→R
2 is a linear mapping and the determinant of its

matrix representative [L] is positive. Suppose △ABC is a positively
oriented triangle in the plane.

(a) Show that the image L(△ABC) is a triangle with vertices L(A),
L(B), and L(C).
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(b) Show that σ(L(A)L(B)L(C)) is positive. (Hint: Consider the

effect of L on the two vectors −→v =
−−→
AB and −→w =

−→
AC.)

(c) Show that if the determinant of [L] were negative, then
σ(L(A)L(B)L(C)) would be negative.

(d) Use this to show that the signed area of [L(A) , L(B) , L(C)]
equals det [L] times the signed area of [A,B,C].

8. Prove Remark 5.3.3 as follows: suppose A = [L] and B = [L′]. Then
AB = [L ◦ L′]. Consider the unit square S with vertices (0, 0), (1, 0),
(1, 0), and (1, 0). (In that order, it is positively oriented.) Its signed
area is

det

(

1 0
0 v2

)

= 1.

Now consider the parallelogram S′ = L′(S). The two directed edges
−→ı and −→ of S map to the directed edges of S′, which are
−→v = L′(−→ı ) and −→w = L′(−→ ). Show that the first column of B is [−→v ]
and its second column is [−→w ], so the signed area of L′(S) is det B.
Now, consider L(S′): its directed edges are L(−→v ) and L(−→w ). Show
that the coordinate columns of these two vectors are the columns of
AB, so the signed area of L(S′) is det AB. But it is also (by
Exercise 7) det A times the area of S′, which in turn is det B.
Combine these operations to show that det AB = det Adet B.

Challenge problem:

9. Calculate
∫∫

D
xy3(1− x2) dA,

where D is the region in the first quadrant between the circle

x2 + y2 = 1

and the curve

x4 + y4 = 1.

(Hint: Start with the substitution u = x2, v = y2. Note that this is
possible only because we are restricted to the first quadrant, so the
map is one-to-one.)
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5.4 Integration Over Surfaces

Surface Area

In trying to define the area of a surface in R
3, it is natural to try to mimic

the procedure we used in § 2.5 to define the length of a curve: recall that
we define the length of a curve C by partitioning it, then joining successive
partition points with straight line segments, and considering the total
length of the resulting polygonal approximation to C as an underestimate
of its length (since a straight line gives the shortest distance between two
points). The length of C is defined as the supremum of these
underestimates, and C is rectifiable if the length is finite. Unfortunately, an
example found (simultaneously) in 1892 by H. A. Schwartz and G. Peano
says that if we try to define the area of a surface analogously, by taking the
supremum of areas of polygonal approximations to the surface, we get the
nonsense result that an ordinary cylinder has infinite area. The details are
given in Appendix H.

As a result, we need to take a somewhat different approach to defining
surface area. A number of different theories of area were developed in the
period 1890-1956 by, among others, Peano, Lebesgue, Gœ̈czes, Radó, and
Cesari. We shall not pursue these general theories of area, but will instead
mimic the arclength formula for regular curves. All of the theories of area
agree on the formula we obtain this way in the case of regular surfaces.

Recall that in finding the circumference of a circle, Archimedes used two
kinds of approximation: inscribed polygons and circumscribed polygons.
The naive approach above is the analogue of the inscribed approximation:
in approximating a (differentiable) planar curve, the Mean Value Theorem
ensures that a line segment joining two points on the curve is parallel to
the tangent at some point in between, and this insures that the projection
of the arc onto this line segment joining them does not distort distances
too badly (provided the arc is not too long). However, as the
Schwarz-Peano example shows, this is no longer true for polygons inscribed
in surfaces: inscribed triangles, even small ones, can make a large angle
(near perpendicularity) with the surface, so projection distorts areas badly,
and our intuition that the “area” of a piece of the surface projects nicely
onto an inscribed polygon fails. But by definition, circumscribed polygons
will be tangent to the surface at some point; this means that the projection
of every curve in the surface that stays close to the point of tangency onto
the tangent plane will make a relatively small angle with the surface, so
that projection will not distort lengths or angles on the surface too badly.
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This is of course just an intuitive justification, but it suggests that we
regard the projection of a (small) piece of surface onto the tangent plane
at one of its points as a good approximation to the “actual” area.

To be more specific, let us suppose for the moment that our surface S is
the graph of a differentiable function z = f(x, y) over the planar region D,
which for simplicity we take to be a rectangle [a, b]× [c, d]. A partition of
[a, b]× [c, d] divides D into subrectangles Rij , and we denote the part of
the graph above each such subrectangle as a subsurface Sij (Figure 5.20).
Now we pick a sample point (xi, yj) ∈ Rij in each subrectangle of D, and

x y

z

Figure 5.20: Subdividing a Graph

consider the plane tangent to S at the corresponding point (xi, yj , zij)
(zij = f(xi, xj)) of Sij . The part of this plane lying above Rij is a
parallelogram whose area we take as an approximation to the area of Sij ,
and we take these polygons as an approximation to the area of S
(Figure 5.21).

To find the area △Sij of the parallelogram over Rij, we can take as our
sample point in Rij its lower left corner; the sides of Rij are parallel to the
coordinate axes, so can be denoted by the vectors △xi−→ı and △yj−→ . The
edges of the parallelogram over Rij are then given by vectors −→vx and −→vy
which project down to these two, but lie in the tangent plane, which means
their slopes are the two partial derivatives of f at the sample point
(Figure 5.22). Thus,
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x y

z

Figure 5.21: Approximating the Area of a Graph

x y

z

−→vx −→vy

△−→S ij

△Sij

Rij

Figure 5.22: Element of Surface Area for a Graph
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−→vx =

(

−→ı +
∂f

∂x

−→
k

)

△xi

= (1, 0, fx)△xi
−→vy =

(

−→ +
∂f

∂y

−→
k

)

△yj

= (0, 1, fx)△yj

and the signed area of the parallelogram is

△−→S ij = −→vx ×−→vy

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 0 fx
0 1 fy

∣

∣

∣

∣

∣

∣

△xi△yj

=
(

−fx−→ı − fy−→ +
−→
k
)

△xi△yj

while the unsigned area is the length of this vector

△Sij =
√

f2x + f2y + 1△xi△yj.

An alternate interpretation of this is to note that when we push a piece of
D “straight up” onto the tangent plane at (xi, yj), its area gets multiplied

by the factor
√

f2x + f2y + 1.

Adding up the areas of our parallelograms, we get as an approximation to
the area of S

∑

i,j

△Sij△xi△yj =
∑

i,j

√

f2x + f2y + 1△xi△yj.

But this is clearly a Riemann sum for an integral, which we take to be the
definition of the area

A (S) :=

∫∫

D
dS (5.10)

where
dS :=

√

f2x + f2y + 1 d dy (5.11)

is called the element of surface area for the graph.
For example, to find the area of the surface (Figure 5.23)

z =
2

3

(

x3/2 + y3/2
)
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x y

z

Figure 5.23: z = 2
3(x

3/2 + y3/2)

over the rectangle

D = [0, 1] × [0, 1]

we calculate the partials of f(x, y) = 2
3

(

x3/2 + y3/2
)

as

fx = x1/2

fy = y1/2

so

dS =
√

x+ y + 1 dx dy

and

A (S) =

∫∫

D
dS

=

∫ 1

0

∫ 1

0

√

x+ y + 1 dx dy

=

∫ 1

0

2

3

(

(x+ y + 1)3/2
)x=1

x=0
dy

=

∫ 1

0

2

3

(

(y + 2)3/2 − (y + 1)3/2
)

dy

=
2

3
· 2
5

(

(y + 2)5/2 − (y + 1)5/2
)1

0

=
2

15

(

(35/2 − 25/2)− (25/2 − 15/2)
)

=
2

15
(9
√
3− 8

√
2 + 1).
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We wish to extend our analysis to a general parametrized surface. The
starting point of this analysis is the fact that if −→p (s, t) is a regular
parametrization of the surface S,

x = x(s, t)

y = y(s, t)

z = z(s, t)

then a parametrization of the tangent plane to S at P = −→p (s0, t0) is
TP
−→p (s, t) = P + ∂−→p

∂s △s+
∂−→p
∂t △t, that is,

x = x(s0, t0) +
∂x

∂s
(P ) (s− s0) +

∂x

∂t
(P ) (t− t0)

y = y(s0, t0) +
∂y

∂s
(P ) (s − s0) +

∂y

∂t
(P ) (t− t0)

z = z(s0, t0) +
∂z

∂s
(P ) (s− s0) +

∂z

∂t
(P ) (t− t0).

This defines the tangent map TP
−→p of the parametrization, which by

analogy with the case of the graph analyzed above corresponds to
“pushing” pieces of D, the domain of the parametrization, to the tangent
plane. To understand its effect on areas, we note that the edges of a
rectangle in the domain of −→p with sides parallel to the s-axis and t-axis,
and lengths △s and △t, respectively, are taken by the tangent map to the
vectors ∂−→p

∂s △s and ∂−→p
∂t △t, which play the roles of −→vx and −→vy from the

graph case. Thus, the signed area of the corresponding parallelogram in
the tangent plane is given by the cross product (Figure 5.24)

△−→S =

(

∂−→p
∂s
△s
)

×
(

∂−→p
∂t
△t
)

=

(

∂−→p
∂s
× ∂−→p

∂t

)

△s△t.

The (unsigned) area is the length of this vector

△S =
∥

∥

∥△−→S
∥

∥

∥ =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

△s△t.

Again, if we partition the domain of −→p into such rectangles and add up
their areas, we are forming a Riemann sum, and as the mesh size of the
partition goes to zero, these Riemann sums converge to the integral, over

the domain D of −→p , of the function
∥

∥

∥

∂−→p
∂s ×

∂−→p
∂t

∥

∥

∥
:

A (S) =

∫∫

D

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

dA. (5.12)
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s

t

△t

△s x y

z

∂−→p
∂s ∂−→p

∂t

△−→S
−→p △S

Figure 5.24: Element of Surface Area for a Parametrization

By analogy with the element of arclength ds, we denote the integrand
above dS; this is the element of surface area:

dS =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

dA =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

ds dt.

We shall see below that the integral in Equation (5.12) is independent of
the (regular) parametrization −→p of the surface S, and we write

A (S) =

∫∫

S

dS..

For future reference, we also set up a vector-valued version of dS, which
could be called the element of oriented surface area

d
−→S =

(

∂−→p
∂s
× ∂−→p

∂t

)

ds dt.

To see that the definition of surface area given by Equation (5.12) is
independent of the parametrization, it suffices to consider two
parametrizations of the same coordinate patch, say −→p (u, v) and −→q (2, t).
By Corollary 4.4.4, we can write

−→q = −→p ◦ T

where

T (s, t) = (u(s, t) , v(s, t)).

By the Chain Rule,

∂−→q
∂s

=
∂−→p
∂u

∂u

∂s
+
∂−→p
∂v

∂v

∂s
∂−→q
∂t

=
∂−→p
∂u

∂u

∂t
+
∂−→p
∂v

∂v

∂t
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so the cross product is

∂−→q
∂s
× ∂−→q

∂t
=

(

∂−→p
∂u

∂u

∂s
+
∂−→p
∂v

∂v

∂s

)

×
(

∂−→p
∂u

∂u

∂t
+
∂−→p
∂v

∂v

∂t

)

=

(

∂u

∂s

∂u

∂t

)(

∂−→p
∂u
× ∂−→p

∂u

)

+

(

∂u

∂s

∂v

∂t

)(

∂−→p
∂u
× ∂−→p

∂v

)

+

(

∂v

∂s

∂u

∂t

)(

∂−→p
∂v
× ∂−→p

∂u

)

+

(

∂v

∂s

∂v

∂t

)(

∂−→p
∂v
× ∂−→p

∂v

)

=

(

∂u

∂s

∂v

∂t
− ∂v

∂s

∂u

∂t

)(

∂−→p
∂u
× ∂−→p

∂v

)

= (det JT )

(

∂−→p
∂u
× ∂−→p

∂v

)

.

Now, by Theorem 5.3.7 (or, if necessary, Remark 5.3.8) we see that the
integral over the domain of −→p of the first cross product equals the integral
over the domain of −→q of the last cross product, which is to say the two
surface area integrals are equal.
As an example, let us find the surface area of the cylinder

x2 + y2 = 1

0 ≤ z ≤ 1.

We use the natural parametrization (writing θ instead of s)

x = cos θ

y = sin θ

z = t

with domain

D = [0, 2π] × [0, 1] .

The partial derivatives of the parametrization

−→p (θ, t) = (cos θ, sin θ, t)

are

∂−→p
∂θ

= (− sin θ, cos θ, 0)

∂−→p
∂t

= (0, 0, 1);
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their cross-product is

∂−→p
∂θ
× ∂−→p

∂t
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

− sin θ cos θ 0
0 0 1

∣

∣

∣

∣

∣

∣

= (cos θ)−→ı + (sin θ)−→

so the element of area is

dS = ‖(cos θ)−→ı + (sin θ)−→ ‖ dθ dt
= dθ dt

and its integral, giving the surface area, is

A (S) =

∫∫

S

dS

=

∫∫

[0,2π]×[0,1]
dθ dt

=

∫ 1

0

∫ 2π

0
dθ dt

=

∫ 1

0
2π dt

= 2π

which is what we would expect (you can form the cylinder by rolling the
rectangle [0, 2π]× [0, 1] into a “tube”).
As a second example, we calculate the surface area of a sphere S of radius
R; we parametrize via spherical coordinates:

−→p (φ, θ) = (R sinφ cos θ,R cosφ sin θ,R cosφ);

∂−→p
∂φ

= (R cosφ cos θ,R cosφ sin θ,−R sinφ)

∂−→p
∂θ

= (−R sinφ sin θ,R sinφ cos θ, 0)

∂−→p
∂φ
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

R cosφ cos θ R cosφ sin θ −R sinφ
−R sinφ sin θ R sinφ cos θ 0

∣

∣

∣

∣

∣

∣

= R2(sin2 φ cos θ)−→ı +R2(sin2 φ sin θ)−→
+R2(sinφ cosφ cos2 θ + sinφ cosφ sin2 θ)

−→
k
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so the element of oriented area is

d
−→S = R2(sin2 φ cos θ, sin2 φ sin θ, sinφ cos φ) dφ dθ

and the element of area is

dS = R2
√

sin4 φ cos2 θ + sin4 φ sin2 θ + sin2 φ cos2 φ dφdθ

= R2
√

sin4 φ+ sin2 φ cos2 φdφdθ

= R2
√

sin2 φ dφdθ

= R2 sinφdφdθ

(where the last equality is justified by the fact that 0 ≤ φ ≤ π, so sinφ is
always non-negative). From this, we have the area integral

A (S) =
∫∫

S
dS

=

∫ 2π

0

∫ π

0
R2 sinφdφdθ

=

∫ 2π

0
(−R2 cos θ)π0 dθ

=

∫ 2π

0
2R2 dθ

= 4πR2.

The alert reader (you!) has undoubtedly noticed a problem with this last
calculation. We have used a “spherical coordinates” parametrization of the
sphere, but the mapping fails to be one-to-one on parts of the boundary of
our domain of integration: θ = 0 and θ = 2π, for any value of φ, represent
the same point, and even worse, at either of the two extreme values of φ,
φ = 0 and φ = π all values of θ represent the same point (one of the
“poles” of the sphere). The resolution of this problem is to think in terms
of improper integrals. If we restrict the domain of integration to a closed
rectangle

α ≤ θ ≤ β
γ ≤ φ ≤ δ
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with

0 < α < β < 2π

0 < γ < δ < π

then we are using an honest parametrization of a piece of the sphere, and
the integral is perfectly OK. Now, we can define our integral to be the
limit, as

α→ 0

β → 2π

γ → 0

δ → π.

The important thing to note is that the set of points on the sphere
corresponding to the boundary of our domain (the singular points of the
parametrization) is contained in a curve which can be thought of as the
graph of a function, and hence by arguments similar to those in § 5.2 the
values on this set will have no effect on the integral. While this is not an
entirely rigorous argument, it can be made more precise; we will slide over
these kinds of difficulties in other integrals of this kind.
Finally, let us calculate the area of the helicoid (Figure 5.25)

x = r cos θ

y = r sin θ

z = θ

with domain

0 ≤ r ≤ 1

0 ≤ θ ≤ 2π.

The partials of the parametrization

−→p (r, θ) = (r cos θ, r sin θ, θ)

are

∂−→p
∂r

= (cos θ, sin θ, 0)

∂−→p
∂θ

= (−r sin θ, r cos θ, 1)
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x y

z

Figure 5.25: Helicoid

so

d
−→S = (r cos θ, r sin θ, θ)× (−r sin θ, r cos θ, 1) dr dθ

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

cos θ sin θ 0
−r sin θ r cos θ 1

∣

∣

∣

∣

∣

∣

dr dθ

= (sin θ)−→ı − (cos θ)−→ + r
−→
k

and

dS =
∥

∥

∥(sin θ)−→ı − (cos θ)−→ + r
−→
k
∥

∥

∥ dr dθ

=
√

1 + r2 dr dθ.

The surface area is given by the integral

∫∫

S

dS =

∫ 2π

0

∫ 1

0

√

1 + r2 dr dθ;
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using the substitutuion

r = tanα

dr = sec2 α dα
√

1 + r2 = secα

r = 0↔ α = 0

r = 1↔ α =
π

4

the inner integral becomes

∫ 1

0

√

1 + r2 dr =

∫ π/4

0
sec3 αdα

=
1

2
(secα tanα+ ln |secα+ tanα|)

=
1

2

(√
2 + ln(

√
2 + 1)

)

turning the outer integral into

∫ 2π

0

∫ 1

0

√

1 + r2 dr dθ =

∫ 2π

0

∫ π/4

0
sec3 α dα dθ

=

∫ 2π

0

1

2

(√
2 + ln(

√
2 + 1)

)

dθ

= π
(√

2 + ln(
√
2 + 1)

)

.

We note that for a surface given as the graph z = f(x, y) of a function over
a domain D, the natural parametrization is

−→p (s, t) = (s, t, f(s, t))

with partials

∂−→p
∂s

= (1, 0, fx)

∂−→p
∂t

= (0, 1, fy)
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so the element of oriented surface area is

d
−→S = (1, 0, fx)× (0, 1, fy) ds dt

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 0 fx
0 1 fy

∣

∣

∣

∣

∣

∣

ds dt

= −fx−→ı − fy−→ +
−→
k

and in particular the element of (unoriented) surface area is

dS =
∥

∥

∥
−fx−→ı − fy−→ +

−→
k
∥

∥

∥
ds dt

=

√

(fx)
2 + (fy)

2 + 1 ds dt.

That is, we recover the formula (5.11) we obtained earlier for this special
case.

Another special situation in which the element of surface area takes a
simpler form is that of a revolute or surface of revolution—that is, the
surface formed from a plane curve C when the plane is rotated about an
axis that does not cross C (Figure 5.26). Let us assume that the axis of

Figure 5.26: Revolute
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rotation is the x-axis, and that the curve C is parametrized by

x = x(t)

y = y(t) ,

a ≤t ≤ b.

Then our assumption that the axis does not cross C is y(t) ≥ 0. A natural
parametrization of the surface of revolution is obtained by replacing the
point (x(t) , y(t)) with a circle, centered at (x(t) , 0, 0) and parallel to the
yz-plane, of radius y(t); this yields the parametrization −→p (t, θ) of the
revolute

x = x(t)

y = y(t) cos θ

z = y(t) sin θ,

a ≤t ≤ b,
0 ≤θ ≤ 2π

The partials are

∂−→p
∂t

= (x′ (t) , y′ (t) cos θ, y′ (t) sin θ)

∂−→p
∂θ

= (0,−y(t) sin θ, y(t) cos θ)

and

∂−→p
∂t
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

x′ (t) y′ (t) cos θ y′ (t) sin θ)
0 −y(t) sin θ y(t) cos θ)

∣

∣

∣

∣

∣

∣

= (yy′)−→ı + (yx′)
[

−(cos θ)−→ + (sin θ)
−→
k
]

with length

∥

∥

∥

∥

∂−→p
∂t
× ∂−→p

∂θ

∥

∥

∥

∥

= y
√

(y′)2 + (x′)2.

Thus the element of surface area for a surface of revolution is

dS =
[

y
√

(y′)2 + (x′)2
]

dt dθ (5.13)
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and the surface area is

A (S) =

∫ 2π

0

∫ b

a

[

y
√

(y′)2 + (x′)2
]

dt dθ

= 2π

∫ b

a

[

y
√

(y′)2 + (x′)2
]

dt.

(5.14)

More generally, we should replace x(t) with the projection of a point −→p (t)
on the curve C onto the axis of rotation, and y(t) with its distance from
that axis.
For example, the area of the surface obtained by rotating the curve y = x2,
0 ≤ x ≤ 1 about the x-axis, using the natural parametrization

x = t

y = t2,

0 ≤t ≤ 1

is

2π

∫ 1

0
t2
√

t2 + 1 dt = 2π

[

t

8
(1 + 2t2

√

t2 + 1)− t4

8
ln(t+

√

t2 + 1)

]1

0

=
π

4
(3
√
2− ln(1 +

√
2),

while for the surface obtained by rotating the same surface about the
y-axis (using the same parametrization) is

2π

∫ 1

0
t
√

1 + t2 dt = 2π

[

1

3
(1 + t2)3/2

]1

0

=
2π

3

(

23/2 − 13/2
)

=
2π

3

(

2
√
2− 1

)

.

Surface Integrals

Just as we could use the element of arclength to integrate a function f on
R
3 over a curve, so can we integrate this function over a (regular) surface.

This can be thought of in terms of starting from a (possibly negative as
well as positive) density function to calculate the total mass. Going
through the same approximation process as we used to define the surface
area itself, this time we sum up the area of small rectangles in the tangent



538 CHAPTER 5. REAL-VALUED FUNCTIONS: INTEGRATION

plane at partition points multiplied by the values of the function there; this
gives a Riemann sum for the surface integral of f over the surface

∫∫

S

f dS.

Given a parametrization −→p (s, t) ((s, t) ∈ D) of the surface S, the process
of calculating the surface integral above is exactly the same as before,
except that we also throw in the value f(−→p (s, t)) of the function.
For example, to calculate the integral of f(x, y, z) =

√

x2 + y2 + 1 over the
helicoid

x = r cos θ

y = r sin θ

z = θ,

0 ≤r ≤ 1

0 ≤θ ≤ 2π

which we studied earlier, we recall that

dS =
√

1 + r2 dr dθ

and clearly

f(r cos θ, r sin θ, θ) =
√

r2 cos2 θ + r2 sin2 θ + 1

=
√

r2 + 1

so our integral becomes

∫∫

S

√

x2 + y2 + 1 dS =

∫ 2π

0

∫ 1

0

(
√

r2 + 1
)(
√

r2 + 1 dr dθ
)

=

∫ 2π

0

∫ 1

0

(

r2 + 1
)

dr dθ

=

∫ 2π

0

(

r3

3
+ r

)1

0

dθ

=

∫ 2π

0

(

4

3

)

dθ

=
8π

3
.
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As another example, let us calculate the surface integral

∫∫

S2

z2 dS

where S2 is the unit sphere in R
3. We can parametrize the sphere via

spherical coordinates

x = sinφ cos θ

y = sinφ sin θ

z = cosφ,

0 ≤φ ≤ π
0 ≤θ ≤ 2π;

the partials are

∂−→p
∂φ

= (cosφ cos θ, cosφ sin θ,− sinφ)

∂−→p
∂θ

= (− sinφ sin θ, sinφ cos θ, 0)

so

d
−→S =

∂−→p
∂φ
× ∂−→p

∂θ
dφ dθ

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

cosφ cos θ cosφ sin θ ,− sinφ
− sinφ sin θ sinφ cos θ 0

∣

∣

∣

∣

∣

∣

dφ dθ

=
(

sin2 φ cos θ
)−→ı +

(

sin2 φ sin θ
)−→ + (sinφ cosφ)

−→
k dφ dθ

and

dS =
∥

∥

∥ d
−→S
∥

∥

∥

=

√

sin4 φ cos2 θ + sin4 φ sin2 θ + sin2 φ cos2 φ dφdθ

=

√

sin4 φ+ sin2 φ cos2 φdφdθ

= |sinφ| dφ dθ
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which, in the range 0 ≤ φ ≤ π, is

= sinφdφdθ.

Now, our function f(x, y, z) = z2 is

z2 = cos2 φ

so the integral becomes

∫∫

S2

z2 dS =

∫ 2π

0

∫ π

0

(

cos2 φ
)

(sinφdφdθ)

=

∫ 2π

0
−cos3 φ

3

∣

∣

∣

π

0
dθ

=
2

3
(2π)

=
4π

3
.

Exercises for § 5.4

Practice problems:

1. Find the area of each surface below.

(a) The graph of f(x, y) = 1− x2

2 over the rectangle [−1, 1]× [−1, 1].
(b) The graph of f(x, y) = xy over the unit disc x2 + y2 ≤ 1.

(c) The part of the paraboloid z = a2 − x2 − y2 above the xy-plane.

(d) The part of the saddle surface z = x2 − y2 inside the cylinder
x2 + y2 = 1.

(e) The cone given in cylindrical coordinates by z = mr, r ≤ R.
(f) The part of the sphere x2 + y2 + z2 = 8 cut out by the cone

z =
√

x2 + y2.

(g) The part of the sphere x2 + y2 + z2 = 9 outside the cylinder
4x2 + 4y2 = 9.

(h) The surface parametrized by






x = s2 +t2

y = s −t
z = s +t

, s2 + t2 ≤ 1.
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2. Evaluate each surface integral
∫∫

S
f dS below.

(a) f(x, y, z) = x2 + y2, S is the part of the plane z = x+ 2y lying
over the square [0, 1]× [0, 1].

(b) f(x, y, z) = xy + z, S is the part of the hyperboloid z = xy over
the square [0, 1] × [0, 1].

(c) f(x, y, z) = xyz, S is the triangle with vertices (1, 0, 0), (0, 2, 0),
and (0, 0, 1).

(d) f(x, y, z) = z, S is the upper hemisphere of radius R centered
at the origin.

(e) f(x, y, z) = x2 + y2, S is the surface of the cube
[0, 1] × [0, 1] × [0, 1]. (Hint: Calculate the integral over each face
separately, and add.)

(f) f(x, y, z) =
√

x2 + y2 + 1, S is the part of the surface z = xy
inside the cylinder x2 + y2 = 1.

(g) f(x, y, z) = z, S is the cone given in cylindrical coordinates by
z = 2r, 0 ≤ z ≤ 2.

Theory problems:

3. (a) Give a parametrization of the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1.

(b) Set up, but do not attempt to evaluate, an integral giving the
surface area of the ellipsoid.

4. (a) Let S be the surface obtained by rotating a curve C which lies
in the upper half-plane about the x-axis. Show that the surface
area as given by Equation (5.14) is just the path integral

A (S) = 2π

∫

C
y ds.

(b) The centroid of a curve C can be defined as the “average”
position of points on the curve with respect to arc length; that
is, the x-coordinate of the centroid is given by

x̄ :=

∫

C x ds

s (C)
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with analogous definitions for the other two coordinates. This is
the “center of gravity” of the curve if it has constant density.

Pappus’ First Theorem, given in the Mathematical
Collection of Pappus of Alexandria (ca. 300 AD) and
rediscovered in the sixteenth century by Paul Guldin
(1577-1643), says that the area of a surface of revolution equals
the length of the curve being rotated times the distance
travelled by its centroid. Prove this result from the preceding.

5. Suppose f(x, y, z) is a C1 function for which the partial derivative
∂f/∂z is nonzero in the region D ⊂ R

3, so that the part of any level
surface in D can be expressed as the graph of a function z = φ(x, y)
over a region D in the x, y-plane. Show that the area of such a level
surface is given by

A (L(f, c) ∩D) =

∫∫

D

∥

∥

∥

−→∇f
∥

∥

∥

|∂f/∂z| dx dy.

Challenge problems:

6. (a) Use the parametrization of the torus given in Equation (3.26) to
find its surface area.

(b) Do the same calculation using Pappus’ First Theorem.

7. Given a surface S parametrized by −→p (u, v), (u, v) ∈ D, define the
functions

E =

∥

∥

∥

∥

∂−→p
∂u

∥

∥

∥

∥

2

F =
∂−→p
∂u
· ∂
−→p
∂v

G =

∥

∥

∥

∥

∂−→p
∂v

∥

∥

∥

∥

2

.

(a) Suppose C is a curve in S given in (u, v) coordinates as
−→g (t) = (u(t) , v(t)), t0 ≤ t ≤ t1—that is, it is parametrized by

γ(t) = −→p (−→g (t)) = −→p (u(t) , v(t)) .
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Show that the speed of γ(t) is given by

ds

dt
=
∥

∥γ′(t)
∥

∥

= Q
(

g′(t)
)

where Q is the quadratic form with matrix representative

[Q] =

[

E F
F G

]

.

This means the length of C is

s (C) =
∫

C
ds

=

∫ t1

t0

√

E(u′)2 + 2F (u′)(v′) +G(v′)2 dt.

The quadratic form Q is called the first fundamental form of
S.

(b) Show that for any two vectors −→v ,−→w ∈ R
3,

|−→v ×−→w | = (−→v · −→v )(−→w · −→w )− (−→v · −→w )2.

(c) Show that the surface area of S is given by

A (S) =

∫∫

D

√

EG− F 2 du dv

or

dS = det [Q] du dv.

5.5 Integration in Three Variables

Triple Integrals

In theory, the extension of integration from two to three variables is a
simple matter: the role of rectangles [a, b]× [c, d] is now played by
rectangular solids with faces parallel to the coordinate planes

[a1, b1]× [a2, b2]× [a3, b3] := {(x1, x2, x3) |xi ∈ [ai, bi] for i = 1, 2, 3} ;
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a partition P of [a1, b1]× [a2, b2]× [a3, b3] is determined by three
coordinate partitions

P1 := {a1 = x0 < x1 < · · · < xm = b1}
P2 := {a2 = y0 < y1 < · · · < yn = b2}
P3 := {a3 = z0 < z1 < · · · < zp = b3}

which subdivide [a1, b1]× [a2, b2]× [a3, b3] into m · n · p subsolids Rijk,
i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , p

Rijk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk]

with respective volumes

△Vijk = △xi△yj△zk
= (xi − xi−1)(yj − yj−1)(zk − zk−1).

Now given a function f bounded on [a1, b1]× [a2, b2]× [a3, b3] we can form
the lower and upper sums

L(P, f) =
m
∑

i=1

n
∑

j=1

p
∑

k=1

(

inf
Rijk

f

)

△Vijk

U(P, f) =
m
∑

i=1

n
∑

j=1

p
∑

k=1

(

sup
Rijk

f

)

△Vijk.

If the lower integral
∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]

f(x, y, z) dV := sup
P
L(P, f)

equals the upper integral

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]
f(x, y, z) dV := inf

P
U(P, f)

then the function is integrable over [a1, b1]× [a2, b2]× [a3, b3], with
integral

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]
f dV =

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]

f(x, y, z) dV

=

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]
f(x, y, z) dV.
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We shall not retrace all the details of the theory beyond this. As before, in
practice such integrals are calculated via iterated integrals, but (not
surprizingly) they are triple integrals. We shall call a region D ⊂ R

3 in
space z-regular if (see Figure 5.27)

x
y

z

Figure 5.27: A z-regular region D

• a line parallel to the z-axis (i.e., the set ℓ(x, y) defined by fixing the
x- and y-coordinates and allowing the z-coordinate to vary)
intersects D in an interval [α(x, y) , β(x, y)]:

D ∩ ℓ(x, y) = {(x, y, z) | z ∈ [α(x, y) , β(x, y)] , x, y fixed}

• The set of pairs (x, y) for which ℓ(x, y) intersects D forms an
elementary region D in the x, y-plane.

• the endpoints α(x, y) and β(x, y) are continuous functions of
(x, y) ∈ D.

If in turn the region D is y-regular, then we can specify D via three
inequalities of the form







α(x, y) ≤ z ≤ β(x, y)
c(x) ≤ y ≤ d(x)
a ≤ x ≤ b,

(5.15)
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while if D is x-regular, we can specify it via






α(x, y) ≤ z ≤ β(x, y)
a(y) ≤ x ≤ b(y)

c ≤ y ≤ d.
(5.16)

Note the pattern here: the limits in the first inequality (for z) are
functions of x and y, the limits in the second inequality (for y, respectively
x) are functions of x (resp. y), and the limits in the third inequality (for x,
respectively y) are just (constant) numbers. Analogous definitions can be
formulated for x-regular or y-regular regions in R

3 (Exercise 8).
When the region D is z-regular in the sense of the definition above, and f
is integrable over D, then the integral can be calculated in terms of the
partial integral

∫ β(x,y)

α(x,y)
f(x, y, z) dz

in which x and y (so also the limits of integration α(x, y) and β(x, y)) are
treated as constant, as far as the integration is concerned; this results in a
function of x and y (defined over D) and the full triple integral is the
(double) integral of this function over D. Thus, from the specification
(5.15) we obtain the triple integral

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]
f dV =

∫∫

D

(

∫ β(x,y)

α(x,y)
f(x, y, z) dz

)

dA

=

∫ b

a

∫ d(x)

c(x)

∫ β(x,y)

α(x,y)
f(x, y, z) dz dy dx

while from (5.16) we obtain

∫∫∫

[a1,b1]×[a2,b2]×[a3,b3]
f dV =

∫∫

D

(

∫ β(x,y)

α(x,y)
f(x, y, z) dz

)

dA

=

∫ d

c

∫ b(y)

a(y)

∫ β(x,y)

α(x,y)
f(x, y, z) dz dx dy.

As a first example, let us find the integral of f(x, y, z) = 3x2 − 3y2 + 2z
over the rectangular solid D = [1, 3] × [1, 2] × [0, 1] shown in Figure 5.28.
The region is specified by the inequalities

0 ≤z ≤ 1

1 ≤y ≤ 2

1 ≤x ≤ 3
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x y

z

Figure 5.28: The rectangular region D = [1, 3] × [1, 2] × [0, 1]

yielding the triple integral

∫∫∫

[1,3]×[1,2]×[0,1]
3(x2 − 3y2 + 2z) dV =

∫ 3

1

∫ 2

1

∫ 1

0
(3x2 − 2y2 + 2z) dz dy dx

=

∫ 3

1

∫ 2

1
(3x2z + 3y2z + z2)z=1

z=0 dy dx

=

∫ 3

1

∫ 2

1
(3x2 + 3y2 + 1) dy dx

=

∫ 3

1
(3x2y + y3 + y)2y=1 dx

=

∫ 3

1
({6x2 + 8 + 2} − {3x2 + 1 + 1}] dx

=

∫ 3

1
(3x2 + 8) dx

= (x3 + 8x)31

= (27 + 24) − (1 + 8)

= 42.

As a second example, let us integrate the function f(x, y, z) = x+ y + 2z
over the region D bounded by the xz-plane, the yz-plane, the plane
z = x+ y, and the plane z = 2 (Figure 5.29).
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x y

z

Figure 5.29: The region D (and its shadow, D)

The “shadow” of D, that is, its projection onto the xy-plane, is the
triangular region D determined by the inequalities

0 ≤y ≤ 1

0 ≤x ≤ 1

0 ≤ x+ y ≤ 1

which is a y-regular region; the corresponding specification is

0 ≤y ≤ 1− x
0 ≤x ≤ 1.

A vertical line intersects the three-dimensional region D if and only if it
goes through this shadow, and then it runs from z = x+ y to z = 2. Thus,
D is z-regular, with corresponding inequalities

x+ y ≤z ≤ 2

0 ≤y ≤ 1− x
0 ≤x ≤ 1
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leading to the triple integral
∫∫∫

D

(x+ y + z) dV =

∫ 1

0

∫ 1−x

0

∫

x+y
2(x+ y + 2z) dz dy dx

=

∫ 1

0

∫ 1−x

0

{

(x+ y)z + z2
}z=2

z=x+y
dy dx

=

∫ 1

0

∫ 1−x

0

{

[2(x+ y) + 4]−
[

(x+ y)2 + (x+ y)2
]}

dy dx

=

∫ 1

0

∫ 1−x

0

{

2(x+ y)2 − 2(x+ y) + 4
}

dy dx;

the inner integral is best done using the substitution

u = x+ y

du = dy

y = 0↔ u = x

y = 1− x↔ u = 1

leading to the inner integral
∫ 1−x

0

{

2(x+ y)2 − 2(x+ y) + 4
}

dy =

∫ 1

x

{

2u− 2u2 + 4
}

du

=

{

u2 − 2u3

3
+ 4u

}1

u=x

=

{

1− 2

3
+ 4

}

−
{

x2 − 2x3

3
+ 4x

}

=
13

3
− x2 + 2x3

3
− 4x;

substituting this into the outer integral yields

∫ 1

0

∫ 1−x

0

{

2(x+ y)2 − 2(x+ y) + 4
}

dy dx =

∫ 3

0

(

13

3
− x2 + 2x3

3
− 4x

)

dx

=

(

13

3
x− x3

3
+
x4

6
− 2x2

)1

0

=
23

6
.

As a final example, let us integrate f(x, y, z) = x+ y + 1 over the region D

bounded below by the surface z = x2 + 3y2 and above by the surface
z = 8− x2 − y2 (Figure 5.30).
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x
y

z

Figure 5.30: The region D

The two surfaces intersect where

8− x2 − 5y2 = x2 + 3y2

or

x2 + 4y2 = 4.

This defines the shadow D. This can be specified in the y-regular form

−1

4

√

4− x2 ≤y ≤ 1

4

√

4− x2

−2 ≤x ≤ 2

or in the x-regular form

−
√

4− 4y2 ≤x ≤
√

4− 4y2

−1 ≤y ≤ 1.
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We choose the latter, so our integral becomes

∫∫∫

D

f dV =

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2

∫ 8−x2−5y2(x+y+1)

x2+3y2
dz dx dy

=

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2
(x+ y ++1)z

∣

∣

∣

z=8−x2−5y2

z=x2+3y2
dx dy

=

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2
(x+ y + 1)(8 − 2x2 − 8y2) dx dy

=

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2
[−2x3 − (2y + 1)x2 + 8(1− y2)x+ 8(1 + y − y2 − y3)] dx dy

=

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2

[

−x
4

2
− (2y + 1)x3

3
+ 4(1 − y2)x2

+ 8(1 + y − y2 − y3)
]x=
√

4−4y2

x=−
√

4−4y2
dy

=

∫ 1

−1

[

−2(2y + 1)

3
(4− 4y2)3/2 + 16(1 + y − y2 − y3)

√

4− 4y2
]

dy

=

∫ 1

−1

[

−4

3
(2y + 1)(4 − 4y2) + 16(1 + y − y2 − y3)

]

√

4− 4y2 dy

=

∫ 1

−1

[

32

3
(1− y2) + 16

3
y(1− y2)

]

√

4− 4y2 dy

=
16
√
2

3

∫ 1

−1
(2 + y)(1 − y2)3/2 dy.

Using the substitution

x = sin θ (θ = arcsinx)

dx = cos θ dθ

x = −1↔ θ = −π
2

x = 1↔ θ =
π

2

leads to the integral

16
√
2

3

∫ π/2

−π/2
(2+sin θ)(cos4 θ) dθ =

32
√
2

3

∫ π/2

−π/2
2 cos4 θ dθ+

16
√
2

3

∫ π/2

−π/2
cos4 θ sin θ dθ.
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The first of these two integrals is done via the half-angle identities

32
√
2

3

∫ π/2

−π/2
2 cos4 θ dθ =

8

3

√
2

∫ π/2

−π/2
(1 + cos 2θ)2 dθ

=
8

3

√
2

∫ π/2

−π/2
(1 + 2 cos 2θ +

1

2
(1 + cos 4θ)) dθ

= 4
√
2θ
∣

∣

∣

π/2

−π/2

= 4π
√
2.

The second integral is an easy substitution of the form u = cos θ, yielding

16
√
2

3

∫ π/2

−π/2
cos4 θ sin θ dθ =

16

15

√
2 cos5 θ

∣

∣

∣

π/2

−π/2

= 0.

Combining these, we have the full integral

∫ 1

−1

∫

√
4−4y2

−
√

4−4y2

∫ 8−x2−5y2(x+y+1)

x2+3y2
dz dx dy

=
32
√
2

3

∫ π/2

−π/2
2 cos4 θ dθ +

16
√
2

3

∫ π/2

−π/2
cos4 θ sin θ dθ

= 4π
√
2 + 0

= 4π
√
2.

Change of Coordinates in Triple Integrals

The theory behind changing coordinates in triple integrals again follows
the lines of the two-dimensional theory which we set out in detail in § 5.3.
We shall simply outline the basic features of this theory.
The first observation is that for any linear map L:R3→R

3, the absolute
value of the determinant of its matrix representative

∆ (L) := |det [L]|
gives the volume of the parallelepiped whose edges are the images of the
three unit vectors along the axes (Exercise 10); this in turn is the image
under L of the “unit box” [0, 1]× [0, 1]01. From this we can argue as in
§ 5.3 to obtain the following analogue of Theorem 5.3.4: 11

11By analogy with the two-dimensional case, a region D ⊂ R
3 is elementary if it is

simultaneously x-regular, y-regular and z-regular.
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Proposition 5.5.1. If T :R3→R
3 is an affine map (T (−→x ) = −→y0 + L(−→x ),

where L is linear) and D is an elementary region in R
3, then

∆(T ) := ∆ (L)

gives the ratio between the volume of the image of D and the volume of D
itself:

V(T (D)) = ∆ (T ) · V(D) .

Using this, we can establish the three-dimensional analogue of
Proposition 5.3.5, the change-of-variable formula for affine changes of
coordinates:

Proposition 5.5.2 (Affine Change of Coordinates for triple integrals).
Suppose D ⊂ R

3 is an elementary region, T :R3→R
3 is an affine

transformation defined on D with ∆(T ) 6= 0, and f:R3→R is a real-valued
function which is integrable on T (D).

Then
∫∫∫

T(D)
f(−→x ) dV =

∫∫∫

D

f(T (~s))∆ (T ) dV. (5.17)

Proof. We can assume without loss of generality that D is a rectangular
box. Let P be a partition of D, and Rijk one of its component rectangles,
with volume △Vijk. Then T (Rijk) is a parallelepiped of volume
∆ (T )△Vijk. Also, the maximum (resp. minimum) value of f(−→x ) on
T (Rijk) is the same as the maximum (resp. minimum) of f(T (~s)) on D.
Clearly,

min
T(Rijk)

f(−→x )
(

∆(T )△Vijk
)

= min
T(Rijk)

f(−→x )V(T (Rijk))

≤
∫∫∫

T(Rijk)
f(−→x ) dV

≤ max
T(Rijk)

f(−→x )V(T (Rijk))

= max
T(Rijk)

f(−→x )
(

∆(T )△Vijk
)

. (5.18)

Now, since ∆ (T ) is nonzero, the image T (D) of D is the non-overlapping
union of the parallelepipeds T (Rijk), so the sum of the middle terms in
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Equation (5.18) over all values of (i, j, k) is the integral of f over T (D).
The sum of the left-hand terms in Equation (5.18) is the lower sum

∑

ijk

min
T(Rijk)

f(−→x )
(

∆(T )△Vijk
)

=
∑

ijk

min
Rijk

(

f(T (~s)) ·∆(T )
)

△Vijk

= L(P, (f ◦ T ) ·∆(T ))

and in a similar way, the sum of right-hand terms is the corresponding
upper sum. Thus we have for every partition P of D

L(P, (f ◦ T ) ·∆(T )) ≤
∫∫∫

T(D)
f(−→x ) dV ≤ U(P, (f ◦ T ) ·∆(T )).

But by definition, the only number that fits in the middle of these
inequalities for every partition P of D is

∫∫∫

D

f(T (~s))∆ (T ) dV

proving the proposition.

The notion of a coordinate transformation carries over practically verbatim
from Definition 5.3.1:

Definition 5.5.3. A coordinate transformation on a region D ⊂ R
3 is

a C1 mapping F:R3→R
3 satisfying:

1. F has no critical points in D (i.e., its Jacobian determinant

∆(F )(−→x ) := |JF (−→x )|

is nonzero at every point −→x of D).

2. F maps D onto F (D) in a one-to-one manner.

A modification of our argument for Proposition 5.5.2 then gives us the
three-dimensional analogue of Theorem 5.3.7:
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Theorem 5.5.4 (Change of Coordinates in Triple Integrals). Suppose
D ⊂ R

3 is an elementary region, F:R3→R
3 is a coordinate transformation

defined on D, and f:R3→R is a real-valued function which is integrable on
F (D).

Then
∫∫∫

F(D)
f(−→x ) dV =

∫∫∫

D

f(F (−→x ))∆ (F )(−→x ) dV (5.19)

where

∆(F )(−→x ) := |JF (−→x )| .

Proof. The main difference from the earlier argument arises from the fact
that the constant factor ∆ (T ) is replaced by the function ∆ (F )(−→x ). To
handle this, we need to use the uniform continuity of the continuous
function ∆ (F )(−→x ) (see Definition 5.1.2 and Lemma 5.1.3). Then, given
ε > 0, we can find a mesh size δ > 0 so that if P is a partition of D with
mesh less than δ, then every rectangle Rijk of P satisfies

(1− ε)max
Rijk

∆(F ) ≤ min
Rijk

∆(F ) (5.20)

and

max
Rijk

∆(F ) ≤ (1 + ε)min
Rijk

∆(F ) . (5.21)

If we assume12 that f ≥ 0 then, noting that ∆ (F ) ≥ 0 automatically, we
can conclude (Exercise 13) from Equation (5.21) and Equation (5.20) that

(

min
F(Rijk)

(f ◦ F )

)

((

min
Rijk

∆F

)

V(Rijk)
)

≥ 1

1 + ε

(

min
Rijk

((f ◦ F ) ·∆F )
)

(V(Rijk))

(5.22)
and
(

max
F(Rijk)

f

)

((

max
Rijk

∆F

)

V(Rijk)
)

≤ 1

1− ε

(

max
Rijk

(f ·∆F )
)

(V(Rijk)) .

(5.23)

Now, the volume of the image F (Rijk) satisfies

(

min
Rijk

∆F

)

V(Rijk) ≤ V(F (Rijk)) ≤
(

max
Rijk

∆F

)

V(Rijk)

12See Exercise 11 for why this assumption is necessary, and Exercise 12 for why it does
not entail a loss of generality.
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and so the integral of f over F (Rijk) satisfies

(

min
F(Rijk)

f

)

((

min
Rijk

∆F

)

V(Rijk)
)

≤
∫∫∫

F(Rijk)
f dV

≤
(

max
F(Rijk)

f

)

((

max
Rijk

∆F

)

V(Rijk)
)

. (5.24)

Using Equation (5.22) and Equation (5.23), we can conclude

1

1 + ε

(

min
Rijk

((f ◦ F ) ·∆F )
)

(V(Rijk))

≤
∫∫∫

F(Rijk)
f dV

≤ 1

1− ε

(

max
Rijk

((f ◦ F ) ·∆F )
)

(V(Rijk)) .

Summing over all Rijk, we thus obtain, given arbitrary ε > 0, for every
sufficiently fine partition P of D,

1

1 + ε
L(P, (f ◦ F ) ·∆(F )) ≤

∫∫∫

F(D)
f dV ≤ 1

1− ε U(P, (f
◦ F ) ·∆(F ))

and the desired result follows in the same way as before.

Triple Integrals in Cylindrical and Spherical Coordinates

An important application of Theorem 5.5.4 is the calculation of triple
integrals in cylindrical and spherical coordinates.
The case of cylindrical coordinates has essentially been covered in § 5.3,
since these involve replacing x and y with polar coordinates in the plane
and then keeping z as the third coordinate. However, let us work this out
directly from Theorem 5.5.4. If the region D is specified by a set of
inequalities in cylindrical coordinates, like

z1 ≤ z ≤ z2
r1 ≤ r ≤ r2
θ1 ≤ θ ≤ θ2
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(where it is understood that the inequalities can be listed in a different
order, and that some of the limits can be functions of variables appearing
further down the list) then we can regard these inequalities as specifying a
new region Dcyl ⊂ R

3, which we think of as living in a different copy of R3,
“(r, θ, z) space”, and think of D (in “(x, y, z) space”) as the image of Dcyl

under the mapping Cyl:R3→R
3 defined by

Cyl(r, θ, z) =





r cos θ
r sin θ
z



 .

We saw in Equation (4.4), § 4.2 that the Jacobian of the mapping Cyl is

J(Cyl)(r, θ, z) =





cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1



 .

Its determinant is easily calculated to be

det (J(Cyl))(r, θ, z) = (cos θ)(r cos θ−0)−(−r sin θ)(sin θ) = r cos2 θ+r sin2 θ = r.

To insure that Cyl is a coordinate transformation on Dcyl, we need r to be
nonzero (and usually positive) in the interior of this region. Then
Theorem 5.5.4 tells us that an integral of the form

∫∫∫

D
f dV can be

rewritten as

∫∫∫

D

f dV =

∫∫∫

Dcyl

(f ◦ Cyl) ·∆(Cyl) dV.

The factor f ◦ Cyl is simply the function f , thought of as assigning a real
value to every point of R3, expressed as a formula in terms of the
cylindrical coordinates of that point. Strictly speaking, this means we need
to substitute the expressions for x and y in terms of polar coordinates in
the appropriate places: if f(x, y, z) denotes the formula for f in terms of
rectangular coordinates, then

(f ◦ Cyl)(r, θ, z) = f(Cyl(r, θ, z)) = f(r cos θ, r sin θ, z)

but in writing out abstract statements, we allow abuse of notation and
write simply f(r, θ, z). Using this naughty abbreviation, we can state the
following special case of Theorem 5.5.4:
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Corollary 5.5.5 (Triple Integrals in Cylindrical Coordinates). If the
region D ⊂ R

3 is described by inequalities in cylindrical coordinates, say13

z1 ≤ z ≤ z2
r1 ≤ r ≤ r2
θ1 ≤ θ ≤ θ2

corresponding to the region Dcyl in (r, θ, z) space, then

∫∫∫

D

f dV =

∫∫∫

Dcyl

(f◦Cyl)·∆(Cyl) dV =

∫ θ2

θ1

∫ r2

r1

∫ z2

z1

f(r, θ, z) r dz dr dθ.

where f(r, θ, z) = (f ◦ Cyl)(r, θ, z) is simply f expressed in terms of
cylindrical coordinates.

In other words, to switch from rectangular to cylindrical coordinates in a
triple integral, we replace the limits in x, y, z with corresponding limits in
r, θ, z, rewrite the integrand in terms of cylindrical coordinates, and
substitute dV = r dz dr dθ.
For example, let us calculate the integral

∫∫∫

D

x dV

where D is the part of the “shell” between the cylinders of radius 1 and 2,
respectively, about the z-axis, above the xy-plane, in front of the yz-plane,
and below the plane y + z = 3 (Figure 5.31). In rectangular coordinates,
the region can be described by

0 ≤ z ≤ 3− y
1 ≤ x2 + y2 ≤ 4

x ≥ 0.

However, the region is more naturally specified by the inequalities in
cylindrical coordinates

0 ≤ z ≤ 3− r sin θ
1 ≤ r ≤ 2

−π
2
≤ θ ≤ π

2
.

13In general, the order of the inequalities can be different, and some limits can be
functions of variables appearing below them, rather than constants.
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x

z

y

Figure 5.31: Half-Cylindrical Shell Cut by the Plane y + z = 3

Then Corollary 5.5.5 tells us that
∫∫∫

D

x dV =

∫∫∫

Dcyl

(r cos θ) · r dV

=

∫ π/2

−π/2

∫ 2

1

∫ 3−r sin θ

0
(r cos θ)(r dz dr dθ)

=

∫ π/2

−π/2

∫ 2

1

∫ 3−r sin θ

0
r2 cos θ dz dr dθ

=

∫ π/2

−π/2

∫ 2

1
(3− r sin θ)(r2 cos θ) dr dθ

=

∫ π/2

−π/2

∫ 2

1
(3r2 cos θ − r3 sin θ cos θ) dr dθ

=

∫ π/2

−π/2

(

r3 cos θ − r4

4
sin θ cos θ

)2

r=1
dθ

=

∫ π/2

−π/2
(7 cos θ − 15

4
sin θ cos θ) dθ

=
(

7 sin θ − 15

8
sin2 θ

)π/2

θ=−π/2

= 14.
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A region D ⊂ R
3 specified by inequalities in spherical coordinates, say

ρ1 ≤ ρ ≤ ρ2
φ1 ≤ φ ≤ φ2
θ1 ≤ θ ≤ θ2

can, in a similar way, be regarded as the image of a region Dspher in
“(ρ, φ, θ) space” under the mapping Sph:R3→R

3, which can be written

Sph(ρ, φ, θ) =





ρ sinφ cos θ
ρ sinφ sin θ
ρ cosφ





and whose Jacobian matrix was computed in § 4.2 as

J(Sph)(ρ, φ, θ) =





sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0



 .

We can calculate its determinant by expansion along the last row:

∆ (Sph)(ρ, φ, θ) = det (J(Sph))(ρ, φ, θ)

= (cosφ)[(ρ cos φ cos θ)(ρ sinφ cos θ)− (−ρ sinφ sin θ)(ρ cosφ sin θ)]
− (−ρ sinφ)[(sin φ cos θ)(ρ sinφ cos θ)− (−ρ sinφ sin θ)(sinφ sin θ)]
+ 0

= (cosφ)[ρ2 sinφ cos φ cos2 θ + ρ2 sinφ cosφ sin2 θ]

+ (ρ sinφ)[ρ sin2 φ cos2 θ + ρ sin2 φ sin2 θ]

= (cosφ)[ρ2 sinφ cos φ] + (ρ sinφ)[ρ sin2 φ]

= ρ2 sinφ cos2 φ+ ρ2 sinφ sin2 φ

= ρ2 sinφ.

So in a way exactly analogous to Corollary 5.5.5 we have

Corollary 5.5.6 (Triple Integrals in Spherical Coordinates). If a region
D ⊂ R

3 is specified by inequalities in spherical coordinates, say14

ρ1 ≤ ρ ≤ ρ2
φ1 ≤ φ ≤ φ2
θ1 ≤ θ ≤ θ2,

14As before, the order of the inequalities can be different, and some limits can be
functions of variables appearing below them, rather than constants.
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then for any function f defined on D we have 15

∫∫∫

D

f dV =

∫∫∫

Dspher

(f◦Sph)·∆(Sph) dV =

∫ θ2

θ1

∫ φ2

φ1

∫ ρ2

ρ1

f(ρ, φ, θ) ρ2 sinφdρ dφ dθ.

As an example, let us calculate
∫∫∫

D
f dV where

f(x, y, z) = z

and D is the region in the first octant bounded by the spheres of radius 1.5
and 2 (centered at the origin), the xy-plane, the xz-plane, and the plane
x = y (Figure 5.32).

x
y

z

x = y

Figure 5.32: Spherical shell

The region D corresponds to the region Dspher specified in spherical
coordinates by

1.5 ≤ ρ ≤ 2

0 ≤ φ ≤ π

2

0 ≤ θ ≤ π

4
.

15where again we write (f ◦ Sph)(ρ, φ, θ) as f(ρ, φ, θ)
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Thus we can set up the integral as a triple integral
∫∫∫

D

f dV =

∫∫∫

Dspher

(f ◦ Sph) ·∆(Sph) dV

=

∫ π/4

0

∫ π/2

0

∫ 2

1.5
(ρ cosφ)(ρ2 sinφdρ dφ dθ)

=

∫ π/4

0

∫ π/2

0

∫ 2

1.5
ρ3 cosφ sinφdρ dφ dθ

=

∫ π/4

0

∫ π/2

0

(

ρ4

4

)2

1.5

cosφ sinφdφdθ

=

(

175

16

)∫ π/4

0

∫ π/2

0
cosφ sinφdφdθ

=

(

175

16

)
∫ π/4

0

1

2
sin2 φ

∣

∣

∣

π/2

0
dθ

=

(

175

32

)
∫ π/4

0
dθ

=
175π

128
.

Exercises for § 5.5

Practice problems:

1. Calculate each triple integral
∫∫∫

D
f dV below:

(a) f(x, y, z) = x3, D is [0, 1] × [0, 1] × [0, 1].

(b) f(x, y, z) = 3x3y2z, D is [0, 2] × [2, 3] × [1, 2].

(c) f(x, y, z) = ex−2y+3z, D is [0, 1] × [0, 1] × [0, 1].

(d) f(x, y, z) = 1, D is the region bounded by the coordinate planes
and the plane x+ y + 2z = 2.

(e) f(x, y, z) = x+ y + z, D is the region bounded by the planes
x = 0, y = 0, z = 0, x+ y = 1, and x+ z = 2− y.

(f) f(x, y, z) = 1, D is the region bounded by the two surfaces
z = 24− 5x2 − 2y2 and z = x2 + y2.

(g) f(x, y, z) = 1, D is the region inside the cylinder 2x2 + y2 = 4,
bounded below by the xy-plane and above by the plane
x+ y + 2z = 6.
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(h) f(x, y, z) = x+ yz, D is specified by

0 ≤z ≤ y
0 ≤y ≤ x
0 ≤x ≤ 1.

(i) f(x, y, z) = z + 2y, D is the pyramid with top vertex (0, 0, 1)
and base vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0).

(j) f(x, y, z) = 1− y, D is the part of the inside of the cylinder
x2 + y2 = 1 above the xy-plane and below the plane y + z = 1.

(k) f(x, y, z) = 1, D is the part of D from problem (1j) in the first
octant.

(l) f(x, y, z) = x2, D is the part of the inside of the cylinder
x2 + y2 = 1 above the xy-plane and below the paraboloic sheet
z = y2.

(m) f(x, y, z) = z, D is the “cap” cut off from the top of the sphere
of radius 2 about the origin by the plane z = 1.

(n) f(x, y, z) = x2 + y2 + z2, D is the sector (“lemon wedge”) cut
out of the sphere x2 + y2 + z2 = 1 by the two half-planes
y = x

√
3 and x = y

√
3, x, y ≥ 0.

(o) f(x, y, z) = z, D is the part of the “front” (x ≥ 0) hemisphere of
radius 1 centered at the origin which lies above the downward
cone with vertex at the origin whose edge makes an angle α
(0 < α < π

2 ) with the z-axis.

2. Express each region below by inequalities of the form

a1(x, y) ≤ z ≤ a2(x, y)
b1(x) ≤ y ≤ b2(x)

c1 ≤ x ≤ c2.

(a) D =
{

(x, y, z) |x2 + y2 + z2 ≤ 4, z ≥
√
2
}

(b) D =
{

(x, y, z) |x2 + y2 + z2 ≤ 1, |x| ≤ y
}

(c) D =
{

(x, y, z) |x2 + y2 ≤ z ≤
√

x2 + y2
}

(d) D is the region bounded by the surfaces z = 6x2 − 6y2 and
10x2 + 10y2 + z = 4.
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3. Show that the region in the first octant in which x+ y ≤ 1 and
x ≤ z ≤ y is the simplex with vertices (0, 0, 0), (0, 1, 0), (0, 1, 1), and
(12 ,

1
2 ,

1
2). Find its volume.

4. Consider the region specified by

0 ≤ z ≤ y
0 ≤ y ≤ x
0 ≤ x ≤ 1.

Give inequalities expressing the same region in the form

a1(y, z) ≤ x ≤ a2(y, z)
b1(z) ≤ y ≤ b2(z)
c1 ≤ z ≤ c2.

5. Express the volume of the pyramid with base [−1, 1] × [−1, 1] and
vertex (0, 0, 1) in two ways:

(a) As an iterated integral of the form
∫∫∫

dy dx dz

(b) As a sum of four iterated integrals of the form
∫∫∫

dz dy dx.

Then evaluate one of these expressions.

6. (a) Let D be the intersection of the two regions x2 + y2 ≤ 1 and
x2 + z2 ≤ 1. Sketch the part of D lying in the first octant, and
set up a triple integral expressing the volume of D.

(b) Do the same for the intersection of the three regions
x2 + y2 ≤ 1, x2 + z2 ≤ 1, and y2 + z2 ≤ 1. (Hint: First consider
the part of D in the first octant, and in particular the two parts
into which it is divided by the vertical plane x = y.)

7. Find the volume of each region below:

(a) The region between the paraboloids z = 1− x2 − y2 and
z = x2 + y2 − 1.

(b) The region bounded below by the upper hemisphere of radius 2
centered at the origin and above by the paraboloid
z = 4− x2 − y2.

(c) The “ice cream cone” cut out of the sphere of radius 1 by a cone
whose edge makes an angle α (0 < α < π

2 ) with its axis.
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Theory problems:

8. (a) Formulate a definition of x-regular and y-regular regions in R
3

parallel to that given on p. 545 for z-regular regions.

(b) For each of these give the possible ways such a region can be
specified by inequalities.

9. Symmetry in Three Dimensions:

(Refer to Exercise 8 in § 5.2.)

(a) Formulate a definition of x-symmetric (resp. y-symmetric or
z-symmetric) regions in R

3.

(b) Define what it means for a function f(x, y, z) of three variables
to be odd (resp. even) in x (resp. y or z). .

(c) Show that if f(x, y) is odd in x on an x-symmetric, x-regular
region in R

3, its integral is zero.

(d) Show that if f(x, y) is even in x on an x-symmetric, x-regular
region in R

3, its integral is twice its integral in the part of the
region on the positive side of the yz-plane.

(e) Suppose f(x, y, z) is even in all three variables, and D is regular
and symmetric in all three variables. Then the integral of f over
D is a multiple of its integral over the intersection of D with the
first octant: what multiple?

10. Prove Proposition 5.5.1 as follows:

Suppose T :R3→R
3 is affine, say

T (−→x ) = −→y0 + L(−→x )

where L:R3→R
43 is linear.

(a) Use Remark 1.7.2 to prove that the volume of
T ([0, 1] × [0, 1] × [0, 1]) is ∆ (L) = ∆ (T ).

(b) Use linearity to show that for any rectangular box
B = [a1, b1]× [a2, b2]× [a3, b3],

V(T (B)) = ∆ (T )V(B) .
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(c) Suppose now that D is an elementary region in R
3. As in § 5.3,

let P± be two regions, each formed from rectangular boxes (with
disjoint boundaries), with P− ⊂ D ⊂ P+; given ε > 0, assume
we can construct these regions so that 16

V(P+) ≤ (1 + ε)V(P−) .

Then
T (P−) ⊂ T (D) ⊂ T (P+)

and hence

∆ (T ) · V(P−) = V(T (P−))

≤ V(T (D))

≤ V(T (P+)) = ∆ (T ) · V(P+)

≤ (1 + ε)V(T (P−)) = (1 + ε)∆ (T ) · V(P−) .

Then use the squeeze theorem to show that

V(T (D)) = ∆ (T ) · V(D) .

11. (a) Show that if f and g are both non-negative on D then
(

min
D

f

)

·
(

min
D

g

)

≤ min
D

(f · g)

and
(

max
D

f

)

·
(

max
D

g

)

≥ max
D

(f · g).

(b) Show that these inequalities are, in general, strict. (Hint:
Consider f(x) = x+ 2 and g(x) = 4− 3x on [0, 1].)

(c) Show that these inequalities are in general false if g is allowed to
take negative values. (Hint: Consider f(x) = x+ 1 and
g(x) = 2− 4x on [0, 1].)

12. (a) Show that any function f can be expressed as a difference of
two non-negative functions

f = f+ − f−, f+, f− ≥ 0

in such a way that, if f is continuous (resp. Riemann integrable)
on D then so are f±. (Hint: Use a combination of f and |f |.)

16This is a bit fussier to prove than in the two-dimensional case, but we will slide over
this technicality.
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(b) Use this to show that the assumption f ≥ 0 in the proof of
Theorem 5.5.4 does not represent a loss of generality.

13. Given f ≥ 0 on Rijk, show that Equation (5.21) implies that for any
−→x ∈ Rijk,

min
Rijk

(

(f ◦ F ) ·∆(F )
)

≤ f(F (−→x ))∆ (F )(−→x ) ≤ f(F (−→x ))max
Rijk

∆(F )

≤ (1 + ε)f(F (−→x ))min
Rijk

∆(F ) .

Then use this to prove Equation (5.22).

Challenge problem:

14. Suppose f is continuous on R
3, and let Bδ be the ball of radius δ > 0

centered at (x0, y0, z0), and let V(Bδ) denote the volume of the ball.
Show that

lim
δ→0

1

V(Bδ)

∫∫∫

Bδ

f(x, y, z) dV = f(x0, y0, z0) .
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6
Integral Calculus for Vector Fields and

Differential Forms

In this chapter, we will consider a family of results known collectively as
Generalized Stokes’ Theorem, which can be regarded as a far-reaching
generalization of the Fundamental Theorem of Calculus. These results can
be formulated in several languages; we shall follow two of these: the
language of vector fields and the language of differential forms; along the
way, we shall develop a dictionary for passing from either one of these
languages to the other.

6.1 Line Integrals of Vector Fields and 1-Forms

In Chapter 4 we considered mappings from R
n to R

m, or vector-valued
functions of a vector variable. We begin here by looking at a special case
of this from a different point of view.

A vector field on D ⊂ R
n is simply a mapping

−→
F :D→R

n assigning to

each point p ∈ D a vector
−→
F (p). However, our point of view is somewhat

different from that in Chapter 4. We think of the domain and range of a
mapping as essentially separate collections of vectors or points (even when
they are the same space), whereas in the vector field setting we think of
the input as a point, and the output as a vector ; we picture this vector as

569
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an arrow “attached” to the point. The distinction is emphasized by our
use of an arrow over the name of the vector field, and dropping the arrow
over the input point.
One way to formalize this point of view is to take a leaf from our study of
surfaces in space (particularly Lagrange multipliers in § 3.7). If a curve
−→p (t) lies on the surface S, then its velocity is everywhere tangent to the
surface; turning this around, we can think of the tangent plane to S at
p ∈ S as consisting of all the possible velocity vectors for points moving in
S through p. Analogously, we can formulate the tangent space to R

n at
p ∈ R

n as the set TpR
n of all velocity vectors for points moving in R

n

through p. This is of course a copy of Rn, but we think of these vectors as
all “attached” to p. Examples of physical quantities for which this
interpretation is appropriate include forces which vary from point to point
(such as interplanetary gravitation), velocity of fluids (such as wind
velocity on weather maps), and forces acting on rigid bodies.
We can visualize vector fields in the plane and in 3-space as, literally,
“fields of arrows”. For example, the vector field in the plane given by

−→
F (x, y) = y−→ı + x−→

assigns to every point (x, 0) on the x-axis a vertical arrow of length |x|
(pointing up for x > 0 and down for x < 0) and similarly a horizontal
arrow of length |y| to every point (0, y) on the y-axis; at a generic point
(x, y), the arrow is the sum of these. The resulting field is pictured in
Figure 6.1. Note that when y = ±x, the vector points along the diagonal
(or antidiagonal).

Figure 6.1: The vector field ~F (x, y) = y~ı+ x~

By contrast, the vector field

−→
F (x, y) = y−→ı − x−→
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is everywhere perpendicular to the position vector (x, y), so
−→
F (x, y) is

tangent to the circle through (x, y) centered at the origin (Figure 6.2).

Figure 6.2: The vector field ~F (x, y) = y~ı− x~

Work and Line Integrals

If you have to push your stalled car a certain distance, the work you do is
intuitively proportional to how hard you need to push, and also to how far
you have to push it. This intuition is formalized in the physics concept of
work: if a (constant) force of magnitude F is applied to move an object
over a straight line distance △s, then the work W is given by

W = F△s;

more generally, if the force is not directed parallel to the direction of

motion, we write the force and the displacement as vectors
−→
F and △−→s ,

respectively, and consider only the component of the force in the direction
of the displacement:

W =
(

comp△−→
s

−→
F
)

△s

=
−→
F · △−→s .

When the displacement occurs over a curved path C, and the force varies
along the path, then to calculate the work we need to go through a process
of integration. We pick partition points pj, j = 0, . . . , n, along the curve
and make two approximations. First, since the force should vary very little
along a short piece of curve, we replace the varying force by its value−→
F (xj) at some representative point xj between pj−1 and pj along C.
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Second, we use the vector △−→sj = −→pj −−−→pj−1 as the displacement. Thus, the
work done along one piece is approximated by the quantity

△jW =
−→
F (xj) · △−→sj

and the total work over C is approximated by the sum

W ≈
n
∑

j=1

△jW

=

n
∑

j=1

−→
F (xj) · △−→sj .

As usual, we consider progressively finer partitions of C, and expect the
approximations to converge to an integral

W =

∫

C

−→
F · d−→s .

This might look like a new kind of integral, but we can see it as a path
integral of a function over C, as in § 2.5. For this, it is best to think in
terms of a parametrization of C, say −→p (t), a ≤ t ≤ b. We can write

pj =
−→p (tj) .

Then the vector △−→sj is approximated by the vector −→v (tj)△tj where

△tj = tj − tj−1

and

−→v (t) = d−→p
dt

is the velocity of the parametrization. As in § 2.5, we can write

−→v (t) = ‖−→v (t)‖−→T (t)

where
−→
T is a unit vector tangent to C at −→p (t). Thus, we can write

△−→sj ≈ ‖−→v (t)‖
−→
T (tj)△tj
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and the integral for work can be rewritten

W =

∫

C

−→
F · d−→s =

∫ b

a

−→
F · −→T ‖−→v (t)‖ dt

which we can recognize as a line integral

W =

∫

C

−→
F · −→T ds

of the function given by the tangential component of
−→
F , that is

W =

∫

C
f ds

where

f(−→p (t)) = −→F (−→p (t)) · −→T (−→p (t))
= comp−→v(t)

−→
F (−→p (t)) .

Let us work this out for an example. Suppose our force is given by the
planar vector field −→

F (x, y) = −→ı + y−→
and C is the semicircle y =

√
1− x2, −1 ≤ x ≤ 1. We can write

−→p (t) = t−→ı +
√

1− t2−→ ,

or equivalently,

x = t

y =
√

1− t2,
−1 ≤ t ≤ 1.

Then

dx

dt
= 1

dy

dt
= − t√

1− t2
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or equivalently

−→v (t) = −→ı − t√
1− t2

−→

and

‖−→v (t)‖ =
√

1 +
t2

1− t2

=
1√

1− t2

so

−→
T =

−→v
‖−→v ‖ = (

√

1− t2)
(

−→ı − t√
1− t2

−→
)

=
√

1− t2−→ı − t−→ .

The value of the vector field along the curve is

−→
F (t) =

−→
F
(

t,
√

1− t2
)

= −→ı +
√

1− t2−→

so the function we are integrating is

f(t) =
−→
F · −→T

=
√

1− t2 − t
√

1− t2

= (1− t)
√

1− t2;

meanwhile,

ds = ‖−→v ‖ dt

=
1√

1− t2
dt
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and our integral becomes

∫

C

−→
F · −→T ds =

∫ 1

−1
[(1 − t)

√

1− t2][ 1√
1− t2

dt]

=

∫ 1

−1
(1− t) dt

= −(1− t)2
2

∣

∣

∣

1

−1

= −(0)2

2
+

(2)2

2
= 2.

In the calculation above, you undoubtedly noticed that the factor
‖−→v ‖ =

√
1− t2, which appeared in the numerator when calculating the

unit tangent, also appeared in the denominator when calculating the
differential of arclength, so they cancelled. A moment’s thought should
convince you that this is always the case: formally,

−→
T =

−→v
‖−→v ‖

and

ds = ‖−→v ‖ dt

means that

−→
T ds =

( −→v
‖−→v ‖

)

(‖−→v ‖ dt)

= −→v dt

so

−→
F · d−→s =

−→
F · −→T ds

=
−→
F · (−→v dt) ;

in other words, we can write, formally,

d−→s = −→v dt

=

(

dx

dt
−→ı +

dy

dt
−→
)

dt.
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If we allow ourselves the indulgence of formal differentials, we can use the
relations

dx =
dx

dt
dt

dy =
dy

dt
dt

to write

d−→s = dx−→ı + dy−→ .

Now, if the vector field
−→
F is given by

−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→

then (again formally)

−→
F · d−→s = P (x, y) dx+Q(x, y) dy

leading us to the formal integral

∫

C

−→
F · d−→s =

∫

C
P (x, y) dx+Q(x, y) dy.

While the geometric interpretation of this is quite murky at the moment,
this way of writing things leads, via the rules of formal integrals, to a
streamlined way of calculating our integral. Let us apply it to the example
considered earlier.
The vector field

−→
F (x, y) = −→ı + y−→

has components

P (x, y) = 1

Q(x, y) = y,

so our integral can be written formally as

∫

C

−→
F · d−→s =

∫

C
( dx+ y dy).
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Using the parametrization from before

x = t

y =
√

1− t2
−1 ≤ t ≤ 1

we use the rules of formal differentials to write

dx =
dx

dt
dt

= dt

dy =
dy

dt
dt

= − t√
1− t2

dt

so

P dx+Qdy = dx+ y dy

= (1)( dt) + (
√

1− t2)
(

− t√
1− t2

dt

)

= (1− t) dt

and the integral becomes

∫

C
P dx+Qdy =

∫

C
dx+ y dy

=

∫ 1

−1
(1− t) dt

= 2

as before.

But there is another natural parametrization of the upper half-circle:

x = cos θ

y = sin θ

0 ≤ θ ≤ π.
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This leads to the differentials

dx = − sin θ dθ

dy = cos θ dθ.

The components of the vector field, expressed in terms of our
parametrization, are

P = 1

Q = sin θ

so

P dx+Qdy = (− sin θ)( dθ) + (sin θ)(cos θ dθ)

= (− sin θ + sin θ cos θ) dθ

and our integral becomes

∫

C
P dx+Qdy =

∫ π

0
(− sin θ + sin θ cos θ) dθ

=

(

cos θ +
sin2 θ

2

)π

0

= (−1 + 0)− (1 + 0)

= −2.

Note that this has the opposite sign from our previous calculation. Why?
The answer becomes clear if we think in terms of the expression for the
work integral

W =

∫

C

−→
F · d−→s =

∫

C

−→
F · −→T ds.

Clearly, the vector field
−→
F does not change when we switch

parametrizations for C. However, our first parametrization (treating C as
the graph of the function y =

√
1− t2) traverses the semicircle clockwise,

while the second one traverses it counterclockwise. This means that the
unit tangent vector

−→
T determined by the first parametrization is the

negative of the one coming from the second, as a result of which the two
parametrizations yield path integrals of functions that differ in sign. Thus,
even though the path integral of a scalar-valued function

∫

C f ds depends
only on the geometric curve C and not on how we parametrize it, the work
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integral
∫

C
−→
F · d−→s depends also on the direction in which we move along

the curve: in other words, it depends on the oriented curve given by C
together with the direction along it—which determines a choice between
the two unit tangents at each point of C. To underline this distinction, we
shall refer to path integrals of (scalar-valued) functions, but line integrals
of vector fields.

Definition 6.1.1. 1. An orientation of a curve C is a continuous unit

vector field
−→
T defined on C and tangent to C at every point. Each

regular curve has two distinct orientations.

2. An oriented curve1 is a curve C together with a choice of

orientation
−→
T of C.

3. The line integral of a vector field
−→
F defined on C over the oriented

curve determined by the unit tangent field
−→
T is the work integral

∫

C

−→
F · d−→s =

∫

C

−→
F · −→T ds.

Since the function
−→
F · −→T determined by a vector field along an oriented

curve is the same for all parametrizations yielding the orientation
−→
T , we

have the following invariance principle.

Remark 6.1.2. The line integral of a vector field
−→
F over an oriented

curve is the same for any parametrization whose velocity points in the

same direction as the unit tangent field
−→
T determined by the orientation.

Switching orientation switches the sign of the line integral.

Differential Forms

So far, we have treated expressions like dx as purely formal expressions,
sometimes mysteriously related to each other by relations like dy = y′ dx.
An exception has been the notation df for the derivative of a real-valued
function f:Rn→R on R

n. This exception will be the starting point of a set
of ideas which makes sense of other expressions of this sort.

Recall that the derivative dpf of f:Rn→R at a point p in its domain is
itself a linear function—that is, it respects linear combinations:

dpf(a1
−→v1 + a2

−→v2) = a1dpf(
−→v1) + a2dpf(

−→v2) .
1This is also sometimes called a directed curve.
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Furthermore, if we consider the way it is used, this linear function is
applied only to velocity vectors of curves as they pass through the point p.
In other words, we should think of the derivative as a linear function
dpf:TpR

n→R acting on the tangent space to R
n at p. To keep straight the

distinction between the underlying function f , which acts on R
n, and its

derivative at p, which acts on the tangent space TpR
n, we refer to the

latter as a linear functional on TpR
n. Now, as we vary the basepoint p,

the derivative gives us different linear functionals, acting on different
tangent spaces. We abstract this notion in

Definition 6.1.3. A differential form on R
n is a rule ω assigning to

each point p ∈ R
n a linear functional ωp:TpR

n→R on the tangent space to
R
n at p.

We will in the future often deal with differential forms defined only at
points in a subregion D ⊂ R

n, in which case we will refer to a differential
form on D.

Derivatives of functions aside, what do other differential forms look like?

Let us consider the case n = 2. We know that a linear functional on R
2 is

just a homogeneous polynomial of degree 1; since the functional can vary
from basepoint to basepoint, the coefficients of this polynomial are actually
functions of the basepoint. To keep the distinction between R

2 and TpR
2,

we will denote points in R
2 by p = (x, y) and vectors in TpR

2 by
−→v = (v1, v2); then a typical form acts on a tangent vector −→v at p via

ωp(
−→v ) = P (x, y) v1 +Q(x, y) v2.

To complete the connection between formal differentials and differential
forms, we notice that the first term on the right above is a multiple (by the
scalar P , which depends on the basepoint) of the component of −→v parallel
to the x-axis. This component is a linear functional on TpR

n, which we can
think of as the derivative of the function on R

2 that assigns to a point p its
x-coordinate; we denote it2 by dx. Similarly, the linear functional on TpR

2

assigning to each tangent vector its y-component is denoted dy. We call
these the coordinate forms:

dx(−→v ) = v1

dy(−→v ) = v2.

2Strictly speaking, we should include a subscript indicating the basepoint p, but since
the action on any tangent space is effectively the same, we suppress it.
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Then, using this notation, we can write any form on R
2 as

ω = P dx+Qdy.

(Of course, it is understood that ω, P and Q all depend on the basepoint p
at which they are applied.)
Using this language, we can systematize our procedure for finding work
integrals using forms. Given a curve C parametrized by

−→p (t) = x(t)−→ı + y(t)−→ , t0 ≤ t ≤ t1

and a form defined along C

ω = P dx+Qdy

we apply the form to the velocity vector ~p ′(t) = (x′ (t) , y′ (t)) of the
parametrization. The result can be expressed as a function of the
parameter alone

w(t) = ω−→p(t)
(

~p ′(t)
)

= P (x(t) , y(t)) x′ (t) +Q(x(t) , y(t)) y′ (t) ;

we then integrate this over the domain of the parametrization:

∫

C
ω =

∫ t1

t0

(

ω−→p(t)
(

~p ′(t)
)

)

dt

=

∫ t1

t0

[

P (x(t) , y(t))x′ (t) +Q(x(t) , y(t)) y′ (t)
]

dt.

(6.1)

The expression appearing inside either of the two integrals itself looks like
a form, but now it “lives” on the real line. In fact, we can also regard it as
a coordinate form on R

1 in the sense of Definition 6.1.3, using the
convention that dt acts on a velocity along the line (which is now simply a
real number) by returning the number itself. At this stage—when we have
a form on R rather than on a curve in R

2—we simply interpret our integral
in the normal way, as the integral of a function over an interval.
However, the interpretation of this expression as a form can still play a
role, when we compare different parametrizations of the same curve. We
will refer to the form on parameter space obtained from a parametrization
of a curve by the process above as the pullback of ω by −→p :

[−→p ∗(ω)]t = ω−→p(t)
(

~p ′(t)
)

dt. (6.2)
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Then we can summarize our process of integrating a form along a curve by
saying the integral of a form ω along a parametrized curve is the integral,
over the domain in parameter space, of the pullback −→p ∗(ω) of the form by
the parametrization.

Suppose now that −→q (s), s0 ≤ s ≤ s1 is a reparametrization of the same
curve. By definition, this means that there is a continuous, strictly
monotone function t(s) such that

−→q (s) = −→p (t(s)) .

In dealing with regular curves, we assume that t(s) is differentiable, with
non-vanishing derivative. We shall call this an orientation-preserving
reparametrization if dt

ds is positive at every point, and

orientation-reversing if dt
ds is negative.

Suppose first that our reparametrization is order-preserving. To integrate
ω over our curve using −→q (s) instead of −→p (t), we take the pullback of ω by
−→q ,

[−→q ∗(ω)]s = ω−→q (s)
(

~q ′(s)
)

ds.

By the Chain Rule, setting t = t(s),

~q ′(s) =
d

ds
[−→q (s)]

=
d

ds
[−→p (t(s))]

=
d

dt
[−→p (t(s))] dt

ds
= ~p ′(t(s)) t′(s) ds.

Now if we think of the change-of-variables map t:R→R as describing a
point moving along the t-line, parametrized by t = t(s), we see that the
pullback of any form αt = P (t) dt by t is given by

[t∗(αt)]s = αt(s)

(

t
′(s)
)

ds

= P (t(s)) t′(s) ds.

Applying this to

αt = [−→p ∗(ω)]t
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we see that

[t∗(−→p ∗(ω))]s = [−→p ∗(ω)]t(s)t
′(s) ds

= ω−→p(t(s))
(

~p ′(t(s))
)

t
′(s) ds

= ω−→q (s)
(

~p ′(t(s))
)

t
′(s) ds

= ω−→q (s)
(

~p ′(t(s)) t′(s)
)

ds

= ω−→q (s)
(

~q ′(s)
)

ds

= [−→q ∗(ω)]s;

in other words,
−→q ∗(ω) = t

∗(−→p ∗(ω)) . (6.3)

Clearly, the two integrals coming from pulling ω back by −→p and −→q ,
respectively, are the same:

∫ s1

s0

[−→q ∗(ω)]s =
∫ t1

t0

[−→p ∗(ω)]t.

In other words, the definition of
∫

C ω via Equation (6.1) yields the same
quantity for a given parametrization as for any orientation-preserving
reparametrization.

What changes in the above argument when t has negative derivative? The
integrand in the calculation using −→q is the same: we still have
Equation (6.3). However, since the reparametrization is order-reversing, t
is strictly decreasing, which means that it interchanges the endpoints of the
domain: t(s0) = t1 and t(s1) = t0. Thus,

∫ t1

t0

[−→p ∗(ω)]t =
∫ s0

s1

[−→q ∗(ω)]s = −
∫ s1

s0

[−→q ∗(ω)]s :

the integral given by applying Equation (6.1) to −→q has the same integrand,
but the limits of integration are reversed: the resulting integral is the
negative of what we would have gotten had we used −→p .
Now let us relate this back to our original formulation of work integrals in
terms of vector fields. Recall from § 3.2 that a linear functional on R

n can
be represented as taking the dot product with a fixed vector. In particular,
the form

ω = P dx+Qdy
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corresponds to the vector field

−→
F = P−→ı +Q−→

in the sense that

ωp(
−→v ) = P (p) v1 +Q(p) v2

=
−→
F (p) · −→v .

In fact, using the formal vector

d−→s = dx−→ı + dy−→

which can itself be thought of as a “vector-valued” form, we can write

ω =
−→
F · d−→s .

Our whole discussion carries over practically verbatim to R
3. A vector field−→

F on R
3 can be written

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

and the corresponding form on R
3 is

ω =
−→
F · d−→s

= P dx+Qdy +Rdz.

Let us see an example of how the line integral works out in this case.
The vector field

−→
F (x, y, z) = z−→ı − y−→ + x

−→
k

corresponds to the form

ω =
−→
F · d−→s = z dx− y dy + x dz.

Let us integrate this over the curve given parametrically by

−→p (t) = cos t−→ı + sin t−→ + sin 2t
−→
k ,

0 ≤ t ≤ π

2
.
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The velocity of this parametrization is given by

~p ′(t) = − sin t−→ı + cos t−→ + 2cos 2t
−→
k

and its pullback by the form ω is

[−→p ∗(ω)]t = ω−→p(t)
(

~p ′(t)
)

dt

= [(sin 2t)(− sin t)− (sin t)(cos t) + (cos t)(2 cos 2t)] dt

= [−2 sin2 t cos t− sin t cos t+ 2(1− 2 sin2 t) cos t] dt

= [−6 sin2 t− sin t+ 2] cos t dt.

Thus,

∫

C

−→
F · d−→s =

∫

C
z dx− y dy + x dz

=

∫

C
ω

=

∫ π/2

0
ω∗(~p ′)

=

∫ π/2

0
[−6 sin2 t− sin t+ 2] cos t dt

= [−2 sin3 t− 1

2
sin2 t+ 2 sin t]

π/2
0

= [−2− 1

2
+ 2]

= −1

2
.

Exercises for § 6.1

Practice problems:

1. Sketch each vector field below, in the style of Figures 6.1 and 6.2.

(a) x−→ı (b) x−→
(c) y−→ı − y−→ (d) x−→ı + y−→
(e) x−→ı − y−→ (f) −y−→ı + x−→

2. Evaluate
∫

C
−→
F · d−→s :



586 CHAPTER 6. VECTOR FIELDS AND FORMS

(a)
−→
F (x, y) = x−→ı + y−→ , C is the graph y = x2 from (−2, 4) to (1, 1).

(b)
−→
F (x, y) = y−→ı +x−→ , C is the graph y = x2 from (1, 1) to (−2, 4).

(c)
−→
F (x, y) = (x+ y)−→ı + (x− y)−→ , C is given by x = t2, y = t3,
−1 ≤ t ≤ 1.

(d)
−→
F (x, y) = x2−→ı + y2−→ , C is the circle x2 + y2 = 1 traversed
counterclockwise.

(e)
−→
F (x, y, z) = x2−→ı + xz−→ − y2−→k , C is given by x = t, y = t2,
z = t3, −1 ≤ t ≤ 1.

(f)
−→
F (x, y, z) = y−→ı − x−→ + zex

−→
k , C is the line segment from

(0, 0, 0) to (1, 1, 1).

(g)
−→
F (x, y, z) = yz−→ı + xz−→ + xy

−→
k , C is given by

−→p (t) = (t2, t,−t2), −1 ≤ t ≤ 1.

(h)
−→
F (x, y, z) = yz−→ı + xz−→ + xy

−→
k , C is the polygonal path from

(1,−1, 1) to (2, 1, 3) to (−1, 0, 0).

3. Evaluate
∫

C P dx+Qdy (or
∫

C P dx+Qdy +Rdz):

(a) P (x, y) = x2 + y2, Q(x, y) = y − x, C is the y-axis from the
origin to (0, 1).

(b) P (x, y) = x2 + y2, Q(x, y) = y − x, C is the x-axis from (−1, 0)
to (1, 0).

(c) P (x, y) = y, Q(x, y) = −x, C is given by x = cos t, y = sin t,
0 ≤ t ≤ 2π.

(d) P (x, y) = xy, Q(x, y) = y2, C is y =
√
1− x2 from (−1, 0) to

(1, 0).

(e) P (x, y) = xy, Q(x, y) = y2, C is given by x = t2, y = t,
−1 ≤ t ≤ 1

(f) P (x, y) = −x, Q(x, y) = y, C is given by −→p (t) = (cos3 t, sin3 t)),
0 ≤ t ≤ 2π.

(g) P (x, y, z) = xy, Q(x, y, z) = xz, R(x, y, z) = yz, C is given by
x = cos t, y = sin t, z = − cos t, 0 ≤ t ≤ π

2 .

(h) P (x, y, z) = z, Q(x, y, z) = x2 + y2, R(x, y, z) = x+ z, C is given
by x = t1/2, y = t, z = t3/2, 1 ≤ t ≤ 2.

(i) P (x, y, z) = y + z, Q(x, y, z) = −x, R(x, y, z) = −x, C is given
by x = cos t, y = sin t, z = sin t+ cos t, 0 ≤ t ≤ 2π.
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4. Let C be the upper semicircle x2 + y2 = 1 from (1, 0) to (−1, 0),
followed by the x-axis back to (1, 0). For each 1-form below,
calculate the integral

∫

C ω:

(a) ω = x dy + y dx

(b) ω = (x2 + y) dx+ (x+ y2) dy

6.2 The Fundamental Theorem for Line Integrals

The Fundamental Theorem for Line Integrals in the Plane

Recall the Fundamental Theorem of Calculus, which says in part that if a
function f is continuously differentiable on the interior of an interval (a, b)
(and continuous at the endpoints), then the integral over [a, b] of its
derivative is the difference between the values of the function at the
endpoints:

∫ b

a

df

dt
dt = f

∣

∣

∣

b

a
:= f(b)− f(a) .

The analogue of this for functions of several variables is called the
Fundamental Theorem for Line Integrals. The derivative of a real-valued
function on R

2 is our first example of a form;

d(x,y)f(v1, v2) =

(

∂f

∂x
(x, y)

)

v1 +

(

∂f

∂y
(x, y)

)

v2.

We shall call a form ω exact if it equals the differential of some function
f : ω = df . Let us integrate such a form over a curve C, parametrized by
−→p (t) = x(t)−→ı + y(t)−→ , a ≤ t ≤ b. We have

[−→p ∗(ω)]t = ω−→p(t)

(

dx

dt
−→ı +

dy

dt
−→
)

dt

=

[(

∂f

∂x
(x(t) , y(t))

)

dx

dt
+

(

∂f

∂y
(x(t) , y(t))

)

dy

dt

]

dt

which, by the Chain Rule, is

=
d

dt
[f(x(t) , y(t))] dt

= g′(t) dt,
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where

g(t) = f(−→p (t))
= f(x(t) , y(t)) .

Thus,

∫

C
df =

∫ b

a

d

dt
[f(x(t) , y(t))] dt

=

∫ b

a
g′(t) dt.

Provided this integrand is continuous (that is, the partials of f are
continuous), the Fundamental Theorem of Calculus tells us that this equals

g(t)
∣

∣

∣

b

a
= g(b)− g(a)

or, writing this in terms of our original function,

f(−→p (t))
∣

∣

∣

b

a
= f(−→p (b))− f(−→p (a)) .

Let us see how this translates to the language of vector fields. The vector
field corresponding to the differential of a function is its gradient

df =
∂f

∂x
dx+

∂f

∂y
dy =

−→∇f · d−→s .

A vector field
−→
F is called conservative if it equals the gradient of some

function f ; the function f is then a potential for
−→
F .

The bilingual statement (that is, in terms of both vector fields and forms)
of this fundamental result is

Theorem 6.2.1 (Fundamental Theorem for Line Integrals). Suppose C is
an oriented curve starting at pstart and ending at pend, and f is a
continuously differential function defined along C. Then the integral of its

differential df (resp. the line integral of its gradient vector field
−→∇f) over

C equals the difference between the values of f at the endpoints of C:
∫

C

−→∇f · d−→s =

∫

C
df = f(x)

∣

∣

∣

pend

pstart
= f(pend)− f(pstart) . (6.4)
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This result leads to a rather remarkable observation. We saw that the line
integral of a vector field over an oriented curve C depends only on the
curve (as a set of points) and the direction of motion along C—it does not
change if we reparametrize the curve before calculating it. But the
Fundamental Theorem for Line Integrals tells us that if the vector field is
conservative, then the line integral depends only on where the curve starts
and where it ends, not on how we get from one to the other. Saying this a
little more carefully,

Corollary 6.2.2. Suppose f is a C1 function defined on the region D.

Then the line integral
∫

C
−→∇f · d−→s =

∫

C df is independent of the curve
C—that is, if C1 and C2 are two curves in D with a common starting point
and a common ending point, then

∫

C1

−→∇f · d−→s =

∫

C1

−→∇f · d−→s .

A second consequence of Equation (6.4) concerns a closed curve—that is,
one that starts and ends at the same point (pstart = pend). In this case,

∫

C

−→∇f · d−→s =

∫

C
df = f(x)

∣

∣

∣

pend

pstart
= f(pend)− f(pstart) = 0

Corollary 6.2.3. Suppose f is a C1 function defined on the region D.
Then the line integral of df around any closed curve C is zero:

∫

C

−→∇f · d−→s =

∫

C
df = 0.

Sometimes, the integral of a vector field
−→
F over a closed curve is denoted

∮

C
−→
F · d−→s , to emphasize the fact that the curve is closed.

Actually, Corollary 6.2.2 and Corollary 6.2.3 are easily shown to be
equivalent, using the fact that reversing orientation switches the sign of the
integral (Exercise 4).

How do we decide whether or not a given vectorfield
−→
F is conservative?

The most direct way is to try to find a potential function f for
−→
F . Let us

investigate a few examples.
An easy one is −→

F (x, y) = y−→ı + x−→ .
The condition that

−→
F =

−→∇f

=
∂f

∂x
−→ı +

∂f

∂y
−→
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consists of the two equations

∂f

∂x
(x, y) = y

and

∂f

∂y
(x, y) = x.

The first is satisfied by

f(x, y) = xy

and we see that it also satisfies the second. Thus, we know that one

potential for
−→
F is

f(x, y) = xy.

However, things are a bit more complicated if we consider

−→
F (x, y) = (x+ y)−→ı + (x+ y)−→ .

It is easy enough to guess that a function satisfying the first condition

∂f

∂x
(x, y) = x+ y

is

f(x, y) =
x2

2
+ xy,

but when we try to fit the second condition, which requires

∂

∂y

[

x2

2
+ xy

]

= x+ y

we come up with the impossible condition

x = x+ y.

Does this mean our vector field is not conservative? Well, no. We need to
think more systematically.
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Note that our guess for f(x, y) is not the only function satisfying the
condition

∂f

∂x
= x+ y;

we need a function which is an antiderivative of x+ y when y is treated as
a constant. This means that a complete list of antiderivatives consists of
our specific antiderivative plus an arbitray “constant”–which in our
context means any expression that does not depend on x. So we should
write the “constant” as a function of y:

f(x, y) =
x2

2
+ xy + C(y) .

Now, when we try to match the second condition, we come up with

x+ y =
∂f

∂y
= x+ C ′(y)

or

C ′(y) = y

which leads to

C(y) =
y2

2
+ C

(where this time, C is an honest constant—it depends on neither x nor y).
Thus the list of all functions satisfying both conditions is

f(x, y) =
x2

2
+ xy +

y2

2
+ C,

showing that indeed
−→
F is conservative.

This example illustrates the general procedure. If we seek a potential
f(x, y) for the vector field

−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→ ,

we first look for a complete list of functions satisfying the first condition

∂f

∂x
= P (x, y) ;
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this is a process much like taking the “inner” integral in an iterated
integral, but without specified “inner” limits of integration: we treat y as a
constant, and (provided we can do the integration) end up with an
expression that looks like

f(x, y) = f1(x, y) + C(y)

as a list of all functions satisfying the first condition. To decide which of
these also satisfy the second condition, we take the partial with respect to

y of our expression above, and match it to the second component of
−→
F :

∂

∂y
[f1(x, y)] + C ′(y) = Q(x, y) .

If this match is possible (we shall see below how this might fail), then we

end up with a list of all potentials for
−→
F that looks like

f(x, y) = f1(x, y) + f2(y) + C

where f2(y) does not involve y, and C is an arbitrary constant.
Let’s try this on a slightly more involved vector field,

−→
F (x, y) = (2xy + y3 + 2)−→ı + (x2 + 3xy2 − 3)−→ .

The list of functions satisfying

∂f

∂x
= 2xy + y3 + 2

is obtained by integrating, treating y as a constant:

f(x, y) = x2y + xy3 + 2x+C(y) ;

differentiating with respect to y (and of course now treating x as constant)
we obtain

∂f

∂y
= x2 + 3xy2 + C ′(y) .

Matching this with the second component of
−→
F gives

x2 + 3xy2 − 3 = x2 + 3xy2 + C ′(y)
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or

−3 = C ′(y)

so

C(y) = −3y + C

and our list of potentials for
−→
F is

f(x, y) = x2y + xy3 + 2x− 3y +C.

Now let us see how such a procedure can fail. If we look for potentials of

−→
F (x, y) = (x+ 2xy)−→ı + (x2 + xy)−→

the first condition

∂f

∂x
= x+ 2xy

means

f(x, y) =
x2

2
+ x2y + C(y) ;

the partial with respect of y of such a function is

∂f

∂y
= x2 + C ′(y) .

But when we try to match this to the second component of
−→
F , we require

x2 + xy = x2 + C ′(y)

or, cancelling the first term on both sides,

xy = C ′(y) .

This requires C(y), which is explicitly a function not involving x, to equal
something that does involve x, an impossibility. This means no function
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can satisfy both of the conditions required to be a potential for
−→
F ; thus

−→
F

is not conservative.

It is hardly obvious at first glance why our last example failed when the
others succeeded. So we might ask if there is another way to decide

whether a given vector field
−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→ is

conservative.

A necessary condition follows from the equality of cross-partials

(Theorem 3.8.1). If
−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→ is the gradient of the

function f(x, y), that is,

P (x, y) =
∂f

∂x
(x, y)

Q(x, y) =
∂f

∂y
(x, y)

then

∂P

∂y
=

∂2f

∂y∂x

and

∂Q

∂x
=

∂2f

∂x∂y

and equality of cross-partials then says that these are equal:

∂P

∂y
=
∂Q

∂x
.

Technically, Theorem 3.8.1 requires that the two second-order partials be

continuous, which means that the components of
−→
F (or of the form

ω = P dx+Qdy) have have ∂P
∂y and ∂Q

∂x continuous. In particular, it

applies to any continuously differentiable, or C1, vector field.

Remark 6.2.4. For any conservative C1 vector field−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→ (resp. C1 exact form
ω(x,y) = P (x, y) dx+Q(x, y) dy),

∂P

∂y
=
∂Q

∂x
. (6.5)
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A vector field
−→
F = P−→ı +Q−→ (resp. differential form ω = P dx+Qdy) is

called irrotational3 (resp. closed) if it satisfies Equation (6.5);
Remark 6.2.4 then says that every conservative vector field (resp. exact
form) is irrotational (resp. closed).
How about the converse—if this condition holds, is the vector field (resp.
form) necessarily conservative (resp. exact)? Well...almost.
We shall explore this in a sequence of technical lemmas.

Lemma 6.2.5. Suppose D is a right triangle whose legs are parallel to the
coordinate axes, and P (x, y) and Q(x, y) are C1 functions which satisfy
Equation (6.5) on D:

∂Q

∂x
(x, y) =

∂P

∂y
(x, y) for all (x, y) ∈ D.

Let C1 be the curve formed by the legs of the triangle, and C2 its
hypotenuse, both oriented so that they start at at a common vertex of the
triangle (and end at a common vertex: Figure 6.3). Then

∫

C1
P dx+Qdy =

∫

C2
P dx+Qdy.

C1
C2

(a, b) (c, b)

(c, d)

Figure 6.3: Integrating along the sides of a triangle

Note that the statement of the theorem allows either the situation in
Figure 6.3 or the complementary one in which C1 goes up to (a, d) and
then across to (c, d). We give the proof in the situation of Figure 6.3
below, and leave to you the modifications necessary to prove the
complementary case. (Exercise 5a).

Proof. The integral along C1 is relatively straightforward: on the
horizontal part, y is constant (so, formally, dy = 0), while on the vertical

3The reason for this terminology will become clear later.
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part, x is constant ( dx = 0); it follows that

∫

C1
P dx+Qdy =

∫ c

a
P (x, b) dx+

∫ d

b
Q(c, y) dy.

To integrate P dx over C2, we write the curve as the graph of an affine
function y = ϕ(x), then use this to write

∫

C2
P dx =

∫ c

a
P (x, ϕ(x)) dx.

Similarly, to integrate Qdy over C2 we write it as x = ψ(y), to obtain

∫

C2
Qdy =

∫ d

b
Q(ψ(y) , y) dy.

Combining these three expressions, we can express the difference between
the two integrals as

∫

C1
P dx+Qdy −

∫

C2
P dx+Qdy

=

∫ c

a
[P (x, b)− P (x, ϕ(x))] dx+

∫ d

b
[Q(c, y)−Q(ψ(y) , y)] dy.

We can apply Fundamental Theorem of Calculus to the integrand in the
second integral to write the difference of integrals as an iterated integral
and then interpret it as a double integral:

∫

C1
Qdy −

∫

C2
Qdy =

∫ d

b

∫ c

ψ(y)

∂Q

∂x
(x, y) dy

=

∫∫

D

∂Q

∂x
dA

(6.6)

Similarly, we can apply the Fundamental Theorem of Calculus to the
integrand in the first integral to write the difference as an iterated integral;
note however that the orientation of the inner limits of integration is
backward, so this gives the negative of the appropriate double integral:

∫

C1
P dx−

∫

C2
P dx =

∫ c

a

∫ b

ϕ(x)

∂P

∂y
(x, y) dy

= −
∫∫

D

∂P

∂y
dA.

(6.7)
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But our hypothesis says that these two integrands are equal, so we have

∫

C1
P dx+Qdy −

∫

C2
P dx+Qdy =

∫∫

D

∂Q

∂x
dA−

∫∫

D

∂P

∂y
dA = 0.

An immediate corollary of Lemma 6.2.5 is the following:

Corollary 6.2.6. Suppose Equation (6.5) holds on the rectangle
D = [a, b]× [c, d]; then

∫

C1
P dx+Qdy =

∫

C2
P dx+Qdy

for any two polygonal curves in D going from (a, c) to (b, d) (Figure 6.4).

C1

C2

(a, c) (b, c)

(b, d)(a, d)

Figure 6.4: Polygonal curves with common endpoints in D.

Proof. First, by Lemma 6.2.5, we can replace each straight segment of C1
with a broken line curve consisting of a horizontal and a vertical line
segment (Figure 6.5) yielding C3.
Then, we can replace C3 with C4, the diagonal of the rectangle (Figure 6.6).

Applying the same argument to C2, we end up with

∫

C1
P dx+Qdy =

∫

C4
P dx+Qdy =

∫

C2
P dx+Qdy.
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C1
C3

Figure 6.5:
∫

C1 P dx+Qdy =
∫

C3 P dx+Qdy

C3
C4

Figure 6.6:
∫

C3 P dx+Qdy =
∫

C4 P dx+Qdy

We note that the statement of Corollary 6.2.6 can be loosened to allow the
rectangle [a, b]× [c, d] to be replaced by any polygonal region containing
both points, and then allow any polygonal curves Ci in this polygonal
region which join these points (Exercise 5b).

Using this, we can prove our main result.

Proposition 6.2.7 (Poincaré Lemma). 4 Suppose P (x, y) and Q(x, y) are
C1 functions on the disk centered at (a, b)

D := {(x, y) | dist((x, y), (a, b)) < r}
4This result in the two-dimensional case was stated casually, without indication of

proof, by Jules Henri Poincaré (1854-1912) in [45], but it turns out to have been stated
and proved earlier in the general case by Vito Volterra (1860-1940) in [53], [54]. A version
in the language of forms was given by Élie Joseph Cartan (1869-1951) [9] and Édouard
Jean-Baptiste Goursat (1858-1936)[12] in 1922. See [47] for a fuller discussion of this
history.
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satisfying Equation (6.5):

∂Q

∂x
=
∂P

∂y
.

Then there exists a function f defined on D such that

∂f

∂x
(x, y) = P (x, y) (6.8)

and

∂f

∂y
(x, y) = Q(x, y) (6.9)

at every point (x, y) ∈ D.

Proof. Define a function on the disc by

f(x, y) =

∫

C
P dx+Qdy (6.10)

where C is any polygonal curve in D from (a, b) to (x, y); by
Corollary 6.2.6, this is well-defined.
We need to show that equations (6.8) and (6.9) both hold.
To this end, fix a point (x0, y0) ∈ D; we shall interpret the definition of f
at points on a short horizontal line segment centered at (x0, y0)
{(x0 + t, y0) | − ε ≤ t ≤ ε} as given by the curve C consisting of a fixed
curve from (a, b) to (x0, y0), followed by the horizontal segment H(t) to
(x0 + t, y0). Then we can write

f(x0 + t, y0)− f(x0, y0) =
∫

H(t)
P dx+Qdy

=

∫ t

0
P (x0 + x, y0) dx;

then we can apply the Fundamental Theorem of Calculus to this last
integral to see that

∂f

∂x
(x0, y0) =

∂

∂t

∣

∣

∣

∣

t=0

[∫ t

0
P (x0 + x, y0) dx

]

= P (x0, y0) ,

proving Equation (6.8). The proof of Equation (6.9) is analogous
(Exercise 6).
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This shows that if Equation (6.5) holds everywhere inside some disc, then
there is a function f defined on this disc satisfying

df = P dx+Qdy

or equivalently,

−→∇f = P−→ı +Q−→

at every point of this disc. So if ω (resp.
−→
F ) is an exact form (resp.

irrotational vector field) in some planar region D, then given any point in
D, there is a function defined locally (that is, on some disc around that
point) which acts as a potential.
There is, however, a subtle problem with extending this conclusion
globally—that is, to the whole region—illustrated by the following example.
Recall that the polar coordinates of a point in the plane are not
unique—distinct values of (r, θ) can determine the same geometric point.
In particular, the angular variable θ is determined only up to adding an
integer multiple of π (an odd multiple corresponds to changing the sign of
the other polar coordinate, r) . Thus, θ is not really a function on the
complement of the origin, since its value at any point is ambiguous.
However, once we pick out one value θ(x, y) at a particular point
(x, y) 6= (0, 0), then there is only one way to define a continuous function
that gives a legitimate value for θ at nearby points. Any such function will
have the form

θ(x, y) = arctan
y

x
+ nπ

for some (constant) integer n (why?). When we take the differential of
this, the constant term disappears, and we get

dθ =
dy
x −

y dx
x2

1 +
( y
x

)2

=
x dy − y dx
x2 + y2

.

So even though the “function” θ(x, y) is not uniquely defined, its
“differential” is. Furthermore, from the preceding discussion,
Equation (6.5) holds (you should check this directly, at least once in your
life).
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Now let us try integrating dθ around the unit circle C, oriented
counterclockwise. The parametrization

x = cos t

y = sin t

0 ≤ t ≤ 2π

leads to

dx = − sin t dt

dy = cos t dt

so

dθ =
(cos t)(cos t dt)− (sin t)(− sin t dt)

cos2 t+ sin2 t

=
cos2 t+ sin2 t

cos2 t+ sin2 t
dt

= dt

and thus

∫

C
dθ =

∫ 2π

0
dt

= 2π

which of course would contradict Corollary 6.2.3, if dθ were exact. In fact,
we can see that integrating dθ along the curve C amounts to continuing θ
along the circle: that is, starting from the value we assign to θ at the
starting point (1, 0), we use the fact that there is only one way to continue
θ along a short arc through this point; when we get to the end of that arc,
we still have only one way of continuing θ along a further arc through that
point, and so on. But when we have come all the way around the circle,
the angle has steadily increased, and is now at 2π more than it was when
we started!

Another way to look at this phenomenon is to cut the circle into its upper
and lower semicircles, and consider the continuation of θ along each from
(1, 0) to (−1, 0). Supposing we start with θ = 0 at (1, 0), the continuation
along the upper semicircle lands at θ = π at (−1, 0). However, when we
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continue it along the lower semicircle, our angle goes negative, and we end
up with θ = −π at (−1, 0). Thus, the two continuations do not agree.

Now, the continuation of θ is determined not just along an arc through a
point, but on a whole neighborhood of that point. In particular, we can
deform our original semicircle continuously—so long as we keep the two
endpoints (1, 0) and (−1, 0), and as long as our deformation never goes
through the origin—without changing the effect of the continuation along
the curve: continuing θ along any of these deformed curves will still lead to
the value π for θ at the end (Figure 6.7; see Exercise 8).

Figure 6.7: Continuation along deformed curves

We see, then, that our problem with continuing θ (or equivalently,
integrating dθ) around the upper and lower semicircles is related to the
fact that we cannot deform the upper semicircle into the lower semicircle
without going through the origin—where our form is undefined. A region
in which this problem does not occur is called simply connected :

Definition 6.2.8. A region D ⊂ R
n is simply connected if any pair of

curves in D with a common start point and a common end point can be
deformed into each other through a family of curves in D (without moving
the start point and end point).

An equivalent definition is: D is simply connected if any closed curve in D
can be deformed (through a family of closed curves in D) to a single point.5

From the discussion above, we can construct a proof of the following:

Proposition 6.2.9. If D ⊂ R
2 is a simply connected region, then any

differential form ω = P dx+Qdy (resp. vector field
−→
F ) on D is exact

precisely if it is closed (resp. irrotational).

5 That is, to a curve defined by a constant vector-valued function.
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Line Integrals in Space

The situation for forms and vector fields in R
3 is completely analogous to

that in the plane.
A vector field on R

3 assigns to a point (x, y, z) ∈ R
3 a vector

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

while a form on R
3 assigns to (x, y, z) ∈ R

3 the functional

ω(x,y,z) = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz.

The statement of Theorem 6.2.1 that we gave holds in R
3: the line integral

of the gradient of a function (resp. of the differential of a function) over
any curve equals the difference between the values of the function at the
endpoints of the curve.
It is instructive to see how the process of finding a potential function for a
vector field or form works in R

3. Let us consider the vector field

−→
F (x, y, z) = (y2 + 2xz + 2)−→ı + (2xy + z3)−→ + (x2 + 3yz2 + 6z)

−→
k

or equivalently, the form

ω(x,y,z) = (y2 + 2xz + 2) dx + (2xy + z3) dy + (x2 + 3yz2 + 6z) dz.

A potential for either one is a function f(x, y, z) satisfying the three
conditions

∂f

∂x
(x, y, z) = P (x, y, z) = y2 + 2xz + 2

∂f

∂y
(x, y, z) = Q(x, y, z) = 2xy + z3

∂f

∂x
(x, y, z) = R(x, y, z) = x2 + 3yz2 + 6z.

The first condition leads to

f(x, y, z) = xy2 + x2z + 2x

or, more accurately, the list of all functions satisfying the first condition
consists of this function plus any function depending only on y and z:

f(x, y, z) = xy2 + x2z + 2x+ C(y, z) .
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Differentiating this with respect to y

∂f

∂y
(x, y, z) = 2xy +

∂C

∂y

turns the second condition into

2xy + z3 = 2xy +
∂C

∂y

so the function C(y, z) must satisfy

z3 =
∂C

∂y
.

this tells us that

C(y, z) = yz3 +C(z)

(since a term depending only on z will not show up in the partial with
respect to y). Substituting back, we see that the list of all functions
satisfying the first two conditions is

f(x, y, z) = xy2 + x2z + 2x+ yz3 + C(z) .

Now, taking the partial with respect to z and substituting into the third
condition yields

x2 + 3yz2 +
dC

dz
=
∂f

∂z
(x, y, z) = x2 + 3yz2 + 6z

or

dC

dz
= 6z;

hence

C(z) = 3z2 + C

where this time C is an honest constant. Thus, the list of all functions

satisfying all three conditions—that is, all the potential functions for
−→
F or

ω—is

f(x, y, z) = xy2 + x2z + 2x+ yz3 + 3z2 + C
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where C is an arbitrary constant.
If we recall that Equation (6.5)—that every conservative vectorfield (resp.
exact form) must be irrotational (resp. closed)—came from the equality of
cross-partials (Theorem 3.8.1), it is natural that the corresponding
condition in R

3 consists of three equations (Exercise 7):

∂P

∂y
=
∂Q

∂x

∂P

∂z
=
∂R

∂x
∂Q

∂z
=
∂R

∂y
.

(6.11)

The version of Proposition 6.2.7 remains true—condition (6.11) implies the
existence of a potential function, provided the region in question is
simply-connected. However, simple-connectedness in R

3 is a bit more
subtle than in the plane. In the plane, a closed simple curve encloses a
simply-connected region, and a region fails to be simply connected
precisely if it has a “hole”. In R

3, a hole need not destroy simple
connectedness: for example, any curve in a ball with the center excised can
be shrunk to the point without going through the origin (Figure 6.8); the

Figure 6.8: Simply Connected

kind of hole that does destroy this property is more like a tunnel through
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the ball (Figure 6.9).

Figure 6.9: Not Simply Connected

We shall not prove the version of Proposition 6.2.7 for R3 here, but it will
follow from Stokes’ Theorem in the next section.

Exercises for § 6.2

Practice problems:

1. For each vectorfield below, determine whether it is conservative, and

if it is, find a potential function; in either case, evaluate
∫

C
−→
F · −→T ds

over the given curve:

(a)
−→
F (x, y) = (2xy + y2)−→ı + (2xy + x2)−→ , C is the straight line
segment from (0, 0) to (1, 1).

(b)
−→
F (x, y) = (x2y + x)−→ı + (x2y + y)−→ , C is the straight line
segment from (0, 0) to (1, 1).

(c)
−→
F (x, y) = (x2 + x+ y)−→ı + (x+ π sinπy)−→ , C is the straight
line segment from (0, 0) to (1, 1).

(d)
−→
F (x, y) = (x2 − y2)−→ı + (x2 − y2)−→ , C is the circle x2 + y2 = 1,
traversed counterclockwise.
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2. Each vector field below is conservative. Find a potential function,

and evaluate
∫

C
−→
F · d−→s .

(a)
−→
F (x, y, z) = (2xy + z)−→ı + (x2 + z)−→ + (x+ y)

−→
k , C is the

straight line segment from (1, 0, 1) to (1, 2, 2).

(b)
−→
F (x, y, z) = y cos xy−→ı + (x cos xy − z sin yz)−→ − y sin yz−→k , C is
the straight line segment from (0, π,−1) to (1, π2 , 4).

(c)
−→
F (x, y, z) = y2z3−→ı + (2xyz3 + 2z)−→ + (3xy2z2 + 2(y + z))

−→
k , C

is given by −→p (t) = (sin πt
2 , te

t, tet sin πt
2 ), 0 ≤ t ≤ 1.

(d)
−→
F (x, y, z) = (2xy − y2z)−→ı + (x2 − 2xyz)−→ + (1− xy2)−→k , C is
given by x = cos πt, y = t, z = t2, 0 ≤ t ≤ 2.

(e)
−→
F (x, y, z) = zexcosy−→ı − zex sin y−→ + ex cos y

−→
k , C is the broken

line curve from (0, 0, 0) to (2, π, 1) to (1, π, 1).

3. For each 1-form ω, determine whether it is exact, and if so, find a
potential function. In either case, evaluate

∫

C ω, where C is the
straight-line segment from (−1, 1,−1) to (1, 2, 2).

(a) ω = 2xyz3 dx+ x2z3 dy + 3x2yz2 dz

(b) ω = (2xy + yz) dx+ (x2 + xz + 2y) dy + (xy + 2z) dz

(c) ω = (y − z) dx + (x− z) dy + (x− y) dz

Theory problems:

4. Show that for a continuous vector field
−→
F defined in the region

D ⊂ R
2, the following are equivalent:

• The line integral of
−→
F over any closed curve in D is zero;

• For any two paths in D with a common starting point and a

common endpoint, the line integrals of
−→
F over the two paths are

equal.

5. (a) Mimic the proof given for Lemma 6.2.5 to prove the
complementary case when the curve goes up to (a, d) and then
across to (c, d).

(b) Extend the proof given for Corollary 6.2.6 when the rectangle is
replaced by an arbitrary polygonal region.
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6. Mimic the proof of Equation (6.8) in the Poincaré Lemma
(Proposition 6.2.7) to prove Equation (6.9).

7. Prove that the equations

∂P

∂y
=
∂Q

∂x

∂P

∂z
=
∂R

∂x
∂Q

∂z
=
∂R

∂y
.

(6.12)

are satisfied by any C3 conservative vector field in R
3.

Challenge problem:

8. Show that the line integral of the form dθ over the upper semicircle
is unchanged if we replace the semicircle with a curve obtained by
deforming the semicircle, keeping the endpoints fixed, as long as the
curve doesn’t go through the origin during the deformation, as
follows:

(a) For any given angle θ0, let Dθ0 be the complement of the ray
making angle θ0 with the positive x-axis; that is,

Dθ0 := {(x, y) | (x, y) 6= |(x, y)| (cos θ0, sin θ0)} .

(Note that the origin is excluded from Dθ0 .) Let α be any other
angle (that is, α− θ0 is not an even multiple of π); showw that
there is a unique continuous function θ(x, y) defined on Dθ0
which equals α along the ray making angle α with the positive
x-axis and gives the polar coordinate at every point of Dθ0 :
(x, y) = |(x, y)| (cosα(x, y) , sinα(x, y)).

(b) Use the Fundamental Theorem for Line Integrals to conclude
that

∫

C
dθ = 0

for any closed curve contained in Dθ0 , or equivalently, that
∫

C dθ depends only on the endpoints of C, provided C is
contained in Dθ0 . In particular, for any curve in D 3π

2
from (1, 0)

to (−1, 0), this integral equals π.
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(c) Suppose now that C (starting at (1, 0) and ending at (−1, 0))
crosses the negative y-axis exactly twice, once clockwise and
once counterclockwise. Show that

∫

C dθ = π as follows:
Suppose −→p (t), 0 ≤ t ≤ 1, is a parametrization of C, and that
these crossings occur at t1 < t2. Let C1 (resp. C2 and C3) be the
parts of C parametrized by −→p (t) with t ∈ [0, t1] (resp. [t1, t2],
[t2, 1]), and let C′ be the segment of the negative y-axis from
−→p (t1) to −→p (t2). Then
∫

C
dθ =

∫

C1
dθ +

∫

C2
dθ +

∫

C3
dθ

=

∫

C1
dθ +

∫

C2
dθ +

∫

C3
dθ +

∫

C′

dθ −
∫

C′

dθ

=

(∫

C1
dθ +

∫

C′

dθ +

∫

C2
dθ

)

+

(∫

C3
dθ −

∫

C′

dθ

)

.

Then the sum of integrals in the first set of parentheses is the
integral of dθ over a curve which consists of going along C until
the first intersection with the negative y-axis, then along this
axis, and then back along C; this is not contained in D 3π

2
, but it

is contained in Dθ0 for θ0 slightly above 3π
2 . Thus this sum of

integrals is still π. The other pair of integrals represents a
closed curve consisting of C3 followed by going back along C′;
this curve is contained in Dθ0 for θ0 slightly below 3π

2 , and hence
equals zero.

Conclude that
∫

C dθ = π.

(d) Now suppose in general that we have a continuous family of
curves Cs, all going from (1, 0) to (0, 1), none of them going
through the origin, and starting from the semicircle. More
precisely, assume we have a mapping −→p (s, θ),
(s, t) ∈ [0, 1] × [0, π], so that holding s fixed gives a regular
parametrization of Cs, such that

−→p (0, θ) = (cos θ, sinθ)
−→p (s, 0) = (1, 0)
−→p (s, 1) = (−1, 0)

and

−→p (s, θ) 6= (0, 0)
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for all s and θ. We can assume without loss of generality6 that
there are only finitely many points (s, θ) where the curve Cs is
tangent to the negative y-axis, and that such a point of tangency
−→p (s, θ) is crossing the axis as s changes. From this it follows
that the number of points at which Cs crosses the negative axis
changes by an even number, if at all, and that the two extra
crossings are in opposite directions. Explain how the argument
of the previous section then shows that

∫

Cs dθ = π for all s.

6.3 Green’s Theorem

We saw in § 6.2 that the line integral of a conservative vector field (or of
an exact form) around a closed curve is zero. Green’s Theorem tells us
what happens when a planar vector field is not conservative. This is
related to Equations (6.6) and (6.7) which occurred in the course of
proving Lemma 6.2.5. In these two equations, the difference between
integrating the form Qdx (resp. P dy) along the sides of a right triangle
and integrating it along the hypotenuse was related to the integral of the
partial ∂Q∂x (resp. ∂P

∂y ) over the inside of the triangle. Here, we need to
reformulate this more carefully, and do so in terms of a closed curve.

Recall that in § 1.6 we defined the orientation of a triangle in the plane,
and its associated signed area. A triangle or other polygon has positive
orientation if its vertices are traversed in counterclockwise order. We now
extend this notion to a closed, simple curve7 An intuitively plausible
observation, but one which is very difficult to prove rigorously, is known as
the Jordan Curve Theorem: it says that a simple, closed curve C in the
plane divides the plane into two regions (the “inside” and the “outside”):
any two points in the same region can be joined by a curve disjoint from C,
but it is impossible to join a point inside the curve to one outside the
curve without crossing C. The “inside” is a bounded set, referred to as the
region bounded by C; the “outside” is unbounded. This result was
formulated by Camille Jordan (1838-1922) in 1887 [31, 1st ed., Vol. 3, p.
593], but first proved rigorously by the American mathematician Oswald

6A rigorous justification of this intuitively reasonable assertion is beyond the scope of
this book; it involves the notion of transversality.

7Recall that a curve is closed if it starts and ends at the same point. A curve is simple

if it does not intersect itself: that is, if it can be parametrized over a closed interval, say
by −→p (t), t0 ≤ t ≤ t1 so that the only instance of −→p (s) = −→p (t) with s 6= t is s = a, t = b.
A simple, closed curve can also be thought of as parametrized over a circle, in such a way
that distinct points correspond to distinct parameter values on the circle.
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Veblen (1880-1960) in 1905 [52].
We shall formulate the notion of positive orientation first for a regular
simple closed curve. Recall from Definition 6.1.1 that an orientation of a

regular curve C is a continuous choice of unit tangent vector
−→
T at each

point of C; there are exactly two such choices.

Definition 6.3.1. 1. If
−→
T = (cos θ, sin θ) is a unit vector in R

2, then

the leftward normal to
−→
T is the vector

−→
N+ =

(

cos(θ +
π

2
), sin(θ +

π

2
)
)

= (− sin θ, cos θ).

2. Suppose C is a regular, simple, closed curve in the plane. The

postitive orientation of C is the choice
−→
T for which the leftward

normal points into the region bounded by C—in other words, if −→p is

the position vector for the basepoint of
−→
T , then for small ε > 0, the

point −→p + ε
−→
N+ belongs to the inside region. (Figure 6.10). The other

orientation (for which
−→
N+ points into the unbounded region) is the

negative orientation.

−→
T

−→
N+

−→
T −→

N+

Figure 6.10: Positive Orientation of a Simple Closed Curve

Recall also, from § 5.2, that a region D in the plane is regular if it is both
x-regular and y-regular—meaning that any horizontal or vertical line
intersects D in either a single point or a single interval. The theory of
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multiple integrals we developed in Chapter 5 was limited to regions which
are either regular or can be subdivided into regular subregions.

Unfortunately, a regular region need not be bounded by a regular curve.
For example, a polygon such as a triangle or rectangle is not a regular
curve, since it has “corners” where there is no well-defined tangent line. As
another example, if D is defined by the inequalities

x2 ≤y ≤ √x
0 ≤x ≤ 1

then its boundary consists of two pieces: the lower edge is part of the
graph of y = x2, while the upper edge is part of the graph of y =

√
x. Each

piece is naturally parametrized as a regular curve. The natural
parametrization of the lower edge, x = t, y = t2, 0 ≤ t ≤ 1, is clearly
regular. If we try to parametrize the upper edge analogously as x = t,
y =
√
t, we have a problem at t = 0, since

√
t is not differentiable there.

We can, however, treat it as the graph of x = y2, leading to the regular
parametrization x = t2, y = t, 0 ≤ t ≤ 1. Unfortunately, these two regular
parametrizations do not fit together in a “smooth” way: their velocity
vectors at the two points where they meet—(0, 0) and (1, 1)—point in
different directions, and there is no way of “patching up” this difference to
get a regular parametrization of the full boundary curve.

But for our purposes, this is not a serious problem: we can allow this kind
of discrepancy at finitely many points, and extend our definition to this
situation:

Definition 6.3.2. A locally one-to-one curve C in R
2 is piecewise

regular if it can be partitioned into finitely many arcs Ci, i = 1, . . . , k such
that

1. Each Ci is the image of a regular parametrization −→pi defined on a
closed interval [ai, bi] (in particular, the tangent vectors ~pi

′(ai) and
~pi

′(bi) at the endpoints are nonzero, and each is the limit of the
tangent vectors at nearby points of Ci , and

2. the arcs abut at endpoints: for i = 1, . . . , k − 1, −→pi (1) = −−→pi+1(0).

Thus, we allow, at each of the finitely many common endpoints of these
arcs, that there are two “tangent” directions, each defined in terms of one
of the two arcs that abut there. We will refer to points where such a
discrepancy occurs as corners of the curve.
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The discrepancy between tangent vectors at a corner can amount to as
much as π radians; see Figure 6.11. This means that Definition 6.3.1
cannot be applied at such points; however, we can still apply it at all other
points, and have a coherent definition.

−→
T

−→
T

−→
N+

Figure 6.11: Positive Orientation for a Piecewise-Regular Curve with Cor-
ners

Definition 6.3.3. Suppose C is a piecewise regular, simple, closed curve in

R
2. Then the positive orientation is the choice of unit tangent vector

−→
T

at all non-corners such that the leftward normal
−→
N+ points into the region

bounded by C.
With these definitions, we can formulate Green’s Theorem. This was
originally formulated and proved by George Green (1793-1841), a
self-taught mathematician whose exposition was contained in a
self-published pamphlet on the use of mathematics in the study of
electricity and magnetism [21] in 1828.8

Theorem 6.3.4 (Green’s Theorem). Suppose C is a piecewise regular,
simple, closed curve with positive orientation in the plane, bounding the
regular region D.

8The son of a successful miller in Nottingham, he entered his father’s business instead
of going to university, but studied privately. He finally went to Cambridge at the age of
40, obtaining his degree in 1837, and subsequently published six papers. Interest in his
1828 Essay on the part of William Thomson (later Lord Kelvin) got him a Fellowship at
Caius College in 1839. He remained for only two terms, then returned home, dying the
following year. [1, p. 202]
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Then for any pair of C1 functions P and Q defined on D,

∮

C
P dx+Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dA. (6.13)

Proof. First, let us describe D as a y-regular region (Figure 6.12)

ϕ(x) ≤y ≤ ψ(x)
a ≤x ≤ b.

and use it to calculate
∮

C P dx.

y = ϕ(x)

y = ψ(x)

D

C

Figure 6.12: y-regular version of D

Note that while the bottom edge (y = ϕ(x)) is traversed with x increasing,
the top edge (y = ψ(x)) has x decreasing, so the line integral of P dx along
the bottom edge has the form

∫

y=ϕ(x)
P (x, y) dx =

∫ b

a
P (x, ϕ(x)) dx,

the integral along the top edge is reversed, so it has the form

∫

y=ψ(x)
P (x, y) dx =

∫ b

a
−P (x, ψ(x)) dx.

Also, if ϕ(a) < ψ(a) (resp. ϕ(b) < ψ(b))—so that C has a vertical segment
corresponding to x = a (resp. x = b)—then since x is constant, dx = 0
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along these pieces, and they contribute nothing to
∮

C P dx. Thus we can
write

∮

C
P dx =

∫ b

a
P (x, ϕ(x)) dx+

∫ b

a
−P (x, ψ(x)) dx

=

∫ b

a

(

−P (x, ψ(x)) + P (x, ϕ(x))
)

dx.

But for each fixed value of x, the quantity in parentheses above is the
difference between the values of P at the ends of the vertical slice of D
corresponding to that x-value. Thus we can write

−P (x, ψ(x)) + P (x, ϕ(x)) =

∫ ψ(x)

ϕ(x)
−∂P
∂y

dy

and hence we have the analogue of Equation (6.7) in § 6.1:
∮

C
P dx =

∫ b

a

∫ ψ(x)

ϕ(x)

(

−∂P
∂y

)

dy dx =

∫∫

D

(

−∂P
∂y

)

dA. (6.14)

Now, to handle
∮

C Qdy, we revert to the description of D as an x-regular
region (Figure 6.13):

α(y) ≤x ≤ β(y)
c ≤y ≤ d.

x = β(y)

x = α(y)

D

C

Figure 6.13: x-regular version of D

The argument is analogous to that involving P dx: this time, y is
increasing on the right edge (x = β(y)) of D and decreasing on the left
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(x = α(y)). There is no contribution to
∮

C Qdy from horizontal segments
in C. This leads to the calculation

∮

C
Qdy =

∫

x=β(y)
Qdy +

∫

x=α(y)
−Qdy

=

∫ d

c

(

Q(β(y) , y)−Q(α(y) , y)
)

dy

=

∫ d

c

(

∫ β(y)

α(y)

∂Q

∂x
dx

)

dy

from which we have the analogue of Equation (6.6) in § 6.1:
∮

C
Qdy =

∫ b

a

∫ β(y)

α(y)

∂Q

∂x
dx dy =

∫∫

D

∂Q

∂x
dA. (6.15)

Combining these, we get Green’s Theorem

∮

C
P dx+Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dA

when D is a regular region.

We consider two examples.

First, let us consider the line integral

∮

C
(x2 − y) dx+ (y2 + x) dy

where C is the ellipse
x2

4
+ y2 = 1

traversed counterclockwise.

The ellipse can be parametrized as

{

x = 2cos θ
y = sin θ

0 ≤ θ ≤ 2π.

Then

dx = −2 sin θ dθ
dy = cos θ dθ



6.3. GREEN’S THEOREM 617

and so

∮

C
(x2 − y) dx+ (y2 + x) dy =

∫ 2π

0
{
[

(2 cos θ)2 − sin θ
]

(−2 sin θ dθ) +
[

sin2 θ + 2cos θ
]

(cos θ dθ)}

=

∫ 2π

0
{2− 4 cos2 sin θ + sin2 θ cos θ} dθ

=

(

2θ +
4cos3 θ

3
+

sin3 θ

3

)2π

0

= 4π.

If instead we use Green’s Theorem, se need to integrate

∂Q

∂x
− ∂P

∂y
=

∂

∂x

[

y2 + x
]

− ∂

∂y

[

x2 − y
]

= 1 + 1 = 2

so we can write

∮

C
(x2 − y) dx+ (y2 + x) dy =

∫∫

x2

4
+y2=1

2 dA

which is just twice the area of the ellipse; we know that this area is 2π, so
our integral equals 4π.

As a second example, let us calculate

∮

C
x(y2 + 1) dx+ (x2 − y2) dy

where C is the square with corners at the origin, (1, 0), (1, 1), and (0, 1).

To calculate this directly, we need to split C into four pieces:

C1: (0,0) to (1,0): This can be parametrized as

{

x = t
y = 0

,

{

dx = dt
dy = 0

0 ≤ t ≤ 1.

Then

x(y2 + 1) dx + (x2 − y2) dy = t dt+ (t2)(0)
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so

∮

C1
x(y2 + 1) dx+ (x2 − y2) dy =

∫ 1

0
t dt

=
t2

2

∣

∣

∣

1

0

=
1

2
.

C2: (1,0) to (1,1): This can be parametrized as
{

x = 1
y = t

,

{

dx = 0t
dy = dt

0 ≤ t ≤ 1.

Then

x(y2 + 1) dx + (x2 − y2) dy = (1)(0) + (1− t2)( dt)

so

∮

C2
x(y2 + 1) dx + (x2 − y2) dy =

∫ 1

0
(1− t2) dt

=

(

t− t3

3

)1

0

=
2

3
.

C3: (1,1) to (0,1): This can be parametrized as
{

x = 1− t
y = 1

,

{

dx = − dt
dy = 0

0 ≤ t ≤ 1.

Then

x(y2 + 1) dx + (x2 − y2) dy = [(1 − t)(2)](− dt) + [(1− t2)− 1](0)

so

∮

C3
x(y2 + 1) dx + (x2 − y2) dy =

∫ 1

0
2(1− t) dt

= (t− 1)2
∣

∣

∣

1

0

= −1.
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C4: (0,1) to (0,0): This can be parametrized as

{

x = 0
y = 1− t ,

{

dx = 0
dy = − dt 0 ≤ t ≤ 1.

Then

x(y2 + 1) dx + (x2 − y2) dy = 0 + [−(1− t)2](− dt)

so

∮

C4
x(y2 + 1) dx + (x2 − y2) dy =

∫ 1

0
(1− t)2 dt

= −(1− t)3
3

∣

∣

∣

1

0

=
1

3
.

Summing these four integrals, we have

∮

C
x(y2 + 1) dx + (x2 − y2) dy

=

∮

C1
x(y2 + 1) dx + (x2 − y2) dy +

∮

C1
x(y2 + 1) dx+ (x2 − y2) dy

+

∮

C1
x(y2 + 1) dx+ (x2 − y2) dy +

∮

C1
x(y2 + 1) dx+ (x2 − y2) dy

=
1

2
+

2

3
− 1 +

1

3
=

1

2
.

If a region is not regular, it can often be subdivided into regular regions.
One approach is to draw a grid (Figure 6.14): most of the interior is cut
into rectangles (which are certainly regular) and what is left are regions
with some straight sides and others given by pieces of the bounding curve.
With a careful choice of grid lines, these regions will also be regular9

Clearly, the double integral of ∂Q∂x − ∂P
∂y over all of D equals the sum of its

integrals over each of the regular subregions, and Equation (6.16) applies

9 If the curve has vertical and horizontal tangents at only finitely many points, and
only finitely many “corners”, then it suffices to make sure the grid lines go through all of
these points. The only difficulty is when there are infinitely many horizontal or vertical
tangents; in this case we can try to use a slightly rotated grid system. This is always
possible if the curve is C2; the proof of this involves a sophisticated result in differential
topology, the Morse-Sard Theorem.
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Figure 6.14: Subdivision of a Region into Regular Ones

to each of these individually, so that we can replace each such double
integral in this sum with the corresponding line integral of P dx+Qdy
over the edge of that piece, oriented positively. Note that positive
orientation of two adjacent pieces induces opposite directions along their
common boundary segment, so when we sum up all these line integrals, the
ones corresponding to pieces of the grid cancel, and we are left with only
the sum of line integrals along pieces of our original bounding curve, C.
This shows that Equation (6.16) holds for the region bounded by a single
closed curve—even if it is not regular—as long as it can be subdivided into
regular regions.

We can take this one step further. Consider for example the region
between two concentric circles10 (Figure 6.15). This is bounded by not by
one, but two closed curves.

If we subdivide this region into regular subregions via a grid, and orient
the edge of each subregion positively, we can apply the same reasoning as
above to conclude that the sum of the line integrals of P dx+Qdy over
the edges of the pieces (each oriented positively) equals the integral of
(

∂Q
∂x − ∂P

∂y

)

over the whole region, and that furthermore each piece of edge

coming from the grid appears twice in this sum, but with opposite
directions, and hence is cancelled. Thus, the only line integrals

10This is called an annulus.
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Figure 6.15: Subdivision of an Annulus into Regular Ones

contributing to the sum are those coming from the two boundary curves.
We know that the positive orientation of the outer circle is
counterclockwise—but we see from Figure 6.15 that the inner circle is
directed clockwise. However, this is exactly the orientation we get if we
adopt the phrasing in Definition 6.3.1: that the leftward normal must
point into the region. Thus we see that the appropriate orientation for a
boundary curve is determined by where the region lies relative to that
curve. To avoid confusion with our earlier definition, we formulate the
following:

Definition 6.3.5. Suppose D ⊂ R
2 is a region whose boundary ∂D

consists of finitely many piecewise regular closed curves. Then for each
such curve, the boundary orientation is the one for which the leftward
normal at each non-corner points into the region D.

With this definition, we see that Green’s Theorem can be extended as
follows:

Theorem 6.3.6 (Green’s Theorem, Extended Version). Suppose D ⊂ R
2

is a region whose boundary ∂D consists of a finite number of piecewise
regular closed curves, and which can be decomposed into a finite number of
regular regions.
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Then for any pair of C1 functions P and Q defined on D,

∮

∂D
P dx+Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dA (6.16)

where the line integral over the boundary ∂D is interpreted as the sum of
line integrals over its constituent curves, each with boundary orientation.

As an example, consider the case

P (x, y) = x+ y

Q(x, y) = −x

and take as our region the annulus D =
{

(x, y) | 1 ≤ x2 + y2 ≤ 4
}

. This has
two boundary components, the outer circle C1 =

{

(x, y) |x2 + y2 = 4
}

, for
which the boundary orientation is counterclockwise, and the inner circle,
C2 =

{

(x, y) |x2 + y2 = 4
}

, for which the boundary orientation is clockwise.
We parametrize the outer C1 circle via

{

x = 2cos θ
y = 2 sin θ

{

dx = −2 sin θ dθ
dy = 2cos θ dθ

, 0 ≤ θ ≤ 2π.

Also, along C1,

P (2 cos θ, 2 sin θ) = 2(cos θ + sin θ)

Q(2 cos θ, 2 sin θ) = −2 cos θ

so along C1, the form is

P dx+Qdy = 2(cos θ + sin θ)(−2 sin θ dθ) + (−2 cos θ)(2 cos θ dθ)
= (−4 cos θ sin θ − 4) dθ

leading to the integral

∫

C1
P dx+Qdy =

∫ 2π

0
−4(sin θ cos θ + 1) dθ

= −8π.

Now, the inner circle C2 needs to be parametrized clockwise; one way to do
this is to reverse the two functions:

{

x = sin θ
y = cos θ

{

dx = cos θ dθ
dy = − sin θ dθ

, 0 ≤ θ ≤ 2π.
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Then

P (sin θ, cos θ) = (sin θ + cos θ)

Q(sin θ, cos θ) = − sin θ

so along C2, the form is

P dx+Qdy = (sin θ + cos θ)(cos θ dθ) + (− sin θ)(− sin θ dθ)

= (sin θ cos θ + 1) dθ

with integral

∫

C2
P dx+Qdy =

∫ 2π

0
(sin θ cos θ + 1) dθ

= 2π.

Combining these, we have

∮

∂D
P dx+Qdy =

∫

C1
P dx+Qdy +

∫

C2
P dx+Qdy = −8π + 2π = −6π.

Let us compare this to the double integral:

∂Q

∂x
=

∂

∂x
[−x]

= −1;

−∂P
∂y

= − ∂

∂y
[x+ y]

= −1

so

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dA =

∫∫

D
(−2)dA

= −2A (D)

= −2(4π − π)
= −6π.
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Green’s Theorem in the Language of Vector Fields

If we think of the planar vector field

−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→

as the velocity of a fluid, then the line integral
∮

C
P dx+Qdy =

∮

C

−→
F · d−→s

around a closed curve C is the integral of the tangent component of
−→
F :

thus it can be thought of as measuring the tendency of the fluid to flow

around the curve; it is sometimes referred to as the circulation of
−→
F

around C.
The double integral in Green’s Theorem is a bit more subtle. One way is
to consider a “paddle wheel” immersed in the fluid, in the form of two line
segments through a given point (a, b)—one horizontal, the other vertical
(Figure 6.16.

Figure 6.16: Rotation of a Vector Field: the “Paddle Wheel”

When will the wheel tend to turn? Let us first concentrate on the
horizontal segment. Intuitively, the horizontal component of velocity will
have no turning effect (rather it will tend to simply displace the paddle
horizontally). Similarly, a vertical velocity field which is constant along the
length of the paddle will result in a vertical (parallel) displacement. A
turning of the paddle will result from a monotone change in the vertical
component of the velocity as one moves left-to-right along the paddle. In
particular, counterclockwise turning requires that the vertical component
Q of the velocity increases as we move left-to-right: that is, the horizontal
paddle will tend to turn counterclockwise around (a, b) if ∂Q∂x (a, b) > 0.
This is sometimes referred to as a shear effect of the vector field.
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Now consider the vertical “paddle”. Again, the velocity component
tangent to the paddle, as well as a constant horizontal velocity will effect a
parallel displacement: to obtain a shear effect, we need the horizontal
component of velocity to be changing monotonically as we move vertically.
Note that in this case, a counterclockwise rotation results from a vertical
velocity component that is decreasing as we move up along the paddle:
∂P
∂y (a, b) < 0.

Since the paddle wheel is rigid, the effect of these two shears will be
cumulative,and the net counterclockwise rotation effect of the two shears
will be given by ∂Q

∂x (a, b)− ∂P
∂y (a, b).

This discussion comes with an immediate disclaimer: it is purely intuitive;
a more rigorous derivation of this expression as representing the tendency
to turn is given in Exercise 6 using Green’s Theorem. However, it helps
motivate our designation of this as the (planar) curl11 of the vector field−→
F :

curl
−→
F =

∂Q

∂x
− ∂P

∂y
. (6.17)

With this terminology, we can formulate Green’s Theorem in the language
of vector fields as follows:

Theorem 6.3.7 (Green’s Theorem: Vector Version). If
−→
F = P−→ı +Q−→ is

a C1 vector field on the planar region D ⊂ R
2, and D has a piecewise

regular boundary and can be subdivided into regular regions, then the

circulation of
−→
F around the boundary of D (each constituent simple closed

curve of ∂D given the boundary orientation) equals the integral over the

region D of the (planar) curl of
−→
F :

∮

∂D

−→
F · d−→s =

∮

∂D

−→
F · −→T ds =

∫∫

D
curl
−→
F dA.

Exercises for § 6.3

Practice problems:

1. Evaluate
∮

C ω for each form below, where C is the circle x2 + y2 = R2

traversed counterclockwise, two ways: directly, and using Green’s
Theorem:

11We shall see in § 6.6 that the “true” curl of a vector field is a vector in R
3; the present

quantity is just one of its components.
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(a) ω = y dx+ x dy

(b) ω = x dx+ y dy

(c) ω = xy2 dx+ x2y dy

(d) ω = (x− y) dx+ (x+ y) dy

(e) ω = xy dx+ xy dy

2. Evaluate
∮

C
−→
F · d−→s for each vector field below, where C is the circle

x2 + y2 = 1 traversed counterclockwise, two ways: directly, and using
Green’s Theorem:

(a)
−→
F = x−→ı − (x+ y)−→

(b)
−→
F = 3y−→ı − x−→

(c)
−→
F = 3x−→ı − y−→

(d)
−→
F = −x2y−→ı + xy2−→

(e)
−→
F = y3−→ı − x3−→

(f)
−→
F = A−→x , where

A =

[

a b
c d

]

.

3. Calculate the line integral
∮

C(e
x − y) dx+ (ey + x) dy, where

(a) C is the polygonal path from (0, 0) to (1, 0) to (1, 1) to (0, 1) to
(0, 0).

(b) C is the circle x2 + y2 = R2, traversed counterclockwise.

Theory problems:

4. (a) Show that the area of the region bounded by a simple closed
curve C is given by any one of the following three integrals:

A =

∫

C
x dy

= −
∫

C
y dx

=
1

2

∫

C
x dy − y dx.
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(b) Use this to find the area bounded by the x-axis and one arch of
the cycloid

x = a(θ − sin θ)

y = a(1− cos θ).

(Hint: Pay attention to the direction of integration!)

5. (a) Show that the area of the region bounded by a curve C
expressed in polar coordinates as

r = f(θ)

is given by

A =
1

2

∫

C
(f(θ))2 dθ.

(b) Use this to find the area of the rose

r = sinnθ.

(Caution: the answer is different for n even and n odd; in
particular, when n is even, the curve traverses the 2n leaves
once as θ goes from 0 to 2π, while for n odd, it traverses the n
leaves twice in that time interval.)

Challenge problems:

6. (a) Show that a rotation of the plane (about the origin) with
angular velocity ω gives a (spatial) velocity vector field which at
each point away from the origin is given by

r−→ω (x, y) = rω
−→
T

where

−→
T (x, y) = −y

r
−→ı +

x

r
−→

is the unit vector, perpendicular to the ray through (x, y),
pointing counterclockwise, and r is the distance from the origin.
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(b) Show that the circulation of r−→ω (x, y) around the circle of radius
r centered at the origin is 2πr2ω.

(c) Now suppose the vector field

−→
F = P−→ı +Q−→

is the velocity vector field of a planar fluid. Given a point −→p0 and
−→p 6= −→p0, let

−→
T0(
−→p ) be the unit vector perpendicular to the ray

from −→p0 to −→p , pointing counterclockwise, and define ω0(
−→p ) by

rω0(
−→p ) = −→F (−→p ) · −→T0(−→p )

where r = ‖−→p −−→p0‖ is the distance of −→p from −→p0; in other
words,

r−→ω0(
−→p ) := rω0(

−→p )−→T0(−→p )
is the component of

−→
F perpendicular to the ray from −→p0 to −→p .

Let Cr be the circle of radius r about −→p0. Show that the

circulation of
−→
F around Cr equals the circulation of r−→ω0(

−→p )
around Cr, and hence the average value of ω0(

−→p ) around Cr is

ω(r) =
1

2πr2

∮

Cr
P dx+Qdy.

(d) Use Green’s Theorem to show that this equals half the average

value of the scalar curl of
−→
F over the disc of radius r centered

at −→p0.
(e) Use the Integral Mean Value Theorem to show that

lim
r→0

ω(r) =
1

2

(

∂Q

∂x
− ∂P

∂y

)

.

7. Given the region D ⊂ R
2 bounded by a simple closed curve C (with

positive orientation) and a vector field
−→
F = P−→ı +Q−→ on C, show

that
∮

C

−→
F · −→N ds =

∫∫

D

(

∂P

∂x
+
∂Q

∂y

)

dA

where
−→
N is the outward pointing unit normal to C.

(Hint: Rotate
−→
F and

−→
N in such a way that

−→
N is rotated into the

tangent vector
−→
T . What happens to

−→
F ? Now apply Green’s

Theorem.)
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8. Green’s identities: Given a C2 function, define the Laplacian of f
as

∇2f := div
−→∇f =

∂2f

∂2x
+
∂2f

∂2y

.

Furthermore, if D ⊂ R
2 is a regular region, define ∂f

∂n =
−→∇f · −→N on

∂D, where
−→
N is the outward unit normal to ∂D.

Suppose f and g are C2 functions on D.

(a) Prove
∫∫

D
(f∇2g +

−→∇f · −→∇g) dA =

∮

∂D
f
dg

dn
ds

(Hint: Use Exercise 7 with P = f ∂g∂x , Q = f ∂g∂y .)

(b) Use this to prove

∫∫

D
(f∇2g − g∇2f) dA =

∮

∂D

(

f
∂g

∂n
− g∂f

∂n

)

ds.

6.4 Green’s Theorem and 2-forms in R
2

Bilinear Functions and 2-Forms on R
2

In § 6.1 we defined a differential form on R
2 as assigning to each point

p ∈ R
2 a linear functional on the tangent space TpR

2 at p; we integrate
these objects over curves. Green’s Theorem (Theorem 6.3.4) relates the
line integral of such a form over the boundary of a region to an integral
over the region itself. In the language of forms, the objects we integrate
over two-dimensional regions are called 2-forms. These are related to
bilinear functions.

Definition 6.4.1. A bilinear function on R
2 is a function of two vector

variables B(−→v ,−→w ) such that fixing one of the inputs results in a linear
function of the other input:

B(a1
−→v1 + a2

−→v2 ,−→w ) = a1B(−→v1 ,−→w ) + a2B(−→v2 ,−→w )

B(−→v , b1−→w1 + b2
−→w2) = b1B(−→v ,−→w1) + b2B(−→v ,−→w2)

(6.18)

for arbitrary vectors in R
2 and real scalars.
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One example of a bilinear function, by Proposition 1.4.2, is the dot
product: B(−→v ,−→w ) = −→v · −→w . More generally, a bilinear function on R

2 is a
special kind of homogeneous degree two polynomial in the coordinates of
its entries: using Equation (6.18), we see that if

−→v = (x1, y1)

= x1
−→ı + y1

−→

and

−→w = (x2, y2) = x2
−→ı + y2

−→ ,

then

B(−→v ,−→w ) = B(x1
−→ı + y1

−→ ,−→w )

= x1B(−→ı ,−→w ) + y1B(−→ ,−→w )

= x1B(−→ı , x2−→ı + y2
−→ ) + y1B(−→ , x2−→ı + y2

−→ )
= x1x2B(−→ı ,−→ı ) + x1y2B(−→ı ,−→ ) + y1x2B(−→ ,−→ı ) + y1y2B(−→ ,−→ ) .

So if we write the values of B on the four pairs of basis vectors as

b11 = B(−→ı ,−→ı )
b12 = B(−→ı ,−→ )
b21 = B(−→ ,−→ı )
b22 = B(−→ ,−→ )

then we can write B as the homogeneous degree two polynomial

B(−→v ,−→w ) = b11x1x2 + b12x1y2 + b21y1x2 + b22y1y2. (6.19)

As an example, the dot product satisfies Equation (6.19) with bij = 1 when
i = j and bij = 0 when i 6= j. The fact that in this case the coefficient for
viwj is the same as that for vjwi (bij = bji) reflects the additional property
of the dot product, that it is commutative (−→v · −→w = −→w · −→v ).
By contrast, the bilinear functions which come up in the context of 2-forms
are anti-commutative: for every pair of vectors −→v and −→w , we require

B(−→w ,−→v ) = −B(−→v ,−→w ) .

An anti-commutative, bilinear function on R
2 will be referred to as a

2-form on R
2.
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Note that an immediate consequence of anti-commutativity is that
B(−→v ,−→w ) = 0 if −→v = −→w (Exercise 4). Applied to the basis vectors, these
conditions tell us that

b11 = 0

b21 = −b12
b22 = 0.

Thus, a 2-form on R
2 is determined by the value b = B(−→ı ,−→ ):

B(−→v ,−→w ) = b(x1y2 − x2y1).
You might recognize the quantity in parentheses as the determinant

∆ (−→v ,−→w ) =

∣

∣

∣

∣

x1 y1
x2 y2

∣

∣

∣

∣

from § 1.6, which gives the signed area of the parallelogram with sides −→v
and −→w : this is in fact a 2-form on R

2, and every other such function is a
constant multiple of it:

B(−→v ,−→w ) = B(−→ı ,−→ )∆ (−→v ,−→w ) . (6.20)

As an example, let us fix a linear transformation L:R2→R
2, and set

B(−→v ,−→w ) to be the signed area of the image under L of the parallelogram
with sides −→v and −→w :

B(−→v ,−→w ) = ∆ (L(−→v ) , L(−→w )) .

The linearity of L easily gives us the bilinearity of B. To express it as a
multiple of ∆, we use the matrix representative of L:

[L] =

(

a b
c d

)

.

The calculation above tells us that

B(−→v ,−→w ) = B(−→ı ,−→ )∆ (−→v ,−→w )

= ∆ (L(−→ı ) , L(−→ ))∆ (−→v ,−→w )

= ∆ (a−→ı + b−→ , c−→ı + d−→ )∆ (−→v ,−→w )

=

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∆(−→v ,−→w )

= (ad− bc)∆ (−→v ,−→w ) .
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Let us, however, work this out directly, to verify the formula in this case: if

−→v = v1
−→ı + v2

−→

then

L(−→v ) = (av1 + bv2, cv1 + dv2)

and similarly

L(−→w ) = (aw1 + bw2, cw1 + dw2)

so

B(−→v ,−→w ) = ∆ (L(−→v ) , L(−→w ))

=

∣

∣

∣

∣

av1 + bv2 cv1 + dv2
aw1 + bw2 cw1 + dw2

∣

∣

∣

∣

= (av1 + bv2)(cw1 + dw2)− (aw1 + bw2)(cv1 + dv2)

= (av1cw1 + bv2cw1 + av1dw2 + bv1dw2)− (aw1cv1 + bw2cv1 + aw1dv2 + bw1dv2)

= (ac− ca)v1w1 + (ad− bc)(v1w2 − w1v2) + (bd− db)(v2w2)

= (ad− bc)(v1w2 − w1v2)

= (ad− bc)∆ (−→v ,−→w ) .

To bring this in line with our notation for 1-forms as P dx+Qdy, we
reinterpret the entries in the determinant above as the values of the
1-forms dx and dy on −→v and −→w ; in general, we define the wedge
product of two 1-forms α and β to be the determinant formed from
applying them to a pair of vectors:

(α ∧ β)(−→v ,−→w ) :=

∣

∣

∣

∣

α(−→v ) β(−→v )
α(−→w ) β(−→w )

∣

∣

∣

∣

. (6.21)

You should check that this is bilinear and anti-commutative in −→v and
−→w—that is, it is a 2-form (Exercise 5)—and that as a product, ∧ is
anti-commutative: for any two 1-forms α and β,

β ∧ α = −α ∧ β. (6.22)

Using this language, we can say
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Remark 6.4.2. The wedge product of two 1-forms is a 2-form, and every
2-form on R

2 is a scalar multiple of dx ∧ dy.
Now, we define a differential 2-form on a region D ⊂ R

2 to be a mapping
Ω which assigns to each point p ∈ D a 2-form Ωp on the tangent space
TpR

2. From Remark 6.4.2, a differential 2-form on D ⊂ R
2 can be written

Ωp = b(p) dx ∧ dy

for some function b on D.
Finally, we define the integral of a differential 2-form Ω over a region
D ⊂ R

2 to be
∫∫

D
Ω :=

∫∫

D
Ωp(
−→ı ,−→ ) dA;

that is,

∫∫

D
b(p) dx ∧ dy =

∫∫

D
b dA.

For example, if

Ω = (x+ y) dx ∧ (2x− y) dy
= (2x2 + xy − y2) dx ∧ dy

then
∫

[0,1]×[0,1]
Ω =

∫∫

[0,1]×[0,1]
(2x2 + xy − y2) dA

=

∫ 1

0

∫ 1

0
(2x2 + xy − y2) dy dx

=

∫ 1

0

(

2x2y +
xy2

2
− y3

3

)1

y=0

dx

=

∫ 1

0

(

2x2 +
x

2
− 1

3

)

dx

=

[

2x3

3
+
x2

4
− x

3

]1

0

=

(

2

3
+

1

4
− 1

3

)

=
7

12
.
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Green’s Theorem in the Language of Forms

To formulate Theorem 6.3.4 in terms of forms, we need two more
definitions.
First, we define the exterior product of two differential 1-forms α and β
on D ⊂ R

2 to be the mapping α ∧ β assigning to p ∈ D the wedge product
of αp and βp:

(α ∧ β)p = αp ∧ βp.
Second, we define the exterior derivative dω of a 1-form ω. There are
two basic kinds of 1-form on R

2: P dx and Qdy, where P (resp. Q) is a
function of x and y. The differential of a function is a 1-form, and we take
the exterior derivative of one of our basic 1-forms by finding the
differential of the function and taking its exterior product with the
coordinate 1-form it multiplied. This yields a 2-form:

d(P dx) = (dP ) ∧ dx

=

(

∂P

∂x
dx+

∂P

∂y
dy

)

∧ dx

=
∂P

∂x
dx ∧ dx+

∂P

∂y
dy ∧ dx

= 0− ∂P

∂y
dx ∧ dy

d(Qdy) = (dQ) ∧ dy

=

(

∂Q

∂x
dx+

∂Q

∂y
dy

)

∧ dy

=
∂Q

∂x
dx ∧ dy + ∂Q

∂y
dy ∧ dy

=
∂Q

∂x
dx ∧ dy + 0.

We extend this definition to arbitrary 1-forms by making the derivative
respect sums: if

ω = P (x, y) dx+Q(x, y) dy,

then

dω =

(

∂Q

∂x
− ∂P

∂y

)

dx ∧ dy.
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Thus, for example, if

ω = x2y2 dx+ 3xy dy

then its exterior derivative is

dω = d(x2y2) ∧ dx+ d(3xy) ∧ dy
= (2xy2 dx+ 2x2y dy) ∧ dx+ (3y dx+ 3x dy) ∧ dy
= 2xy2 dx ∧ dx+ 2x2y dy ∧ dx+ 3y dx ∧ dy + 3x dy ∧ dy
= 0 + 2x2y dy ∧ dx+ 3y dx ∧ dy + 0

= (3y − 2x2y) dx ∧ dy.

To complete the statement of Theorem 6.3.4 in terms of forms, we recall
the notation ∂D for the boundary of a region D ⊂ R

2. Then we can
restate Green’s Theorem as

Theorem 6.4.3 (Green’s Theorem, Differential Form). Suppose D ⊂ R
2

is a region bounded by the curve

C = ∂D

and D and ∂D are both positively oriented. Then for any differential
1-form ω on D,

∮

∂D
ω =

∫∫

D
dω. (6.23)

Exercises for § 6.4

Practice problems:

1. Evaluate ωp(
−→ı ,−→ ) and ωp(−→v ,−→w ), where ω, −→p , −→v , and −→w are as

given.

(a) ω = dx ∧ dy, p = (2, 1), −→v = 2−→ı − 3−→ , −→w = 3−→ı − 2−→ .
(b) ω = x2 dx ∧ dy, p = (2, 1), −→v = −→ı +−→ , −→w = 2−→ı −−→ .
(c) ω = x2 dx ∧ dy, p = (−2, 1), −→v = 2−→ı +−→ , −→w = 4−→ı + 2−→ .
(d) ω = (x2 + y2) dx ∧ dy, p = (1,−1), −→v = 3−→ı −−→ , −→w = −→ −−→ı .
(e) ω = (x dx) ∧ (y dy), p = (1, 1), −→v = 2−→ı −−→ , −→w = 2−→ı +−→ .
(f) ω = (y dy) ∧ (y dx), p = (1, 1), −→v = 2−→ı −−→ , −→w = 2−→ı +−→ .
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(g) ω = (y dy) ∧ (x dx), p = (1, 1), −→v = 2−→ı −−→ , −→w = 2−→ı +−→ .
(h) ω = (x dx+ y dy) ∧ (x dx− y dy), p = (1, 1), −→v = 2−→ı −−→ ,
−→w = 2−→ı +−→ .

2. Evaluate
∫∫

[0,1]×[0,1] ω:

(a) ω = x dx ∧ y dy
(b) ω = x dy ∧ y dx
(c) ω = y dx ∧ x dy
(d) ω = y dy ∧ y dx
(e) ω = (x dx+ y dy) ∧ (x dy − y dx)

3. Find the exterior derivative of each differential 1-form below (that is,
write it as a multiple of dx ∧ dy).

(a) ω = xy dx+ xy dy

(b) ω = x dx+ y dy

(c) ω = y dx+ x dy

(d) ω = (x2 + y2) dx+ 2xy dy

(e) ω = cosxy dx+ sinx dy

(f) ω = y sinx dx+ cos x dy

(g) ω = y dx− x dy
(h) ω = y dx−x dy√

x2+y2

(i) ω = y dx+x dy√
x2+y2

Theory problems:

4. Show that if B is an anti-commutative 2-form, then for any vector
−→v , B(−→v ,−→v ) = 0.

5. (a) Show that Equation (6.21) defines a 2-form: that is, the wedge
product of two 1-forms is a bilinear and anti-commutative
functional.

(b) Show that, as a product, the wedge product is anti-commutative
(i.e., Equation (6.22)).

6. Show that if f(x, y) is a C2 function, and ω = df is its differential,
then dω = 0.
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6.5 Oriented Surfaces and Flux Integrals

Oriented Surfaces

We saw in § 6.1 that a vector field can be usefully integrated over a curve
in R

2 or R3 by taking the path integral of its component tangent to the
curve; the resulting line integral (Definition 6.1.1) depends on the
orientation of the curve, but otherwise depends only on the curve as a
point-set.

There is an analogous way to integrate a vector field in R
3 over a surface,

by taking the surface integral of the component normal to the surface.
There are two choices of normal vector at any point of a surface; if one
makes a choice continuously at all points of a surface, one has an
orientation of the surface.

Definition 6.5.1. Suppose S is a regular surface in R
3.

An orientation of S in R
3 is a vector field −→n defined at all points of S

such that

1. −→n (p) ∈ TpR3 is normal to S (that is, it is perpendicular to the plane
tangent to S at p);

2. −→n (p) is a unit vector (‖−→n (p)‖ = 1 for all p ∈ S);

3. −→n (p) varies continuously with p ∈ S.

An oriented surface is a regular surface S ⊂ R
3, together with an

orientation −→n of S.

Recall (from § 3.6) that a coordinate patch is a regular, one-to-one
mapping −→p :R2→R

3 of a plane region D into R
3; by abuse of terminology,

we also refer to the image S ⊂ R
3 of such a mapping as a coordinate

patch. If we denote the parameters in the domain of −→p by (s, t) ∈ D, then

since by regularity ∂−→p
∂s and ∂−→p

∂t are linearly independent at each point of
D, their cross product gives a vector normal to S at −→p (s, t). Dividing this
vector by its length gives an orientation of S, determined by the order of
the parameters: the cross product in reverse order gives the “opposite”
orientation of S.

At any point of S, there are only two directions normal to S, and once we
have picked this direction at one point, there is only one way to extend
this to a continuous vector field normal to S at nearby points of S. Thus
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Remark 6.5.2. A coordinate patch −→p :R2→R
3 with domain in (s, t)-space

and image S ∈ R
3 has two orientations. The orientation

−→n =
∂−→p
∂s ×

∂−→p
∂t

∥

∥

∥

∂−→p
∂s ×

∂−→p
∂t

∥

∥

∥

(6.24)

is the local orientation of S induced by the mapping −→p , while the
opposite orientation is

−−→n =
∂−→p
∂t ×

∂−→p
∂s

∥

∥

∥

∂−→p
∂t ×

∂−→p
∂s

∥

∥

∥

In general, a regular surface in R
3 is a union of (overlapping) coordinate

patches, and each can be given a local orientation; if two patches overlap,
we say the two corresponding local orientations are coherent if at each
overlap point the normal vectors given by the two local orientations are
the same. In that case we have an orientation on the union of these
patches. If we have a family of coordinate patches such that on any
overlap the orientations are coherent, then we can fit these together to give
a global orientation of the surface. Conversely, if we have an orientation
of a regular surface, then we can cover it with overlapping coordinate
patches for which the induced local orientations are coherent (Exercise 3).

However, not every regular surface in R
3 can be given a global orientation.

Consider the Möbius band, obtained by taking a rectangle and joining a
pair of parallel sides but with a twist (Figure 6.17). This was named after
A. F. Möbius (1790-1860). 12

One version of the Möbius band is the image of the mapping defined by

x(s, t) =
(

3 + t cos
s

2

)

cos s

y(s, t) =
(

3 + t cos
s

2

)

sin s

z(s, t) = t sin
s

2

where t is restricted to |t| ≤ 1. Geometrically, the central circle
corresponding to t = 0 is a horizontal circle of radius 3 centered at the
origin. For a fixed value of s, the interval −1 ≤ t ≤ 1 is mapped to a line
segment, centered on this circle: as s increases over an interval of length
2π, this segment rotates in the plane perpendicular to the circle by an

12See footnote on p. 46.
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Figure 6.17: A Möbius Band

angle of π. This means that the two intervals corresponding to s and to
s+ 2π are mapped to the same line segment, but in opposite directions. In
different terms, the vector ∂−→p

∂s (s, 0) always points along the central circle,

in a counterclockwise direction (viewed from above); the vector ∂−→p
∂t (s, 0) is

always perpendicular to it: the two points −→p (s, 0) and −→p (s+ 2π, 0) are the

same, but the two vectors ∂−→p
∂t (s, 0) and ∂−→p

∂t (s+ 2π, 0) point in opposite
directions. Now, if we start at −→p (s, 0) with a normal parallel to the cross

product ∂−→p
∂s ×

∂−→p
∂t , then a continuation of this normal field along the central

circle continues to point in the direction of ∂−→p
∂s ×

∂−→p
∂t ; however, when we

return to the same position (but corresponding to an s-value 2π higher),
this direction is opposite to the one we have already chosen there. This
surface is non-orientable: it is impossible to give it a global orientation.
We shall henceforth consider only orientable surfaces in our theory.

Flux Integrals

With this definition, we can proceed to define the flux integral of a vector
field over an oriented surface. Recall that in § 5.4, to define the surface
integral

∫∫

S
f dS of a function f over a regular surface S, we subdivided

the domain of a parametrization into rectangles, approximating the area of
each rectangle by the area △S of a corresponding parallelogram in the
tangent space, then multiplied each such area by the value of the function
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at a representative point of the rectangle, and finally added these to form a
Riemann sum; as the mesh size of our subdivision went to zero, these
Riemann sums converged to an integral independent of the
parametrization from which we started.

To define the flux integral of a vector field
−→
F on an oriented regular

surface S, we replace the element of surface area

dS =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

ds dt

with the element of oriented surface area

d
−→S =

(

∂−→p
∂s
× ∂−→p

∂t

)

ds dt.

We know that the vector ∂−→p
∂s ×

∂−→p
∂t is perpendicular to S, so either it

points in the same direction as the unit normal −→n defining the orientation
of S or it points in the opposite direction. In the latter case, we modify

our definition of d
−→S by taking the cross product in the opposite order.

With this modification (if necessary) we can write

d
−→S = −→n dS (6.25)

and instead of multiplying the (scalar) element of surface area by the

(scalar) function f , we take the dot product of the vector field
−→
F with the

(vector) element of oriented surface area d
−→S ; the corresponding limit

process amounts to taking the surface integral of the function obtained by
dotting the vector field with the unit normal giving the orientation:

Definition 6.5.3. Suppose
−→
F is a C1 vector field on R

3, defined on a
region D ⊂ R

3, and S is an oriented surface contained in D.

The flux integral of
−→
F over S is defined as

∫∫

S

−→
F · d−→S =

∫∫

S

−→
F · −→n dS

where −→n is the unit normal defining the orientation of S, and d
−→S is the

element of oriented surface area defined by Equation (6.25).
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If we think of the vector field
−→
F as the velocity field of a fluid (say with

constant density), then the flux integral is easily seen to express the
amount of fluid crossing the surface S per unit time. This also makes clear
the fact that reversing the orientation of S reverses the sign of the flux
integral. On a more formal level, replacing −→n with its negative in the flux
integral means we are taking the surface integral of the negative of our
original function, so the integral also switches sign.

We saw in Corollary 4.4.4 that two different regular parametrizations −→p
and −→q of the same surface S differ by a change-of-coordinates
transformation T :R2→R

2 whose Jacobian determinant is nowhere zero,
and from this we argued that the surface integral of a function does not
depend on the parametrization. Thus, provided we pick the correct unit
normal −→n , the flux integral is independent of parametrization.

Note that calculating the unit normal vector −→n in the surface-integral
version of the flux integral involves finding the cross product ∂−→p

∂s ×
∂−→p
∂t and

then dividing by its length; but then the element of surface area dS equals
that same length times ds dt, so these lengths cancel and at least the
calculation of the length is redundant. If we just use the formal definition
of the element of oriented area

d
−→S =

(

∂−→p
∂s
× ∂−→p

∂t

)

ds dt

and take its formal dot product with the vector field
−→
F (expressed in

terms of the parametrization), we get the correct integrand without
performing the redundant step.

However, we do need to pay attention to the direction of the unit normal
−→n , which is the same as the direction of the vector ∂−→p

∂s ×
∂−→p
∂t . It is usually

a fairly simple matter to decide whether this cross product points in the
correct direction; if it does not, we simply use its negative, which is the
same as the cross product in the opposite order.

To see how this works, consider the vector field

−→
F (x, y, z) = x2y−→ı + yz2−→ + xyz

−→
k

over the surface

z = xy,

{

0 ≤ x ≤ 1
0 ≤ y ≤ 1

,

with upward orientation—that is, we want −→n to have a positive
z-component. (See Figure 6.18.)
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x

y

z

d
−→S

S : z = xy

−→
F

Figure 6.18: ~F (x, y, z) = x2y~ı+ yz2~+ xyz~k on z = xy

Since this surface is the graph of a function, it is a coordinate patch, with
the natural parametrization







x = s
y = t
z = st

,

{

0 ≤ s ≤ 1
0 ≤ t ≤ 1

.

In vector terms, this is

−→p (s, t) = (s, t, st)

so

∂−→p
∂s

= (1, 0, t)

and

∂−→p
∂t

= (0, 1, s).
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Then

∂−→p
∂s
× ∂−→p

∂t
= (1, 0, t) × (0, 1, s)

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 0 t
0 1 s

∣

∣

∣

∣

∣

∣

= −t−→ı − s−→ +
−→
k

Note that this has an upward vertical component, so corresponds to the
correct (upward) orientation. Thus we can write

d
−→S = (−t−→ı − s−→ +

−→
k ) ds dt.

In terms of the parametrization, the vector field along S becomes

−→
F (−→p (s, t)) = (s)2(t)−→ı + (t)(st)2−→ + (s)(t)(st)

−→
k

= s2t−→ı + s2t3−→ + s2t2
−→
k

giving

−→
F · d−→S = [

(

s2t
)

(−t) +
(

s2t3
)

(−s) +
(

s2t2
)

(1)] ds dt

= [−s2t2 − s3t3 + s2t2] ds dt

= −s3t3 ds dt

and the flux integral becomes

∫∫

S

−→
F · d−→S =

∫ 1

0

∫ 1

0

(

−s3t3
)

ds dt

=

∫ 1

0
−s

4

4

∣

∣

∣

1

0
t3 dt

= −1

4

∫ 1

0
t3 dt

= − t
4

16

∣

∣

∣

1

0

= − 1

16
.
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We note in passing that for a surface given as the graph of a function,
z = f(x, y), the natural parametrization using the input to the function as
parameters







x = s
y = t
z = f(s, t)

leads to a particularly simple form for the element of oriented surface area

d
−→S . The proof is a straightforward calculation, which we leave to you

(Exercise 4):

Remark 6.5.4. If S is the graph of a function z = f(x, y), then the
natural parametrization

−→p (s, t) = s−→ı + t−→ + f(s, t)
−→
k

with orientation upward has element of surface area

d
−→S =

(

∂−→p
∂x
× ∂−→p

∂y

)

dx dy

=
(

−fx−→ı − fy−→ +
−→
k
)

dx dy.

As a second example, let

−→
F (x, y, z) = 2x−→ı + 2y−→ + 8z

−→
k

and take as S the portion of the sphere of radius 1 about the origin lying
between the xy-plane and the plane z = 0.5, with orientation into the
sphere (Figure 6.19).

The surface is most naturally parametrized using spherical coordinates:







x = sinφ cos θ
y = sinφ sin θ
z = cosφ

,

{

π
3 ≤ φ ≤ π

2
0 ≤ θ ≤ 2π

;

the partial derivatives of this parametrization are

∂−→p
∂φ

= cosφ cos θ−→ı + cosφ sin θ−→ − sinφ
−→
k

∂−→p
∂θ

= − sinφ sin θ−→ı + sinφ cos θ−→
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x

y

z

Figure 6.19: Inward Orientation for a Piece of the Sphere

leading to

∂−→p
∂φ
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

cosφ cos θ cosφ sin θ − sinφ
− sinφ sin θ sinφ cos θ 0

∣

∣

∣

∣

∣

∣

= sin2 φ cos θ−→ı + sin2 φ sin θ−→ + sinφ cos φ(cos2 θ + sin2 θ)
−→
k

= sin2 φ(cos θ−→ı + sin θ−→ ) + sinφ cos φ
−→
k .

Does this give the appropriate orientation? Since the sphere is orientable,
it suffices to check this at one point: say at −→p

(

π
2 , 0
)

= (1, 0, 0): here
∂−→p
∂φ ×

∂−→p
∂θ = −→ı , which points outward instead of inward. Thus we need to

use the cross product in the other order (which means the negative of the
vector above) to set

d
−→S = −{sin2 φ(cos θ−→ı + sin θ−→ )− sinφ cos φ

−→
k } dφ dθ.

In terms of this parametrization,

−→
F = 2 sin φ cos θ−→ı + 2 sinφ sin θ−→ + 8cosφ

−→
k

so

−→
F · d−→S = (−2 sin3 φ cos2 θ − 2 sin3 φ sin2 θ − 8 sinφ cos2 φ) dφ dθ

= (−2 sin3 φ− 8 sin φ cos2 φ) dφ dθ
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and the integral becomes

∫∫

S

−→
F · d−→S =

∫ 2π

0

∫ π/2

π/3
(−2 sin3 φ− 8 sinφ cos2 φ) dφ dθ

=

∫ 2π

0

∫ π/2

π/3
−2 sinφ(1− cos2 φ+ 4cos2 φ) dφ dθ

= 2

∫ 2π

0

∫ π/2

π/3
(1 + 3 cos2 φ)(d(cosφ)) dθ

= 2

∫ 2π

0

(

cosφ+ cos3 φ
)π/2

π/3
dθ

= 2

∫ 2π

0
−
(

1

2
+

1

8

)

dθ

= −5

4

∫ 2π

0
dθ

= −5π

2
.

Exercises for § 6.5

Practice problems:

1. Evaluate each flux integral
∫∫

S

−→
F · d−→S below:

(a)
−→
F (x, y, z) = x−→ı + y−→ + 2z

−→
k , S is the graph of z = 3x+ 2y

over [0, 1] × [0, 1], oriented up.

(b)
−→
F (x, y, z) = yz−→ı + x−→ + xy

−→
k , S is the graph of z = x2 + y2

over [0, 1] × [0, 1], oriented up.

(c)
−→
F (x, y, z) = x−→ı − y−→ + z

−→
k , S is the part of the plane

x+ y + z = 1 in the first octant, oriented up.

(d)
−→
F (x, y, z) = x−→ı + y−→ + z

−→
k , S is the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, oriented up.

(e)
−→
F (x, y, z) = z

−→
k , S is the part of the sphere x2 + y2 + z2 = 1

between the xy-plane and the plane z = 1
2 , oriented outward.

(f)
−→
F (x, y, z) = x−→ı − y−→ + z

−→
k , S is the unit sphere

x2 + y2 + z2 = 1, oriented outward.
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(g)
−→
F (x, y, z) = x−→ı + y−→ + z

−→
k , S is the surface parametrized by







x = r cos θ
y = r sin θ
z = 1− r2

,

{

0 ≤ r ≤ 1
0 ≤ θ ≤ 2π

,

oriented up.

(h)
−→
F (x, y, z) = (y + z)−→ı + (x+ y)−→ + (x+ z)

−→
k , S is the surface

parametrized by






x = r cos θ
y = r sin θ
z = θ

,

{

0 ≤ r ≤ 1
0 ≤ θ ≤ 4π,

,

oriented up.

Theory problems:

2. (a) Evaluate the flux integral
∫∫

S

−→
F · d−→S , where

−→
F (x, y, z) = x−→ı + y−→ + z

−→
k and S is the plane z = ax+ by

over [0, 1] × [0, 1], oriented up.

(b) Give a geometric explanation for your result.

(c) What happens if we replace this plane by the parallel plane
z = ax+ by + c?

3. Suppose S is a regular surface and −→n is a continuous choice of unit
normal vectors (i.e., an orientation of S). Explain how we can cover
S with overlapping coordinate patches for which the induced local
orientations are coherent. (Note that by definition, we are given a
family of overlapping coordinate patches covering S. The issue is
how to modify them so that their induced local orientations are
coherent.)

4. Prove Remark 6.5.4.

6.6 Stokes’ Theorem

The Curl of a Vector Field

Let us revisit the discussion of (planar) curl for a vector field in the plane,
from the end of § 6.3. There, we looked at the effect of a local shear in a
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vector field, which tends to rotate a line segment around a given point.
The main observation was that for a segment parallel to the x-axis, the
component of the vector field in the direction of the x-axis, as well as the
actual value of the component in the direction of the y-axis, are irrelevant:
the important quantity is the rate of change of the y-component in the
x-direction. A similar analysis applies to a segment parallel to the y-axis:
the important quantity is then the rate of change in the y-direction of the
x-component of the vector field—more precisely, of the component of the
vector field in the direction of the unit vector which is a right angle
counterclockwise from the unit vector −→ . That is, we are looking at the
directional derivative, in the direction of −→ , of the component of our
vector field in the direction of −−→ı .
How do we extend this analysis to a segment and vector field in 3-space?
Fix a point −→p ∈ R

3, and consider a vector field

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

acting on points near −→p . If a given segment through −→p rotates under the

influence of
−→
F , its angular velocity, following the ideas at the end of § 1.7,

will be represented by the vector −→ω whose direction gives the axis of
rotation, and whose magnitude is the angular velocity. Now, we can try to
decompose this vector into components. The vertical component of −→ω
represents precisely the rotation about a vertical axis through −→p , with an
upward direction corresponding to counterclockwise rotation. We can also
think of this in terms of the projection of the line segment onto the
horizontal plane through −→p and its rotation about −→p . We expect the

vertical component, R(x, y, z), of
−→
F to have no effect on this rotation, as it

is “pushing” along the length of the vertical axis. So we expect the planar
curl ∂Q∂x − ∂P

∂y to be the correct measure of the tendency of the vector field
to produce rotation about a vertical axis. As with directed area in § 1.7,
we make this into a vector pointing along the axis of rotation (more
precisely, pointing along that axis toward the side of the horizontal plane
from which the rotation being induced appears counterclockwise). This

leads us to multiply the (scalar) planar curl by the vertical unit vector
−→
k :

(

∂Q

∂x
− ∂P

∂y

)−→
k .

Now we extend this analysis to the other two components of rotation. To
analyze the tendency for rotation about the x-axis, we stare at the
yz-plane from the positive x-axis: the former role of the x-axis (resp.
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y-axis) is now played by the y-axis (resp. z-axis), and in a manner
completely analogous to the argument in § 6.3 and its reinterpretation in
the preceding paragraph, we represent the tendency toward rotation about
the x-axis by the vector

(

∂R

∂y
− ∂Q

∂z

)

−→ı .

Finally, the tendency for rotation about the y-axis requires us to look from
the direction of the negative y-axis, and we represent this tendency by the
vector

(

∂P

∂z
− ∂R

∂x

)

(−−→ ).

This way of thinking may remind you of our construction of the cross
product from oriented areas in § 1.6; however, in this case, instead of
multiplying certain components of two vectors, we seem to be taking
different partial derivatives. We can formally recover the analogy by
creating an abstract “vector” whose components are differentiations

−→∇ := −→ı ∂

∂x
+−→ ∂

∂y
+
−→
k
∂

∂z
(6.26)

and interpreting “multiplication” by one of these components as
performing the differentiation it represents: it is a differential
operator—a “function of functions”, whose input is a function, and whose
output depends on derivatives of the input. This formal idea was presented
by William Rowan Hamilton (1805-1865) in his Lectures on Quaternions

(1853) [23, Lecture VII, pp. 610-11].13 We pronounce the symbol
−→∇ as

13Quaternions were invented by Hamilton, and their use in physics was championed by
Peter Guthrie Tait (1831-1901)[51] and James Clerk Maxwell (1831-1879)[40],[40]. Alge-
braically, quaternions are like complex numbers on steroids: while complex numbers have
the form a+ bi (a, b ∈ R) and multiply formally with the interpretation i2 = −1, quater-
nions have the form q = a+ bi+ cj+ dk (a, b, c, d ∈ R) and products of i’s, j’s and k’s are
interpreted according to the (non-commutative) relations we associate with cross prod-
ucts (Equation (1.28) in Exercise 9, § 1.6). Geometrically, quaternions were interpreted as
operations acting on vectors in R

3. From this point of view, Tq = a is distinguished from
Uq = bi+cj+dk; Tq (called the “tensor” by Hamilton and Tait, the “scalar” by Maxwell)
“stretches” a vector while Uq (called the “versor” by Hamilton and the “vector” part by
Maxwell) involves rotation [51, §48, p. 33] and [40, §11, p.10]. Hamilton introduced a
differentiation operator (acting on functions of a quaternion variable) which he denoted

∇

[23, p. 610]. Maxwell called the scalar part of this the “convergence” and its vector part
the “rotation” [40, §17, p.16 & §25, p. 30]. Later William Kingdon Clifford (1845-1879)
referred to the negative of convergence as “divergence”. I am not sure who introduced the
term “curl” for the rotation part of

∇

.
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“del”.14

At the most elementary formal level, when we “multiply” a function of
three variables by this, we get the gradient vector:

−→∇f =

(

−→ı ∂

∂x
+−→ ∂

∂y
+
−→
k
∂

∂z

)

f =
∂f

∂x
−→ı +

∂f

∂y
−→ +

∂f

∂z

−→
k .

However, we can also apply this operator to a vector field in several ways.
For present purposes, we can take the formal cross product of this vector
with a vector field, to get a different operator: if

−→
F = P−→ı +Q−→ +R

−→
k

then the curl of
−→
F is

−−→
curl
−→
F =

−→∇ ×−→F

=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

∂/∂x ∂/∂y ∂/∂z
P Q R

∣

∣

∣

∣

∣

∣

= −→ı
(

∂R

∂y
− ∂Q

∂z

)

−−→
(

∂R

∂x
− ∂P

∂z

)

+
−→
k

(

∂Q

∂x
− ∂P

∂y

)

.

The expression on the right in the first line above is pronounced “del cross
F”. Note that if R = 0 and P and Q depend only on x and y—that is,−→
F = P (x, y)−→ı +Q(x, y)−→ is essentially a planar vector field—then the

only nonzero component of
−→∇ ×−→F is the vertical one, and it equals what

we called the planar curl of the associated planar vector field in § 6.3.
When necessary, we distinguish between the vector

−→∇ ×−→F and the planar
curl (a scalar) by calling this the vector curl .

Boundary Orientation

Suppose S is an oriented surface in space, with orientation defined by the
unit normal vector −→n , and bounded by one or more curves. We would like
to formulate an orientation for these curves which corresponds to the

14This symbol appears in Maxwell’s Treatise on Electricity and Magnetism [40, vol. 1,
p. 16]—as well as an earlier paper [39]—but it is not given a name until Wilson’s version of
Gibbs’ Lectures in 1901 [57, p. 138]: here he gives the “del” pronunciation, and mentions
that “Some use the term Nabla owing to its fancied resemblance to an Assyrian harp...”
(nabla is the Hebrew word for harp).
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boundary orientation for ∂D when D is a region in the plane. Recall that

in that context, we took the unit vector
−→
T tangent to a boundary curve

and rotated it by π
2 radians counterclockwise to get the “leftward normal”

−→
N+; we then insisted that

−→
N+ point into the region D. It is fairly easy to

see that such a rotation of a vector in the plane is accomplished by setting−→
N+ =

−→
k ×−→T , and we can easily mimic this by replacing

−→
k with the unit

normal −→n defining our orientation (that is, we rotate
−→
T counterclockwise

when viewed from the direction of −→n ). However, when we are dealing with
a surface in space, the surface might “curl away” from the plane in which
this vector sits, so that it is harder to define what it means for it to “point
into” S.
One way to do this is to invoke Proposition 3.6.2, which tells us that we
can always parametrize a surface as the graph of a function, locally. If a
surface is the graph of a function, then its boundary is the graph of the
restriction of this function to the boundary of its domain. Thus we can

look at the projection of
−→
N+ onto the plane containing the domain of the

function, and ask that it point into the domain. This is a particularly
satisfying formulation when we use the second statement in
Proposition 3.6.2, in which we regard the surface as the graph of a function
whose domain is in the tangent plane of the surface—which is to say the
plane perpendicular to the normal vector −→n— since it automatically

contains
−→
N+.

We will adopt this as a definition.

Definition 6.6.1. Given an oriented surface S with orientation given by
the unit normal vector field −→n , and γ(t) a boundary curve of S, with unit

tangent vector
−→
T (parallel to the velocity), we say that γ(t) has the

boundary orientation if for every boundary point γ(t) the leftward

normal
−→
N+ = −→n ×−→T points into the projection of S on its tangent plane

at γ(t).

Stokes’ Theorem in the Language of Vector Fields

Using the terminology worked out above, we can state Stokes’ Theorem as
an almost verbatim restatement, in the context of 3-space, of
Theorem 6.3.7:

Theorem 6.6.2 (Stokes’ Theorem). 15 If
−→
F = P−→ı +Q−→ +R

−→
k is a C1

vector field defined in a region of 3-space containing the oriented surface

15This result was published by George Gabriel Stokes (1819-1903) as a problem on the
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with boundary S, then the circulation of
−→
F around the boundary of S

(each constituent piecewise regular, simple, closed curve of ∂S given the
boundary orientation) equals the flux integral over S of the (vector) curl of−→
F :

∮

∂S

−→
F · d−→s =

∫∫

S

(
−→∇ ×−→F ) · d−→S .

The proof, involving a calculation which reduces to Green’s Theorem
(Theorem 6.3.4), is sketched in Exercise 3.
Stokes’ Theorem, like Green’s Theorem, allows us to choose between
integrating a vector field along a curve and integrating its curl over a
surface bounded by that curve. Let us compare the two approaches in a
few examples.
First, we consider the vector field

−→
F (x, y, z) = (x− y)−→ı + (x+ y)−→ + z

−→
k

and the surface S given by the graph

z = x2 − y2

inside the cylinder

x2 + y2 ≤ 1.

We take the orientation of S to be upward. To integrate the vector field
over the boundary x2 + y2 = 1, z = x2 − y2, we parametrize the boundary
curve ∂S as







x = cos θ
y = sin θ
z = cos2 θ − sin2 θ

with differentials















dx = − sin θ dθ
dy = cos θ dθ
dz = (−2 cos θ sin θ − 2 sin θ cos θ) dθ

= −4 sin θ cos θ dθ

examination for the Smith Prize at Cambridge in 1854; it was originally communicated
to him in a letter from William Thomson (Lord Kelvin) (1824-1907) in July 1850 ([1, p.
208], [33, p. 790]).
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so the element of arclength is

d−→s =
{

(− sin θ)−→ı + (cos θ)−→ − (4 sin θ cos θ)
−→
k
}

dθ.

Along this curve, the vector field is

−→
F (θ) =

−→
F
(

cos θ, sin θ, cos2 θ − sin2 θ
)

= (cos θ − sin θ)−→ı + (cos θ + sin θ)−→ + (cos2 θ − sin2 θ)
−→
k .

Their dot product is

−→
F · d−→s = {(cos θ − sin θ)(− sin θ) + (cos θ + sin θ)(cos θ)

+(cos2 θ − sin2 θ)(−4 sin θ cos θ)
}

dθ

=
{

− cos θ sin θ + sin2 θ + cos2 θ + sin θ cos θ

−4 sin θ cos3 θ − 4 sin3 θ cos θ
}

dθ

= {1− 4 sin θ cos θ} dθ

and the line integral of
−→
F over ∂S is

∮

∂S

−→
F · d−→s =

∫ 2π

0
(1− 4 sin θ cos θ) dθ

= (θ − 2 sin2 θ)2π0

= 2π.

Now let us consider the alternative calculation, as a flux integral. From
Remark 6.5.4 we know that the natural parametrization of the surface







x = s
y = t
z = s2 − t2

s2 + t2 ≤ 1

has element of surface area (with upward orientation)

d
−→S = [−(2s)−→ı − (−2t)−→ +

−→
k ] ds dt.

The curl of our vector field is

−→∇ ×−→F =

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

∂/∂x ∂/∂y ∂/∂z
x− y x+ y z

∣

∣

∣

∣

∣

∣

= 0−→ı − 0−→ + 2
−→
k

= 2
−→
k .
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Thus, the flux integral of the curl is

∫∫

S

(
−→∇ ×−→F ) · d−→S =

∫∫

S

2
−→
k · d−→S

=

∫∫

s2+t2≤1
2 ds dt

which we recognize as the area of the unit disc, or 2π.
As a second example, we consider the line integral

∮

C
−y3 dx+ x3 dy − z3 dz

where the curve C is given by the intersection of the cylinder x2 + y2 = 1
with the plane x+ y + z = 1, circumvented counterclockwise when seen
from above.
If we attack this directly, we parametrize C by







x = cos θ
y = sin θ
z = 1− cos θ − sin θ

0 ≤ θ ≤ 2π

with differentials






dx = − sin θ dθ
dy = cos θ dθ
dz = (sin θ − cos θ) dθ

and the form becomes

−y3 dx+ x3 dy − z3 dz = (− sin3 θ)[− sin θ dθ] + (cos3 θ)[cos θ dθ]

+ (1− cos θ − sin θ)3[(sin θ − cos θ) dθ]

leading to the integral

∫ 2π

0

(

sin4 θ + cos4 θ − (1− cos θ − sin θ)3(sin θ − cos θ)
)

dθ

which is not impossible to do, but clearly a mess to try.
Note that this line integral corresponds to the circulation integral
∮

C
−→
F · d−→s where

−→
F (x, y, z) = −y3−→ı + x3−→ − z3−→k .



6.6. STOKES’ THEOREM 655

If instead we formulate this as a flux integral, we take the curl of the
vector field

−→∇ ×−→F =

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

∂/∂x ∂/∂y ∂/∂z
−y3 x3 −z3

∣

∣

∣

∣

∣

∣

= 0−→ı + 0−→ + (3x2 + 3y2)
−→
k .

Note that C is the boundary of the part of the plane x+ y + z = 1 over the
disc x2 + y2 ≤ 1; to make the given orientation on C the boundary
orientation, we need to make sure that the disc is oriented up. It can be
parametrized using polar coordinates as

−→p (r, θ) = (r cos θ)−→ı + (r sin θ)−→ + (1− r cos θ − r sin θ)−→k

with partials

∂−→p
∂r

= (cos θ)−→ı + (sin θ)−→ − (cos θ + sin θ)
−→
k

∂−→p
∂θ

= (−r sin θ)−→ı + (r cos θ)−→ + (r sin θ − r cos θ)−→k .

We calculate the element of oriented surface area16 in terms of the cross
product

∂−→p
∂r
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

cos θ sin θ − cos θ − sin θ
−r sin θ r cos θ r sin θ − r cos θ

∣

∣

∣

∣

∣

∣

= −→ı (r sin2 θ − r sin θ cos θ + r cos2 θ + r sin θ cos θ)

−−→ (r cos θ − r cos2 θ − r sin θ cos θ − r sin2 θ)
+
−→
k (r cos2 θ + r sin2 θ)

= r−→ı + r−→ + r
−→
k ;

in particular, the element of oriented surface area is

d
−→S = r(−→ı +−→ +

−→
k ) dr dθ

16Note that we can’t apply Remark 6.5.4 directly here, because our input is not given
in rectangular coordinates
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which, we note, has an upward vertical component, as desired. Since−→∇ ×−→F has only a
−→
k component,

(
−→∇ ×−→F ) · d−→S = (3x2 + 3y2)(r) dr dθ

= 3r3 dr dθ

so the flux integral is given by

∫∫

S

(
−→∇ ×−→F ) · d−→S =

∫ 2π

0

∫ 1

0
3r3 dr dθ =

∫ 2π

0

3

4
dθ =

3π

2
.

We note that a consequence of Stokes’ Theorem, like the Fundamental
Theorem for Line Integrals, is that the flux integral is the same for any two
surfaces that have the same boundary. However, in practice, this is only
useful if we can recognize the integrand as a curl, an issue we will delay
until we have the Divergence Theorem and Proposition 6.8.4 in § 6.8.

Exercises for § 6.6

Practice problems:

1. Find the curl of each vector field below:

(a)
−→
F (x, y, z) = (xy)−→ı + (yz)−→ + (xz)

−→
k

(b)
−→
F (x, y, z) = (y2 + z2)−→ı + (x2 + z2)−→ + (x2 + y2)

−→
k

(c)
−→
F (x, y, z) = (ey cos z)−→ı + (x2z)−→ + (x2y2)

−→
k

(d)
−→
F (x, y, z) = (y)−→ı + (−x)−→ + (z)

−→
k

(e)
−→
F (x, y, z) = (z)−→ı + (y)−→ + (x)

−→
k

(f)
−→
F (x, y, z) = (ey cos x)−→ı + (ey sin z)−→ + (ey cos z)

−→
k

2. Evaluate each circulation integral
∮

C
−→
F · −→T ds two different ways: (i)

directly, and (ii) using Stokes’ Theorem and the fact that C is the
boundary of S:

(a)
−→
F (x, y, z) = (−y, x, z), C is given by
−→p (θ) = (cos θ, sin θ, 1− cos θ− sin θ), 0 ≤ θ ≤ 2π, and S is given
by −→p (s, t) = (s, t, 1 − s− t), s2 + t2 ≤ 1.

(b)
−→
F (x, y, z) = y2−→ı + z2−→ + x2

−→
k , C is given by

−→p (θ) = (cos θ, sin θ, cos 2θ), 0 ≤ θ ≤ 2π and S is given by
−→p (s, t) = (s, t, s2 − t2), s2 + t2 ≤ 1.
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(c)
−→
F (x, y, z) = (z, xz, y), C is the boundary of S, which in turn is
the part of the plane x+ y + z = 1 over the rectangle
[0, 1] × [0, 1], oriented up. (C has the boundary orientation).

Theory problems:

3. Proof of Theorem 6.6.2:

Note first that, by an argument similar to the proof used there, it
suffices to prove the result for a coordinate patch with one boundary
component: that is, we will assume that S is parametrized by a
regular, C2 function −→p :R2→R

3 which is one-to-one on its boundary.
Instead of using s and t for the names of the parameters, we will use
u and v (so as not to conflict with the parameter t in the
parametrization of ∂S):

−→p (u, v) = (x(u, v) , y(u, v) , z(u, v)), (u, v) ∈ D ⊂ R
2

and assume that the boundary ∂D of the domain D is given by a
curve

γ(t) = −→p (u(t) , v(t)) , t ∈ [t0, t1] .

(a) Show that

(
−→∇ ×−→F ) · d−→S =

{(

∂R

∂y
− ∂Q

∂z

) ∣

∣

∣

∣

∂ (y, z)

∂ (u, v)

∣

∣

∣

∣

+

(

∂R

∂x
− ∂P

∂z

) ∣

∣

∣

∣

∂ (x, z)

∂ (u, v)

∣

∣

∣

∣

+

(

∂Q

∂x
− ∂P

∂y

) ∣

∣

∣

∣

∂ (x, y)

∂ (u, v)

∣

∣

∣

∣

}

du dv.

Here we adapt the old-fashioned notation for the determinant of
partials that came up on p. 451:

∣

∣

∣

∣

∂ (f1, f2)

∂ (x1, x2)

∣

∣

∣

∣

:= det

[

∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

]

=
∂f1
∂x1

∂f2
∂x2
− ∂f1
∂x2

∂f2
∂x1

.

(b) This mess is best handled by separating out the terms involving

each of the components of
−→
F and initially ignoring the “ du dv”

at the end. Consider the terms involving the first component,
P : they are

−∂P
∂z

∣

∣

∣

∣

∂ (x, z)

∂ (u, v)

∣

∣

∣

∣

− ∂P

∂y

∣

∣

∣

∣

∂ (x, y)

∂ (u, v)

∣

∣

∣

∣

;
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add to this the term −∂P
∂x

∣

∣

∣

∂(x,x)
∂(u,v)

∣

∣

∣
which equals zero (right?) and

expand to get

−∂P
∂z

(

∂x

∂u

∂z

∂v
− ∂z

∂u

∂x

∂v

)

−∂P
∂y

(

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)

−∂P
∂x

(

∂x

∂u

∂x

∂v
− ∂x

∂u

∂x

∂v

)

=
∂x

∂v

(

∂P

∂z

∂z

∂u
+
∂P

∂y

∂y

∂u
+
∂P

∂x

∂x

∂u

)

− ∂x

∂u

(

∂P

∂z

∂z

∂v
+
∂P

∂y

∂y

∂v
+
∂P

∂x

∂x

∂v

)

and apply the Chain Rule to rewrite this as

∂x

∂v

∂P

∂u
− ∂x

∂u

∂P

∂v
.

(c) Use the equality of cross-partials to interpret the above as a
planar curl (in terms of the (u, v)-plane)

∂x

∂v

∂P

∂u
− ∂x

∂u

∂P

∂v
=

∂

∂u

[

∂x

∂v
P

]

− ∂

∂v

[

∂x

∂u
P

]

.

(d) Use Theorem 6.3.4 (Green’s Theorem) to calculate the integral

∫∫

D

{

∂

∂u

[

∂x

∂v
P

]

− ∂

∂v

[

∂x

∂u
P

]}

du dv

=

∫

∂D

∂x

∂u
P du+

∂x

∂v
P dv

=

∮

∂D
P dx.

(e) In a similar way, adding ∂Q
∂y

∣

∣

∣

∂(y,y)
∂(u,v)

∣

∣

∣
(resp. ∂R

∂z

∣

∣

∣

∂(z,z)
∂(u,v)

∣

∣

∣
) to the sum

of the terms involving Q (resp. R) we can calculate integrals of
those terms using Green’s Theorem:

∫∫

D

{

−∂Q
∂z

∣

∣

∣

∣

∂ (y, z)

∂ (u, v)

∣

∣

∣

∣

+
∂Q

∂x

∣

∣

∣

∣

∂ (x, y)

∂ (u, v)

∣

∣

∣

∣

}

du dv

=

∫∫

D

{

∂

∂u

[

∂y

∂v
Q

]

− ∂

∂v

[

∂y

∂u
Q

]}

du dv

=

∮

∂D
Qdy
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and

∫∫

D

{

∂R

∂y

∣

∣

∣

∣

∂ (y, z)

∂ (u, v)

∣

∣

∣

∣

+
∂R

∂x

∣

∣

∣

∣

∂ (x, z)

∂ (u, v)

∣

∣

∣

∣

}

du dv

=

∫∫

D

{

∂

∂u

[

∂z

∂v
R

]

− ∂

∂v

[

∂z

∂u
R

]}

du dv

=

∮

∂D
Rdz.

Adding these three equations yields the desired equality.

6.7 2-forms in R
3

The formalism introduced in § 6.4 can be extended to R
3, giving a new

language for formulating Stokes’ Theorem as well as many other results.

Bilinear Functions and 2-forms on R
3

The notion of a bilinear function given in Definition 6.4.1 extends
naturally to R

3:

Definition 6.7.1. A bilinear function on R
3 is a function of two vector

variables B(−→v ,−→w ) such that fixing one of the inputs results in a linear
function of the other input:

B(a1
−→v1 + a2

−→v2 ,−→w ) = a1B(−→v1 ,−→w ) + a2B(−→v2 ,−→w )

B(−→v , b1−→w1 + b2
−→w2) = b1B(−→v ,−→w1) + b2B(−→v ,−→w2)

(6.27)

for arbitrary vectors in R
3 and real scalars.

As in R
2, the dot product is one example of a bilinear function on R

3.
Using Equation (6.27) we can see that just as in the case of the plane, a
general bilinear function B(−→v ,−→w ) on R

3 can be expressed as a polynomial
in the coordinates of its entries, with coefficients coming from the values of
the bilinear function on the standard basis elements: if

−→v = (x, y, z) = x−→ı + y−→ + z
−→
k

and

−→w = (x′, y′, z′) = x′−→ı + y′−→ + z′
−→
k
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then

B(−→v ,−→w ) = B
(

x−→ı + y−→ + z
−→
k , x′−→ı + y′−→ + z′

−→
k
)

= B(−→ı ,−→w ) x+B(−→ ,−→w ) y +B
(−→
k ,−→w

)

z

= B(−→ı ,−→ı ) xx′ +B(−→ı ,−→ ) xy′ +B
(−→ı ,−→k

)

xz′

+B(−→ ,−→ı ) yx′ +B(−→ ,−→ ) yy′ +B
(−→ ,−→k

)

zz′

+B
(−→
k ,−→ı

)

zx′ +B
(−→
k ,−→

)

zy′ +B
(−→
k ,
−→
k
)

zz′.

This is rather hard on the eyes; to make patterns clearer, we will adopt a
different notation, using indices and subscripts instead of different letters
to denote components, etc. Let us first change our notation for the
standard basis, writing

−→ı = −→e1
−→ = −→e2
−→
k = −→e3

and also use subscripts for the components of a vector: instead of writing

−→v = (x, y, z)

we will write

−→v = (v1, v2, v3).

Finally, if we use a double-indexed notation for the coefficients above

B(−→ei ,−→ej ) = bij

we can write the formula above in summation form

B(−→v ,−→w ) =

3
∑

i=1

3
∑

j=1

bijviwj .

There is another useful way to represent a bilinear function, with matrix
notation. If we write

[B] =





b11 b12 b13
b21 b22 b23
b31 b32 b33
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then much in the same way as we wrote a quadratic form, we can write the
formula above as

B(−→v ,−→w ) = [−→v ]T [B] [−→w ]

where [−→v ] is the column of coordinates of −→v and [−→v ]T is its transpose

[−→v ] =





v1
v2
v3





[−→v ]T =
[

v1 v2 v3
]

.

It is natural to call the matrix [B] the matrix representative of B. In
particular, the dot product has as its matrix representative the identity
matrix , which has 1 on the diagonal (bii = 1) and 0 off it (bij = 0 for
i 6= j). As in the two-dimensional case, the fact that the matrix
representative of this bilinear function is symmetric reflects the fact that
the function is commutative: B(−→v ,−→w ) = B(−→w ,−→v ) for any pair of
vectors in R

3.

Again as in the two-dimensional case, we require anti -commutativity for a
2-form (in this context, this property is often called skew-symmetry):

Definition 6.7.2. A 2-form on R
3 is an anti-commutative bilinear

function: a function Ω(−→v ,−→w ) of two vector variables satisfying

1. bilinearity:

Ω
(

α−→v + β−→v ′,−→w
)

= αΩ(−→v ,−→w ) + βΩ
(−→v ′,−→w

)

2. anti-commutativity=skew-symmetry:

Ω(−→v ,−→w ) = −Ω(−→w ,−→v ) .

The skew-symmetry of a 2-form is reflected in its matrix representative: it
is easy to see that this property requires (and is equivalent to) the fact
that bij = −bji for every pair of indices, and in particular bii = 0 for every
index i.

However, 2-forms in R
3 differ from those on R

2 in one very important
respect: we saw in § 6.4 that every 2-form on R

2 is a constant multiple of
the 2× 2 determinant, which we denoted using the wedge product. This
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wedge product can be easily extended to 1-forms on R
3: if α and β are

two 1-forms on R
3, their wedge product is the 2-form defined by

(α ∧ β)(−→v ,−→w ) := det

(

α(−→v ) β(−→v )
α(−→w ) β(−→w )

)

.

Now, all 1-forms in the plane are linear combinations of the two coordinate
forms dx and dy; thus since the wedge product of any form with itself is
zero and the wedge product is anti-commutative, every 2-form in the plane
is a multiple of dx ∧ dy. However, there are three coordinate forms in R

3:
dx, dy, and dz, and these can be paired in three different ways (up to
order); dx∧ dy, dx∧ dz, and dy ∧ dz. This means that instead of all being
multiples of a single one, 2-forms on R

3 are in general linear combinations
of these three basic 2-forms:

Ω(−→v ,−→w ) = a( dx ∧ dy)(−→v ,−→w ) + b( dx ∧ dz)(−→v ,−→w ) + c( dy ∧ dz)(−→v ,−→w ) .
(6.28)

There is another way to think of this. If we investigate the action of a
basic 2-form on a typical pair of vectors, we see that each of the forms
dx ∧ dy, dx ∧ dz, and dy ∧ dz acts as a 2× 2 determinant on certain
coordinates of the two vectors:

( dx ∧ dy)(−→v ,−→w ) = det

(

v1 v2
w1 w2

)

( dx ∧ dz)(−→v ,−→w ) = det

(

v1 v3
w1 w3

)

( dy ∧ dz)(−→v ,−→w ) = det

(

v2 v3
w2 w3

)

which we might recognize as the minors in the definition of the cross
product −→v ×−→w . Note that the “middle” minor, corresponding to dx ∧ dz,
gets multiplied by −1 when we calculate the cross-product determinant; we
can incorporate this into the form by replacing alphabetical order dx ∧ dz
with “circular” order dz ∧ dx. If we recall the motivation for the
cross-product in the first place (§ 1.6), we see that these three basic forms
represent the projections onto the coordinate planes of the oriented area of
the parallelepiped spanned by the input vectors. In any case, we can write

−→v ×−→w = −→ı
(

( dy∧dz)(−→v ,−→w )
)

+−→
(

( dz∧dx)(−→v ,−→w )
)

+
−→
k
(

( dx∧dy)(−→v ,−→w )
)

.

But then the 2-form given by Equation (6.28) can be expressed as the dot
product of −→v ×−→w with a vector determined by the coefficients in that
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equation: you should check that for the expression as given in

Equation (6.28), this vector is c−→ı − b−→ + a
−→
k . Again, it is probably better

to use a notation via subscripts: we rewrite the basic 1-forms as

dx = dx1

dy = dx2

dz = dx3;

then, incorporating the modifications noted above, we rewrite
Equation (6.28) as

Ω = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2.

With this notation, we can state the following equivalent representations of
an arbitrary 2-form on R

3:

Lemma 6.7.3. Associated to every 2-form Ω on R
3 is a vector −→a , defined

by

Ω(−→v ,−→w ) = −→a · −→v ×−→w (6.29)

where

Ω = a1 dx2 ∧ dx3 + a2 dx3 ∧ dx1 + a3 dx1 ∧ dx2
−→a = a1

−→e1 + a2
−→e2 + a3

−→e3 .

The action of this 2-form on an arbitrary pair of vectors is given by the
determinant formula

Ω(−→v ,−→w ) = det





a1 a2 a3
v1 v2 v3
w1 w2 w3



 . (6.30)

Pay attention to the numbering here: the coefficient ai with index i is
paired with the basic form dxj ∧ dxk corresponding to the other two
indices, and these appear in an order such that i, j, k constitutes a cyclic
permutation of 1, 2, 3. In practice, we shall often revert to the
non-subscripted notation, but this version is the best one to help us
remember which vectors correspond to which 1-forms. The representation
given by Equation (6.29) can be viewed as a kind of analogue of the
gradient vector as a representation of the 1-form given by the derivative
d−→p f of a function f:R3→R at the point −→p .
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We saw in § 3.2 that the action of every linear function on R
3 can be

represented as the dot product with a fixed vector, and in § 6.1 we saw
that this gives a natural correspondence between differential 1-forms and
differentiable vector fields on R

3

ω = P dx+Qdy +Rdz ↔ −→F = P−→ı +Q−→ +R
−→
k . (6.31)

Now we have a correspondence between 2-forms Ω and vectors
−→
F on R

3,
defined by viewing the action of Ω on a pair of vectors as the dot product
of a fixed vector with their cross product, leading to the correspondence
between differential 2-forms and differential vector fields on R

3

Ω = A1 dx2∧ dx3+A2 dx3∧ dx1+A3 dx1∧ dx2 ↔
−→
F = a1

−→ı +a2
−→ +a3

−→
k .

(6.32)
The wedge product now assigns a 2-form to each ordered pair of 1-forms,
and it is natural to ask how this can be represented as an operation on the
corresponding vectors. The answer is perhaps only a little bit surprizing:

Remark 6.7.4. Suppose α and β are two 1-forms, corresponding to the

vectors −→a and
−→
b

α = a1 dx+ a2 dy + a3 dz

β = b1 dx+ b2 dy + b3 dz.

then their wedge product corresponds to the cross product −→a ×−→b :

(α ∧ β)(−→v ,−→w ) = (−→a ×−→b ) · (−→v ×−→w ) :

α ∧ β = (a2b3 − a3b2) dy ∧ dz + (a3b1 − a1b3) dz ∧ dx+ (a1b2 − a2b1) dx ∧ dy.

The proof of this is a straightforward calculation (Exercise 5).

Orientation and Integration of Differential 2-forms on R
3

Again by analogy with the case of 2-forms on the plane, we define a
differential 2-form on a region D ⊂ R

3 to be a mapping Ω which assigns
to each point p ∈ D a 2-form Ωp on the tangent space TpR

3. From
Lemma 6.7.3 we can write Ωp as a linear combination of the basic 2-forms

Ωp = a1(p) dx2 ∧ dx3 + a2(p) dx3 ∧ dx1 + a3(p) dx1 ∧ dx2
or represent it via the associated vectorfield

−→
F (p) = a1(p)

−→ı + a2(p)
−→ + a3(p)

−→
k .
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We shall call the form Cr if each of the three functions ai(p) is Cr on D.

The integration of 2-forms in R
3 is carried out over surfaces in a manner

analogous to the integration of 1-forms over curves described in § 6.1.
There, we saw that the integral of a 1-form over a curve C depends on a
choice of orientation for C; reversing the orientation also reverses the sign
of the integral. The same issue arises here, but in a more subtle way.

Suppose the orientation of S is given by the unit normal vector field −→n ,
and −→p (s, t) is a regular parametrization of S. We can define the pullback
of a form Ω by −→p as the 2-form on the domain D ⊂ R

2 of −→p defined for
(s, t) ∈ D and −→v ,−→w ∈ T(s,t)R2 by

[−→p ∗(Ω)](s,t)(
−→v ,−→w ) = Ω−→p(s,t)

(

T(s,t)
−→p (−→v ) , T(s,t)−→p (−→w )

)

. (6.33)

This pullback will at each point be a multiple of the basic form ds ∧ dt,
say [−→p ∗(Ω)](s,t) = f(s, t) ds ∧ dt, and we define the integral of Ω over S as
the (usual double) integral of f over D:

∫

S

Ω :=

∫∫

D
f(s, t) ds dt. (6.34)

So where does the orientation come in? This is a subtle and rather
confusing point, going back to the distinction between area and signed
area in the plane.

When we initially talked about “positive” orientation of an oriented
triangle in the plane, we had a “natural” point of view on the standard
xy-plane: a positive rotation was a counterclockwise one, which meant the
direction from the positive x-axis toward the positive y-axis. Thus, we
implicitly thought of the xy-plane as being the plane z = 0 in R

3, and
viewed it from the direction of the positive z-axis: in other words, we gave

the xy-plane the orientation determined by the unit normal
−→
k . Another

way to say this is that our orientation amounted to choosing x as the first
parameter and y as the second. With this orientation, the signed area of a
positively oriented triangle [A,B,C], coming from a determinant, agrees
with the ordinary area of △ABC, coming from the double integral
∫∫

△ABC dx dy (which is always non-negative). If we had followed Alice

through the looking-glass and seen the xy-plane from below (that is, with
the orientation reversed), then the same oriented triangle would have had
negative signed area. Recall that this actually happens in a different
plane—the xz-plane—where the orientation coming from alphabetical
order (x before z) corresponds to viewing the plane from the negative
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y-axis, which is why, when we calculated the cross-product, we preceded
the minor involving x and z with a minus sign.

But what is the orientation of the domain of a parametrization −→p (s, t) of
S? You might say that counterclockwise, or positive, rotation is from the
positive s-axis toward the positive t-axis, but this means we are
automatically adopting alphabetical order, which is an artifact of our
purely arbitrary choice of names for the parameters. We need to have a
more “natural”—which is to say geometric—choice of orientation for our
parameters. It stands to reason that this choice should be related to the
orientation we have chosen for S. So here’s the deal: we start with the
orientation on S given by the unit normal vector field −→n on S. This
vector field can be viewed as the vector representative of a 2-form acting
on pairs −→v ,−→w of vectors tangent to S (at a common point: −→v ,−→w ∈ TpS)
defined, following Equation (6.29), by

Ωp(
−→v ,−→w ) = −→n · (−→v ×−→w ).

When we pull this back by −→p , we have a form −→p ∗(Ω) on the parameter
space, so it is a nonzero multiple of ds ∧ dt, and of course the opposite
multiple of dt ∧ ds. The orientation of parameter space corresponding to
the order of the parameters for which this multiple is positive is the
orientation induced by the parametrization −→p . In other words, the
“basic” 2-form on parameter space is the wedge product of ds and dt in
the order specified by the induced orientation: when we chose the function
f(s, t) in Definition 6.34 which we integrate over the domain D of our
parametrization (in the ordinary double-integral sense) to calculate

∫∫

S
Ω,

we should have defined it as [−→p ∗(Ω)](s,t) = f(s, t) dt ∧ ds if the order given
by the induced parametrization corresponded to t before s.

How does this work in practice? Given the parametrization −→p (s, t) of S,
let us denote the unit vector along the positive s-axis (resp. positive t-axis)
in parameter space by −→es (resp. −→et ). On one hand, ds ∧ dt can be
characterized as the unique 2-form on parameter space such that
( ds ∧ dt)(−→es ,−→et ) = 1 (while dt ∧ ds is characterized by
( dt ∧ ds)(−→et ,−→es) = 1). On the other hand, the pullback −→p ∗(Ω) acts on
these vectors via

−→p ∗Ω(−→es ,−→et ) = Ω(T−→p (−→es) , T−→p (−→et )) .
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Note that the two vectors in the last expression are by definition the
partials of the parametrization

T−→p (−→es) =
∂−→p
∂s

T−→p (−→et ) =
∂−→p
∂t

and substituting this into the calculation above yields

−→p ∗Ω(−→es ,−→et ) = Ω

(

∂−→p
∂s

,
∂−→p
∂t

)

= −→n ·
(

∂−→p
∂s
× ∂−→p

∂t

)

.

If this is positive, then our orientation puts s before t, while if it is
negative, we should put t before s.
Let’s formalize this in a definition.

Definition 6.7.5. Suppose −→p (s, t) is a regular parametrization of the
surface S oriented by the unit normal vector field −→n .

1. The basic form on parameter space induced by −→p is the choice
dA = ds ∧ dt or dA = dt ∧ ds, where the order of ds and dt is
chosen so that the cross product of the partials of −→p in the same
order has a positive dot product with −→n .

2. Suppose Ω is a 2-form defined on S. Then its pullback via −→p is a
function multiple of the basic form induced by −→p :

−→p ∗(Ω) = f(s, t) dA.

3. We define the integral of Ω over the surface S with orientation given
by −→n as the (ordinary) integral of f over the domain D of −→p :

∫∫

S

Ω :=

∫∫

D
f dA =

∫∫

D
f(s, t) ds dt.

Let’s see how this works in a couple of examples.
First, let S be the part of the plane x+ y + z = 1 in the first quadrant,
oriented up, and take Ω = dx ∧ dz. The natural parametrization of S
comes from regarding it as the graph of z = 1− x− y:







x = s
y = t
z = 1− s− t

.



668 CHAPTER 6. VECTOR FIELDS AND FORMS

The part of this in the first quadrant x ≥ 0, y ≥ 0, z ≥ 0 is the image of
the domain D in parameter space specified by the inequalities

{

0 ≤ t ≤ 1− s
0 ≤ s ≤ 1

.

The standard normal to the plane x+ y + z = 1 is
−→
N = −→ı +−→ +

−→
k ,

which clearly has a positive vertical component. This is not a unit vector
(we would have to divide by

√
3) but this is immaterial; it is only the

direction that matters. The partials of the parametrization are

∂−→p
∂s

= −→ı −−→k
∂−→p
∂t

= −→ −−→k

with cross product

∂−→p
∂s
× ∂−→p

∂t
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

1 0 −1
0 1 −1

∣

∣

∣

∣

∣

∣

= −→ı +−→ +
−→
k

so of course its dot product with
−→
N is positive; thus our basic 2-form on

parameter space is
dA = ds ∧ dt.

Now, the pullback of Ω is simply a matter of substitution: the differentials
of the components of the parametrization are

dx = ds

dy = dt

dz = − ds− dt

so the pullback of Ω, which is simply the expression for Ω in terms of our
parameters and their differentials, is

Ω = dx ∧ dz
= ( ds) ∧ (− ds − dt)

= − ds ∧ ds − ds ∧ dt
= − dA
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so

f(s, t) = −1

and
∫∫

S

Ω =

∫∫

D
−1 dA

= −
∫∫

D
ds dt

= −
∫ 1

0

∫ (1−s)

0
dt ds

= −
∫ 1

0
(1− s) ds

= −
(

s− s2

2

)1

0

= −1

2
.

As a second example, we take S to be the part of the sphere
x2 + y2 + z2 = 1 cut out by the horizontal planes z = − 1√

2
and z = 1

2 , the

xz-plane, and the vertical half-plane containing the z-axis together with
the vector −→ı +−→ . We orient S inward (that is, toward the origin) and let
Ω = z dx ∧ dy. The natural way to parametrize this is using spherical
coordinates (with ρ = 1):

x = sinφ cos θ

y = sinφ sin θ

z = cosφ.

The domain of this parametrization is

π

3
≤φ ≤ 3π

4

0 ≤θ ≤ π

4
.

The partials of the parametrization are

∂−→p
∂φ

= (cosφ cos θ)−→ı + (cosφ sin θ)−→ − (sinφ)
−→
k

∂−→p
∂θ

= (− sinφ sin θ)−→ı + (sinφ cos θ)−→ ;
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their cross product is

∂−→p
∂φ
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

cosφ cos θ cosφ sin θ − sinφ
− sinφ sin θ sinφ cos θ 0

∣

∣

∣

∣

∣

∣

= (sin2 φ cos θ)−→ı + (sin2 φ sin θ)−→ + (sinφ cosφ)
−→
k .

It is hard to see how this relates to the inward normal from this formula;
however, we need only check the sign of the dot product at one point. At
(1, 0, 0), where φ = π

2 and θ = 0, the cross product is −→ı , while the inward
pointing normal is −−→ı . Therefore, the basic form is

dA = dθ ∧ dφ.

To calculate the pullback of Ω, we first find the differentials of the
components of −→p :

dx = cosφ cos θ dφ− sinφ sin θ dθ

dy = cosφ sin θ dφ+ sinφ cos θ dθ

dz = − sinφdφ.

Then

Ω = z dx ∧ dy
= (cosφ){(cos φ cos θ dφ− sinφ sin θ dθ) ∧ (cos φ sin θ dφ+ sinφ cos θ dθ)}
= (cosφ){(cos φ cos θ sinφ cos θ) dφ ∧ dθ − (sinφ sin θ cosφ cos θ) dθ ∧ dφ}
= (cosφ){(cos φ sinφ cos2 θ + sinφ cosφ sin2 θ) dφ ∧ dθ
= (cos2 φ sin φ) dφ ∧ dθ
= − cos2 φ sinφdA.
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Thus,

∫∫

S

Ω =

∫∫

D
− cos2 φ sinφdA

=

∫ π/4

0

∫ 3π/4

π/3
− cos2 φ sin φdφdθ

=

∫ π/4

0

(

1

3
cos3 φ

)3π/4

π/3

dθ

=
1

3

∫ π/4

0

(

− 1

2
√
2− 1

8

)

dθ

= −1

3

(

1

2
√
2
+

1

8

)

π

4

= − π

12

(

1

2
√
2
+

1

8

)

= −π(4 +
√
2)

96
√
2

.

Stokes’ Theorem in the Language of Forms

To translate between flux integrals of vector fields and integrals of forms
over oriented surfaces, we first look more closely at the “basic form” dA
induced by a parametrization −→p (s, t) of the oriented surface S. This was
defined in terms of the pullback of the form Ω which acted on a pair of
vectors tangent to S at the same point by dotting their cross product with
the unit normal −→n defining the orientation of S. To calculate this
pullback, let us take two vectors in parameter space and express them in
terms of the unit vectors −→es and −→et in the direction of the s-axis and t-axis,
respectively:

−→v = vs
−→es + vt

−→et
−→w = ws

−→es + wt
−→et .

We note for future reference that these coordinates can be regarded as the
values of the coordinate forms ds and dt on the respective vectors:

vs = ds(−→v )
vt = dt(−→v ).
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Now, the pullback of Ω acts on −→v and −→w as follows:

−→p ∗Ω(−→v ,−→w ) = −→p ∗Ω(vs
−→es + vt

−→et , ws−→es + wt
−→et )

and using the linearity and antisymmetry of the form (or just
Equation (6.20)) we can write this as

= −→p ∗Ω(−→es ,−→et ) det
(

vs vt
ws wt

)

.

By definition of the pullback, the first factor is given by the action of Ω on
the images of −→es and−→et under the linearization of the parametrization,
which are just the partials of the parametrization. Also, using our earlier
observation concerning the coordinate forms together with the definition of
the wedge product, we see that the second factor is simply the action of
ds ∧ dt on −→v and −→w :

= Ω

(

∂−→p
∂s

,
∂−→p
∂t

)

( ds ∧ dt)(−→v ,−→w )

=

{

−→n ·
(

∂−→p
∂s
× ∂−→p

∂t

)}

{( ds ∧ dt)(−→v ,−→w )} .

Note that if we reverse the roles of s and t in both factors, we introduce
two changes of sign, so we can summarize the calculation above as

−→p ∗(Ω) =

{

−→n ·
(

∂−→p
∂s
× ∂−→p

∂t

)}

ds ∧ dt =
{

−→n ·
(

∂−→p
∂t
× ∂−→p

∂s

)}

dt ∧ ds.

This says that

−→p ∗(Ω) =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

dA

where dA is the “basic form” on parameter space determined by the
orientation of S. This looks suspiciously like the element of surface area
which we use to calculate surface integrals:

dS =

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

ds dt;

in fact, the latter is precisely the expression we would put inside a double
integral to calculate

∫∫

S
Ω:

∫∫

S

Ω =

∫

D

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

dA =

∫∫

D

∥

∥

∥

∥

∂−→p
∂s
× ∂−→p

∂t

∥

∥

∥

∥

ds dt =

∫∫

S

1 dS.
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So Ω is the 2-form version of the element of surface area; we will refer to it
as the area form of the oriented surface S.
The following is a simple matter of chasing definitions (Exercise 7):

Remark 6.7.6. If the 2-form Ω corresponds, according to

Equation (6.32), to the vector field
−→
F , then the integral of Ω over an

oriented surface equals the flux integral of
−→
F over the same surface:

Ω↔ −→F ⇒
∫

S

Ω =

∫∫

S

−→
F · d−→S . (6.35)

We also need to extend the notion of exterior derivatives to differential
1-forms in R

3. Formally, we do just what we did in § 6.4 for differential
1-forms in R

2: a differential 1-form on R
3 can be written

ω = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz

and we define its exterior derivative by wedging the differential of each
coefficient function with the coordinate form it is associated to:

dω = ( dP ) ∧ dx+ ( dQ) ∧ dy + ( dR) ∧ dz

=

(

∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)

∧ dx+

(

∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

)

∧ dy

+

(

∂R

∂x
dx+

∂R

∂y
dy +

∂R

∂z
dz

)

∧ dz

=
∂P

∂y
dy ∧ dx+

∂P

∂z
dz ∧ dx+

∂Q

∂x
dx ∧ dy + ∂Q

∂z
dz ∧ dy

+
∂R

∂x
dx ∧ dz + ∂R

∂y
dy ∧ dz

=

(

∂R

∂y
− ∂Q

∂z

)

dy ∧ dz +
(

∂P

∂z
− ∂R

∂x

)

dz ∧ dx+

(

∂Q

∂x
− ∂P

∂y

)

dx ∧ dy.

As with the wedge product, it is straightforward to show that this
corresponds in our dictionary for translating between vector fields and
forms to the curl (Exercise 6):

Remark 6.7.7. If the 1-form ω corresponds, according to Equation (6.31),

to the vector field
−→
F , then its exterior derivative dω corresponds, according

to Equation (6.32), to the curl of
−→
F :

ω ↔ −→F ⇔ dω ↔ −→∇ ×−→F .
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Using this dictionary, we can now state Stokes’ Theorem in terms of forms:

Theorem 6.7.8 (Stokes’ Theorem, Differential Form). Suppose ω is a
differential 1-form defined on an open set in R

3 containing the surface S

with boundary ∂S.
Then

∮

∂S
ω =

∫∫

S

dω.

Exercises for § 6.7

Practice problems:

1. Which of the following polynomials give bilinear functions on R
3?

(Here, we regard the polynomial as a function of the two vectors
−→v = x1

−→ı + y1
−→ + z1

−→
k and −→w = x2

−→ı + y2
−→ + z2

−→
k .) For each one

that does, give the matrix representative and decide whether it is
commutative, anti-commutative, or neither.

(a) x1x2 + y1y2 − z1z2
(b) x1y1 + x2y2 − y1z1 + y2z2

(c) x1y2 − y1z2 + x2z1 + z1y2 + y1x2 − z2x1
(d) (x1 + 2y1 + 3z1)(x2 − y2 + 2z2)

(e) (x1 + y1 + z1)(2x2 + y2 + z2)− (2x1 + y1 + z1)(x2 + y2 + z2)

(f) (x1 − 2y1 + 3z1)(x2 − y2 − z2)− (x1 − y1 − z1)(2y2 − x2 − 3z2)

2. For each vector field
−→
F below, write the 2-form Ω associated to it via

Equation (6.29) as Ω = Adx ∧ dy +B dy ∧ dz + C dz ∧ dx.

(a)
−→
F = −→ı

(b)
−→
F = −→

(c)
−→
F =

−→
k

(d)
−→
F = −→ı +−→ +

−→
k

(e)
−→
F = 2−→ı − 3−→ + 4

−→
k

(f)
−→
F = (x+ y)−→ı + (x− y)−→ + (y + z)

−→
k

(g)
−→
F = y−→ı + z−→ + x

−→
k

(h)
−→
F = x2−→ı + z2−→ + (x+ y)

−→
k
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(i)
−→
F =

−→∇f , where f(x, y, z) is a C2 function.

3. For each differential 2-form Ω below, find the vector field
−→
F

corresponding to it via Equation (6.29).

(a) Ω = dx ∧ dy
(b) Ω = dx ∧ dz
(c) Ω = dy ∧ dz
(d) Ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy
(e) Ω = df ∧ ( dx+ dy + dz), where df is the differential of the C2

function f(x, y, z). (Write the answer in terms of the partial
derivatives of f .)

4. Evaluate
∫∫

S
Ω.

(a) Ω = x dy ∧ dz, S is the plane x+ y + z = 1 in the first octant,
oriented up.

(b) Ω = z dx ∧ dy, S is the graph z = x2 + y2 over [0, 1] × [0, 1],
oriented up.

(c) Ω = x dy ∧ dz, S is the graph z = x2 + y2 over [0, 1] × [0, 1],
oriented up.

(d) Ω = x2 dx ∧ dz, S is the graph z = x2 + y2 over [0, 1] × [0, 1],
oriented down.

(e) Ω = dx ∧ dy, S is the part of the sphere x2 + y2 + z2 = 1 in the
first octant, oriented outward.

(f) Ω = dx ∧ dz, S is the part of the sphere x2 + y2 + z2 = 1 in the
first octant, oriented outward.

(g) Ω = x dy ∧ dz, S is the part of the sphere x2 + y2 + z2 = 1 in
the first octant, oriented inward.

(h) Ω = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy, S is given by the
parametrization







x = r cos θ
y = r sin θ
z = θ

,

{

0 ≤ r ≤ 1
0 ≤ θ ≤ 2π

,

with the orientation induced by the parametrization.
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(i) Ω = z dx ∧ dy, S is parametrized by







x = cos3 t
y = sin3 t
z = s

,

{

0 ≤ t ≤ 1
0 ≤ s ≤ 2π

,

with the orientation induced by the parametrization.

(j) Ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy, S is the surface of the
cube [0, 1] × [0, 1] × [0, 1], oriented outward.

Theory problems:

5. Prove Remark 6.7.4. (Hint: Carry out the formal wedge product,
paying careful attention to order, and compare with the
correspondence on 2-forms.)

6. Prove Remark 6.7.7.

7. Prove Remark 6.7.6

Challenge problem:

8. Show that every 2-form on R
3 can be expressed as the wedge product

of two 1-forms. This shows that the notion of a “basic” 2-form on
p. 662 depends on the coordinate system we use.

6.8 The Divergence Theorem

So far, we have seen how the Fundamental Theorem for Line Integrals

(Theorem 6.2.1) relates the line integral of a gradient vector field
−→
F =

−→∇f
over a directed curve C to the values of the potential function f at the ends
of C, and how Green’s Theorem (Theorem 6.3.4) and its generalization,
Stokes’ Theorem (Theorem 6.6.2) relate the flux integral of the curl−→∇ ×−→F of a vector field

−→
F on a domain D in R

2 or a surface S in R
3 to its

circulation integral around the boundary ∂D (resp. ∂S) of D (resp. S). In
both cases, we have a relation between the integral in a domain of
something obtained via an operation involving derivatives (or differential
operator) applied to a function (in the case of the Fundamental Theorem
for Line Integrals) or vector field (in the case of Green’s and Stokes’
Theorems) and the “integral” of that object on the boundary of the
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domain. In this section, we consider the third great theorem of integral

calculus for vector fields, relating the flux integral of a vector field
−→
F over

the boundary of a three-dimensional region to the integral of a related

object, obtained via another differential operator from
−→
F , over the region.

This is known variously as the Divergence Theorem, Gauss’s Theorem, or
the Ostrogradsky Theorem; the differential operator in this case is the
divergence of the vector field.

Green’s Theorem Revisited:
Divergence of a Planar Vector Field

A two-dimensional version of the Divergence Theorem is outlined in
Exercise 7 in § 6.3. We recall it here:

Theorem 6.8.1 (Green’s Theorem, Divergence Form). Suppose D ⊂ R
2 is

a regular planar region bounded by a simple, closed regular curve C = ∂D

with positive orientation, and
−→
F (x, y) = P (x, y)−→ı +Q(x, y)−→ is a C1

vector field on D. Let
−→
N− denote the outward pointing unit normal vector

field to C.
Then

∮

C

−→
F · −→N− ds =

∫∫

D

(

∂P

∂x
+
∂Q

∂y

)

dA. (6.36)

We note that the left side of Equation (6.36), the line integral around C of

the normal component of
−→
F (by contrast with the tangential component

which appears in Theorem 6.3.4), is the analogue in one lower dimension of

the flux integral of
−→
F ; if we imagine a simplified two-dimensional model of

fluid flow, with
−→
F the velocity (or momentum) field, then this measures

the amount of “stuff” leaving D per unit time. The right side of
Equation (6.36) differs from Theorem 6.3.4 in that instead of the difference

of cross-derivatives of the components of
−→
F we have the sum of the “pure”

derivatives—the x-partial of the x-component of
−→
F plus the y-partial of

the y-component of
−→
F . This is called the divergence of

−→
F :

div(P−→ı +Q−→ ) = ∂P

∂x
+
∂Q

∂y
.

To gain some intuition about the divergence, we again think of
−→
F as the

velocity field of a fluid flow, and consider the effect of this flow on the area
of a small square with sides parallel to the coordinate axes (Figure 6.20).
As in our intuitive discussion of curl on p. 624, a constant vector field will
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not affect the area; it will be the change in
−→
F which affects the area. In

the previous discussion, we saw that the vertical change ∂P
∂y in the

horizontal component of
−→
F (resp. the horizontal change ∂Q

∂x in the vertical

component of
−→
F ) tends to a shear effect, and these effects will not change

the area (by Cavalieri’s principle). However, the the horizontal change ∂P
∂x

in the horizontal component of
−→
F will tend to “stretch” the projection of

the base of the square onto the x-axis, and similarly the the vertical

change ∂Q
∂y in the vertical component of

−→
F will “stretch” the height, which

is to say the vertical dimension of the square. A stretch in either of these
directions increases the area of the square. Thus, we see, at least on a

purely heuristic level, that div
−→
F measures the tendency of the velocity

field to increase areas. As before, this argument comes with a disclaimer:
rigorously speaking, this interpretation of divergence is a consequence of
Theorem 6.8.1 (Exercise 15 gives a proof based on the Change-of-Variables
formula, Theorem 5.3.6).

−→
F

P

Q

−→
F

∂Q/∂x

∂P/∂y ∂Q/∂x

∂P/∂y

∂P/∂x

∂Q/∂y
∂P/∂x

∂Q/∂y

Figure 6.20: Interpretation of planar divergence

Divergence of a Vector Field in R
3

For a vector field in space, there are three components, and it is formally
reasonable that the appropriate extension of divergence to this case
involves adding the partial of the third component.
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Definition 6.8.2. The divergence of a vector field

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

is

div
−→
F =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

The heuristic argument we gave in the planar case can be extended, with a
little more work, to an interpretation of this version of divergence as
measuring the tendency of a fluid flow in R

3 to increase volumes
(Exercise 9). Note that the divergence of a vector field is a scalar, by
contrast with its curl, which is a vector. If one accepts the heuristic
argument that this reflects change in volume, then this seems natural:
rotation has a direction (given by the axis of rotation), but volume is itself
a scalar, and so its rate of change should also be a scalar. Another, deeper
reason for this difference will become clearer when we consider the version
of this theory using differential forms.

We can use the “del” operator
−→∇ = −→ı ∂

∂x +−→ ∂
∂y +

−→
k ∂
∂z to fit divergence

into the formal scheme we used to denote the calculation of the differential
of a function and the curl of a vector field: the divergence of

−→
F is the dot

product of
−→∇ with

−→
F :

div
−→
F =

−→∇ · −→F .

Just to solidify our sense of this new operator, let us compute a few
examples: if

−→
F (x, y, z) = ax−→ı + bx−→ + cx

−→
k

then

div
−→
F = a+ b+ c.

This makes sense in terms of our heuristic: a fluid flow with this velocity
increases the scale of each of the coordinates by a constant increment per
unit time, and so we expect volume to be increased by a+ b+ c.

By contrast, the vector field

−→
F (x, y, z) = −y−→ı + x−→
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has divergence

div
−→
F = 0 + 0

= 0.

A heuristic explanation for this comes from the geometry of the flow: this
vectorfield represents a “pure” rotation about the z-axis, and rotating a
body does not change its volume. In fact, the same is true of the
“screwlike” (technically, helical) motion associated to the vector field
obtained by adding a constant field to the vector field above. In fact, the
vector fields which we use to represent the “infinitesimal” rotation induced
by a flow—in other words, the vector fields which are themselves the curl
of some other vector field—all have zero divergence. This is an easy if
somewhat cumbersome calculation which we leave to you (Exercise 7):

Remark 6.8.3. Every curl is divergence-free: if

−→
F =

−→∇ ×−→G

for some C2 vector field
−→
G , then

div
−→
F = 0.

Using our heuristic above, if the velocity vector field of a fluid is
divergence-free, this means that the fluid has a kind of rigidity: the volume
of a moving “blob” of the fluid neither increases nor decreases with the
flow: such a fluid flow is called incompressible. A physical example is
water, by contrast with a gas, which is highly compressible. 17

This result has a converse:

Proposition 6.8.4. A C1 vector field whose divergence vanishes on a
simply-connected region D ⊂ R

3 is the curl of some other vector field in D.
That is, if

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

satisfies

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= 0

17A divergence-free vectorfield is also sometimes referred to as a solenoidal vector field.
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then there exists a C2 vector field

−→
G(x, y, z) = g1(x, y, z)

−→ı + g2(x, y, z)
−→ + g3(x, y, z)

−→
k

such that
−→
F =

−→∇ ×−→G—that is,

∂g3
∂y
− ∂g2

∂z
= P (6.37)

∂g1
∂z
− ∂g3
∂x

= Q (6.38)

∂g2
∂x
− ∂g1
∂y

= R. (6.39)

A proof of this converse statement is outlined in Exercises 11-13. We call

the vector field
−→
G a vector potential for

−→
F if

−→
F =

−→∇ ×−→G . There is also
a theorem, attributed to Hermann von Helmholtz (1821-1894), which
states that every vector field can be written as the sum of a conservative
vector field and a divergence-free one: this is called the Helmholtz
decomposition. A proof of this is beyond the scope of this book.

The Divergence Theorem

Recall that a region D ⊂ R
3 is z-regular if we can express it as the region

between two graphs of z as a continuous function of x and y, in other
words if we can specify D by an inequality of the form

ϕ(x, y) ≤ z ≤ ψ(x, y) , (x, y) ∈ D
where D is some elementary region in R

2; the analogous notions of
y-regular and x-regular regions D are fairly clear. We shall call D ⊂ R

3

fully regular if it is simultaneously regular in all three directions, with
the further proviso that the graphs z = ϕ(x, y) and z = ψ(x, y) (and their
analogues for the conditions of x- and y-regularity) are both regular
surfaces. This insures that we can take flux integrals across the faces of the
region. We shall always assume that our region is regular, so that the
boundary is piecewise regular; for this theorem we orient the boundary
outward.

Theorem 6.8.5 (Divergence Theorem). 18 Suppose

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

18This theorem was published by Carl Friedrich Gauss (1777-1855) in 1840 [18] and
independently by Mikhail Vasilevich Ostrogradski (1801-1862) in 1831. (see [1]). It is
often called Gauss’s Theorem or the Gauss-Ostrogradsky Theorem.
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is a C1 vector field on the regular region D ⊂ R
3.

Then the flux integral of
−→
F over the boundary ∂D, oriented outward,

equals the (triple) integral of its divergence over the interior of D:

∫∫

∂D

−→
F · d−→S =

∫∫∫

D

div
−→
F dV. (6.40)

Proof. Equation (6.40) can be written in terms of coordinates:

∫∫

∂D
(P−→ı +Q−→ +R

−→
k ) · d−→S =

∫∫∫

D

(

∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)

dV

and this in turn can be broken into three separate statements:

∫∫

∂D
P−→ı · d−→S =

∫∫∫

D

∂P

∂x
dV

∫∫

∂D
Q−→ · d−→S =

∫∫∫

D

∂Q

∂y
dV

∫∫

∂D
R
−→
k · d−→S =

∫∫∫

D

∂R

∂z
dV.

We shall prove the third of these; the other two are proved in essentially
the same way (Exercise 8). For this statement, we view D as a z-regular
region, which means that we can specify it by a set of inequalities of the
form

ϕ(x, y) ≤z ≤ ψ(x, y)
c(x) ≤y ≤ d(x)
a ≤x ≤ b.

Of course the last two inequalites might also be written as limits on x in
terms of functions of y, but the assumption that D is simultaneously
y-regular means that an expression as above is possible; we shall not dwell
on this point further. In addition, the regularity assumption on D means
that we can assume the functions ϕ(x, y) and ψ(x, y) as well as the
functions c(x) and d(x) are all C2.
With this in mind, let us calculate the flux integral of R(x, y, z)

−→
k across

∂D. The boundary of a z-regular region consists of the graphs z = ψ(x, y)
and z = ϕ(x, y) forming the top and bottom boundary of the region and
the vertical cylinder built on the boundary of the region D in the xy-plane
determined by the second and third inequalities above. Note that the
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normal vector at points on this cylinder is horizontal, since the cylinder is
made up of vertical line segments. This means that the dot product

R
−→
k · −→n is zero at every point of the cylinder, so that this part of the

boundary contributes nothing to the flux integral
∫∫

∂DR
−→
k · d−→S . On the

top graph z = ψ(x, y) the outward normal has a positive vertical
component, while on the bottom graph z = ϕ(x, y) the outward normal
has a negative vertical component. In particular, the element of oriented
surface area on the top has the form

d
−→S =

(

−ψx−→ı − ψy−→ +
−→
k
)

dA

while on the bottom it has the form

d
−→S =

(

ϕx
−→ı + ϕy

−→ −−→k
)

dA.

Pulling this together with our earlier observation, we see that
∫∫

∂D
R
−→
k · d−→S =

∫∫

z=ψ(x,y)
R
−→
k · d−→S +

∫∫

z=ϕ(x,y)
R
−→
k · d−→S

=

∫∫

D

(

R(x, y, ψ(x, y))
−→
k
)

·
(

−ψx−→ı − ψy−→ +
−→
k
)

dA

+

∫∫

D

(

R(x, y, ϕ(x, y))
−→
k
)

·
(

ϕx
−→ı + ϕy

−→ −−→k
)

dA

=

∫∫

D
(R(x, y, ϕ(x, y))−R(x, y, ψ(x, y))) dA.

The quantity in parentheses can be interpreted as follows: given a vertical
“stick” through (x, y) ∈ D, we take the difference between the values of R
at the ends of its intersection with D. Fixing (x, y), we can apply the
Fundamental Theorem of Calculus to the function f(z) = R(x, y, z) and
conclude that for each (x, y) ∈ D,

R(x, y, ϕ(x, y))−R(x, y, ψ(x, y)) =
∫ ψ(x,y)

ϕ(x,y)

∂R

∂z
(x, y, z) dz

so that
∫∫

∂D
R
−→
k · d−→S =

∫∫

D
(R(x, y, ϕ(x, y))−R(x, y, ψ(x, y))) dA

=

∫∫

D

(

∫ ψ(x,y)

ϕ(x,y)

∂R

∂z
(x, y, z) dz

)

dA

=

∫∫∫

D

∂R

∂z
(x, y, z) dV
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as required. The other two statements are proved by a similar argument,
which we leave to you (Exercise 8).

We note that, as in the case of Green’s Theorem, we can extend the
Divergence Theorem to any region which can be partitioned into regular
regions.
It can also be extended to regular regions with “holes” that are themselves
regular regions. For example, suppose D is a regular region and Bε (

−→x0) is
a ball of radius ε > 0 centered at −→x0 and contained in the interior of D
(that is, it is inside D and disjoint from its boundary). Then the region
D \Bε (−→x0) consisting of points in D but at distance at least ε from −→x0 is
“D with a hole at −→x0”; it has two boundary components: one is ∂D,
oriented outward, and the other is the sphere of radius ε centered at −→x0,
and oriented into the ball. Suppose for a moment that F is defined inside
the ball, as well. Then the flux integral over the boundary of D \Bε (−→x0) is
the flux integral over the boundary of D, oriented outward, minus the flux
integral over the boundary of the ball (also oriented outward). The latter

is the integral of div
−→
F over the ball, so it follows that the flux integral

over the boundary of D \Bε (−→x0) is the integral of div
−→
F over its interior.

Now, this last integral is independent of what F does inside the hole,
provided it is C1 and agrees with the given value along the boundary. Any
C1 vector field F defined on and outside the sphere can be extended to its
interior (Exercise 14), so we have

Corollary 6.8.6. If the ball Bε (
−→x0) is interior to the regular region D,

then the flux integral of a C1 vector field
−→
F over the boundary of D with a

hole
∫∫

∂(D\Bε(−→x0))
−→
F · d−→S equals the integral of div

−→
F over the interior of

D \Bε (−→x0):
∫∫

∂(D\Bε(−→x0))

−→
F · d−→S =

∫∫∫

D\Bε(−→x0)
div
−→
F dV. (6.41)

In particular, if
−→
F s divergence-free in D \Bε (−→x0) then the outward flux of−→

F over ∂(D \Bε (−→x0)) equals the outward flux of
−→
F over the sphere of

radius ε centered at −→x0.

Like Stokes’ Theorem, the Divergence Theorem allows us to compute the
same integral two different ways. We consider a few examples.
First, let us calculate directly the flux of the vector field

−→
F (x, y, z) = x−→ı + y−→ + z

−→
k
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out of the sphere S of radius R about the origin.

The natural parametrization of this sphere uses spherical coordinates:







x = R sinφ cos θ
y = R sinφ sin θ
z = R cosφ,

,

{

0 ≤ φ ≤ π
0 ≤ θ ≤ 2π.

The partials are

∂−→p
∂φ

= (R cosφ cos θ)−→ı + (R cosφ sin θ)−→ − (R sinφ)
−→
k

∂−→p
∂θ

= (−R sinφ sin θ)−→ı + (R sinφ cos θ)−→

with cross product

∂−→p
∂φ
× ∂−→p

∂θ
=

∣

∣

∣

∣

∣

∣

−→ı −→ −→
k

R cosφ cos θ R cosφ sin θ −R sinφ
−R sinφ sin θ R sinφ cos θ 0

∣

∣

∣

∣

∣

∣

= (R2 sin2 φ cos θ)−→ı + (R2 sin2 φ sin θ)−→ + (R2 sinφ cos φ)
−→
k .

To check whether this gives the outward orientation, we compute the
direction of this vector at a point where it is easy to find, for example at
(1, 0, 0) = −→p

(

π
2 , 0
)

:

(

∂−→p
∂φ
× ∂−→p

∂θ

)

(π

2
, 0
)

= R2−→ı

Which points out of the sphere at (1, 0, 0). Thus, the element of outward
oriented surface area is

d
−→S =

(

(R2 sin2 φ cos θ)−→ı + (R2 sin2 φ sin θ)−→ + (R2 sinφ cosφ)
−→
k

)

dφ dθ.

On the surface, the vector field is

−→
F (φ, θ) = (R sinφ cos θ)−→ı + (R sinφ sin θ)−→ + (R cosφ)

−→
k
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so

−→
F · d−→S =

(

(R sinφ cos θ)(R2 sin2 φ cos θ) + (R sinφ sin θ)(R2 sin2 φ sin θ)

+ (R cosφ)(R2 sinφ cosφ)

)

dφ dθ

= R3(sin3 φ cos2 θ + sin3 φ sin2 θ + sinφ cos2 φ) dφ dθ

= R3 sinφ(sin2 φ+ cos2 φ) dφ dθ

= R3 sinφdφdθ.

The flux integral is therefore

∫∫

S

−→
F · d−→S =

∫ 2π

0

∫ π

0
R3 sinφdφdθ

=

∫ 2π

0

(

−R3 cosφ
)π

φ=0
dθ

= 2R3

∫ 2π

0
dθ

= 2R3(2π)

= 4πR3.

Now let us see how the same calculation looks using the Divergence
Theorem. The divergence of our vector field is

div
−→
F = 1 + 1 + 1

= 3

so the Divergence Theorem tells us that

∫∫

S

−→
F · d−→S =

∫∫∫

D

div
−→
F dV

=

∫∫∫

D

3 dV

= 3V(D)

where D is the sphere of radius R, with volume 4πR3

3 , and our integral is

∫∫

S

−→
F · d−→S = 4πR3.
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As another example, let us calculate the flux of the vector field

−→
F (x, y, z) = x2−→ı + y2−→ + z2

−→
k

over the same surface. We have already calculated that the element of
outward oriented surface area is

d
−→S =

(

(R2 sin2 φ cos θ)−→ı + (R2 sin2 sin θ)−→ + (R2 sinφ cos φ)
−→
k
)

dφ dθ.

This time, our vector field on the surface is

−→
F (φ, θ) = (R2 sin2 φ cos2 θ)−→ı + (R2 sin2 φ sin2 θ)−→ + (R2 cos2 φ)

−→
k

and its dot product with d
−→S is

−→
F · d−→S =

(

(R2 sin2 φ cos2 θ)(R2 sin2 φ cos θ) + (R2 sin2 φ sin2 θ)(R2 sin2 sin θ)

+ (R2 cos2 φ)(R2 sinφ cosφ)
)

dφ dθ

= R4
(

sin4 φ cos3 θ + sin4 φ sin3 θ + sinφ cos3 φ
)

dφ dθ

= R4
(1

4

(

1− 2 cos 2φ+ cos2 φ
)

(cos3 θ + sin3 θ) + sinφ cos3 φ
)

dφ dθ

= R4
(

(

3

8
− 1

2
cos 2φ+

1

8
cos 4φ

)

)

(cos3 θ + sin3 θ) + sinφ cos3 φdφdθ

and our flux integral is

∫∫

S

−→
F · d−→S =

∫ 2π

0

∫ π

0
R4
(

(

3

8
− 1

2
cos 2φ+

1

8
cos 4φ

)

)

(cos3 θ + sin3 θ) + sinφ cos3φ dφ dθ

= R4

∫ 2π

0

(

(

3

8
θ − 1

4
sin 2φ+

1

32
sin 4φ

)

(cos3 θ + sin3 θ)− 1

4
cos4 φ

)π

φ=0
dφ dθ

= R4

∫ 2π

0

(

3π

8

)

(cos3 θ + sin3 θ) cos3 +sin3) dθ

=
3π

8
R4

∫ 2π

0

(

(1− sin2 θ) cos θ + (1− sin2 θ) cos θ
)

dθ

=
3π

8
R4
(

sin θ − 1

3
sin3 θ − cos θ +

1

3
cos3 θ

)2π

0

= 0.

Now if we use the Divergence Theorem instead, we see that the divergence
of our vector field is

div
−→
F = 2x+ 2y + 2z
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so by the Divergence Theorem

∫∫

S

−→
F · d−→S =

∫∫∫

D

div
−→
F dV

=

∫∫∫

D

2(x+ y + z) dV

which is easier to do in spherical coordinates:

=

∫ 2π

0

∫ π

0

∫ R

0
2(ρ sin φ cos θ + ρ sinφ sin θ + ρ cosφ)ρ2 sinφdρ dφ dθ

=

∫ 2π

0

∫ π

0

∫ R

0
2ρ3 sinφ(sinφ cos θ + sinφ sin θ + cosφ) dρ dφ dθ

=

∫ 2π

0

∫ π

0

(

ρ4

4

)R

0

sinφ(sinφ cos θ + sinφ sin θ + cosφ) dρ dφ dθ

=
R4

4

∫ 2π

0

∫ π

0

(

sin2 φ(cos θ + sin θ) + sinφ cosφ
)

dφ dθ

=
R4

4

∫ 2π

0

∫ π

0

(1

2
(1− cos 2φ)(cos θ + sin θ) + sinφ cosφ

)

dθ

=
R4

4

∫ 2π

0

(

(

φ

2
− 1

2
sin 2φ

)

(cos θ + sin θ) +
1

2
sin2 φ

)π

φ=0
dθ

=
R4

4

∫ 2π

0

(π

2
(cos θ + sin θ) + 0

)

dθ

=
πR4

8

(

sin θ − cos θ
)2π

0

= 0.

We note in passing that this triple integral could have been predicted to
equal zero on the basis of symmetry considerations. Recall that the
integral of an odd function of one real variable f(t) (i.e., if
f(−t) = −f(t)) over a symmetric interval [−a, a] is zero. We call a region
D ⊂ R

3 symmetric in z if it is unchanged by reflection across the
xy-plane, that is, if whenever the point (x, y, z) belongs to D, so does
(x, y,−z). (The adaptation of this definition to symmetry in x or in y is
left to you in Exercise 10.) We say that a function f(x, y, z) is odd in z

(resp. even in z) if reversing the sign of z but leaving x and y unchanged
reverses the sign of f (resp. does not change f): for odd, this means

f(x, y,−z) = −f(x, y, z)
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while for even it means

f(x, y,−z) = f(x, y, z) .

Remark 6.8.7. If f(x, y, z) is odd in z and D is z-regular and symmetric
in z, then

∫∫∫

D

f(x, y, z) dV = 0.

(To see this, just set up the triple integral and look at the innermost
integral.)
Recall that one of the useful consequences of the Fundamental Theorem
for Line Integrals was that the line integral of a conservative vector field
depends only on the endpoints of the curve, not on the curve itself; more
generally, if the curl of a vector field is zero in a region, then the line
integral of the field over a curve is not changed if we deform it within that
region, holding the endpoints fixed. A similar use can be made of the
Divergence Test. We illustrate with an example.
Let us find the flux integral over S the upper hemisphere
z =

√

1− x2 − y2, oriented up, of the vector field

−→
F (x, y, z) = (1 + z)ey

2−→ı − (z + 1)ex
2−→ + (x2 + y2)

−→
k .

Whether we think of the hemisphere as the graph of a function or
parametrize it using spherical coordinates, the terms involving
exponentials of squares are serious trouble. However, note that this vector
field is divergence-free:

div
−→
F =

∂

∂x

[

(1 + z)ey
2
]

+
∂

∂y

[

(z + 1)ex
2
]

+
∂

∂z

[

(x2 + y2)
]

= 0.

Thus, if we consider the half-ball D bounded above by the hemisphere and
below by the unit disc in the xy-plane, the Divergence Theorem tells us
that

∫∫

∂D

−→
F · d−→S =

∫∫∫

D
div
−→
F dV = 0.

Now, the boundary of D consists of two parts: the hemisphere, S, and the
disc, D. The outward orientation on ∂D means an upward orientation on
the hemisphere S, but a downward orientation on the disc D. Thus, the
flux integral over the whole boundary equals the flux integral over the
upward-oriented hemisphere, plus the flux integral over the
downward-oriented disc—which is to say, minus the flux over the
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upward-oriented disc. Since the difference of the two upward-oriented discs
equals zero, they are equal. Thus

∫∫

S

−→
F · d−→S =

∫∫

D

−→
F · d−→S .

But on D,

d
−→S =

−→
k dA

so, substituting z = 0 we see that the vector field on the disc is

−→
F (x, y) = ey

2−→ı − ex2−→ + (x2 + y2)
−→
k

and

−→
F · d−→S = (x2 + y2) dA.

this is easy to integrate, especially when we use polar coordinates:

∫∫

D

−→
F · d−→S =

∫ 2π

0

∫ 1

0
(r2)(r dr dθ)

=

∫ 2π

0

(r4

4

)

dθ

=

∫ 2π

0

1

4
dθ

=
π

2
.

Exercises for § 6.8

Practice problems:

1. Use Green’s Theorem to calculate the integral
∫

C
−→
F · −→N ds, where

−→
N

is the outward unit normal and C is the ellipse x2 + 4y2 = 4,
traversed counterclockwise:

(a)
−→
F (x, y) = x−→ı + y−→

(b)
−→
F (x, y) = y−→ı + x−→
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(c)
−→
F (x, y) = x2−→ı + y2−→

(d)
−→
F (x, y) = x3−→ı + y3−→

2. Find the flux integral
∫∫

S

−→
F · d−→S , where S is the unit sphere

oriented outward, for each vector field below:

(a)
−→
F (x, y, z) = (x+ y2)−→ı + (y − z2)−→ + (x+ z)

−→
k

(b)
−→
F (x, y, z) = (x3 + y3)−→ı + (y3 + z3)−→ + (z3 − x3)−→k

(c)
−→
F (x, y, z) = 2xz−→ı + y2−→ + xz

−→
k

(d)
−→
F (x, y, z) = 3xz2−→ı + y3−→ + 3x2z

−→
k

3. For each vector field
−→
F below, find the flux integral

∫∫

S

−→
F · d−→S ,

where S is the boundary of the unit cube [0, 1] × [0, 1]× [0, 1],
oriented outward, in two different ways: (i) directly (you will need to
integrate over each face separately and then add up the results) and
(ii) using the Divergence Theorem.

(a)
−→
F (x, y, z) = x−→ı + y−→ + z

−→
k

(b)
−→
F (x, y, z) = −→ı +−→ +

−→
k

(c)
−→
F (x, y, z) = x2−→ı + y2−→ + z2

−→
k

4. Find the flux of the vector field

−→
F (x, y, z) = 10x3y2−→ı + 3y5−→ + 15x4z

−→
k

over the outward-oriented boundary of the solid cylinder x2 + y2 ≤ 1,
0 ≤ z ≤ 1.

5. Find the flux integral
∫∫

S

−→
F · d−→S for the vector field

−→
F (x, y, z) = yz−→ı + x−→ + xz

−→
k over the boundary of each region

below:

(a) x2 + y2 ≤ z ≤ 1

(b) x2 + y2 ≤ z ≤ 1 and x ≥ 0

(c) x2 + y2 ≤ z ≤ 1 and x ≤ 0.

6. Calculate the flux of the vector field−→
F (x, y, z) = 5yz−→ı + 12xz−→ + 16x2y2

−→
k over the surface of the cone

z2 = x2 + y2 above the xy-plane and below the plane z = 1.
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Theory problems:

7. Prove Remark 6.8.3. (Hint: Start with an expression for
−→
G , calculate

its curl, then take the divergence of that.)

8. Fill in the details of the argument for P and Q needed to complete
the proof of Theorem 6.8.5.

9. Extend the heuristic argument given on p. 677 to argue that the
divergence of a vector field in R

3 reflects the tendency of a fluid flow
to increase volumes.

10. (a) Formulate a definition of what it means for a region D ⊂ R
3 to

be symmetric in x (resp. in y).

(b) Formulate a definition of what it means for a function f(x, y, z)
to be even, or odd, in x (resp. in y).

(c) Prove that if a function f(x, y, z) is odd in x then its integral
over a region which is x-regular and symmetric in x is zero.

(d) What can you say about
∫∫∫

D
f(x, y, z) dV if f is even in x and

D is x-regular and symmetric in x?

Challenge Problems:

In Exercises 11-13, you will prove Proposition 6.8.4, that every

divergence-free vector field
−→
F is the curl of some vector field

−→
G , by a

direct construction based on [58] and [38, p. 560]. Each step will be

illustrated by the example
−→
F (x, y, z) = yz−→ı + xz−→ + xy

−→
k .

11. (a) Given a continuous function φ(x, y, z), show how to construct a
vector field whose divergence is φ. (Hint: This can even be done
with a vector field parallel to a predetermined coordinate axis.)

(b) Given a continuous function ϕ(x, y), show how to construct a

planar vector field
−→
G(x, y) = g1(x, y)

−→ı + g2(x, y)
−→ whose

planar curl equals ϕ. (Hint: Consider the divergence of the

related vector field
−→
G ′⊥(x, y) = g2(x, y)

−→ı − g1(x, y)−→ .)
(c) Construct a planar vector field−→

G(x, y) = g1(x, y)
−→ı + g2(x, y)

−→ with planar curl

∂g2
∂x

(x, y)− ∂g1
∂y

(x, y) = xy.
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12. Note that in this problem, we deal with horizontal vector fields in R
3.

(a) Show that the curl of a horizontal vector field

−→
G(x, y, z) = g1(x, y, z)

−→ı + g2(x, y, z)
−→

is determined by the planar curl of its restriction to each
horizontal plane together with the derivatives of its components
with respect to z:

−→∇ ×−→G = −∂g2
∂z
−→ı +

∂g2
∂z
−→ +

(

∂g2
∂x
− ∂g1
∂x

)−→
k .

(b) Construct a horizontal vector field whose restriction to the
xy-plane agrees with your solution to Exercise 11c—that is,
such that

∂g2
∂x

(x, y, 0) − ∂g1
∂y

(x, y, 0) = xy

which also satisfies

∂g1
∂z

(x, y, z) = xz

∂g2
∂z

(x, y, z) = −yz.

at all points (x, y, z). Verify that the resulting vector field−→
G(x, y, z) satisfies

−→∇ ×−→G = yz−→ı + xz−→ + xy
−→
k .

13. Now suppose that

−→
F (x, y, z) = P (x, y, z)−→ı +Q(x, y, z)−→ +R(x, y, z)

−→
k

is any C1 vector field satisfying

div
−→
F = 0.

Show that if

−→
G(x, y, z) = g1(x, y, z)

−→ı + g2(x, y, z)
−→
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is a C2 horizontal vector field satisfying

∂g1
∂z

(x, y, z) = Q(x, y, z)

∂g2
∂z

(x, y, z) = −P (x, y, z)
∂g2
∂x

(x, y, 0) − ∂g1
∂y

(x, y, 0) = R(x, y, 0)

then −→∇ ×−→G =
−→
F

by showing that the extension of the third condition off the xy-plane

∂g2
∂x

(x, y, z) − ∂g1
∂y

(x, y, z) = R(x, y, z)

holds for all z.

14. Filling holes: In this problem, you will show that given a vector

field
−→
F defined and C1 on a neighborhood of a sphere, there exists a

new vector field
−→
G , defined and C1 on the neighborhood “filled in” to

include the ball bounded by the sphere, such that
−→
F =

−→
G on the

sphere and its exterior. Thus, we can replace
−→
F with

−→
G on both

sides of Equation (6.41), justifying our argument extending the
Divergence Theorem to regions with holes (Corollary 6.8.6).

(a) Suppose φ(t) is a C1 function defined on an open interval
containing [a, b] satisfying

φ(a) = 0

φ′(a) = 0

φ(b) = 1

φ′(b) = 0.

Show that the function defined for all t by

ψ(t) =











0 for t ≤ a,
φ(t) for a ≤ t ≤ b,
1 for t ≥ b

is C1 on the whole real line.
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(b) Given a < b, find values of α and β such that

φ(t) =
1

2
(1− cos (αt+ β))

satisfies the conditions above.

(c) Given a < b and φ(t) as above, as well as f(t) defined and C1 on
a neighborhood (b− ε, b+ ε) of b, show that

g(t) =

{

0 for t < a,

ψ(t) f(t) for a ≤ t < b+ ε

is C1 on (−∞, b+ ε).

(d) Given a C1 vector field
−→
F on a neighborhood N of the sphere S

of radius R centered at −→c

S =
{−→x | (−→x −−→c )2 = R2

}

N =
{−→x |R2 − ε ≤ (−→x −−→c )2 ≤ R2 + ε

}

(where (−→x −−→c )2 := (−→x −−→c ) · (−→x −−→c )) show that the vector

field
−→
G defined by

−→
G(−→x ) =

{−→
0 for (−→x −−→c )2 ≤ R2 − ε,
ψ
(

(−→x −−→c )2
)−→
F (−→x ) for −→x ∈ N

is C1 on

BR (−→c ) ∪N =
{−→x | (−→x −−→c )2 ≤ R2 + ε

}

.

(e) Sketch how to use this to show that a C1 vector field defined on
a region D with holes can be extended to a C1 vector field on
the region with the holes filled in. (You may assume that the
vector field is actually defined on a neighborhood of each
internal boundary sphere.)

15. In this problem (based on [32, pp. 362-3]), you will use the
Change-of-Variables Formula (Theorem 5.3.6) to show that the
divergence of a planar vector field gives the rate of change of area
under the associated flow. The analogous three-dimensional proof is
slightly more involved; it is given in the work cited above.
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We imagine a fluid flow in the plane: the position at time t of a point
whose position at time t = 0 was (x, y) is given by

u = u(x, y, t)

v = v(x, y, t)

or, combining these into a mapping F:R3→R
2,

(u, v) = F (x, y, t)

= Ft(x, y)

where Ft(x, y)is the transformation Ft:R
2→R

2 taking a point
located at (x, y) when t = 0 to its position at time t; that is, it is the
mapping F with t fixed.

The velocity of this flow is the vector field

V (u, v) =

(

∂u

∂t
,
∂v

∂t

)

= (u′, v′).

V may also vary with time, but we will suppress this in our notation.

Let D ⊂ R
2 be a regular planar region; we denote the area of its

image under Ft as

A (t) = A (Ft(D)) ;

by Theorem 5.3.6, this is

=

∫∫

D
|Jt| dx dy

where

Jt = JFt =

[

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

]

is the Jacobian matrix of Ft, and

|Jt| = det JFt

=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
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is its determinant. (Strictly speaking, we should take the absolute
value, but it can be shown that for a continuous flow, this
determinant is always positive.)

(a) Show that

d

dt
[detJt] =

∂u′

∂x

∂v

∂y
− ∂u′

∂y

∂v

∂x
+
∂v′

∂y

∂u

∂x
− ∂v′

∂x

∂u

∂y
.

(b) Show that

div V :=
∂u′

∂u
+
∂v′

∂v

=
∂u′

∂x

∂x

∂u
+
∂u′

∂y

∂y

∂u
+
∂v′

∂x

∂x

∂v
+
∂v′

∂y

∂y

∂v
.

(c) Show that the inverse of JFt is

JF−1
t :=

[

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]

=
1

|Jt|

[

∂v/∂y −∂u/∂y
−∂v/∂x ∂u/∂x

]

.

(Hint: Use the Chain Rule, and show that the product of this
with JFt is the identity matrix.)

(d) Regarding this matrix equation as four equations (between
corresponding entries of the two matrices), substitute into the
previous formulas to show that

div V =
1

|Jt|
d

dt
[|Jt|] .

(e) Use this to show that

d

dt
[A (t)] =

∫∫

Ft(D)
div V du dv.

6.9 3-forms and the Generalized Stokes Theorem

Multilinear Algebra

In §§6.4 and 6.7 we encountered the notion of a bilinear function: a
function of two vector variables which is “linear in each slot”: it is linear as
a function of one of the variable when the other is held fixed. This has a
natural extension to more vector variables:
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Definition 6.9.1. A trilinear function on R
3 is a function T (−→x ,−→y ,−→z )

of three vector variables −→x ,−→y ,−→z ∈ R
3 such that fixing the values of two of

the variables results in a linear function of the third: given
−→a ,−→b ,−→v ,−→w ∈ R

3 and α, β ∈ R,

T
(

α−→v + β−→w ,−→a ,−→b
)

= αT
(−→v ,−→a ,−→b

)

+ βT
(−→w ,−→a ,−→b

)

T
(−→a , α−→v + β−→w ,−→b

)

= αT
(−→a ,−→v ,−→b

)

+ βT
(−→a ,−→w ,−→b

)

T
(−→a ,−→b , α−→v + β−→w

)

= αT
(−→a ,−→b ,−→v

)

+ βT
(−→a ,−→b ,−→w

)

.

As is the case for linear and bilinear functions, knowing what a trilinear
function does when all the inputs are basis vectors lets us determine what
it does to any inputs. This is most easily expressed using indexed notation:
Let us write

−→ı = −→e1
−→ = −→e2
−→
k = −→e3

and for each triple of indices i1, i2, i3 ∈ R
3

ci1,i2,i3 := f(ei1 , ei2 , ei3) .

Then the function T can be expressed as a homogeneous degree three
polynomial in the components of its inputs as follows: for

−→x = x1
−→ı + x2

−→ + x3
−→
k =

3
∑

i=1

xi
−→ei

−→y = y1
−→ı + y2

−→ + y3
−→
k =

3
∑

j=1

yj
−→ej

−→z = z1
−→ı + z2

−→ + z3
−→
k =

3
∑

k=1

zk
−→ek

we have

T (−→x ,−→y ,−→z ) =
3
∑

i=1

3
∑

j=1

3
∑

k=1

cijkxiyjzk. (6.42)

This can be proved by a tedious but straightforward calculation
(Exercise 6).
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Unfortunately, there is no nice trilinear analogue to the matrix
representation of a bilinear function. However, we are not interested in
arbitrary trilinear functions, only the ones satisfying the following
additional condition, the appropriate extension of anti-commutativity:

Definition 6.9.2. A trilinear function T (−→x ,−→y ,−→z ) is alternating if
interchanging any pair of inputs reverses the sign of the function:

T (−→y ,−→x ,−→z ) = −T (−→x ,−→y ,−→z )
T (−→x ,−→z ,−→y ) = −T (−→x ,−→y ,−→z )
T (−→z ,−→y ,−→x ) = −T (−→x ,−→y ,−→z ) .

A 3-form on R
3 is an alternating trilinear function on R

3.

Several properties follow immediately from these definitions (Exercise 7):

Remark 6.9.3. If the trilinear function T (−→x ,−→y ,−→z ) is alternating, the
coefficients cijk in Equation (6.42) satisfy:

1. If any pair of indices is equal, then cijk = 0;

2. The six coefficients with distinct indices are equal up to sign; more
precisely,

c123 = c231 = c312

c132 = c321 = c213

and the coefficients in the first list are the negatives of those in the
second list.

In particular, every 3-form on R
3 is a constant multiple of the determinant

T (−→x ,−→y ,−→z ) = c∆(−→x ,−→y ,−→z ) = cdet

∣

∣

∣

∣

∣

∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣

∣

∣

∣

∣

∣

where c is the common value of the coefficients in the first list above.

Regarded as a 3-form, the determinant in this remark assigns to three
vectors in R

3 the oriented volume of the parallelepiped they determine; we
will refer to this as the volume form on R

3, and denote it by

dx ∧ dy ∧ dz := ∆.
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We then consider any such formal “triple wedge product” of dx, dy, and
dz in another order to be plus or minus the volume form, according to the
alternating rule: that is, we posit that swapping neighboring entries in this
product reverses its sign, giving us the following list of the six possible
wedge products of all three coordinate forms:

dx ∧ dy ∧ dz = − dy ∧ dx ∧ dz
= dy ∧ dz ∧ dx
= − dz ∧ dy ∧ dx
= dz ∧ dx ∧ dy
= − dz ∧ dx ∧ dy.

Now, we can define the wedge product of a basic 1-form and a basic 2-form
by removing the parentheses and comparing with the list above: for
example,

dx ∧ ( dy ∧ dz) = ( dx ∧ dy) ∧ dz = dx ∧ dy ∧ dz

and, in keeping with the alternating rule, a product in which the same
coordinate form appears twice is automatically zero. Finally, we extend
this product to an arbitrary 1-form and an arbitrary 2-form on R

3 by
making the product distribute over linear combinations. As an example, if

α = 3 dx+ dy + dz

and

β = dx ∧ dy + 2 dx ∧ dz + dy ∧ dz

then

α ∧ β = (3 dx + dy + dz) ∧ ( dx ∧ dy + 2 dx ∧ dz + dy ∧ dz)
= 3 dx ∧ ( dx ∧ dy) + 6 dx ∧ ( dx ∧ dz) + 3 dx ∧ ( dy ∧ dz)

+ dy ∧ ( dx ∧ dy) + 2 dy ∧ ( dx ∧ dz) + dy ∧ ( dy ∧ dz)
+ dz ∧ ( dx ∧ dy) + 2 dz ∧ ( dx ∧ dz) + dz ∧ ( dy ∧ dz)

= 0 + 0 + dx ∧ dy ∧ dz + 0 + 2 dy ∧ dx ∧ dz + 0 + dz ∧ dx ∧ dy + 0 + 0

= 3 dx ∧ dy ∧ dz − 2 dx ∧ dy ∧ dz + dx ∧ dy ∧ dz
= 2 dx ∧ dy ∧ dz.
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Calculus of Differential Forms

Now, in the spirit of § 6.7, we can define a differential 3-form on a
region D ⊂ R

3 to be a mapping Λ which assigns to each point p ∈ D a
3-form Λp on the tangent space TpR

3 to R
3 at p. By the discussion above,

any such mapping can be expressed as

Λp = c(p) dx ∧ dy ∧ dz.

We can also extend the idea of an exterior derivative to 2-forms: if

Ω = f(x, y, z) dx1 ∧ dx2

(where each of xi, i = 1, 2 is x, y or z), then its exterior derivative is the
3-form

dΩ =d(f(x, y, z) dx1 ∧ dx2) = df ∧ dx1 ∧ dx2.

The differential df of f involves three terms, corresponding to the three
partial derivatives of f , but two of these lead to triple wedge products in
which some coordinate form is repeated, so only one nonzero term
emerges. We then extend the definition to general 2-forms using a
distributive rule. For example, if

Ω = (x2 + xyz) dy ∧ dz + (y2 + 2xyz) dz ∧ dx+ (z2 + xyz) dx ∧ dy

then

dΩ =
(

(2x+ yz) dx+ xz dy + xy dz
)

∧ dy ∧ dz
+
(

2yz dx+ (2y + 2xz) dy + 2xy dz
)

∧ dz ∧ dx
+
(

yz dx+ xz dy + (2z + xy) dz
)

∧ dx ∧ dy
= (2x+ yz) dx ∧ dy ∧ dz + 0 + 0

+ 0 + (2y + 2xz) dy ∧ dzx+ 0

+ 0 + 0 + (2z + xy) dz ∧ dxy
= (2x+ yz) dx ∧ dy ∧ dz + (2y + 2xz) dx ∧ dy ∧ dz + (2z + xy) dx ∧ dy ∧ dz
= (2x+ 2y + 2z + yz + 2xz + xy) dx ∧ dy ∧ dz.

It is a straightforward calculation to check the following
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Remark 6.9.4. If the 2-form

Ω(x,y,z) = a(x, y, z) dy ∧ dz + b(x, y, z) dz ∧ dx+ c(x, y, z) dx ∧ dy

corresponds to the vector field

−→
F (x, y, z) = a(x, y, z)−→ı + b(x, y, z)−→ + c(x, y, z)

−→
k

then its exterior derivative corresponds to the divergence of
−→
F :

dΩ = (div
−→
F ) dx ∧ dy ∧ dz.

Finally, we define the integral of a 3-form Λ over a region D ⊂ R
3 by

formally identifying the basic volume form with dV : if

Ωp = f(p) dx ∧ dy ∧ dz

then

∫

D
Ω =

∫∫∫

D

f dV.

Pay attention to the distinction between the 3-form dx ∧ dy ∧ dz and the
element of volume dV = dx dy dz: changing the order of dx, dy and dz in
the 3-form affects the sign of the integral, while changing the order of
integration in a triple integral does not. The form is associated to the
standard right-handed orientation of R3; the 3-forms obtained by
transposing an odd number of the coordinate forms, like dy ∧ dx ∧ dz, are
associated to the opposite, left-handed orientation of R3.

As an example, consider the 3-form

Ω(x,y,z) = xyz dx ∧ dy ∧ dz;

its integral over the “rectangle” [0, 1]× [0, 2] × [1, 2] is

∫

[0,1]×[0,2]×[1,2]
Ω =

∫∫∫

[0,1]×[0,2]×[1,2]
xyz dV
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which is given by the triple integral

∫ 1

0

∫ 2

0

∫ 2

1
xyz dz dy dx =

∫ 1

0

∫ 2

0

(

xyz2

2

)2

z=1

dy dx

=

∫ 1

0

∫ 2

0

(

3xy

2

)

dy dx

=

∫ 1

0

(

3xy2

4

)2

y=0

dx

=

∫ 1

0
3x dx

=
3x2

2

∣

∣

∣

1

0

=
3

2
.

Finally, with all these definitions, we can reformulate the Divergence
Theorem in the language of forms:

Theorem 6.9.5 (Divergence Theorem, Differential Form). If Ω is a C2
2-form defined on an open set containing the regular region D ⊂ R

3 with
boundary surface(s) ∂D, then the integral of Ω over the boundary ∂D of D
(with boundary orientation) equals the integral of its exterior derivative
over D:

∫

∂D
Ω =

∫

D
dΩ.

Generalized Stokes Theorem

Looking back at Theorem 6.4.3, Theorem 6.7.8 and Theorem 6.9.5, we see
that Green’s Theorem, Stokes’ Theorem and the Divergence Theorem,
which look so different from each other in the language of vector fields
(Theorem 6.3.4, Theorem 6.6.2, and Theorem 6.8.5), can all be stated as
one unified result in the language of differential forms. To smooth the
statement, we will abuse terminology and refer to a region D ⊂ R

n (n = 2
or 3) as an “n-dimensional surface in R

n”:

Theorem 6.9.6 (Generalized Stokes Theorem). If S is an oriented
k-dimensional surface in R

n (k ≤ n) with boundary ∂S (given the
boundary orientation) and Ω is a C2 (k− 1)-form on R

n defined on S, then
∫

∂S
Ω =

∫

S

dΩ.
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So far we have understood k to be 2 or 3 in the above, but we can also
include k = 1 by regarding a directed curve as an oriented “1-dimensional
surface”, and defining a “0-form” to be a function f:Rn→R; a
“0-dimensional surface” in R

n to be a point or finite set of points, and an
orientation of a point to be simply a sign ±: the “integral” of the 0-form
associated to the function f is simply the value of the function at that
point, preceded with the sign given by its orientation. Then the boundary
of a directed curve in R

n (n = 2 or 3) is its pair of endpoints, oriented as
pend − pstart, and the statement above becomes the Fundamental Theorem
for Line Integrals; furthermore, the same formalism gives us the
Fundamental Theorem of Calculus when n = 1, given that we regard an
interval as a “1-dimensional surface” in R

1.
In fact, this statement has a natural interpretation in abstract n-space R

n

(where cross products, and hence the language of vector calculus does not
have a natural extension), and gives a powerful tool for the study of
functions and differential equations, as well as the topology of manifolds.

Exercises for § 6.9

Practice problems:

1. Calculate the exterior product dα ∧ dβ:

(a) α = 3 dx+ 2x dy, β = 2 dx ∧ dy − dy ∧ dz + x dx ∧ dz
(b) α = 3 dx ∧ dy + 2x dy ∧ dz, β = 2x dx− dy + z dz

(c) α = x dx+ y dy + z dz, β = dx ∧ dy − 2x dy ∧ dz
(d) α = x dx∧dy+xy dy∧dz+xyz dx∧dz, β = x dx− yz dy+xy dz

2. Express the given form as c(x, y, z) dx ∧ dy ∧ dz:

(a) ( dx+ dy + dz) ∧ (2 dx− dy + dz) ∧ ( dx+ dy)

(b) ( dx− dy) ∧ (2 dx+ dz) ∧ ( dx+ dy + dz)

(c) (x dy + y dz) ∧ d(x2y dy − xz dx)
(d) d((x dy + y dz) ∧ dg), where g(x, y, z) = xyz.

3. Calculate the exterior derivative dΩ:

(a) Ω = dx ∧ dy + x dy ∧ dz
(b) Ω = xy dx ∧ dy + xz dy ∧ dz
(c) Ω = xyz( dx ∧ dy + dx ∧ dz + dy ∧ dz)
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(d) Ω = (xz − 2y) dx ∧ dy + (xy − z2) dx ∧ dz
4. Calculate the integral

∫

D
Λ:

(a) Λ = (xy + yz) dx ∧ dy ∧ dz, D = [0, 1] × [0, 1] × [0, 1]

(b) Λ = (x− y) dx ∧ dy ∧ dz, D is the region cut out of the first
octant by the plane x+ y + z = 1.

(c) Λ = (x2 + y2 + z2) dx ∧ dy ∧ dz, D is the unit ball
x2 + y2 + z2 ≤ 1.

5. Calculate
∫

S
Ω two ways: (i) directly, and (ii) using the Generalized

Stokes Theorem.

(a) Ω = z dx ∧ dy, S is the cube with vertices (0, 0, 0), (1, 0, 0),
(1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), and(0, 1, 1), oriented
outward.

(b) Ω = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy, S is the sphere
x2 + y2 + z2 = 1, oriented outward.

Theory problems:

6. Verify Equation (6.42).

7. Prove Remark 6.9.3.

8. Show that the only alternating trilinear function on R
2 is the

constant zero function.

9. Show that if
α = P dx+Qdy +Rdz

is the 1-form corresponding to the vector −→v = P−→ı +Q−→ +R−→ and

β = a dy ∧ dz + b dz ∧ dx+ c dx ∧ dy
is the 2-form corresponding to the vector −→w = a−→ı + b−→ + c

−→
k , then

α ∧ β == (−→v · −→w ) dx ∧ dy ∧ dz = β ∧ α.
Note that, unlike the product of two 1-forms, the wedge product of a
1-form and a 2-form is commutative.

10. Prove Remark 6.9.4.

11. Show that if Ω = dω is the exterior derivative of a 1-form ω, then

dΩ = 0.
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A
Conic Sections: Apollonius’ approach

Here we give some more details of the argument for certain assertions in
§ 2.1. Our exposition loosely follows [27, pp. 355-9].

Recall the setup (Figure A.1):

R

Q
V

B

C

P

H

P

Figure A.1: Conic Section

We wish to investigate the conic section γ = P ∩ K, where the plane P
does not contain the origin, and intersects any horizontal plane in a line
parallel to the x-axis. The yz-plane (which is perpendicular to any such
line) intersects γ in a point P , and possibly in a second point P ′—the
vertices of γ. Given a point Q on γ distinct from the vertices (i.e., not in
the yz-plane), the horizontal plane H through Q intersects K in a circle

707
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containing Q. The intersection of H with the yz-plane is a line through the
center of this circle, and so contains a diameter BC of the circle. We draw
the chord of the circle through Q perpendicular to this diameter, denoting
by R the other end of the chord, and by V its intersection with BC. The

B C

Q

R

V

Figure A.2: Lines in H

line segments QV and PV are, respectively, the ordinate and abcissa.

We know that V bisects QR, and also, by Prop. 13, Book VI of the
Elements, that

|QV |2 = |QV | · |V R| = |BV | · |V C| . (A.1)

Parabolas: Suppose first that PV is parallel to AC, so that P is the only
vertex of γ. Consider the triangle △ABC in the yz-plane, noting that P
lies on AB and V lies on BC (Figure A.3). Since AC is parallel to PV ,

A

B C

P

V

Figure A.3: Equation (A.2)

the triangles △ABC and △PBV are similar and (since AD = AC)
isosceles. In particular,

|BV |
|BP | =

|BC|
|BA|
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and (again since AC and PV are parallel)

|V C|
|BC| =

|PA|
|BA|

or equivalently

|V C|
|PA| =

|BC|
|BA| .

Multiplication of these two equations yields

|BV | |V C|
|BP | |PA| =

( |BC|
|BA|

)2

.

Since |BP | = |PV |, we conclude that

|BV | |V C| =
[

( |BC|
|BA|

)2

|PA|
]

|PV | . (A.2)

Note that replacing Q with another point Q′ on γ replaces H with a
parallel plane H′, and gives a picture similar to Figure A.3 (Figure A.4).
In particular, the quantity in brackets in Equation (A.2) depends only on

A

B C H

L

P

V

B′ C ′
H′

V ′

Figure A.4: Independence of Q

γ: it is called the parameter of ordinates for γ—we will denote it by p.
Apollonius represents it by a line segment PL perpendicular to the abcissa
PV (indicated in Figure A.4), called the orthia,1 or in Latin, the latus
rectum .2

1Fried and Unguru argue that for Apollonius, the orthia is a specific line segment, not
the representation of an independent quantity.

2The term “latus rectum” is also used to refer to the parameter of ordinates (the
number p in Equation (A.3)).
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If we introduce rectangular coordinates in P with the origin at P and axes
parallel to QV and PV , setting

y = |QV |
x = |PV |

then Equation (A.1) says that

y2 = |BV | |V C| ,

and substituting this information into Equation (A.2) leads to the equation

y2 = px (A.3)

where p is the parameter of ordinates defined above.

For the other two cases, when PV is not parallel to AC, then the line PV
(extended) meets the line AB (extended) at the second vertex P ′. If φ
denotes the (acute) angle between P and a horizontal plane H, then V lies
between P and P ′ if 0 ≤ φ < π

2 − α and P lies between V and P ′ if
π
2 − α < φ ≤ π

2 .
Ellipses: In the first case (see Figure A.5), let J be the point at which the
line through A parallel to PV (and hence to PP ′) meets BC (extended).
As in the case of the parabola (but with C replaced by J), the triangles
△ABJ and △PBV are similar (but no longer isosceles), so

|BV |
|PV | =

|BJ |
|AJ | .

Also, since the lines AP ′ and V J are transversals to the two parallels AJ
and PP ′ meeting at C, the triangles △AJC and △P ′V C are similar, so

|V C|
|V P ′| =

|JC|
|AJ | .

Multiplying these equalities and invoking Equation (2.2), we have

|QV |2
|PV | |V P ′| =

|BV | |V C|
|PV | |V P ′| =

|BJ | |JC|
|AJ |2

or, as the analogue of Equation (A.2),

|QV |2 =
[( |BJ | |JC|

|AJ |2
)

∣

∣V P ′∣
∣

]

|PV | . (A.4)
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A

B

C J H

P

P ′

V
φ

π
2 − α

2α

Figure A.5: 0 ≤ φ ≤ π
2 − α

Again as in the case of the parabola, the fraction in parentheses in
Equation (A.4) depends only on the curve γ. We again form the “orthia”
of γ, a line segment PL perpendicular to PV with length3

p = |PL| =
( |BJ | |JC|
|AJ |2

)

∣

∣PP ′∣
∣ . (A.5)

Now let S be the intersection of LP ′ with the line through V parallel to PL
(Figure A.6). Note that the triangles △LP ′P and △SP ′V are similar, so

|PL|
|PP ′| =

|V S|
|V P ′|

3This defintion of the orthia is on the face of it quite different from the definition in
the case of the parabola. I have not been able to find a reasonable explanation of why
the two definitions yield analogous line segments. It can be shown (M. N. Fried, private
correspondence) that if one considers the orthia of hyperbolic or elliptic sections whose
diameter has inclination approaching that of a generator (i.e., approaching a parabolic
section), then these orthia tend toward the parabolic orthia of the limit. This, however,
is clearly an anachronistic point of view, and Fried has pointed out that Apollonius never
discusses varying the section. In fact, in his view, Apollonius did not intend the properties
of the conic sections with respect to application of areas—known as the symptomata—
to unify the different types; he viewed them as separate objects, and only noted these
somewhat analogous properties as incidental observations. Fried’s point of view (but not
a specific commentary on this issue) is given at length in [16, pp. 74-90].
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A

B

C J H

P

P ′

V

S
L

Figure A.6: Definition of S

and substituting this (via Equation (A.5)) into Equation (A.4), we have

|QV |2 =
[( |PL|
|PP ′|

)

∣

∣V P ′∣
∣

]

|PV |

=

[( |V S|
|V P ′|

)

∣

∣V P ′∣
∣

]

|PV |

or

|QV |2 = |V S| · |PV | . (A.6)

This is like Equation (A.3), but |PL| is replaced by the shorter length |V S|.
To obtain the rectangular equation of the ellipse, we set

d =
∣

∣PP ′∣
∣

(the diameter): by similarity of △LP ′P and △SP ′V ,

|V S|
|PL| =

|V P ′|
|PP ′| = 1− |PV ||PP ′|

so (again setting x = |PV | and y = |QV |) we have as the equation of the
ellipse

y2 = |V S| x = p
(

1− x

d

)

x = px− p

d
x2. (A.7)

Hyperbolas: In the final case, when π
2 − α < φ ≤ π

2 , P lies between V
and P ′ (Figure A.7). Formally, our constructions in this case are the same
as in the case of the ellipse: as before, the two similarities
△ABJ ∼ △PBV and △AJC ∼ △P ′V C lead to Equation (A.4); we form



713

A

B C

J
H

P

P ′

V

φ

π
2 − α

Figure A.7: π
2 − α < φ ≤ π

2

the orthia PL perpendicular to PV satisfying Equation (A.5) and let S be
the intersection of P ′L (extended) with the line through V parallel to PL
(Figure A.8). The same arguments as in the ellipse case yield
Equation (A.6), but this time the segment V S exceeds PL.
A verbatim repetition of the calculation leading to Equation (A.7) leads to
its hyperbolic analogue,

y2 = px+
p

d
x2. (A.8)
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A

B C H

P

P ′

V

S

L

Figure A.8: Definition of S



B
Conic Sections: The Focus-Directrix

Property

Here we give a proof of Pappus’ lemma (Lemma 2.1.1):1

If the distance of a point from a fixed point be in a given ratio
to its distance from a fixed straight line, the locus of the point is
a conic section, which is an ellipse, a parabola, or a hyperbola
according as the ratio is less than, equal to, or greater than,
unity.

Our pictures will illustrate the elliptic case, but the arguments are general.

Proof. We assume as before that γ is the intersection of K with a plane P
that intersects any horizontal plane H in a line parallel to the x-axis,
making a dihedral angle φ with H. Denote the intersection of P with the
axis of K by K, and as before, let P be a vertex of γ (an intersection of γ
with the yz-plane). Let E be the intersection of the axis of K with the
bisector of the angle ∠APK (Figure B.1) and draw perpendiculars EB to

1Actually, what we prove is that every conic section has the focus-directrix property.
a priori this is the converse of what we want, but one can look at it as an indirect proof
that whenever a given focus, directrix and eccentricity occur for a conic section, that conic
section is the locus of points satisfying that particular focus-directrix condition. But by
scaling, displacement and rotation arguments it can be shown that every such combination
of focus, directrix and eccentricity occurs for a conic section.
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P

K

E

A

B

F

Figure B.1: Definition of E, B and F

AP and EF to PK. Since ∠EFP and ∠EBP are both right angles and
∠EPB = ∠EPF , the (right) triangles △EFP and △EBP , which share a
common hypotenuse EP , are congruent, so |EB| = |EF |. Let H be the
horizontal plane through B, and construct the sphere S with center at E
and radius |EF |. Then S is tangent to the plane P at F , and to the cone
K at all points on the circle of intersection of H with K. Let ℓ be the line
of intersection of H with P (by assumption, ℓ is parallel to the x-axis) and
let D be the intersection of ℓ with the yz-plane (Figure B.2). Note that

b

b

b

A

BD

E

F

H

S

P

P

γ

b

ℓ

Figure B.2: Definition of S, ℓ, and D

∠BDP = φ
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and

∠DBP =
π

4
.

Given a point Q on γ, let

• H = the intersection of H with the generator of K through Q;

• G = the point on ℓ nearest to Q;

• T = the point of H directly above (or below) Q.

(Figure B.3).

b

b

b

A

B

D

F

G b

Hb

Qb

T
b H

P

Figure B.3: Definition of H, G, and T

We wish to compare the ratio |PF | / |PD| with |QF | / |QG|. Note that

• since QF and QH are both tangents from Q to S,

|QF | = |QH| ;

• △TQH is a right triangle in the plane containing the axis of K and
Q, so

|QH| = |QT |
sin(∠THQ)

;
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• rotating this plane into the plane containing the axis and P , since all
generators make the same angle α with the axis,

∠THQ = ∠DBP =
π

2
− α

so

|QH| = |QT |
sinα

;

• the plane containing Q, T and G is parallel to the yz-plane, so

∠TGQ = ∠BDP = φ

and

|QG| = |QT |
sin(∠tGQ)

=
|QT |
sinφ

;

• it follows that
|QF |
|QG| =

sinφ

sin(π2 − α)
.

But the right-hand side of this equality is independent of the choice of Q
on γ, and the quantities on the left are the distances from Q to,
respectively, the focus and the directrix.
This proves that the ratio is constant, and is less than, equal to, or greater
than one as φ is less than, equal to, or greater than π

2 − α, establishing the
lemma.



C
Equations for Conic Sections

To fix ideas, let us place the y-axis along the directrix and the focus at a
point F (k, 0) on the x-axis. The distance of a generic point P (x, y) from
the y-axis is |x|, while its distance from the focus is

|FP | =
√

(x− k)2 + y2.

Thus the focus-directrix property can be written

|FP |
|x| = e

where e is the eccentricity. Multiplying through by |x| and squaring both
sides leads to the equation of degree two

(x− k)2 + y2 = e2x2.

which can be rewritten

(1− e2)x2 − 2kx+ y2 = −k2. (C.1)

Parabolas

When e = 1, the x2-term drops out, and we have

y2 = 2kx− k2 = 2k

(

x− k

2

)

. (C.2)
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If we denote the quantity in parentheses by X = x− k
2 , and set p = 2k,

Equation (C.2) takes the form

y2 = pX. (C.3)

Now, X and y form a coordinate system which differs from the standard
one only in that the x-coordinate of a point exceeds its X-coordinate by
k
2 = p

4 . This means that the directrix has equation X = −p
4 and the focus

is at the point on the X-axis with coordinate X = k − k
2 = k

2 = p
4 .

Switching back to lower-case notation for our (new) coordinates, we see
that the equation of the parabola with directrix x = −p

4 and focus (p4 , 0) is

y2 = px.

This is sketched in Figure 2.7 on p. 122.

Ellipses

When 0 < e < 1, we can complete the square to get

(1− e2)X2 + y2 =
k2e2

1− e2 (C.4)

where

X = x− k

1− e2 .

In this case, all the coefficients in Equation (C.4) are positive, hence
perfect squares. Then setting

a =
ke

1− e2

b = a
√

1− e2 = ke√
1− e2

we can rewrite Equation (C.4) in the form

X2

a2
+
y2

b2
= 1.

Note that here X = x− a
e , so this is the equation of the ellipse with

directrix x = 0 or

X = −a
e
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and focus where y = 0 and x = k or

X = k − k

1− e2 = − ke2

1− e2 = −ae.

It is also easy to see from the definition of a and b that

e =

√

1−
(

b

a

)2

. (C.5)

Having described the geometry of this curve in terms of X, we will adopt
this as our new x-coordinate, yielding the model equation for an ellipse

x2

a2
+
y2

b2
= 1. (C.6)

This information is illustrated in Figure 2.9 on p. 125.

Hyperbolas:

When e > 1, the coefficient (1− e2) of X2 in Equation (C.4) is negative; in
this case we define the numbers a, b > 0 by

a =
ke

e2 − 1

b = a
√

e2 − 1 =
ke√
e2 − 1

.

Equation (C.4) then reads

X2

a2
− y2

b2
= 1;

this equation represents the conic with focus on the x-axis with x = k, or
X = k − k/(1− e2) = ke2/(e2 − 1) = ae, and directrix the line x = 0, or
X = 0− k

1−e2 = a/e. This leads to the hyperbolic analogue of
Equation (C.6)

x2

a2
− y2

b2
= 1 (C.7)

as the equation of the hyperbola with focus F (ae, 0) and directrix x = a/e,
where

e =

√

1 +

(

b

a

)2

.

See Figure 2.10 on p. 126.
Note that here, by contrast to the elliptic case, the focus and directrix lie
on the same side of the origin.
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D
Matrix Basics

Matrices and matrix operations offer an efficient, systematic way to handle
several numbers at once. In this appendix, we review the basics of matrix
algebra. Determinants are considered separately, in Appendix E.
An m × n matrix is an array consisting of m rows with n entries each,
aligned vertically in n columns. We shall deal primarily with matrices
whose dimensions m and n are at most 3. An example is the coordinate

column [−→x ] of a vector −→x = x1
−→ı + x2

−→ + x3
−→
k :

[−→x ] =





x1
x2
x3





which is a 1× 3 matrix. A 3× 3 matrix has the form

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33





which has three rows

row1(A) =
[

a11 a12 a13
]

row2(A) =
[

a21 a22 a23
]

row3(A) =
[

a31 a32 a33
]

723
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(which are 1× 3 matrices) and three columns

col1(A) =





a11
a21
a31



 col2(A) =





a12
a22
a32



 col3(A) =





a13
a23
a33





(which are 3× 1). Note that the entry aij is in rowi(A) and colj(A).

D.1 Matrix Algebra

Matrix sums and scaling

Matrices add and scale much the way vectors do: addition is
componentwise, and scaling consists of multiplying all the entries by the
same number. Thus, if A is the matrix above with entries aij and B is 3× 3
with entries bij then their sum has entries aij + bij , and cA has entries caij :

A+B =





a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33



 , cA =





ca11 ca12 ca13
ca21 ca22 ca23
ca31 ca32 ca33



 .

As an example,





1 2 3
4 5 6
7 8 9



+





1 0 1
1 −2 0
1 −1 −1



 =





2 2 4
5 3 6
8 7 8





and

2





1 0 1
1 −2 0
1 −1 −1



 =





2 0 2
2 −4 0
2 −2 −2



 .

These operations obey the same rules as vector sums and scaling:

• matrix addition is commutative: A+B = B +A;

• matrix addition is associative: A+ (B + C) = (A+B) +C;

• scaling distributes over scalar sums and matrix sums:
(c+ d)A = cA+ dA and c(A+B) = cA+ cB.

• The matrix O all of whose entries are zero acts as an additive
identity: O+A = A+O = A for every matrix A of the same size as
O.
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Matrix Products

We saw in § 3.2 that a homogeneous polynomial of degree one (a.k.a.
linear function) can be viewed as multiplying the coordinate column of
each input vector −→x ∈ R

3 by a row of coefficients; this can also be
interpreted as a dot product:

ℓ(−→x ) = a1x1 + a2x2 + a3x3 =
[

a1 a2 a3
]





x1
x2
x3



 = −→a · −→x

where −→a = a1
−→ı + a2

−→ + a3
−→
k : we can regard the row on the left as the

transpose [−→a ]T of the coordinate column [−→a ] of −→a . Based on this we can
define the product of the 3× 3 matrix A with a column vector (3× 1
matrix) [−→x ] as the 3-column (3× 1 matrix) that results from multiplying
each row of A by [−→x ]:

A [−→x ] =





[row1(A)] [
−→x ]

[row2(A)] [
−→x ]

[row3(A)] [
−→x ]



 =





a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3



 ;

for example,





1 2 3
2 3 1
3 1 2









2
−1
1



 =





1(2) + 2(−1) + 3(1)
2(2) + 3(−1) + 1(1)
3(2) + 1(−1) + 2(1)



 =





2− 2 + 3 = 3
4− 3 + 1 = 2
6− 1 + 2 = 7



 .

Similarly, the product of a row [−→x ]
T
with a 3× 3 matrix results from

multiplying [−→x ]
T
by each column of A:

[−→x ]
T
A =

[

[−→x ]T [col1(A)] [−→x ]
T
[col2(A)] [−→x ]

T
[col3(A)]

]

=
[

a11x1 + a21x2 + a31x3 a12x1 + a22x2 + a32x3 a13x1 + a23x2 + a33x3
]

;

for example,

[

1 −2 1
]





1 2 3
2 3 1
3 1 2



 =
[

1− 4 + 3 2− 6 + 1 3− 2 + 2
]

=
[

0 −3 3
]

.

Note that the products [−→x ]A and A [−→x ]T are undefined.
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Finally, we can define the product AB of two matrices A and B by
multiplying each row of A by each column of B: the entry (AB)ij in
rowi(AB) and colj(AB) is

(AB)ij = rowi(A) colj(B).

This only makes sense if the width of A matches the height of B: if A is
m× n and B is n× p then AB is m× p.
For example,

[

1 2 3
3 2 1

]





2 1
−1 2
1 −1



 =

[

2− 2 + 3 1 + 4− 3
6− 2 + 1 3 + 4− 1

]

=

[

3 2
5 6

]

.

Proposition D.1.1. Matrix multiplication satisfies the following:

• It is associative:
A(BC) = (AB)C

whenever the product makes sense;

• It distributes over matrix sums:

A(B + C) = AB +AC and (A+B)C = AC +BC.

• It is in general not commutative: unless A and B are both square
matrices (n× n for some n), the two products AB and BA, if
defined, are of different sizes, and even for two n× n matrices the
two products can be different (Exercise 1).

Recall that for the operation of matrix addition, the zero matrix O
consisting of all zeroes was an additive identity, which meant that adding
it to any matrix did not change the matrix—a role analogous to that of the
number 0 for addition in R. Of course, there are actually many different
zero matrices: given any pair of dimensions m and n, the m× n zero
matrix Om×n acts as the additive identity for addition of m× n matrices.
What about matrix mutliplication? Is there a matrix that plays a role for
matrix multiplication analogous to that played by the number 1 for
multiplication in R, namely that multiplying something by it changes
nothing (called a multiplicative identity)? We see first that since the
height (resp. width) of a matrix product matches the height of the second
(resp. width of the first) factor, a multiplicative identity for matrix
multiplication must be square (Exercise 2): if A is m× n then any matrix
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I for which IA = A (resp. AI = A) must be m×m (resp. n× n). It turns
out that the matrix playing this role is the square matrix with all diagonal
entries 1 and all other entries 0:

I =



















1 0 . . . 0

0 1 . . .
...

... 0 . . .
...

...
... . . . 0

0 0 . . . 1



















.

When we want to specify the size of this matrix, we use a subscript: In
denotes the n× n identity matrix: for any m× n matrix A,
ImA = A = AIn.

Transpose and Symmetric Matrices

The transpose AT of an m× n matrix A is the n×m matrix obtained by
changing each row of A into a column of AT : for i = 1, . . . , n,

coli(A
T ) = rowi(A)

and also

rowi(A
T ) = coli(A).

This is the same as reflecting A across its diagonal1:





a11 a12 a13
a21 a22 a23
a31 a32 a33





T

=





a11 a21 a31
a12 a22 a32
a13 a23 a33



 ;

for example,




1 2 3
4 5 6
7 8 9





T

=





1 4 7
2 5 8
3 6 9



 .

The relation of transposition to matrix sums and scaling is easy to check
(Exercise 3):

(cA+B)T = cAT +BT .

1The diagonal of a matrix is the set of entries whose row number and column number
match.
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A more subtle but very useful fact is the relation of transposition to
matrix products (Exercise 4):

(AB)T = BTAT ;

the transpose of a matrix product is the product of the factors, transposed
and in the opposite order.

A matrix is symmetric if it equals its transpose:

AT = A;

for example, the matrix




1 2 3
2 3 1
3 1 2





is symmetric. Note that symmetry is possible only for a square matrix.

D.2 Matrices and Systems of Equations:

Row Reduction

A system of three linear equations in three unknowns

a11x1 +a12x2 +a13x3 = b1
a21x1 +a22x2 +a23x3 = b2
a31x1 +a32x2 +a33x3 = b3

(D.1)

can be solved systematically via elimination . 2 The idea is that we try
to rewrite the system in a different form in which the first variable, x1,
appears only in the first equation; then we work on the second and third

2The method of elimination was effectively present in Chinese mathematical texts of
the third century AD. In Western European literature, it was presented by Newton in the
notes of his Lucasian lectures (deposited in the University archives at Cambridge in 1683) ,
a projected book titled AlgebræUniversalis [56, vol. V, esp. pp. 535-621], later published
over his objections—see [56, vol. V, pp.10-15]—in 1707 and in English translation in
1728. Subsequently, versions of this method were mentioned in textbooks by Nathaniel
Hammond (1742) and Lacroix (1800). The method became standard in certain circles as a
result of its use in connection with least-squares calculations by C. F. Gauss (1777-1855).
As a result of the latter, the method is commonly referred to as Gaussian elimination.
These comments are based on [20], which gives a detailed history of the development of
this method.
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equations, trying to eliminate the second variable x2 from the third
equation; with luck, this leads to a system of equations that looks like

a′11x1 +a′12x2 +a′13x3 = b′1
a′22x2 +a′23x3 = b′2

a′33x3 = b′3

;

we can then work our way up: we solve the last equation for x3, then
substitute the value obtained for x3 into the second equation and solve for
x2, and finally substitute both of the values obtained for x2 and x3 into
the first equation, and solve for x1.
By “rewriting the system in a different form” we mean that we replace our
system of three equations with a new system of three equations in such a
way that we can be sure the solutions of the two systems are identical.
This involves three basic operations on the system. Two of these are quite
simple:

• if we multiply both sides of one equation by a nonzero number, we
don’t change the solutions,

• nor do we change the solutions by shuffling the order of the equations.

• The third and most important operation is: replace exactly one of
the equations–say the ith–with the sum of it and (a multiple of ) one
of the other equations–say the jth–leaving the other two equations
unchanged. We shall refer to this as adding [a multiple of] the jth

equation to the ith.

To see how this works, consider the system

x1 +x2 +x3 = 2
x1 +2x2 +2x3 = 3

2x1 +3x2 +x3 = 1
; (D.2)

We can eliminate x1 from the second equation by subtracting the first
from it

x1 +x2 +x3 = 2
x2 +x3 = 1

2x1 +3x2 +x3 = 1

and then we can eliminate x1 from the third equation by subtracting twice
the first equation from the third:

x1 +x2 +x3 = 2
x2 +x3 = 1
x2 −x3 = −3

.
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Now, we subtract the second equation from the third to eliminate x2 from
the latter:

x1 +x2 +x3 = 2
x2 +x3 = 1
−2x3 = −4

.

The last equation can be solved for x3 = −2; substituting this into the first
and second equations leads to

x1 +x2 −2 = 2
x2 −2 = 1

x3 = −2
which lets us solve the second equation for x2 = 3, and substituting this
into the first equation leads us to

x1 +3 −2 = 2
x2 = 3

x3 = −2
and we see that x1 = 1. Thus the solution to our system is

x1 = 1

x2 = 3

x3 = −2.
Writing out the steps above involved a lot of uninformative notation: the
fact that the unknowns are called x1, x2 and x3 is irrelevant—we could as
well have called them x, y and z. Also, many of the “plus signs” are
redundant. We can use matrix notation to represent the essential
information about our system—which consists of the coefficients of the
unknowns and the numbers on the right hand side—in a 3× 4 matrix: for
the system above, this would be





1 1 1 2
1 2 2 3
2 3 1 1



 .

This matrix is called the augmented matrix of the system. We often
separate the last column, which represents the right side of the system,
from the three columns on the left, which contain the coefficients of the
unknowns in the system: think of the vertical line as a stand-in for the
“equals” signs in the various equations.
The operations we performed on the equations are represented by row
operations:
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• Multiply all the entries of one row by a nonzero number;

• Interchange two rows;

• Add (a multiple of) row j to row i.

In the matrix representation, eliminating the first variable from all but the
first equation amounts to making sure that the only nonzero entry in the
first column is the one in the first row. Note that this was accomplished by
subtracting (multiples of) the first row from each of the rows below it, so
we can combine the two instances of the third row operation into one
operation: use the first row to clear the first column below the first row. In
matrix terms, this step of our example can be written





1 1 1 2
1 2 2 3
2 3 1 1



→





1 1 1 2
0 1 1 1
0 1 −1 −3



 .

The major player in this operation was the first entry of the first row; we
have set it in boldface to highlight this.
The next step in our example was to use the second row to clear the
second column below the second row. Note however that our final goal is
to also eliminate x2 from the first equation—that is, to make sure that the
only nonzero entry in the second column is in the second row : we
accomplish this in our example by subtracting the second row from the
first as well as the third: notice that since we have made sure that the first
entry of the second row is zero, this doesn’t affect the first column. The
major player in this operation is the first nonzero entry in the second row,
which we have also highlighted with boldface:





1 1 1 2
0 1 1 1
0 1 −1 −3



→





1 0 0 1
0 1 1 1
0 0 −2 −4



 .

Finally, solving the last equation for x3 amounts to dividing the last row
by the coefficient of x3, that is, by −2; then back-substitution into the
preceding equations amounts to using the last row to clear the rest of the
third column. For this, the major player is the first nonzero entry in the
third row: using it to clear the third column





1 0 0 1
0 1 1 1
0 0 −2 −4



→





1 0 0 1
0 1 0 3
0 0 1 −2
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results in the augmented matrix of our solution—that is, this last matrix is
the augmented matrix of the system

x1 = 1
x2 = 3

x3 = −2

which exhibits the solution of the system explicitly.

This technique is called row reduction: we say that our original matrix
reduces to the one above. The full story of row reduction is more
complicated than suggested by our example: row reduction doesn’t always
lead to a nice solution like the one we found to the system (D.2). For
instance, the system

x1 +x2 +x3 = 2
x1 +x2 +2x3 = 3
2x1 +2x2 +3x3 = 5

(D.3)

looks like three equations in three unknowns, but this is a bit bogus, since
(as you might notice) the third equation is just the sum of the other two:
in effect, the third equation doesn’t give us any information beyond that in
the first two, so we expect the set of points in R

3 which satisfy all three
equations to be the same as those that satisfy just the first two.

Let us see how this plays out if we try to use row reduction on the
augmented matrix of the system: using the first row to clear the first
column leads to





1 2 1 2
1 2 2 3
2 4 3 5



→





1 2 1 2
0 0 1 1
0 0 1 1



 .

Now, we can’t use the second row to clear the second column, since the
(2, 2) entry is zero. In some cases this is not a problem: if at this stage the
third row had a nonzero entry in the second column, we could perform a
row interchange to obtain a matrix in which such a clearing operation
would be possible. In this case, though, the third row is just as bad, so we
try for the next best thing: we use the second row to clear the third
column:





1 2 1 2
0 0 1 1
0 0 1 1



→





1 2 0 1
0 0 1 1
0 0 0 0



 .
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At this point, we have cleared all we can. The system represented by this
matrix

x1 +2x2 = 1
x3 = 1
0 = 0

clearly displays the fact that the third equation provides no new
information. The second equation tells us that all the points satisfying the
system must have third coordinate x3 = 1, and the first equation tells us
that the first two coordinates are related by

x1 = 1− 2x2.

There is nothing in the system that limits the value of x2; it is a free
variable. Any particular choice of value for the free variable x2
determines the value for x1 (via the first equation) and thus (since the
value for x3 is determined by the second equation) a particular solution to
the whole system.

We can formulate our general process of reduction as follows:

• Start with the first column: using a row interchange if necessary,
make sure the entry in the first row and first column is nonzero, then
use the first row to clear the rest of the first column.

• Next consider the entries in the second column below the first row : if
necessary, use a row interchange to insure that the first entry below
the first row in the second column is nonzero, and then use it to clear
that column. If this is impossible (because the second column has
only zeroes below the first row), give up and go on to the next
column.

• A given row can be used to clear a column at most once; the “used”
rows at any stage are the highest ones in the matrix, and any
subsequent clearing uses a lower row. Continue until you run out of
columns to clear, or rows to clear them with.

This will result in a matrix with the following properties:

• The first nonzero entry in each row (called its leading entry) is the
only nonzero entry in its column.

• As one moves down row-by-row, the leading entries move to the right.
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The alert reader will note that this allows the possibility that some row(s)
consist only of zeroes; the second property requires that all of these entries
are at the bottom of the matrix. We add one final touch to this process: if
we divide each nonzero row by its (nonzero) leading entry, we insure that

• The leading entries are all 1.

A matrix having all three properties is said to be row-reduced.

Formally stated,

Definition D.2.1. Any matrix satisfying the conditions

• The leading entry in any (nonzero) row is a 1;

• the leading entries move right as one goes down the rows, with any
rows consisting entirely of zeroes appearing at the bottom;

• a leading entry is the only nonzero entry in its column;

is a reduced matrix or a matrix in reduced row-echelon form.

A sketch of reduced row-echelon form is










1 ∗ 0 ∗ . . . 0 ∗
0 0 1 ∗ . . . 0 ∗
...

... 0 0 . . . 1
...

0 0 0 0 . . . 0 0











where the asterisks indicate that in a column not containing a leading
entry, the entries in all rows whose leading entry is in an earlier column
(which for an augmented matrix are the coefficients of the free variables)
can take on arbitrary values.

The process of row-reduction can be applied to a matrix of any size to
obtain an equivalent reduced matrix of the same size. 3 We shall see below
how it can be helpful to reduce a matrix which is not necessarily given as
the augmented matrix of some system of equations.

We saw above that a system in which some equation is redundant—in the
sense that it can be obtained from the other equations—will reduce to a
matrix with a row of zeroes. There is another possibility: that the

3It is a fact, which we will not need to use, and which we shall not prove, that this
reduced matrix is unique: any two sequences of row operations which start from the same
matrix and end up with a reduced one will yield the same result.
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equations contradict each other: for example, if we change only the right
hand side of the third equation in (D.3),

x1 +x2 +x3 = 2
x1 +x2 +2x3 = 3
2x1 +2x2 +3x3 = 6

(D.4)

then the third equation contradicts the other two, since its left side is the
sum of the others, while its right side is not. You should confirm that the
row reduction here proceeds as follows:





1 2 1 2
1 2 2 3
2 4 3 6



→





1 2 1 2
0 0 1 1
0 0 1 2



→





1 2 0 1
0 0 1 1
0 0 0 1



 .

Interpreted as a system of equations, this reads

x1 +2x2 = 1
x3 = 1
0 = 1;

the last equation is clearly nonsensical—that is, no values of x1, x2 and x3
can make this equation hold, so no such values can represent a solution of
our system. This “standard nonsense equation” always shows up in the
form of a leading entry in the last column of the (reduced) augmented
matrix.
From the preceding, we see that the reduction of the augmented matrix of
a system of three equations in three unknowns results in one of the
scenarios described in the following remark:

Remark D.2.2. • If the last column (to the right of the vertical bar)
in the reduced matrix contains a leading entry of some row, the
corresponding equation is 0 = 1 and the system is inconsistent:
there are no solutions.

• If the reduced matrix has three leading entries, located in the (i, i)
position for i = 1, 2, 3, the three equations have the form xi = bi,
exhibiting the unique solution of the system.

• If there are fewer than three leading entries in the reduced matrix,
none of which is in the last column, then the system is consistent, but
there are free variables, whose value can be assigned at will; each
such assignment determines one of the infinitely many solutions of
the system.
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D.3 Matrices as Transformations

A 3× 3 matrix A generates a transformation that moves points around in
3-space. For any 3-vector −→x ∈ R

3, the coordinate column [−→x ] can be
multiplied by A to get a new 3× 1 matrix A [−→x ]. This in turn is the
coordinate column of a new vector in R

3, which (by abuse of notation) we
denote A−→x . The operation that moves the point with position vector −→x
to the point at A−→x , which we will refer to as the transformation
−→x 7→ A−→x , has several basic properties (Exercise 5):

Proposition D.3.1. • The origin stays put: AO = O.

• The transformation is linear: it respects vector sums and scaling:

A(−→v +−→w ) = A−→v +A−→w
A(c−→v ) = c(A−→v ).

Geometrically, this means that straight lines go to straight lines.

• The columns of A tell us where the standard basis vectors go:

[A−→ı ] = col1(A)

[A−→ ] = col2(A)
[

A
−→
k
]

= col3(A)

so this information determines where every other vector goes.

The matrix product has a natural interpretation in terms of
transformations. Suppose A and B are 3× 3 matrices. Multiplying a
vector −→x by B moves it to a new position, that is, the result is a new
column B−→x . Now, we can multiply this product by A, moving the new
column to another position A(B−→x ). We have performed the composition
of the two transformations: first, move by B, then move by A. But by the
associative property of matrix products (Proposition D.1.1),
A(B−→x ) = (AB)−→x . This says

Remark D.3.2. The transformation given by the product matrix AB is
the composition of the transformations given by A and B respectively:
multiplying −→x by AB has the same effect as first multiplying −→x by B and
then multiplying the resulting column by A.
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Nonsingular Matrices and Invertible Transformations

A 3× 3 matrix is singular if there is some nonzero vector −→x 6= −→0
satisfying

A−→x =
−→
0 ;

otherwise, it is nonsingular.
Nonsingular matrices yield transformations with special properties:

Proposition D.3.3. 1. If A is nonsingular, then the transformation is
one-to-one: no two points land in the same place (if −→x 6= −→x ′ then
A−→x 6= A−→x ′). This condition means that any equation of the form
A−→x = −→y can have at most one solution.

2. If A is nonsingular, then the transformation is onto: every point of
R
3 gets hit; equivalently, for every −→y ∈ R

3, the equation A−→x = −→y
has at least one solution.

By contrast, if A is singular, then there is a plane that contains A−→x for
every −→x ∈ R

3.

The first property follows from the calculation

A−→x −A−→x ′ = A(−→x −−→x ′);

if −→x 6= −→x ′ then the vector on the right side is nonzero, and the fact that
the left side is nonzero means A−→x 6= A−→x ′.
The second property is more subtle; we outline a proof in Exercise 6. The
proof of the last statement is outlined in Exercise 7.
This point of view gives us a second way to think about our system (D.1)
in matrix terms. Let us separate the augmented matrix into the 3× 3
matrix of coefficients4 and the last column. A quick calculation shows
that if we multiply this matrix by the column whose entries are the
unknowns, the product is the column of expressions obtained by
substituting our unknowns into the left sides of our three equations:





a11 a12 a13
a21 a22 a23
a31 a32 a33









x1
x2
x3



 =





a11x1 + a12x2 + a13x3
a21x1 + a22x2 + a23x3
a31x1 + a32x2 + a33x3



 .

Thus, if we denote the coefficient matrix by A, the column of unknowns by
X, and the column of numbers on the right side of (D.1) by B

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 , X =





x1
x2
x3



 , B =





b1
b2
b3



 ,

4or informally, the coefficient matrix
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then the system (D.1) of three equations in three unknowns becomes the
matrix equation

AX = B.

Now, the analogous equation in one unknown, ax = b, can be solved
(provided a 6= 0) via division of both sides by a. We haven’t talked about
division by a matrix, because in general this is not possible. However,
when a 3× 3 matrix is nonsingular, then it has a kind of “reciprocal” A−1.
This is called the inverse of A.

Definition D.3.4. An n× n matrix A is invertible if there exists
another n× n matrix A−1 such that AA−1 = I and A−1A = I, where I is
the n× n identity matrix.

When A is invertible, A−1 is called the inverse of A.

When A is invertible, then we can multiply both sides of the equation
above by its inverse to solve for X:

A−1(AX) = A−1B

(A−1A)X = A−1B

IX = A−1B

X = A−1B.

In particular, using B = [−→y ], we have

Remark D.3.5. If A is invertible, then A−1 represents the transformation
that takes A−→x back to −→x ; in other words, for any vector −→y , the unique
solution of the equation A−→x = −→y is −→x = A−1−→y .

In Exercise 15, we outline a proof of

Proposition D.3.6. Suppose A is a 3× 3 matrix. Then the following are
equivalent:

1. A is nonsingular.

2. The transformation −→x 7→ A−→x is one-to-one and onto.

3. A is invertible.

How do we find the inverse matrix if it exists? This involves extending our
notion of an augmented matrix.
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Given A a 3× 3 matrix, we look for a 3× 3 matrix A−1 satisfying 5

AA−1 = I. (D.5)

This can be regarded as a single matrix equation involving the three 3× 3
matrices A, A−1 and I, with unknown A−1, but it can also be regarded as
three separate systems of equations, resulting from matching corresponding
columns on each side of the equation. Recall, however, that each column of
a matrix product is the product of the left factor with the corresponding
column of the right factor. Thus, we can write three “column equations”

colj(AA
−1) = A colj(A

−1) = colj(I), for j = 1, 2, 3.

Each column equation is really a system of three equations in three
unknowns, and all of them have the same coefficient matrix, A. If we try
to solve one of these systems by row reduction, we end up reducing an
augmented matrix whose first three columns are those of A, and whose
fourth column is the appropriate column of the identity matrix I. Since
reduction proceeds left to right, this means we apply the same sequence of
row operations for each value of j, and so the first three columns of the
augmented matrix always come out the same. Thus we can save some time
by reducing a single 3× 6 super-augmented matrix, consisting of a
copy of A followed by a copy of I, which we denote [A|I]. The solutions of
the column equations will be the columns of A−1. This sketch explains
how the following works.

Proposition D.3.7. If A is an invertible matrix, then reduction of the
super-augmented matrix [A|I] leads to a row-reduced 3× 6 matrix whose
left half is the identity matrix, and whose right half is the solution A−1 of
Equation (D.5):

[A|I]→ [I|A−1].

If A is singular, then the reduction process ends up with a matrix for which
some row has its leading entry on the right side. This means that at least
one of the column equations is an inconsistent system of equations, with no
solutions—so the inverse of A can’t exist.

To see how this works, let us find the inverse of the matrix




1 1 1
1 2 2
2 3 1



 .

5We are abusing notation, since the inverse matrix is actually required to satisfy also the
second equation A−1A = I . We will see (Exercise 16) that any solution of Equation (D.5)
automatically also satisfies the second equation.
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You should confirm the following reduction of the superaugmented matrix:





1 1 1 1 0 0
1 2 2 0 1 0
2 3 1 0 0 1



→

→





1 1 1 1 0 0
0 1 1 −1 1 0
0 1 −1 −2 0 1



→





1 0 0 2 −1 0
0 1 1 −1 1 0
0 0 −2 −1 −1 1



→

→





1 0 0 2 −1 0
0 1 0 −3

2
1
2

1
2

0 0 1 1
2

1
2 −1

2



 .

The right half of this is the inverse:




1 1 1
1 2 2
2 3 1





−1

=





2 −1 0
−3

2
1
2

1
2

1
2

1
2 −1

2



 .

You should check this by multiplying the two matrices to see if you get the
identity.

D.4 Rank

When a matrix A is not invertible, the behavior of a system of equations
with coefficient matrix A can be clarified using the rank of A. This notion
is not limited to square matrices.
Recall that a collection of vectors −→v1 ,−→v2 ,−→v3 is linearly dependent if there
is a linear combination a1

−→v1 + a2
−→v2 + a3

−→v3 which equals the zero vector,
and with at least one of the coefficients ai not zero; we will refer to such a
relation a1

−→v1 + a2
−→v2 + a3

−→v3 =
−→
0 as a dependency relation among the

vectors. A particular kind of dependency relation is one in which one of
the coefficients is −1, which means that one of the vectors is a linear
combination of the rest: for example, if a3 = −1, the relation
a1
−→v1 + a2

−→v2 −−→v3 =
−→
0 is the same as −→v3 = a1

−→v1 + a2
−→v2 . It is easy to see

(Exercise 8) that any dependency relation can be rewritten as one of this
type. A collection of vectors is linearly independent if there is no
dependency relation among them: the only way to combine them to get
the zero vector is by multiplying them all by zero. Note that the zero
vector cannot be included in an independent set of vectors (Exercise 9).
This idea naturally extends to a collection of any number of vectors, and
we can also apply it to the rows of a matrix.
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Definition D.4.1. The rank of a matrix A is the maximum number of
linearly independent rows in A: that is, A has rank r if some set of r of its
rows is linearly independent, but every set of more than r rows is linearly
dependent.

An important basic property of rank is that it is not changed by row
operations: this requires a little bit of thought (Exercise 12):

Remark D.4.2. If A′ is obtained from A via a sequence of row
operations, then they have the same rank.

From this observation, we can draw several useful conclusions. Note that
for a matrix in row-reduced form, the nonzero rows are independent
(Exercise 10), and this is clearly the largest possible independent set of
rows. Since each nonzero row starts with a leading entry, we see
immediately

Remark D.4.3. The rank of A equals the number of nonzero rows (or
equivalently, the number of leading entries) in the reduced matrix
equivalent to A.

Note, however (Exercise 11a), that the columns which contain leading
entries of a reduced matrix are also linearly independent, and every other
column is a combination of them; furthermore, row operations don’t
change dependency relations among the columns (Exercise 11b). Thus, we
can also say that

Remark D.4.4. The rank of A equals the maximum number of linearly
independent columns in A.

.

Finally, we can use the rank to characterize the solution sets of systems of
equations with a given coefficient matrix:

Proposition D.4.5. Suppose the m× n matrix A has rank r, and
consider the system of equations with augmented matrix [A|b] (where b is
the column of constants on the right-hand side). Then

1. The system is consistent precisely if A and [A|b] have the same rank.

2. If the system is consistent, then the solution set is determined by k
free variables, where r + k = n (n is the width of A).
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3. In particular, if the rank equals the height m of A, then the system is
consistent for every right-hand side b, and if the rank is less than m
there are right-hand sides making the system inconsistent.

The proof of this is outlined in Exercise 13.

Exercises for Appendix D

1. Let

A =

(

1 −1
2 1

)

, B =

(

1 0
1 2

)

.

Show that AB 6= BA.

2. Suppose A is an m× n matrix.

(a) Explain why, if B is a matrix satisfying BA = A, then B must
be a square matrix of size m×m.

(b) Explain why, if C satisfies AC = A, then C must be n× n.
(c) Suppose B and C are both n× n matrices such that for every

n× n matrix A, BA = A and AC = C. Show that B = C.

3. Show that if A and B are m× n matrices and c is a scalar, then

(cA+B)T = cAT +BT .

4. (a) Show that for any two 2× 2 matrices A and B, the transpose of
AB is

(AB)T = BTAT .

(b) Can you prove the analogue for 3× 3 matrices? (Hint: Think of
the formula for the ij entry of AB as the product of a row of A
and a column of B; reinterpret this as a dot product of vectors.)

5. Prove Proposition D.3.1.

6. Suppose the 3× 3 matrix A has the property that whenever −→v is a
nonzero vector, then A−→v 6= −→0 .

(a) Show that the vectors A−→ı , A−→ and A
−→
k are linearly

independent. (Hint: If aA−→ı + bA−→ + cA
−→
k =

−→
0 , show that

a−→ı + b−→ + c
−→
k is a vector whose image under multiplication by

A is zero. Conclude that a = b = c = 0.)
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(b) Show that the columns of a nonsingular matrix are linearly
independent.

(c) Use this to show that the vector equation A−→x = −→y has a
solution −→x for every −→y .

7. Suppose A is a 3× 3 singular matrix; specifically, suppose
−→x0 = a−→ı + b−→ + c

−→
k is a nonzero vector with A−→x0 =

−→
0 .

(a) Show that

aA1 + bA2 + cA3 =
−→
0

where Aj is the j
th column of A.

(b) Show that, if c 6= 0, then A
−→
k can be expressed as a linear

combination of A−→ı and A−→ ; in general, at least one of the

vectors A−→ı , A−→ and A
−→
k can be expressed as a linear

combination of the other two.

(c) In particular, if c 6= 0, show that the image A−→x of any vector
−→x ∈ R

3 lies in the plane spanned by A−→ı and A−→ .

8. Suppose that
a1
−→v1 + a2

−→v2 + a3
−→v3 =

−→
0

is a dependency relation among the vectors −→vi . Show that if ai 6= 0
then −→vi can be expressed as a linear combination of the other two
vectors.

9. Show that any collection of vectors which includes the zero vector is
linearly dependent.

10. Show that the nonzero rows of a matrix in reduced row-echelon form
are linearly independent. (Hint: Show that, in any linear
combination of those rows, the entry in the space corresponding to
the leading entry of a given row equals the coefficient of that row in
the combination.)

11. (a) Suppose A is a matrix in reduced row-echelon form. Show that
the columns containing the leading entries in A are linearly
independent, and that every other column of A is a linear
combination of these.

(b) Suppose

a1 col1(A) + a2 col2(A) + a3 col3(A) =
−→
0
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is a dependency relation among the columns of A, and A′ is
obtained from A via a row operation. Show that the same
relation holds among the columns of A′.

12. In this problem, you will show that the rank of a matrix is not
changed by row operations.

(a) Suppose A and A′ are matrices whose rows are the same, but in
different order (that is, A′ is obtained from A by shuffling the
rows). Show that A and A′ have the same rank.

(b) Suppose the vectors −→v1 , −→v2 and −→v3 are linearly independent
(resp. linearly dependent). Show that the same is true of the
vectors c1

−→v1 , c2−→v2 , and c3−→v3 , where ci, i = 1, 2, 3, are any
nonzero real numbers. This shows that multiplying a row of A
by a nonzero number does not change the rank.

(c) Suppose

a1
−→v1 + a2

−→v2 + a3
−→v3 =

−→
0

is a dependency among the rows of A. Suppose −→v1 ′ = −→v1 + b−→v2
(i.e., the first row is replaced by itself plus a multiple of

another row). Assuming −→v2 6=
−→
0 , find a nontrivial dependency

relation among −→v1 ′, −→v2 and −→v3 . This shows that the rank cannot
increase under such a row operation.

(d) Using the fact that the third row operation is reversible, show
that it does not change the rank of A.

Challenge problems:

13. In this exercise, you will prove Proposition D.4.5. Suppose that A is
m× n with rank r, and fix an m-column b.

(a) Show that rank(A) ≤ minm,n.

(b) Show that rank(A) ≤ rank([A|b]).
(c) Show that a leading entry appears in the last column of the

reduced form of [A|b] if and only if rank([A|b]) = rank(A) + 1.
Conclude that the system with augmented matrix [A|b] is
consistent if and only if rank([A|b]) = rank(A).

(d) Show that the number of columns of [A|b] not containing a
leading entry equals n− r.
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(e) Show that if r = m then rank([A|b]) = rank(A).

(f) Show that if r < m then there is a choice of b for which
rank([A|b]) > rank(A). (Hint: First prove this assuming [A|b] is
in reduced row-echelon form. Then, reverse the row operations
that went from [A|b] to its reduced form to prove it in general.)

14. Suppose A is a 3× 3 matrix.

(a) Show that if A′A = I for some 3× 3 matrix A′, then the
transformation −→x 7→ A−→x is onto.

(b) Show that if AA′′ = I for some 3× 3 matrix A′′, then the
transformation −→x 7→ A−→x is one-to-one.

(c) Show that if A′ and A′′ both exist, then they must be equal.
(Hint: Parse the product A′AA′′ two different ways.)

15. Prove Proposition D.3.6 as follows:

(a) By Proposition D.3.3, if A is nonsingular, then −→x 7→ A−→x is
both one-to-one and onto. Show that if A is singular, then A is
neither one-to-one nor onto. (Hint: Use the definition for one
property, and Exercise 7 for the other.)

(b) Use Exercise 14 to show that if A is invertible then −→x 7→ A−→x is
one-to-one and onto.

(c) Suppose −→x 7→ A−→x is one-to-one and onto. Then show that
there is a unique, well-defined transformation which takes any
vector −→y to the unique solution −→x of the equation A−→x = −→y .
Show that this transformation is linear—that is, that if
A−→x1 = −→y1 and A−→x2 = −→y2 then for −→y = α1

−→x1 + α2
−→x2, the unique

solution of A−→x = −→y is −→x = α1
−→x1 + α2

−→x2.
(d) Suppose −→x = −→ai is the unique solution of A−→x = −→ei , where −→ei ,

i = 1, 2, 3 are the standard basis for R3. Let B be the 3× 3
matrix with columns [−→ai ]. Show that the transformation
−→y 7→ B−→y is the same as the transformation defined in the
preceding item, and conclude that B is the matrix inverse of A.
It follows that if the transformation −→x 7→ A−→x is one-to-one and
onto, then A is invertible.

16. Show that a 3× 3 matrix A for which the transformation −→x 7→ A−→x
is either one-to-one or onto is both one-to-one and onto. Conclude
that if the equation

AB = I
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has a solution, then A is invertible, and B = A−1.



E
Determinants

In § 1.6, we defined a 2× 2 determinant as shorthand for the calculation of
the signed area of a parallelogram, and then a 3× 3 determinant as a
formal calculation for the cross product (which in turn determines an
oriented area); subsequently, we saw that a numerical determinant can be
interpreted as the signed volume of a parallelipiped. In this appendix, we
see how these interpretations as well as others can be used to establish
some basic properties of 2× 2 and 3× 3 determinants which are very useful
(and easy to use), but whose proofs are not so obvious. Our approach to
these will go back and forth between formal calculation and geometric
interpretation. We begin by warming up with the 2× 2 case.

E.1 2× 2 Determinants

Recall that the determinant of a 2× 2 matrix is given by the formula

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21. (E.1)

In words, we multiply each of the two entries in the first row of the matrix
by the (one) entry which is neither in the same row, nor in the same
column as the entry, and then we subtract. We shall see later that this way
of phrasing it extends to two different ways of seeing 3× 3 determinants.

747
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Our original definition of a 2× 2 determinant really views it as a function
∆ (−→v ,−→w ) of its rows, regarded as vectors, and from the formulation above
we immediately get the first basic algebraic properties of this function (as
detailed in Proposition 1.6.2):

Remark E.1.1. The function ∆(−→v ,−→w ) has the following properties:

additivity: ∆(−→v1 +−→v2 ,−→w ) = ∆ (−→v1 ,−→w ) + ∆ (−→v2 ,−→w ), and
∆(−→v,−→w1 +

−→w2) = ∆ (−→v ,−→w1) + ∆ (−→v ,−→w2);

scaling: ∆(α−→v ,−→w ) = α∆(−→v ,−→w ) = ∆ (−→v , α−→w );

antisymmetry: ∆(−→w ,−→v ) = −∆(−→v ,−→v ).

There is another way to write the formula (E.1):

a11a22 − a12a21 = (−1)1+1a11a22 + (−1)1+2a12a21;

that is, we attach to each entry of the first row a sign (depending on
whether the sum of its indices is even or odd), then multiply this entry by
this sign times the (unique) entry in the other row and other column. One
way to remember the sign attached to a given position in the matrix is to
note that the signs form a checkerboard pattern, starting with “+” in the
upper left corner:

∣

∣

∣

∣

+ −
− +

∣

∣

∣

∣

.

The advantage of this notation becomes apparent when we note that
replacing the exponent for each product by the sum of indices in the
second factor, nothing changes:

(−1)1+1a11a22 + (−1)1+2a12a21 = (−1)2+2a11a22 + (−1)2+1a12a21;

this corresponds to taking each entry a2i of the second row and
multiplying it by the sign (−1)2+i times the entry in the other row and
column, and summing over this row. Similarly, if we followed this process
not along a row but along a column—say the first—we would be looking at
a11, the first entry of this column, times the sign (−1)1+1 attached to it,
times the entry a22 in the other row and column, plus the second entry of
this column, a21, times the sign (−1)2+1 attached to it, times the entry a12
in the other row and column.
To pull this together, we extend the idea of a cofactor to each entry of the
matrix (not just in the first row): the cofactor of the entry aij in a matrix
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A is the sign (−1)i+j attached to its position in A, times its minor, which
we denote Aij, but which here is just the entry in the other row and
column from aij. This leads us to several variations on how to calculate a
2× 2 determinant:

Remark E.1.2 (Expansion by cofactors for a 2× 2 determinant). For the
entry aij in row i and column j of the 2× 2 matrix A, define its cofactor

to be (−1)i+jAij, where Aij is the (unique) entry of A which is not in row
i and not in column j.

Then det A is the sum of the entries in any one row or column of A, each
multiplied by its cofactor.

As an immediate consequence of this, we also see that taking a transpose
does not change the determinant:

Corollary E.1.3 (Determinant of transpose). The determinant of any
2× 2 matrix and that of its transpose are equal: det AT = det A.

This is because expanding along a row of AT is the same as expanding
along the corresponding column of A.

E.2 3× 3 Determinants

In § 1.6, we defined the determinant of a 3× 3 matrix in terms of
expansion by cofactors of entries in the first row: if

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 (E.2)

then

detA = a11 detA11 − a12 detA12 + a13 detA13

=

3
∑

j=1

(−1)1+ja1j detA1j .
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where

A11 =





. . .

. a22 a23

. a32 a33





A12 =





. . .
a21 . a23
a31 . a33





A13 =





. . .
a21 a22 .
a31 a32 .



 .

We shall see that there are several other ways to think of this calculation,
but to do so we will first go through a rather baroque exercise. The full
formula for det A in terms of the entries is a sum of six triple products:
each product involves an entry from each row (and at the same time one
from each column), preceded by a sign. Let us write this out, putting the
factors in each triple product in the order of their rows, that is, each triple
product is written in the form ±a1j1a2j2a3j3 :

det A = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 − a11a23a32
− a12a21a33 + a12a23a31

+ a13a21a32 − a13a22a31.

We will refer to this formula in our discussion as the grand sum. Now in
each triple product, the second indices include one each of 1, 2, 3, in a
different order for each product. Let us look at just these orders and the
signs associated to them: writing ±(j1j2j3) in place of ±a1j1a2j2a3j3 , we
have the pattern

+(123) − (132) − (213) + (231) + (312) − (321).

What is the pattern here? One way to get at it is to consider the order
reversals in each list—that is, we ask of each list

1. Does 1 come earlier than 2?

2. Does 1 come earlier than 3?

3. Does 2 come earlier than 3?
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Each “no” answer counts as an order reversal. Then you should check that
the signs above are determined by the rule: each sign reversal contributes a
factor of −1 to the sign in front of the list. This means a list has a “plus”
(resp. “minus”) sign if it involves an even (resp. odd) number of order
reversals. For example, in the list (213), the first question is answered
“no” but the other two are answered “yes”: there is one order reversal,
and so this list is preceded by a minus. By contrast, in the list (312) the
first question is answered “yes” but the other two are answered “no”:
there are two order reversals, and this list is preceded by a plus.
Armed with this pattern, we can justify a variety of other ways to
calculate a 3× 3 determinant.
Each entry aij of the matrix appears in two triple products, formed by
picking one entry from each of the rows different from i, in such a way that
they come from distinct columns (both different from j). In other words,
these two triple products can be written as aij times the product of either
the diagonal or the antidiagonal entries of the submatrix Aij of A, formed
by eliminating row i and column j We call the Aij minor of aij, extending
our terminology and notation on p. 88. The relative order of the column
numbers other than j in these two products will be correct in one case and
reversed in the other. In both cases, their order relative to j will be the
same if j comes first (i = 1) or last (i = 3). If j is in the middle (i = 2),
then we can compare the two patterns (ajb) and (bja): whatever the order
of a (resp. b) relative to j in the first pattern, it will be reversed in the
second; thus the number of order reversals relative to j will have the same
parity in both cases. From this we see that the combined contribution to
the grand sum of the two triple products that include aij will be, up to
sign, the product aij det Aij .
To determine the sign attached to this product, we need to deduce the
number of order reversals in the pattern with j in the ith position and the
other two in their correct relative order. First, any of the patterns (1ab),
(a2b) and (ab3) with a < b is (123) (no order reversals), while (3ab) (resp.
(ab1)) is (312) (resp. (231)) (two reversals): thus, if i and j have the same
parity, the sign is plus. Second, (2ab) (resp. (ab2), (a1b), (a3b)) is (213)
(resp. (132), (213), (132)) (one reversal), so if i and j have opposite parity,
the sign is minus. This can be summarized as saying

Remark E.2.1. The two terms in the grand sum which include aij
combine as (−1)i+jaij det Aij.
The pattern of signs associated to various positions in the matrix can be
visualized as a checkerboard of + and − signs with + in the upper left
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corner:




+ − +
− + −
+ − +



 .

We define the cofactor of aij in A to be

cofactor(ij) = (−1)i+j det Aij .

If we choose any row or column of A, the grand sum can be interpreted as
the sum of entries in that row or column times their cofactors:

det A =

3
∑

j=1

(−1)i+jaij det Aij

=

3
∑

j=1

aij · cofactor(ij) for row i

det A =
3
∑

i=1

(−1)i+jaij det Aij

=
3
∑

i=1

aij · cofactor(ij) for column j.

This is called the expansion by cofactors of det A along that row or
column.

As in the 2× 2 case, expansion of the determinant of det AT along its first
column is the same as expansion of det A along its first row :

Corollary E.2.2 (Determinant of transpose). The determinant of any
3× 3 matrix and that of its transpose are equal: det AT = det A.

There is an alternative way to visualize the grand sum, analogous to the
2× 2 case (Exercise 1).

We can regard the determinant as a function of the three rows of A, by
analogy with the treatment of 2× 2 determinants in the preceding
subsection: given vectors

−→u = (u1, u2, u3)
−→v = (v1, v2, v3)
−→w = (w1, w2, w3)
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we set

∆ (−→u ,−→v ,−→w ) := det





u1 u2 u3
v1 v2 v33
w1 w2 w3



 .

This function of three vector variables has properties analogous to those
formulated in Remark E.1.1 for 2× 2 determinants:

Remark E.2.3. The function ∆(−→u ,−→v ,−→w ) has the following properties:

additivity:

∆(−→u1 +−→u2,−→v ,−→w ) = ∆ (−→u1,−→v ,−→w ) + ∆ (−→u2,−→v ,−→w )

∆ (−→u ,−→v1 +−→v2 ,−→w ) = ∆ (−→u ,−→v1 ,−→w ) + ∆ (−→u ,−→v2 ,−→w )

∆ (−→u ,−→v ,−→w1 +
−→w2) = ∆ (−→u ,−→v ,−→w1) + ∆ (−→u ,−→v ,−→w2) ;

scaling:

∆(α−→u ,−→v ,−→w ) = ∆ (−→u , α−→v ,−→w ) = ∆ (−→u ,−→v , α−→w ) = α∆(−→u ,−→v ,−→w ) ;

alternating: interchanging any pair of inputs reverses the sign of ∆:

∆(−→v ,−→u ,−→w ) = −∆(−→u ,−→v ,−→w )

∆ (−→u ,−→w ,−→v ) = −∆(−→u ,−→v ,−→w )

∆ (−→w ,−→v ,−→u ) = −∆(−→u ,−→v ,−→w ) .

The additivity and scaling properties in a given row are obvious if we use
expansion by cofactors along that row; a function of three variables with
additivity and scaling in each variable is called a trilinear function. To
see the alternating property, we note first that interchanging the second
and third rows amounts to interchanging the rows of each minor A1j of
entries in the first row, which reverses the sign of each cofactor det A1j .
Thus, using expansion by cofactors along the first row, interchanging the
second and third rows of A reverses the sign of the determinant det A. But
a similar argument applied to any row of A shows that interchanging the
other two rows of A reverses the sign of det A.
Invoking Remark 6.9.3, we can characterize the function ∆ (−→u ,−→v ,−→w ):

Remark E.2.4. The 3× 3 determinant ∆(−→u ,−→v ,−→w ) is the unique
alternating trilinear function on R

3 satisfying

∆
(−→ı ,−→ ,−→k

)

= 1.

A different characterization of this function is given in Remark 1.7.2:
∆ (−→u ,−→v ,−→w ) gives the signed volume of the parallelepiped whose sides are
−→u , −→v and −→w .
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E.3 Determinants and Invertibility

Using the geometric interpretation of a 2× 2 determinant as a signed area
(Proposition 1.6.1), we saw (Corollary 1.6.3) that a 2× 2 determinant is
nonzero precisely if its rows are linearly independent. Since (by an easy
calculation) transposing a 2× 2 matrix does not change its determinant, a
2× 2 determinant is nonzero precisely if the columns are linearly
independent, and this in turn says that the underlying matrix is
nonsingular. Thus we have the observation

Remark E.3.1. For any 2× 2 matrix A, the following are equivalent:

1. det A 6= 0.

2. The rows of A are linearly independent.

3. The columns of A are linearly independent.

4. A is nonsingular.

The 3× 3 analogue of Remark E.3.1 takes slightly more work, but we have
most of the ingredients in place. Remark 4 tells us that the first two
properties are equivalent. Remark D.4.4 then tells us that the second and
third properties are equivalent. Finally, Proposition 2 tells us that (for a
square matrix) the third and fourth properties are equivalent. In fact, an
elaboration of this argument can be applied to a square matrix of any size,
although some of the details involve ideas that are beyond the scope of this
book.

Exercises for Appendix E

1. Consider the following calculation: given a 3× 3 matrix

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33





write down A and next to it a second copy of its first two columns:





a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32



 .
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There are three “downward diagonals” in this picture, one starting
from each entry in the first row of A; we have put the downward
diagonal starting from the second entry in boldface. There are also
three “upward diagonals”, starting from the entries in the last row of
A; we have framed the entries in the upward diagonal starting from
the third entry. Then by analogy with 2× 2 determinants, consider
the sum of the products along the three downward diagonals minus
the sum of products along the upward ones. Verify that this agrees
with the grand sum giving det A in the text. 1

2. Suppose F (−→u ,−→v ,−→w ) is an alternating trilinear function.

(a) Show that if two of these vectors are equal then
F (−→u ,−→v ,−→w ) = 0

(b) Show that an alternating trilinear function applied to three
linearly dependent vectors must equal zero. (Hint: Use
Exercise 8 in Appendix D together with additivity and
homogeneity to rewrite F (−→u ,−→v ,−→w ) as a sum of multiples of
terms F (−→v1 ,−→v2 ,−→v3) in each of which two entries are equal.)

1However, unlike expansion by cofactors, this procedure breaks down for larger deter-
minants.
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F
Proofs of Implicit and Inverse Mapping

Theorems

Inverse Mapping Theorem in R
2

The proof of Theorem 4.4.2 has three parts:

Claim 1: There exist neighborhoods V of −→x0 and W of −→y0 such that F
maps V one-to-one onto W .

Claim 2: The inverse mapping G:W→V is continuous.

Claim 3: G is C1 and Equation (4.12) holds.

Claim 1 requires a proof specific to our situation in R
2, which we give

below. However, Claims 2 and 3 will be useful in our later contexts, and
their proof does not rely on the dimension of the ambient space, so we will
formulate and prove them as independent lemmas:

Lemma F.0.2. If F:Rn→R
n is continuous on V ⊂ R

n and maps V onto
W ⊂ R

n in a one-to-one way, then the inverse map G:W→V defined by

G(y) = x⇔ y = F (x)

is continuous on W .

757
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Lemma F.0.3. If F:Rn→R
n maps V ⊂ R

n onto W ⊂ R
n in a one-to-one

way, and is differentiable at −→x0 with invertible derivative map DF−→x0 , then
the inverse map G:W→V is differentiable at −→y0 = F (−→x0), and

DG−→y0 =
(

DF−→x0
)−1

. (F.1)

Proof of Claim 1:
In order to have

∣

∣

∣

∣

∂ (f1, f2)

∂ (x, y)

∣

∣

∣

∣

=
∂f1
∂x

∂f2
∂y
− ∂f1

∂y

∂f2
∂x
6= 0,

at least one of the two products is nonzero; we will assume the first one is
nonzero at −→x0, so

∂f1
∂x

(−→x0) 6= 0

and

∂f2
∂y

(−→x0) 6= 0.

Applying the Implicit Function Theorem (Theorem 3.4.2) to f2, we see
that the level set L(f2, d) of f2 through −→x0 is locally the graph of a C1
function y = ϕ(x), and similarly the level set L(f1, c) of f1 through −→x0 is
locally the graph of a C1 function x = ψ(y). Let R be the rectangle
[x0 − ε1, x0 + ε1]× [y0 − ε2, y0 + ε2] where the function ϕ is defined on
[x0 − ε1, x0 + ε1] and ψ is defined on [y0 − ε2, y0 + ε2]. By picking ε1 and
ε2 sufficiently small, we can assume that the graphs of ϕ and ψ are
contained in R (Figure F.1).
Now every point near −→x0 also has ∂f2

∂y and ∂f1
∂x nonzero, so picking ε1 and ε2

sufficiently small, we can assume that this holds at every point of R. Again
the Implicit Function Theorem guarantees that the level set of f2 (resp. of
f1) through any point of R is the graph of y as a C1 function of x (resp. of
x as a function of y). However, a priori there is no guarantee that these
new functions are defined over a whole edge of R. But suppose some level
set of f2 in R can not be given as the graph of a function defined on all of
[x0 − ε1, x0 + ε1]. Then the endpoint of this curve cannot be interior to R,
and hence must lie on the bottom or top edge of R. We claim that this
does not happen for level sets which come close to −→x0.
Assuming for simplicity that ∂f2

∂y is positive at all points of R, we can find

a positive lower bound m for ∂f2
∂y . This means that for any point −→x on the
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x

y

• f2(x, y) = d (y = ϕ(x))

f1(x, y) = c
(x = ψ(y))

−→x0

Figure F.1: The level sets of f1 and f2 through ~x0 in R.

level set L(f2, d) through −→x0, the value of f2 at the point on the top (resp.
bottom) edge of R directly above (resp. below) −→x is at least d+mδ+
(resp. at most d−mδ−) where δ+ (resp. δ−) is the distance from −→x to the
top (resp. bottom) edge of R. But these numbers are bounded away from
zero, so the level sets L(f2, d+△d), for |△d| sufficiently small, are curves
going from the left to the right edge of R—that is, they are the graphs of
functions defined along the whole bottom edge of R. Similarly, all level
sets of f1 close to the one through −→x0 are graphs of C1 functions of x as a
function of y defined along the whole left edge of R. Form a curvilinear
quadrilateral from two pairs of such graphs, one pair L(f2, d±△d)
bracketing L(f2, d), and the other pair L(f1, c±△c) bracketing L(f1, c);
call it V (Figure F.2).

The four corners of V map under F to the four points (c±△c, d±△d); let
W be the rectangle with these corners (Figure F.3). We claim V maps
one-to-one onto W .

Given a point (a, b) ∈W , we know that a point (x, y) with F (x, y) = (a, b),
if it exists, must be a point of intersection of L(f1, a) and L(f2, b). Start at
the lower-left corner of V , which maps to (c−△c, d−△d). The value of f2
there is at most b, while at the upper-left corner it is at least b; thus the
Intermediate Value Theorem guarantees that somewhere along the left
edge of V we have f2 = b; moreover, since the coordinate y increases
monotonically along this curve and ∂f2

∂y 6= 0, f2 increases monotonically
along this edge of V , so there is exactly one point on this edge where
f2 = b. By construction, f1 = c−△c ≤ a at this point. Traveling along the
level set of f2 through this point, we know that by the time we reach the



760 APPENDIX F. IMPLICIT AND INVERSE MAPPING THEOREMS

x

y

•

•
•

•
•
V

−→x0

Figure F.2: The quadrilateral V

•

•
•

•

V F

G = F−1

•

•

•

•
W

•F(
−→x )

•
−→x

f2=d

f1=c

Figure F.3: The rectangle W
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right edge of V we have f1 ≥ a. Again, a combination of the Intermediate
Value Theorem and monotonicity of f1 guarantee that there is a unique
point along this curve where also f1 = a.

This simultaneously proves two things: that every point in W gets hit by
some point of V (F maps V onto W ), and this point is unique (F is
one-to-one on V ), proving Claim 1.

Proof of Lemma F.0.2:
Given a sequence −→yk → −→y∞ ∈W , let −→xk = G(−→yk) and −→x∞ = G(−→y∞); we need
to show that −→xk → −→x∞.

The two relations can be rewritten

F (−→xk) = −→yk
F (−→x∞) = −→y∞.

Since V is closed and bounded, the Bolzano-Weierstrass Theorem says that
the sequence {−→xk} in V has at least one accumulation point; we will show
that every such accumulation point must be −→x∞.
Suppose {−→xki} is a convergent subsequence of {−→xk}. Then, since F is
continuous, −→yki = F (−→xki) converge to F (lim−→xki). But this is a subsequence
of the convergent sequence {−→yk}, so its limit must be −→y∞. In other words,

F (lim−→xki) = −→y∞ = F (−→x∞) ,

or, since F is one-to-one,

lim−→xki = −→x∞.

We have shown that the bounded sequence −→xk has the unique
accumulation point −→x∞; this implies that the sequence converges to it.
This proves Claim 2.

Proof of Lemma F.0.3:
Since we have a candidate for the derivative, we need only show that this
candidate has first-order contact with G at −→y0, that is, we need to show
that

lim−→y→−→y0

G(−→y )−G(−→y0)− (L)−1(△−→y )
‖△−→y ‖ = 0

where

L = DF−→x0
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and

△−→y = −→y −−→y0 .

In other words, if we set

E1(−→y ) = G(−→y )−G(−→y0)− (L)−1(△−→y ) (F.2)

then given ε > 0, we need to find δ > 0 such that ‖△−→y ‖ = |−→y −−→y0| ≤ δ
guarantees

‖E1(−→y )‖ ≤ ε ‖△−→y ‖ . (F.3)

We will do this via some estimates.
Given −→y , let

−→x = G(−→y )
△−→x = −→x −−→x0.

Then we can rewrite Equation (F.2) as

E1(−→y ) = △−→x − (L)−1(△−→y ) (F.4)

or
△−→x = (L)−1(△−→y ) + E1(−→y ) . (F.5)

We will also make use of the relation

△−→y = F (−→x )− F (−→x0) = L(△−→x ) + E2(−→x ) (F.6)

where

lim−→x→−→x0

E2(−→x )
‖△−→x ‖ = 0.

This means that, given ε2 > 0, we can pick δ2 > 0 such that ‖△−→x ‖ ≤ δ2
guarantees

‖E2(−→x )‖ ≤ ε2 ‖△−→x ‖ . (F.7)

(We will pick a specific value for ε2 below.)
Applying the linear mapping L−1 to both sides of Equation (F.6), we have

(L)−1(△−→y ) = △−→x + (L)−1(E2(−→x ))

and substituting this into Equation (F.4), we get

E1(−→y ) = − (L)−1(E2(−→x ))
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Now, we know that there is a constant m > 0 such that for every −→v ∈ R
2,

∥

∥

∥(L)
−1(−→v )

∥

∥

∥ ≤ m ‖−→v ‖ ;

applying this to the previous equation we have

‖E1(−→y )‖ ≤ m ‖E2(−→x )‖ (F.8)

and applying it to Equation (F.5), and substituting Equation (F.8), we
have

‖△−→x ‖ ≤ m ‖△−→y ‖+m ‖E2(−→x )‖ . (F.9)

Finally, since G is continuous, we can find δ > 0 such that ‖△−→y ‖ < δ
guarantees ‖△−→x ‖ < δ2, so Equation (F.7) holds.

Now observe that

1. If ε2 <
1
2m , then for ‖△−→y ‖ < δ, substituting Equation (F.7) into

Equation (F.9) gives

‖△−→x ‖ ≤ m ‖△−→y ‖+mε2 ‖△−→x ‖

≤ m ‖△−→y ‖+m

(

1

2m

)

‖△−→x ‖

≤ m ‖△−→y ‖+ 1

2
‖△−→x ‖

from which it follows that

‖△−→x ‖ < 2m ‖△−→y ‖

2. If ε2 <
ε

2m2 , then for ‖△−→y ‖ < δ Equation (F.8) and Equation (F.7)
tell us that

‖E1(−→y )‖ ≤ m ‖E2(−→x )‖
≤ mε2 ‖△−→x ‖
≤ m

( ε

2m2

)

‖△−→x ‖

=
( ε

2m

)

‖△−→x ‖ .

So, given ε > 0, if we
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• pick

0 < ε2 < min

{

1

2m
,
ε

2m2

}

and then

• pick δ2 > 0 so that ‖△−→x ‖ ≤ δ2 guarantees Equation (F.7) holds, and
finally

• pick δ > 0 (by continuity of G, as above) so that ‖△−→y ‖ < δ
guarantees ‖△−→x ‖ < δ2,

then both conditions above hold, and we can assert that

‖E1(−→y )‖ ≤
( ε

2m

)

‖△−→x ‖

≤
( ε

2m

)

(2m ‖△−→y ‖)
= ε ‖△−→y ‖ .

as required by Equation (F.3).

Together, these claims establish Theorem 4.4.2.

Proof of Proposition 4.4.3:

Let −→p :R2→R
3

−→p (s, t) =





x(s, t)
y(s, t)
z(s, t)





be a regular parametrization of S near −→x0. Then we can take

−→n =
∂−→p
∂s
× ∂−→p

∂t
.

1. The condition that P is not vertical means that the third component
of −→n is nonzero, or

∂ (x, y)

∂ (s, t)
6= 0.

Let

F (s, t) =

[

x(s, t)
y(s, t)

]

be −→p followed by projection on the xy-plane. Then ∂(x,y)
∂(s,t) is the

Jacobian of F , which is nonzero at the parameter values
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corresponding to −→x0. It follows from Theorem 4.4.2 that locally, F is
invertible: in other words, there is a mapping

G(x, y) =

[

s(x, y)
t(x, y)

]

from a neighborhood of (x0, y0) to the s, t-plane such that
F (G(x, y)) = (x, y). But then for each (x, y) in the domain of G,

−→p (G(x, y)) =





x = x(s(x, y))
y = y(t(x, y))
z(G(x, y))





is the point on S which projects to (x, y), and

ϕ(x, y) = z(G(x, y))

is the required function.

2. Let R be a rigid rotation of R3 about −→x0 which takes −→n to the
vertical direction, and hence takes P to the horizontal plane P ′

through −→x0. Then R ◦−→p parametrizes R(S), which by the previous
argument is locally parametrized by its projection on the
xy-plane—that is, the mapping (x, y) 7→ (x, y, ϕ(x, y)) parametrizes
R(S). Note that

(x, y) 7→ (x, y, ϕ(x, y)) = (x, y, z0) + f(x, y) ‖−→n ‖−→k .

Now rotate the whole picture back, using the inverse rotation R−1:
then

−→p
(

R−1((x, y, z0))
)

= R−1((x, y, ϕ(x, y)))

is a local parametrization of S which assigns to each point of
R−1(P ′) = P the point on S which projects to it, and has the form

−→x 7→ −→x + f(R(x, y, z0))
−→n .



766 APPENDIX F. IMPLICIT AND INVERSE MAPPING THEOREMS

Implicit Mapping Theorem for R
3 → R

2

Proof of of Theorem 4.4.6:

That F maps some neighborhood V of −→x0 onto some neighborhood W of
F (−→x0) follows easily from the Inverse Mapping Theorem for mappings of
the plane to itself. The projection of

−→∇fi(−→x0) =
(

∂fi
∂x

(−→x0) ,
∂fi
∂y

(−→x0) ,
∂fi
∂z

(−→x0)
)

onto the yz-plane is

projyz
−→∇fi(−→x0) =

(

∂fi
∂y

(−→x0) ,
∂fi
∂z

(−→x0)
)

which is the gradient at −→x0 of the function fi(x0, y, z) of two variables
obtained by restricting fi to the plane through −→x0 parallel to the yz-plane,

and so the projection on the yz-plane of
−→∇F (−→x0) is just the Jacobian

determinant

∂ (f1, f2)

∂ (y, z)
=
∂f1
∂y

(−→x0)
∂f2
∂z

(−→x0)−
∂f1
∂z

(−→x0)
∂f2
∂y

(−→x0)

whose nonvanishing, according to the Inverse Mapping Theorem for R2

(Theorem 4.4.2), guarantees that this restriction maps a neighborhood Ṽ of
−→x0 in the plane onto a neighborhood W of F (−→x0) in R

2. (See Figure F.4.)

x

y

z

b

~x0

Ṽ

V

Figure F.4: The sets V and Ṽ
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This of course insures that any neighborhood V of −→x0 in R
3 containing Ṽ

also maps onto W .

To see that the level sets are curves, note that if
∣

∣

∣

∂(f1,f2)
∂(y,z)

∣

∣

∣ 6= 0 then at least

one of the two gradients has a nonzero component in the z-direction. Let

us assume it is
−→∇f2(−→x0). Then the Implicit Function Theorem

(Theorem 3.5.3, for R3 → R) tells us that the level set L(f2, d) of f2
through −→x0 is locally the graph of a C1 function z = ϕ(x, y) (Figure F.5).

x

y

z−→∇f2

f2(
−→x ) = d

(z = ϕ(x, y))

Figure F.5: L(f2, d) =graph of ϕ(x, y)

Now, let
g(x, y) = f1(x, y, ϕ(x, y))

be the restriction of f1 to this graph. A point −→x on the graph of ϕ (that
is, such that f2(

−→x ) = d) belongs to L(F, (c, d)) precisely if
f1(
−→x ) = g(x, y) = c, or

L(F, (c, d)) = {(x, y, ϕ(x, y)) | (x, y) ∈ L(g, c)} .

By the Chain Rule

∂g

∂y
=

∂

∂y
[(f1(x, y, ϕ(x, y)))]

=
∂f1
∂y

+

(

∂f1
∂z

)

·
(

∂ϕ

∂y

)

,

and by the Implicit Function Theorem,

∂ϕ

∂y
= −∂f2/∂y

∂f2/∂z
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so

∂g

∂y
=

(

1

∂f2/∂z

)[(

∂f1
∂y

)

·
(

∂f2
∂z

)

−
(

∂f1
∂z

)

·
(

∂f2
∂y

)]

=

(

1

∂f2/∂z

) ∣

∣

∣

∣

∂ (f1, f2)

∂ (y, z)

∣

∣

∣

∣

which does not vanish at −→x0. But then the Implicit Function Theorem
applied to g tells us that L(g, c) is locally a curve through (x0, y0)
parametrized by

x = t

y = γ(t)

which means that L(F, (c, d)) is parametrized by

x = t

y = γ1(t) := γ(t)

z = γ2(t) := ϕ(t, γ(t))

as required (Figure F.6).

x

y

z

L(g, c)

−→∇f1

−→∇f2

f1(
−→x ) = c

f2(
−→x ) = d

F (−→x ) = (c, d)

Figure F.6: L(F, (c, d))

That the line tangent to L(F, (c, d)) at −→x0 is parallel to
−→∇f1 ×

−→∇f2 is an
immediate consequence of the fact that the curve belongs to L(f1, c) (and
hence its tangent is perpendicular to the normal,

−→∇f1) and also to L(f2, c)
(and hence its tangent is also perpendicular to its normal,

−→∇f2)—but the
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cross product of the two vectors
−→∇f1 and

−→∇f2 also points in the direction
perpendicular to both of them.

Inverse Mapping Theorem for R
3

Proof of Theorem 4.4.10:
In light of Lemma F.0.2 and Lemma F.0.3, the only thing we need to prove
is the analogue of Claim 1 in the proof of Theorem 4.4.2: the existence of
neighborhoods V ⊂ R

3 and W ⊂ R
3 of −→x0 and −→y0, respectively, such that F

maps V onto W in one-to-one fashion.
Let us, as usual, write

F (−→x ) =





f1(
−→x )

f2(
−→x )

f3(
−→x )





where fj:R
3→R for j = 1, 2, 3, and set −→y0 = (a, b, c). Expanding JF (−→x0)

by minors, we have (Exercise 5)

JF =
∂f1
∂x

∂ (f2, f3)

∂ (y, z)
− ∂f1

∂y

∂ (f2, f3)

∂ (x, z)
+
∂f1
∂z

∂ (f2, f3)

∂ (x, y)
(F.10)

so at least one of these terms must be nonzero at −→x0 assume it is the last:
this says that

∂f1
∂z

(−→x0) 6= 0

and

∂ (f2, f3)

∂ (y, z)
(−→x0) 6= 0.

The first inequality implies, by the Implicit Function Theorem
(Theorem 3.5.3), that there is a neighborhood V1 of −→x0 of the form
[α1, α2]× [β1, β2]× [γ1, γ2] such that L(f1, a) ∩ V1 is the graph z = ϕ(x, y)
of a C1 function defined on [α1, α2]× [β1, β2] (Figure F.7). We can also
assume (shrinking V1 if necessary) that the first inequality holds when −→x0
is replaced by any −→x ∈ V1. To use the second inequality, we define the
mapping F2:R

3→R
2 which drops the first component of F :

F2(
−→x ) =

[

f2(
−→x )

f3(
−→x )

]

.
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V1

z = ϕ(x, y)
(f1(
−→x ) = a)

b
−→x0

Figure F.7: L(f1, a)

Then our second inequality implies, by the Implicit Mapping Theorem
(Theorem 4.4.6), that there is a neighborhood W1 ⊂ R

2 of (b, c) such that
the intersection of V1 (reduced further, if necessary) with each level set of
the form L(F2, (b

′, c′)) for (b′, c′) ∈W1 is a path (or possibly a union of
paths) parametrized by z; in particular, the level set L(F2, (b, c)) through−→x0 is a curve C running vertically from the bottom to the top of V1. Now
we mimic the argument for Claim 1 in the proof of the two-dimensional
Inverse Mapping Theorem (Theorem 4.4.2):

1. Pick a1 < a < a2 between the values of f1 at the ends of C and for
i = 1, 2 let

Si = L(f1, ai) ∩ V1.

Each of these is the graph of a function z = ϕi(x, y) defined on
[α1, α2]× [β1, β2].

2. A neighborhood Ui in Si of its intersection with C maps onto some
fixed neighborhood W2 ⊂W1 of (b, c) under F2; we can assume that
W2 = [b1, b2]× [c1, c2], so that Ui is a curvilinear rectangle in Si

bounded by its intersection with the four level surfaces L(f2, bj) and
L(f3, cj), j = 1, 2.

3. Then let V be the curvilinear “parallelepiped” formed by S1, S2 and
these four level surfaces (Figure F.8).



771

V1 S2

S1

V

Figure F.8: V

Then each of the level sets L(F2, (b
′, c′)), (b′, c′) ∈W2, of F2 in V runs from

S1 to S2, which is to say the values of f1 along each of these curves run
from a1 to a2, so it follows that each value a′ of f1 between these two
occurs in conjunction with the corresponding value (b′, c′); in other words,
F maps V onto the neighborhood of (a, b, c)

W = [a1, a2]×W2 = [a1, a2]× [b1, b2]× [c1, c2] ;

furthermore, since z is strictly increasing along each of these curves, and
∂f1
∂z 6= 0 in V , any such value occurs only once—that is, F is one-to-one on
V .
This, together with Lemmas F.0.2 and F.0.3, proves Theorem 4.4.10.
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G
Change of Coordinates: Technical Details

G.1 Linear and Affine Change of Variables

First, since any polygon can be tiled by triangles, the same property holds
for their areas. Second, suppose D is an arbitrary elementary region in R

2:
for example, suppose it is x-regular, say

D = {(x, y) | a ≤ x ≤ b, ψ(x) ≤ y ≤ ϕ(x)} .
We can partition [a, b] so that the inner and outer sums differ by an
arbitrarily specified amount; given ε > 0, we make sure that this difference
multiplied by ∆(L) is less than ε. The (nested) polygons P− and P+

formed by the union of the inscribed and circumscribed rectangles,
respectively, are taken to (nested) polygons L(P−) and L(P+),
respectively; we know that

A (P−) ≤ A (D) ≤ A (P+)

and also (by nesting)

A (L(P−)) ≤ A (L(D)) ≤ A (L(P+)) ;

since

A (L(P+))−A (L(P−)) = ∆ (L) (A (P+)−A (P−))

< ε

773
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and

∆ (L)A (P−) ≤ ∆(L)A (D) ≤ ∆(L)A (P+)

we can conclude that

|A (L(D))−∆(L)A (D)| < ε.

Since ε > 0 is arbitrary, the two quantities are equal, and we have proved

Proposition G.1.1. For any elementary planar region D, the area of its
image under a linear map L:R2→R

2 is the original area multiplied by the
absolute value of the determinant of the matrix representative of L:

A (L(D)) = ∆ (L)A (D)

where

∆(L) = |det [L]| .

While we have concentrated on linear maps, the same results hold for
affine maps, since a displacement does not change areas. Thus we can
restate Proposition G.1.1 in the context of affine maps.

Theorem G.1.2 (Theorem 5.3.4). If T :R2→R
2 is an affine map

(T (−→x ) = −→y0 + L(−→x ), where L is linear) and D is an elementary region in
R
2,

A (T (D)) = ∆ (L) · A (D) .

A consequence of this is the following result about affine change of
variables inside a double integral:

Proposition G.1.3 (Proposition 5.3.5). Suppose D is an elementary
region, T :R2→R

2 is an affine coordinate transformation defined on D, and
f:R2→R is a real-valued function which is integrable on T (D).
Then

∫∫

T(D)
f(−→x ) dA =

∫∫

D
f(T (~s))∆ (T ) dA. (G.1)

Proof. Note first that the definition of the integral allows us to enclose D
in a rectangle [a, b]× [c, d] and extend the integrand f to be zero off the
set. In effect, this means we can assume D = [a, b]× [c, d].
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We first consider the special case when the matrix representative for the
linear part of T is diagonal:

T (~s) = L(~s) +
−→
C ,

where

[L] =

(

a11 0
0 a22

)

;

geometrically, this says that horizontal and vertical directions are
preserved, with horizontal distances scaled by a11 and vertical distances
scaled by a22.
Let P be a partition of D = [a, b]× [c, d] defined by a partition of [a, b] and
a partition of [c, d], and consider the partition T (P) = P ′ of

T ([a, b]× [c, d]) =
[

a′, b′
]

×
[

c′, d′
]

where1

a′ = T (a)

b′ = T (b)

c′ = T (c)

d′ = T (d)

defined by the images under L of the points defining P.
The lower (resp. upper) sums for these two partitions are

L(P, f ◦ T∆(T )) =
∑

i,j

(

inf
Sij

(f ◦ T )∆ (T )

)

△Aij

U(P, f ◦ T∆(T )) =
∑

i,j

(

sup
Sij

(f ◦ T )∆ (T )

)

△Aij

L(P ′, f) =
∑

i,j

(

inf
S′
ij

f

)

△A′
ij

U(P ′, f) =
∑

i,j

(

sup
S′
ij

f

)

△A′
ij

1Note that we are using the fact that [L] is diagonalizable here
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where

S′
ij = T (Sij) .

But the values of f on S′
ij = T (Sij) (and hence their infimum and

supremum) are precisely the same as those of f ◦ T on Sij, and the area
△A′

ij of T (Sij) is precisely ∆ (T ) times the area △Aij of Sij; it follows
that the corresponding sums are equal

L(P, (f ◦ T )∆ (T )) = L(P ′, f)

U(P, (f ◦ T )∆ (T )) = U(P ′, f)

and hence the two integrals are equal:

∫∫

T(D)
f(−→x ) dA =

∫∫

D
(f ◦ T )(~s)∆ (T ) dA

which is the same as Equation (G.1), proving it in the diagonal case.
The difficulty with this argument when [L] is non-diagonal is that the
image T (Sij) of a rectangle of P might not be a rectangle with sides
parallel to the x- and y-axes: in fact, it is in general a parallelogram, often
with no horizontal or vertical sides. In particular, we cannot claim that the
images of the subrectangles of a partition P of D are themselves the
subrectangles of any partition of T (D).
To simplify matters, let us assume that the original partition P comes
from dividing [a, b] (resp. [c, d]) into m (resp. n) equal parts with points si
(resp. tj), and let us consider the points T (si, tj) in the (x, y)-plane . We
can form a partition of the smallest rectangle containing T (D),
R = [A,B]× [C,D], by drawing horizontal and vertical lines through all of
these points; furthermore we can refine this partition by adding more
horizontal and vertical lines in such a way that we have a partition P ′ of R
with arbitrarily small mesh size µ, .
What is the total area of those rectangles of this partition which meet the
parallelogram that forms the boundary of T ([a, b]× [c, d])? For each
non-horizontal (resp. non-vertical) edge of the parallelogram, we can slide
all the rectangles which meet it across to the y-axis (resp. x-axis). Since
all the rectangles have width (resp. height) at most µ, they will fit inside a
vertical (resp. horizontal) rectangle whose width (resp. height) is µ and
whose height (resp. width) is the projection of that edge on the y-axis
(resp. x-axis). This means that the total area of the rectangles meeting the
boundary of T ([a, b]× [c, d]) will be at most µ times the perimeter of
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R = [A,B]× [C,D], which is 2(B −A) + 2(D − C). Now we can pick µ
sufficiently small to guarantee that the total area of the rectangles of P ′

which meet the boundary have total area whose ratio to the area of the
parallelogram T ([a, b]× [c, d]) is arbitrarily small, say it is less than ε for
some specified ε > 0.

Now note that this argument can be scaled to apply to all of the
parallelograms formed as images of the subrectangles of P, and this can be
done simultaneously for all of them, since they are all congruent. This is
what we really need: pick µ so small that the total area of the
subrectangles of P ′ of mesh µ meeting the boundary of any particular
parallelogram T (Sij) is less than ε times the area of the parallelogram.
Now, let us consider the contribution to L(P ′, f) (resp. U(P ′, f)) of all the
subrectangles of P ′ which meet the boundary of any one of the
parallelograms T (Sij) (for all possible i, j). For each parallelogram T (Sij),
the infimum (resp. supremum) of f on any subrectangle of P ′ contained in
the region T (Sij) is at least (resp. at most) equal to the infimum (resp.
supremum) of f on T (Sij), which in turn equals the infimum (resp.
supremum) of f ◦ T on Sij. The sum of inf f△Aij (resp. sup f△Aij) over
all these rectangles (which is to say those that don’t meet the boundary of
any parallelogram) is at least (resp. at most) equal to infSij

(f ◦ T ) times
the total area of these rectangles, which is at least 1− ε (resp. at most
1 + ε) times the area of T (Sij), and this in turn equals ∆ (T ) times the
area of Sij. This shows that the individual terms of L(P ′, f) and U(P ′, f)
coming from subrectangles S′ not meeting the boundary of any
parallelogram T (Sij) satisfy

∑

S′⊂T(Sij), some i,j

(inf
S′
f)(∆ (T )) dA′ ≥ (1− ε)

∑

i,j

inf
Sij

(f ◦ T )(∆ (T )) dAi,j

and

∑

S′⊂T(Sij), some i,j

(sup
S′

f)(∆ (T )) dA′ ≤ (1 + ε)
∑

i,j

sup
Sij

(f ◦ T )(∆ (T )) dAi,j .

Furthermore, the contribution to L(P ′, f) and U(P ′, f) from those
subrectangles that do intersect the boundary of some T (Sij) is between ε
times the infimum and ε times the supremum of the function f ◦ T over the
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whole of D. Thus, for each ε > 0 we can construct a partition P ′ for which

(1− ε)L(P ′, f) + ε(inf
D

◦fT∆(T ))A (T (D))

≤ L(P ′, (◦fT )∆ (T ))

≤ U(P ′, (◦fT )∆ (T ))

≤ (1 + ε)U(P ′, f) + ε(inf
D

◦fT∆(T ))A (T (D))

Since this is true for arbitrary ε > 0, given P, we see that

sup
P ′

L(P ′, f) ≤ sup
P
L(P, (◦fT )∆ (T )) ≤ inf

P
U(P, (◦fT )∆ (T )) ≤ sup

P ′

U(P ′, f)

which shows the two integrals are equal, as required.

G.2 Coordinate Transformations

In this section we extend the results of § G.1 to (nonlinear) coordinate
transformations. In keeping with our general philosophy, we expect the
behavior of a coordinate transformation F with respect to area, at least
locally, to reflect the behavior of its linearization.
To sharpen this expectation, we establish some technical estimates. We
know what the linearization map T−→x0F at a point does to a square: it

maps it to a parallelogram whose area is the original area times ∆
(

T−→x0F
)

.

We would like to see how far the image of the same square under the
nonlinear transformation F deviates from this parallelogram. Of course,
we only expect to say something when the square is small.
Suppose P is a parallelogram whose sides are generated by the vectors −→v
and −→w . We will say the center is the intersection of the line joining the
midpoints of the two edges parallel to −→v (this line is parallel to −→w ) with
the line (parallel to −→v ) joining the midpoints of the other two sides
(Figure G.1. If the center of P is −→x0, then it is easy to see that

P = {−→x0 + α−→v + β−→w | |α| , |β| ≤ 0.5} .

Now we can scale P by a factor λ > 0 simply by multiplying all distances
by λ. The scaled version will be denoted

λP := {−→x0 + α−→v + β−→w | |α| , |β| ≤ 0.5λ} .

When we scale a parallelogram by a factor λ, its area scales by λ2; in
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•
−→x0

λP (λ > 1)

λP (0<λ<1)

P

Figure G.1: Center of a Parallelogram, Scaling.

particular, if λ is close to 1, then the area of the scaled parallelogram is
close to that of the original. Our immediate goal is to establish that if a
square is small enough, then its image under F is contained between two
scalings of its image under the linearization TF = T−→x0F of F at some point
in the square—that is, for some ε > 0, F (D) contains (1− ε)TF (D) and is
contained in (1 + ε)TF (D).2 (See Figure G.2.) Note that scaling
commutes with an affine map: the image of a scaled square is the same
scaling of the image parallelogram.

The argument is easiest to see when the linear part of T−→x0F is the identity
map and the region is a square; after working this through, we will return
to the general case. Given a point −→x0 = (x0, y0), we will refer to the square
[x0 − r, x0 + r]× [y0 − r, y0 + r] as the square of radius r centered at
−→x0.

Remark G.2.1. If D is a square of radius r centered at −→x0, then any
point −→x whose distance from the boundary of D is less than rε is inside
(1 + ε)D and outside (1− ε)D.

(See Figure G.3.)

Lemma G.2.2. Suppose F:R2→R
2 is differentiable at −→x0 and its

derivative at −→x0 is the identity map. Suppose furthermore that D is a

2Our argument here is motivated by [13, pp. 178-9, 248-51].
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(1+ε)D

D

(1−ε)D

F (D)

T−→x0
F((1+ε)D)

T−→x0
F((1−ε)D)

T−→x0F

F

Figure G.2: Nonlinear Image Between two scaled affine images
(1
−
ε)
r

εr

εr

r

•−→x0

εr

Figure G.3: Remark G.2.1
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square of radius r, centered at −→x0, such that for all −→x ∈ D the first-order
contact condition

∣

∣

∣F (−→x )− T−→x0F (
−→x )
∣

∣

∣ < δ |−→x −−→x0| (G.2)

holds, where

0 < δ <
ε√
2
. (G.3)

Then (provided 0 < ε < 1) F (D) is between T−→x0F ((1− ε)D) and
T−→x0F ((1 + ε)D):

T−→x0F ((1− ε)D) ⊂ F (D) ⊂ T−→x0F ((1 + ε)D) .

Proof. The main observation here is that the distance from the center to
any point on the boundary of a square of radius r is between r and r

√
2;

the latter occurs at the corners. Thus, for any point −→x on the boundary of
D, Equation (G.2) tells us that

∣

∣

∣
F (−→x )− T−→x0F (

−→x )
∣

∣

∣
δ(r
√
2)

<

(

ε√
2

)

(r
√
2)

= rε

and since T−→x0F (
−→x ) = −→x by assumption, it follows from Remark G.2.1 that

the boundary of F (D) (which is the image of the boundary of D) lies
entirely inside T−→x0F ((1 + ε)D) and entirely outside T−→x0F ((1− ε)D), from
which the desired conclusion follows.

To remove the assumption that DF−→x0 is the identity map in Lemma G.2.2,
suppose we are given F with arbitrary invertible derivative mapping
L = DF−→x0 . Consider the mapping

G = L−1 ◦ F.

By the Chain Rule, DG−→x0 is the identity map, so Lemma G.2.2 says that if

the first-order contact condition
∣

∣

∣
G(−→x )− T−→x0G(

−→x )
∣

∣

∣
< δ |−→x −−→x0| applies

on D with 0 < δ < ε√
2
, then

T−→x0G((1− ε)D) ⊂ G(D) ⊂ T−→x0G((1 + ε)D) .
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Since F = L ◦G, we can simply apply L to all three sets above to see that
this conclusion implies the corresponding conclusion for F :

T−→x0F ((1− ε)D) = L
(

T−→x0G((1− ε)D)
)

⊂ F (D) = L(G(D))
⊂ T−→x0F ((1 + ε)D) = L

(

T−→x0G((1 + ε)D)
)

.

To formulate the hypotheses in terms of F , we note that what is required is

∣

∣

∣G(−→x )− T−→x0G(
−→x )
∣

∣

∣ =
∣

∣

∣L−1
(

F (−→x )− T−→x0F (
−→x )
)∣

∣

∣

≤‖ L−1 ‖
∣

∣

∣F (−→x )− T−→x0F (
−→x )
∣

∣

∣

< δ |−→x −−→x0|

(caution: ‖ L−1 ‖ is not the same as ‖ L ‖−1). So dividing both sides of
the last inequality by ‖ L−1 ‖, we see that our hypothesis should be

∣

∣

∣
F (−→x )− T−→x0F (

−→x )
∣

∣

∣
<

δ

‖ L−1 ‖ |
−→x −−→x0| (G.4)

where δ satisfies (G.3). So we can say, without any assumptions on DF−→x0 ,
the following:

Lemma G.2.3. Suppose F:R2→R
2 has invertible derivative at −→x0 and R

is a square of radius r, centered at −→x0, such that for all −→x ∈ D the
first-order contact condition

∣

∣

∣
F (−→x )− T−→x0F (

−→x )
∣

∣

∣
< δ |−→x −−→x0| (G.5)

holds, where

0 < δ <
ε√

2 ‖
(

DF−→x0
)−1 ‖

. (G.6)

Then (provided 0 < ε < 1) F (D) is between T−→x0F ((1− ε)D) and
T−→x0F ((1 + ε)D):

T−→x0F ((1− ε)D) ⊂ F (D) ⊂ T−→x0F ((1 + ε)D) .

In particular, under these conditions, we have an estimate of area

(1− ε)∆
(

DF−→x0
)

A (R) ≤ A (F (R)) ≤ (1 + ε)∆
(

DF−→x0
)

A (R) . (G.7)
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So far, what we have is a local result: it only applies to a square that is
small enough to guarantee the first-order contact condition (G.8). To
globalize this, we need to approximate D with a non-overlapping union of
squares small enough to guarantee condition (G.8), relative to its center,
on each of them individually. So far, though, we only know that if F is
differentiable at a given point −→x0, the first-order contact condition holds on
some sufficiently small square about −→x0; a priori the required size may
vary with the point. We would like to get a uniform condition: to
guarantee (G.8) for any square whose radius is less than some fixed
number that depends only on the desired δ. When F is C1, this can be
established by an argument similar to that used to show that continuity on
a compact region guarantees uniform continuity there (Calculus
Deconstructed, Theorem 3.7.6).

Lemma G.2.4. Suppose F:R2→R
2 is C1 on a compact region D. Given

δ > 0, there exists δ′ > 0 such that the first-order contact condition
∣

∣F (−→x )− T−→x ′F (
−→x )
∣

∣ < δ
∣

∣

−→x −−→x ′∣
∣ (G.8)

holds for any pair of points −→x ,−→x ′ ∈ D whose distance apart is less than δ′.

Proof. The proof is by contradiction. Suppose no such δ′ exists; then for
each choice of δ′, there exists a pair of points −→x ,−→x ′ ∈ D with

∣

∣

−→x −−→x ′∣
∣ < δ′

but

∣

∣F (−→x )− T−→x ′F (
−→x )
∣

∣ ≥ δ
∣

∣

−→x −−→x ′∣
∣ .

We pick a sequence of such pairs, −→xk,−→x ′
k ∈ D corresponding to δ′ = 1

k ,
k = 1, . . ..
By the Bolzano-Weierstrass Theorem, the sequence −→x ′

k has a convergent
subsequence, which we can assume to be the full sequence: say −→x ′

k → −→x0.
Since F is C1, we can also say that the Jacobian matrices of F at −→x ′

k

converge to the matrix at −→x0, which means that for k sufficiently high,
∣

∣

∣DF−→x ′

k

(−→x −−→x ′
k

)

−DF−→x0 (
−→x −−→x0)

∣

∣

∣ ≤ δ

2
|−→x −−→x0|

for all −→x . In particular, the points −→xk converge to −→x0, but
∣

∣

∣
F (−→xk)− T−→x0F (

−→xk)
∣

∣

∣
≥ δ |−→xk −−→x0|

contradicting the definition of differentiability at −→x0.
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Combining this with Lemma G.2.3 (or more accurately its rectangular
variant), we can prove:

Proposition G.2.5. Suppose F:R2→R
2 is a coordinate transformation

on the (compact) elementary region D. Then given ε > 0 there exists δ > 0
such that if R ⊂ D is any square of radius r < δ,

(1− ε)∆
(

T−→x0F
)

A (R) < A (F (R)) < (1 + ε)∆
(

T−→x0F
)

A (R)

where −→x0 is the center of R.

Proof. Note that since F is C1 on D, there is a uniform upper bound on
the norm ‖ ¯(

DF−→x0
)

‖ for all −→x0 ∈ D. Then we can use Lemma G.2.4 to find
a bound on the radius which insures that the first-order contact condition
(G.8) needed to guarantee (G.6) holds on any square whose radius satisfies
the bound. But then Lemma G.2.3 gives us Equation (G.7), which is
precisely what we need.

Finally, we can use this to find the effect of coordinate transformations on
the area of elementary regions. Note that ∆

(

T−→x F
)

= ∆(DF−→x ) is just the
absolute value of the Jacobian determinant:

∆
(

T−→x F
)

= ∆(DF−→x ) = |det JF (−→x )| ;

we will, for simplicity of notation, abuse notation and denote this by
|JF (−→x )|.

Theorem G.2.6 (Theorem 5.3.6). Suppose D ⊂ R
2 is an elementary

region and F:R2→R
2 is a coordinate transformation defined on a

neighborhood of D. Then

A (F (D)) =
∫∫

D
|JF (−→x )| dA (G.9)

Proof. Let us first prove this when D is a square S (of any size) with sides
parallel to the coordinate axes. Note that by subdividing the sides into
intervals of equal length, we can get a partition of the square into
subsquares of arbitrarily small radius. In particular, we can, given ε > 0,
subdivide it into subsquares Rij such that Proposition G.2.5 guarantees for
each Rij that

(1− ε)∆
(

T−→xijF
)

A (Rij) < A (F (Rij)) < (1 + ε)∆
(

T−→xijF
)

A (Rij)
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where −→xij is the center of Rij . Summing over all i and j, we have

(1−ε)
∑

i,j

∆
(

T−→xijF
)

A (Rij) < A



F





⋃

i,j

Rij







 < (1+ε)
∑

i,j

∆
(

T−→xijF
)

A (Rij) .

But the sum appearing at either end

∑

i,j

∆
(

T−→xijF
)

A (Rij)

is a Riemann sum for the integral
∫∫

S ∆
(

T−→x F
)

dA, while

⋃

i,j

Rij = S

so we have, for arbitrary ε > 0,

(1− ε)
∫∫

S
∆
(

T−→x F
)

dA ≤ A (F (S)) ≤ (1 + ε)

∫∫

S
∆
(

T−→x F
)

dA;

thus the area equals the integral in this case.
Now in general, when D is an elementary region, we can find two polygons
Pi, i = 1, 2, such that

1. P1 ⊂ D ⊂ P2;

2. Pi is a non-overlapping union of squares (with sides parallel to the
axes);

3. A (P2 \ P1) is arbitrarily small.

(See Figure G.4.) Since F is C1, the quantity |JF (−→x )| is bounded above
for −→x ∈ P2, say by M . Hence, given ε > 0, we can pick P1 and P2 so that
the area between them is less than ε/; from this it follows easily that, say

∣

∣

∣

∣

∫∫

D
|JF (−→x )| dA−

∫∫

Pi

|JF (−→x )| dA
∣

∣

∣

∣

< ε;

but by the first property above,

∫∫

P1

|JF (−→x )| dA = A (F (P1)) ≤ A (F (D)) ≤ A (F (P2)) =

∫∫

P2

|JF (−→x )| dA

and since ε > 0 is arbitrary, this gives the desired equation.
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P1

P2D

Figure G.4: Approximating D with unions of squares

G.3 Change of Coordinates

Proof of Theorem 5.3.7:
3 For notational convenience, let us write

g = f ◦ F.

Since both g and |JF (−→x )| are continuous, they are bounded and uniformly
continuous on D. Let M be an upper bound for both |g| and |JF (−→x )| on
D. By uniform continuity, given ε > 0, pick δ > 0 so that |−→x −−→x ′| < δ,
−→x ,−→x ′ ∈ D guarantees that

∣

∣g(−→x )− g
(−→x ′)∣

∣ <
ε

2

and

∣

∣|JF (−→x )| −
∣

∣JF
(−→x ′)∣

∣

∣

∣ <
ε

2
.

Let R be a square contained in D; take a partition P into subsquares of R

3We note in passing a slight technical difficulty here: the image of an elementary region
under a coordinate transformation may no longer be an elementary region. However, under
very mild assumptions (see Exercise 1) it can be tiled by elementary regions, and so we
can perform integration over it. We will ignore this problem in the following proof.
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with mesh size less than δ, and consider a single subsquare Rij. Then

0 ≤ sup
−→y ∈F(Rij)

f(−→y )− inf−→y ∈F(Rij)
f(−→y )

= sup
−→x ∈Rij

g(−→x )− inf−→x ∈Rij

g(−→x )

<
ε

2

from which it follows that
∣

∣

∣

∣

∣

∫∫

F(Rij)
f(−→y ) dA− f(−→yij)A (F (Rij))

∣

∣

∣

∣

∣

<
ε

2
A (F (Rij))

where −→x0 is the center of Rij , and
−→yij = F (−→x0), and

A (F (Rij)) =

∫∫

Rij

|JF (−→xij)| dA ≤MA (Rij) .

Similarly,

∣

∣

∣

∣

∣

∫∫

Rij

|JF (−→x )| dA− |JF (−→xij)A (Rij)|
∣

∣

∣

∣

∣

<
(ε

2

)

A (Rij) .

It follows that

∣

∣

∣

∣

∣

∫∫

F(Rij)
f(−→y ) dA− g(−→xij) JF (−→xij)A (Rij)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫∫

F(Rij)
f(−→y ) dA− f(−→yij)A (F (Rij))

∣

∣

∣

∣

∣

+ |g(−→xij)|
∣

∣

∣

∣

∣

∫∫

Rij

|JF (−→x )| dA− |JF (−→xij)|
∣

∣

∣

∣

∣

<
(ε

2
M +

ε

2
M
)

A (Rij) = εMA (Rij) .

Adding up over all the component squares of Rij , we get

∣

∣

∣

∣

∣

∣

∫∫

F(R)
f(y) dA−

∑

i,j

g(−→xij) |JF (−→xij)| A (Rij)

∣

∣

∣

∣

∣

∣

< εMA (R) .



788 APPENDIX G. CHANGE OF COORDINATES

Now the sum on the right is a Riemann sum for
∫∫

R g(
−→x ) |JF (−→x )| dA

corresponding to the partition P; as the mesh size of P goes to zero, this
converges to

∫∫

R g(
−→x ) |JF (−→x )| dA while ε→ 0. It follows that for any

square R in D,
∫∫

F(R)
f(y) dA =

∫∫

R
g(−→x ) |JF (−→x )| dA,

proving our result for a square.
In general, as in the proof of Theorem 5.3.6, given ε > 0, we can find
polygons P1 and P2, each a non-overlapping union of squares, bracketing D
and with areas differing by less than ε. Then

A (D)−A (P1) < ε

A (F (D))−A (F (P1)) =

∫∫

D\P1

|JF (−→x )| dA

< εM

so

∣

∣

∣

∣

∣

∫∫

F(D)
f(y) dA−

∫∫

D
g(−→xij) |JF (−→xij)| dA

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫∫

F(D)
f(y) dA−

∫∫

F(P1)
f(y) dA

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫∫

F(P1)
f(y) dA−

∫∫

D
g(−→xij) |JF (−→xij)| dA

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫∫

F(D)
f(y) dA−

∫∫

F(P1)
f(y) dA

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

P1

g(−→x ) |JF (−→x )| dA−
∫∫

D
g(−→x ) |JF (−→x )| dA

∣

∣

∣

∣

< Mε+ εM = 2Mε

and as ε > 0 is arbitrarily small, the two integrals in the first line are
equal, as required.

Exercises for § G.3
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1. (a) Show that any triangular region with two sides parallel to the
coordinate axes is regular.

(b) Show that a region with two sides parallel to the coordinate
axes, and whose third side is the graph of a strictly monotone
continuous function, is regular.

(c) Show that a triangular region with at least one horizontal (resp.
vertical) side can be subdivided into regular regions.

(d) Show that a trapezoidal region with two horizontal (resp. two
vertical) sides can be subdivided into regular regions.

(e) Show that any polygonal region can be subdivided into
non-overlapping regular regions.

(f) Suppose the curve C bounding D is a simple closed curve
consisting of a finite number of pieces, each of which is either a
horizontal or vertical line segment or the graph of a C2 function
with nowhere vanishing derivative4 Show that the region D can
be subdivided into non-overlapping regular regions.

(g) Show that in the previous item it is enough to assume that each
piece of C is either a horizontal or vertical line segment or the
graph of a C2 function with finitely many critical points.

4 Note that the graph y = ϕ(x) of a C2 function ϕ with nowhere-vanishing derivative
can also be expressed as x = ψ(y), where ψ is C2 with nowhere-vanishing derivative.
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H
Surface Area: the Counterexample of

Schwarz and Peano

We present here an example, due to H. A. Schwarz [48] and G. Peano [44]1

which shows that the analogue for surfaces of the usual definition of the
length of a curve cannot work.

Recall that if a curve C was given as the path of a moving point −→p (t),
a ≤ t ≤ b, we partitioned [a, b] via P = {a = t0 < t1 < · · · < tn} and
approximated C by a piecewise-linear path consisting of the line segments
[−→p (ti−1) ,

−→p (ti)], i = 1, . . . , n. Since a straight line is the shortest distance
between two points, the distance travelled by −→p (t) between t = ti−1 and
t = ti is at least the length of this segment, which is ‖−→p (ti −−→p (ti−1))‖.
Thus, the total length of the piecewise-linear approximation is a lower

1Schwarz tells the story of this example in a note [49, pp. 369-370]. Schwarz initially
wrote down his example in a letter to one Angelo Gnocchi in December 1880, with a
further clarification in January 1881. In May, 1882 Gnocchi wrote to Schwarz that in a
conversation with Peano, the latter had explained that Serret’s definition of surface area
(to which Schwarz’s example is a counterexample) could not be correct, giving detailed
reasons why it was wrong; Gnocchi had then told Peano of Schwarz’s letters. Gnocchi
reported the example in the Notices of the Turin Academy, at which point it came to the
attention of Charles Hermite (1822-1901), who publihsed the correspondence in his Cours
d’analyse. Meanwhile, Peano published his example. After seeing Peano’s article, Schwarz
contacted him and learned that Peano had independently come up with the same example
in 1882.
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bound for the length of the actual path: we say C is rectifiable if the
supremum of the lengths of all the piecewise-linear paths arising from
different partitions of [a, b] is finite, and in that case define the (arc)length
of the curve to be this supremum. We saw in § 2.5 that every regular arc
(that is, a curve given by a one-to-one differentiable parametrization with
non-vanishing velocity) the length can be calculated from any regular
parametrization as

s (C) =
∫ b

a

∥

∥

∥

−̇→p (t)
∥

∥

∥ dt.

The analogue of this procedure could be formulated for surface area as
follows. 2 Let us suppose for simplicity that a surface S in R

3 is given by
the parametrization −→p (s, t), with domain a rectangle [a, b]× [c, d]. If we
partition [a, b]× [c, d] as we did in § 5.1, we would like to approximate S

by rectangles in space whose vertices are the images of “vertices”
pi,j =

−→p (xi, yj) of the subrectangles Rij. This presents a difficulty, since
four points in R

3 need not be coplanar. However, we can easily finesse this
problem if we note that three points in R

3 are always contained in some
plane. Using diagonals (see Figure H.1)3 we can divide each subrectangle
Rij into two triangles, say

Tij1 = △pi−1,j−1pi,j−1pi,j

Tij2 = △pi−1,j−1pi−1,jpi,j.

Tij2

Tij1

pi−1,j−1 = (xi−1, yj−1) pi,j−1 = (xi, yj−1)

pi−1,j = (xi−1, yj) pi,j = (xi, yj)

Figure H.1: Dividing Rij into triangles

This tiling {Tijk | i = 1, . . . ,m, j = 1, . . . , n, k = 1, 2} of the rectangle
[a, b]× [c, d] is called a triangulation. Now, it would be natural to try to

2This approach was in fact followed by J. M. Serret
3There are two ways to do divide each rectangle, but as we shall see, this will not prove

to be an issue.
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look at the total of the areas of the triangles whose vertices are the points−−→
p∗i,j =

−→p (pi,j) on the surface

T ∗
ij1 = △

−−−−−−→
p∗i−1,j−1

−−−−→
p∗i,j−1

−−→
p∗i,j

T ∗
ij2 = △

−−−−−−→
p∗i−1,j−1

−−−−→
p∗i−1,j

−−→
p∗i,j.

and define the area of S to be the supremum of these over all
triangulations of [a, b]× [c, d].

Unfortunately, this approach doesn’t work; an example found
(simultaneously) in 1892 by H. A. Schwartz and G. Peano shows

Proposition H.0.1. There exist triangulations for the standard
parametrization of the cylinder such that the total area of the triangles is
arbitrarily high.

Proof. Consider the finite cylinder surface

x2 + y2 = 1

0 ≤ z ≤ 1.

We partition the interval [0, 1] of z-values into m equal parts using the
m+ 1 horizontal circles z = k

m , k = 0, . . . ,m. Then we divide each circle
into n equal arcs, but in such a way that the endpoints of arcs on any
particular circle are directly above or below the midpoints of the arcs on
the neighboring circles. One way to do this is to define the angles

θjk =

{

2πj
n for k even,
2πj
n − π

n for k odd

and then the points

pjk = (cos θjk, sin θjk,
k

m
).

That is, the points {pjk} for k fixed and j = 1, . . . , n divide the kth circle
into n equal arcs. Now consider the triangles whose vertices are the
endpoints of an arc and the point on a neighboring circle directly above or
below the midpoint of that arc (Figure H.2).

The resulting triangulation of the cylinder is illustrated in Figure H.3.

To calculate the area of a typical triangle, we note first (Figure H.4) that
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x

y

z

pj,k pj−1,k−1

pj,k−1

pj,k−2

Figure H.2: Typical Triangles

x y

z

Figure H.3: Triangulation of the Cylinder
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ℓ

b = 2 sin △θ
2

1

co
s(
△
θ
/2
)

△θ

Figure H.4: The Base of a Typical Triangle

its base is a chord of the unit circle subtending an arc of △θ = 2π
n radians;

it follows from general principles that the length of the chord is

bn = 2 sin
△θ
2

= 2 sin
π

n
.

We also note for future reference that the part of the perpendicular
bisector of the chord from the chord to the circle has length

ℓ = 1− cos
△θ
2

= 1− cos
π

n
.

To calculate the height of a typical triangle, we note that the vertical
distance between the plane containing the base of the triangle and the
other vertex is 1

m , while the distance (in the plane containing the base)
from the base to the point below the vertex (the dotted line in Figure H.5)
is ℓ = 1− cos πn ; it follows that the height of the triangle (the dashed line in
Figure H.5) is itself the hypotenuse of a right triangle with sides ℓ and 1

m ,
so

hm,n =

√

(

1

m

)2

+ ℓ2 =

√

(

1

m

)2

+
(

1− cos
π

n

)2
.

Thus the area of a single triangle of our triangulation (for a given choice of
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pj,k

1
m

h

ℓ

Figure H.5: Calculating the Height of a Typical Triangle

m and n) is

△Am,n =
1

2
bnhm,n

=
1

2

[

2 sin
π

n

]

√

(

1

m

)2

+
(

1− cos
π

n

)2

=
[

sin
π

n

]

√

(

1

m

)2

+
(

1− cos
π

n

)2
.

Now let us count the number of triangles. There are m+ 1 horizontal
circles, each cut into n arcs, and the chord subtending each arc is the base
of exactly two triangles of our triangulation, except for the two “end”
circles, for which each chord is the base of one triangle. This means there
are 2mn triangles, giving a total area of

Am,n = 2mn△Am,n

= 2mn
[

sin
π

n

]

√

(

1

m

)2

+
(

1− cos
π

n

)2

= 2
[

n sin
π

n

]

√

1 +m2
(

1− cos
π

n

)2
.

Now, the quantity in brackets converges to π as n→∞ and, for n fixed,
the square root goes to ∞ as m→∞; it follows that we can fix a sequence
of pairs of values {(mk, nk)} (for example, as Schwarz suggests, m = n3)
such that the quantity Amk ,nk

diverges to infinity, establishing that the
supremum of the total area of piecewise-linear approximations of a cylinder
is infinite, and hence gives a bad definition for the area of the cylinder
itself.
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To see what is going on here, we might note that at the vertex opposite the
chord of each triangle, the plane tangent to the cylinder is vertical, while
the plane of the triangle makes an angle with it of size θ(m,n), where

tan θ(m,n) =
ℓ

1/m
=

1− cos πn
1/m

= m
(

1− cos
π

n

)

.

If for example m = n3, one can check (using, e.g., L’Hôpital’s rule) that
the tangent goes to infinity with n, so in the limit the triangles approach
being perpendicular to the cylinder.
It turns out that the approach of Serret (using these triangulations) can be
made to work, provided we replace the supremum of all such total areas
with the limit, as ε→ 0, of the infimum of all such total areas for
triangulations with mesh size less than ε. In effect, this means we are
looking at triangulations in which the triangles are as close as possible to
being tangent to the cylinder.
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(document), 7



802 BIBLIOGRAPHY

[35] Joseph-Louis Lagrange. Recherches sur la méthode de maximis et
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I, see identity matrix

∧ (wedge product), see product
3-space, 4

3× 3 matrix, 87

abcissa, 2
in conic section, 118, 708

absolute value, 1

acceleration, 164
accumulation point

of set, 214

additive identity element, 26

affine function, 223
analytic geometry, 3

angle

between planes, 62
angle cosines, 53–54

angular momentum, 109

angular velocity, 109
annulus, 620

Apollonius of Perga (ca. 262-ca. 190
BC), 116

Conics, 116

approximation
affine, see linearization

linear, see linearization

arc, 179
Archimedes of Syracuse

(ca. 287-212 BC), 150

On Spirals, 134, 150

area of triangle, 96

circumference of a circle, 193

spiral of, 134, 150, 179

arclength, 194

differential of, 198

area

element of surface area, 525, 528

oriented, 528, 640

oriented, 79–87

projection, 81–87

signed, 73–77

surface area, 522–529

swept out by a line, 92, 94

Aristaeus the Elder (ca. 320 BC)

Solid Loci, 116

Aristotle (384-322 BC)

parallelogram of velocities, 22

asymptote, h(y)perbola126

average

of vectors, 41

axes, 1

axis

minor

of ellipse, 124

of cone, 117

of ellipse, 124

major, 124

semi-minor

of ellipse, 124

axis

semi-major

of ellipse, 124
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ball
of radius ε, 282

Banach Contraction Mapping
Lemma, 462

barycenter
of a triangle, 41

barycentric coordinates, 46
base

of cylinder, 102
basepoint, 34
basis, 369

standard, 369
Bernoulli, Daniel (1700-1782), 339
Bernoulli, Jacob (1654-1705), 338
Bernoulli, Johann (1667-1748), 338
Bernoulli, Johann II (1710-1790),

339
Bernoulli, Nicolaus I (1687-1759)

equality of mixed partials, 338
Bernoulli, Nicolaus II (1695-1726),

339
Bhāskara (b. 1114)

proof of Pythagoras’ theorem,
18

bilinear, 629, 659
bilinear function

anti-commutative, 630, 661
Binet, Jacques Philippe Marie

(1786-1856)
vectorial quantities, 22

Bolzano, Bernhard (1781-1848), 191
Bolzano-Weierstrass Theorem, 161
boundary

of a set, 314
point, 314

bounded
above
function, 310

below
function, 310

function, 310

set, 309, 311
above, 309

below, 309

Carnot, Lazare Nicolas Marguerite
(1753-1823)

vectorial quantities, 22

Cartan, Élie Joseph (1869-1951),
598

Cavalieri, Bonaventura (1598-1647)
Cavalieri’s Principle, 479

center

of parallelogram, 778
center of mass, 41

centroid
of a curve, 541

chain rule
general(, 420

general), 430
multivariable real-valued

function, 238–244

single variable vector-valued
functions, 165

Chasles, Michel (1793-1880)

vectorial quantities, 22
circulation

of a vector field around a closed
curve, 624

Clairaut, Alexis-Claude (1713-1765)

equality of mixed partials, 338
Clifford, William Kingdon

(1845-1879), 649

closed
curve, 610

set, 311
codimension, 439

cofactor, 752
cofactors, see determinant

column matrix, 222
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commutative, 630
commutative property

of vector sums, 23
compact set, 312
compass and straightedge

constructions, 115
component

in the direction of a vector, see
projection, scalar

component functions
of vector-valued function, 162

conchoids, 116
conic section, 115

abcissa, 118, 708
directrix, 122
eccentricity, 122
ellipse, 120
focus, 122
focus-directrix property, 120
hyperbola, 120
latus rectum, 709
ordinate, 118, 708
orthia, 119, 709, 711
parabola, 119
parameter of ordinates, 709
vertices, 118
ellipse
diameter, 712

focus-directrix property,
715–718

conic sections
symptomata, 711

conservation
of angular momentum, 110
of momentum, 110

contact
first order, 167
for parametrizations, 301

of functions
first order, 219

continuity
epsilon-delta, 471
uniform, 472

continuous
function
at a point, 217
of several variables, 212

vector-valued function
one variable, 161

continuously differentiable, 232
convergence

of function
several variables, 214

vector-valued function, 162
coordinate matrix

of a vector, 222
coordinate patch, 297, 448, 637
Coordinate System

Cartesian, 1
oblique, 3, 16
rectangular, 1
in R

2, 2
coordinates

barycentric, 46
column with respect to a basis,

369
cylindrical, 8–9
polar, 5–8
rectangular, 2
in R

3, 4–5
spherical, 9–12
with respect to a basis, 369

corner, 612
critical point

function of two variables, 255
mapping, 446, 451
relative, 321

critical value
mapping, 456

cross product, 81–87
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anticommutative, 81
curl

planar, 625
vector, 650

curve
arclength, 194
closed, 589, 610
directed, 579
oriented, 579
rectifiable, 194
regular parametrization, 176
simple, 610

cycloid, 150
cylinder, 102
cylindrical coordinates, 8–9
∣

∣

∣

∂(f,g)
∂(u,v)

∣

∣

∣
, 451

density function, 519
dependent, see linearly dependent
derivative, 163

exterior, 634, 701
function of several variables, 228
mapping, 419
partial, 229
higher order, 337
vector-valued, 293

Descartes
Folium of, 180

Descartes, René (1596-1650), 3, 122
determinant

2× 2
additivity, 78
homogeneity, 78
skew symmetry, 78

2× 2, 73, 77–79
3× 3, 87–88, 104, 106–107
additivity, 107
cofactors, 88
homogeneity, 107
skew-symmetry, 107

zero, 107
cofactors, 748, 749
expansion by cofactors, 752
transpose, 749

diameter
of ellipse, 712

diameter of a set, 473
diffeomorphism, see

mapping/coordinate
transformation

difference
second-order, 339

differentiable
continuously
r times, 338

function
real-valued, 226
vector-valued, 293

mapping, 418
differential

mapping, 419
of function, 228
operator, 676

differential form
1-form, 580
2-form, 633, 664
area form, 673
basic, 667
closed, 595
Cr, 665
exact, 587
pullback, 581, 665

differential operator, 649
Dinostratus (ca. 390-320 BC), 135
direct product, see dot product
direction

of a vector, 28
direction of steepest ascent, 236
direction vector, 33
directional derivative, 236
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directrix, see conic section, 122

discontinuity

essential, 217

removable, 217

discriminant, 358

displacements, 21

dist(P,Q) (distance between P and
Q), 5

distance

between parallel planes, 62

from point to plane, 61–62

in R, 1

point to line, 52–53

divergence

divergence-free, 680

in space, 679

planar, 677

dot product, 50

and scaling, 51

commutativity, 51

distributive property, 51

dS, 525, 528
ds, 198

d
−→S , 640
d
−→S , 528

dx, 580

dx ∧ dy, see product,wedge

eccentricity, see conic section

edges

of parallelepiped, 103

elementary function, 519

ellipse, 120

equations

parametric

for line, 34

Euclid of Alexandria (ca. 300 BC)

Elements

Book I, Prop. 47, 18, 20

Book I,Postulate 5 (Parallel
Postulate), 47

Book II, Prop. 13, 20
Book IV, Prop. 4, 43, 47

Book VI, Prop. 31, 20
Book II, Prop. 12-13, 95

Book III, Prop. 22, 97
Book VI, Prop. 13, 118, 136,
708

Conics, 116

Euler, Leonard (1707-1783)
equality of mixed partials, 338

Euler angles, 53
Surface Loci, 120

vectorial quantities, 22
Eutocius (ca. 520 AD)

edition of Apollonius, 117
exponent sum, 343

extrema
constrained, 319

extreme
point, of a function, 311

value, of a function, 311
extremum

local, 313

faces
of parallelepiped, 103

Fermat, Pierre de (1601-1665), 3,
122

focus, see conic section, 122

Folium of Descartes, 180
form

2-form, 630, 661
basic, 662

3-form, 701
3-form, 699

coordinate, 580
volume, 699

four-petal rose, 149
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free vector, 23

Frisi, Paolo (1728-1784)
vectorial quantities, 22

Fubini, Guido (1879-1943), 478
function

even, 501
odd, 500, 501

affine, 223
even, 506, 565, 688

injective, 174
integrable

over a curve, 204
linear, 221

odd, 506, 565, 688
of several variables

differentiable, 226
one-to-one, 174

vector valued
continuous, 161
derivative, 163

limit, 162
vector-valued, 34

component functions, 162
linearization, 166

of two variables, 66
piecewise regular, 180

regular, 176

Gauss, Carl Friedrich (1777-1855),
681, 728

Gaussian elimination, see linear
systems: elimination

generator
for cone, 117

for cylinder, 102
Gibbs, Josiah Willard (1839-1903)

Elements of Vector Analysis
(1881), 50

Vector Analysis (1901), 23, 50

Giorgini, Gaetano (1795-1874)

vectorial quantities, 22

Goursat, Édouard Jean-Baptiste
(1858-1936), 598

gradient, 235

Grassmann, Hermann (1809-1877)
vectorial quantities, 22

Green’s identities, 629
Green’s Theorem, 613

differential form, 635

vector version, 625
Green, George (1793-1841), 613

Guldin, Paul (Habakkuk)
(1577-1643), 542

Pappus’ First Theorem, 542

Hachette, Jean Nicolas Pierre
(1769-1834)

vectorial quantities, 22

Hamilton, William Rowan
(1805-1865)

Elements of Quaternions
(1866), 50

Lectures on Quaternions (1853),
22, 649

quaternions, 50

Hammond, Nathaniel, 728
Heaviside, Oliver (1850-1925)

vectorial properties, 22
helix, 153

Helmholtz, Hermann Ludwig
Ferdinand von (1821-1894),
681

Helmholtz decomposition, 681

Hermite, Charles (1822-1901), 791

Heron of Alexandria (ca. 75 AD)
Mechanics, 22

Heron’s formula, 96
Metrica, 71, 94

Hesse, Ludwig Otto (1811-1874),
345



810 INDEX

Hessian form, 345

Hessian matrix, 357
Hippias of Elis (ca. 460-400 BC),

135

quadratrix, 135
Hippocrates of Chios (460-380 BC)

duplicating the cube, 116

homogeneous
degree k, 343

function
of degree one, 220

polynomial
degree one, 220

Huygens, Christian (1629-1695), 138
hyperbola, 120

hyperbolic cosine, 142
hyperbolic sine, 142

image, 310

of function
vector-valued, 153

Implicit Function Theorem
real-valued functions

3 variables, 282
two variables, 255

incompressible flow, 680
independent, see linearly

independent
infimum

of a function, 310
of a set, 310

injective, 174
inner product, see dot product

integral
definite

of vector-valued function, 167
flux, 640

line
of vector field, 579

of function

with respect to arclength, 204

path integral, 204
integration

definite integral, 467
double integral, 477

elementary region, 490
integrable function, 469
integral

in two variables, 469
integral over non-rectangular

region, 490

iterated integral, 477
lower integral, 466

lower sum, 466
mesh size, 473

partial integral, 477
partition

atom, 466
mesh size, 466

of rectangle, 468
rectangle, 468
regular region, 490

Riemann sum, 467
upper integral, 466

upper sum, 466
x-regular region, 490

y-regular region, 490
elementary region, 552

integrable function, 544
integral

three variables, 544
z-regular region, 545

interior
of a set, 313

point, 313
interior point, 254

Jacobian
matrix, of mapping, 420

of real-valued function, 235
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JF , see Jacobianpage:partialdet420

Jordan, Camille Marie Ennemond
(1838-1922), 487, 610

Lacroix, Silvestre-Fraņois
(1765-1843), 728

Lagrange multipliers, 321, 365
Lagrange, Joseph Louis (1736-1813),

357

Méchanique Analitique (1788),
50

Euler angles, 53

extrema, 319
Second Derivative Test, 357

vectorial quantities, 22
Laplacian, 629

latus rectum, see orthia, see conic
section

Law of Cosines, 15, 50

in Euclid, 20
leading entry, 433

Leibniz formula, 165
length

of a vector, 28
level curve, 249

level set, 249
Lhuilier, Simon Antoine Jean

(1750-1840)

vectorial quantities, 22
Limaçon of Pascal, 186

limit
of function

several variables, 215

vector-valued function, 162
line

in plane
slope, 33

slope-intercept formula, 33
y-intercept, 33

in space

as intersection of planes,
100–102

basepoint, 34
direction vector, 33
via two linear equations,
100–102

segment, 38
midpoint, 39
parametrization, 39

tangent to a motion, 167
two-point formula, 38

line integral, 579
linear

combination, 27
equation
in three variables, 33
two variables, 33

functional, 580
transformation, 736

linear combination
nontrivial, 32
of vectors in R

3, 64–66
trivial, 32

linear function, 221
trilinear, 698, 753
alternating, 699

linear system
(Gaussian) elimination, 433
augmented matrix, 433
free variable, 434
inconsistent, 436
leading variables, 434
matrix of coefficients, 433
row operation, 433

linear systems
elimination, 728

linearization
mapping, 419
of function of several variables,

226
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linearized system, 455

linearly dependent
dependency relation, 740

set of vectors, 32, 740
vectors, 30

linearly independent
set of vectors, 32, 740

vectors, 30
lines

parallel, 35–36

parametrized
intersection, 34–37

skew, 37
Listing, Johann Benedict

(1808-1882)

Möbius band, 46
locally one-to-one, 179, 296

locus
of equation, 3

lower bound, 309

map
bijective, 439

mapping, 407
affine, 418

coordinate transformation, 508,
512, 554

critical point, 457
identity, 440

image, 439, 507
inverse, 439

linear, 410
operator norm, 421

preimage of a point, 439
rank, 438

locally invertible, 457
one-to-one, 439

onto, 176, 439
regular point, 456

surjective, 176

matrix
2× 2, 73
algebra
addition associative, 724
addition commutative, 724
distributive laws, 724, 726
multiplication associative, 726
multiplication not
commutative, 726

transpose, 727
augmented, 730
characteristic equation, 371
characteristic polynomial, 371
characteristic value, 367
characteristic vector, 367
columns, 723
coordinate column, 723
diagonal, 775
diagonal of, 727
double-index notation, 724
eigenvalue, 367
eigenvector, 367
identity, 440, 661
identity (In), 727
inverse, 440, 738
invertible, 440, 738
leading entry, 733
m× n, 723
multiplication, 410
multiplicative identity, 726
multiplying a vector, 736
nonsingular, 440
nullity, 439
of coefficients, 737
rank, 437, 741
reduced, 433, 734
reduced row-echelon form, 433,

734
representative, 410
of linear function, 222
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representative of quadratic
form, 355, 363

row operations, 730

row reduction, 732

rows, 723

singular, 737

square, 439

super-augmented, 440, 739

symmetric, 728

transpose, 725

zero, 724

matrix representative

of bilinear function, 661

maximum, 310

local, 313

of function, 310

Maxwell, James Clerk (1831-1879),
649

vectorial properties, 22

mean, 519

mean proportional, 134

Menaechmus (ca. 350 BC)

two mean proportionals, 116

midpoint, 39

minimum, 310

local, 313

of function, 310

minor, 87, 751

Möbius, Augustus Ferdinand
(1790-1860), 638

barycentric coordinates, 46

Möbius band, 46, 638

moment

of a vector, 109

of momentum, 109

Monge, Gaspard (1746-1818)

Euler angles, 53

Newton, Isaac (1642-1729)

ArithmeticæUniversalis (1683),
728

First Law of Motion, 110
Principia (1687)

Book I, Corollary 1, 22
Nicomedes (ca. 280-210 BC), 135,

136

conchoid of Nicomedes, 136
nonzero

vector, 28
normal

leftward, 611
vector

to plane, 58

O (origin), 1
one-to-one, 2, 174, 507, 737

onto, 2, 507, 737
open

set, 313
ordinate, 2

in conic section, 118, 708
oreintation

boundary, 651
orientation, 73, 106

of surface, 637
boundary, 621

global, 638
induced by a parametrization,

666

local, 638
coherent, 638

negative, 74, 106, 611
of curve, 579

R
3, 702

positive, 74, 106, 610, 611

positive, for piecewise regular
curve, 613

right-hand rule, 80

oriented simplex, 106



814 INDEX

oriented triangle, 74

origin, 1, 4

orthia, see conic section, see conic
section

orthogonal

orthonormal set, 369

Ostrogradski, Mikhail Vasilevich
(1801-1862), 681

outer product, see cross product

Pappus of Alexandria (ca. 300 AD),
116, 542

Mathematical Collection, 115

classification of geometric
problems, 115

Pappus’ First Theorem, 542

parabola, 119

paraboloid, see quadric surfaces

Parallel Postulate, 47

parallelepiped, 103

parallelogram law, 23

parametric equations

for a plane, 66–69

for line, 34

parametrization

of a plane in R
3, 66

of line, 34

regular

of surface, 293
∣

∣

∣

∂(f,g)
∂(u,v)

∣

∣

∣, 446

∂(f1,f2,...,f3)
∂(x,y,z) , see Jacobian

partial derivative, 229

partial derivatives

higher, 337–350

equality of cross partials, 339

path, 214

path integral, see integral with
respect to arclength

Peano, Giuseppe (1858-1932), 522,

791, 793
Geometric Calculus (1888), 22
surface area, 522, 791

permutation
cyclic, 74

planar loci, 115
planes

angle between, 62
intersection of, 100–102
parallel, 60–62
parametrized, 64–69
three-point formula, 98

Poincare Lemma
for 1-forms, 598

Poincaré, Jules Henri (1854-1912),
598

Poinsot, Louis (1777-1859)
vectorial quantities, 22

Poisson, Siméon Denis (1781-1840)
vectorial quantities, 22

polar coordinates, 5–8
polar form, 31
position vector, 25
potential, 588

vector potential, 681
problems

duplicating the cube, 116
two mean proportionals, 116
linear (Greek meaning), 116
planar, 115
quadrature of the circle, 134,

135
solid, 115
trisection of an angle, 135

Proclus Diadochus (411-485), 135
product

of sets, 468
exterior, 634
of row times column, 222
triple
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scalar, 104

wedge, 632, 662

product rule

single variable vector-valued
functions, 165

projection

of a vector, 48

of areas, 81–87

on a plane, 81
scalar, 54

pullback, see differential form

Pythagoras’ Theorem, 3, 17

“Chinese Proof”, 18

quadratic form, 345

definite, 353

negative definite, 353
positive definite, 353

weighted squares expression,
370

quadratrices, 116

quadric surfaces, 271

ellipsoid, 269
elliptic paraboloid, 264

hyperbolic paraboloid, 267

hyperbolod

of two sheets, 271
hyperboloid

of one sheet, 269

R
2, 2

R
3, 4

range

of function

vector-valued, 153

recalibration function, 177
rectifiable, 194

region

symmetric

in plane, 501

bounded by a curve, 610

symmetric

in space, 565

origin, 506

regular

region, 490

curve

piecewise regular curve, 612

parametrization

of surface, 293

region

fully regular, 681

regular point

function of two variables, 255

mapping, 446, 450

of vector-valued function, 297

regular value, 319

mapping, 456

reparametrization, 177

direction-preserving, 178

direction-reversing, 178

of a surface, 449

orientation-preserving, 582

orientation-reversing, 582

revolute, 535

right-hand rule, 80

rotation, 108

row matrix, 222

row reduction, 433

saddle

surface, see hyperbolic
paraboloid

scalar product, see dot product

scalar projection, see projection,
scalar

scalars, 24

scaling, 23

parallelogram, 778
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Schwarz, Herman Amandus
(1843-1921), 522, 791, 793

surface area, 522, 791
self-intersections, 180
sequence

in R
3

accumulation point, 169
bounded, 161
Cauchy, 171
convergence, 160
convergent, 160
divergent, 160
limit, 160

sequentially compact, 312
Serret, Joseph Alfred (1819-1885)

surface area, 792
shear, 624
signed area, 74
simplex, 106

1-simplex, 106
2-simplex, 106
3-simplex, 106

simply connected region, 602
singular point

of vector-valued function, 297
singular points, 532
skew lines, 37
skew-symmetric, see

anti-commutative
slicing, 399
slope, 33
slope-intercept formula, 33
solid loci, 115
span

of two vectors, 65
spanning set, 32
speed, 164
sphere

unit
in 3-space, 365

spherical coordinates, 9–12

spiral of Archimedes, 150, 179
spirals, 116

standard basis, 27, 221
standard deviation, 519

Stokes Theorem
Generalized, 569

Stokes, George Gabriel (1819-1903),
651

supremum
of a function, 310

of a set, 310
surface

oriented, 637
cone, 401

ellipsoid, 400
elliptic paraboloid, 396

first fundamental form, 543
hyperbolic paraboloid, 397

hyperboloid
one sheet, 402
two sheets, 405

non-orientable, 639
of revolution, 535

orientable, 639
saddle, 397

surface integral, 538
symmetric, 122

region in space, 688
system

free variable, 733

Tait, Peter Guthrie (1831-1901), 649

tangent
map

of a parametrization, 301
mapping, 419

plane
to graph, 274

tangent line, 174, 178, 181
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tangent map, 527

tangent plane

to parametrized surface, 302

tangent space
R
n, 570

Taylor polynomial

degree two, 345

Thabit ibn Qurra (826-901)
translation of Apollonius, 117

Thomson (Lord Kelvin), William
(1824-1907), 652

three dimensional space, 4

torus, 297
transformation, 408

change-of-coordinates, 426–430

composition, 736

transverse
surfaces, 453

triadic rational, 193

triangle inequality, 169

triangulation, 792

two-point formula, 38

unit sphere, 353
unit vector, 28

upper bound, 309

|−→v | (length of a vector), 28
−→v ⊥ −→w , 51

variance, 519

Veblen, Oswald (1880-1960), 611

vector
addition, 23

commutativity, 23

components, 25

direction, 28
dot product, 50

entries, 25

geometric, 23

head of, 21

length, 28

linear combination, 27
multiplication

by scalars, 23
nonzero, 28

normal
to plane, 58

position, 25

projection, 48, 49
scaling, 23

standard basis, 27
standard position, 25

tail of, 21
tangent

unit, 178
unit, 28

zero, 26
vector curl, 650

vector field, 569
conservative, 588

irrotational, 595
solenoidal, 680

vector product, see cross product

vector-valued
function, 34

vector-valued function, 139
vectorial representation, 21

vectors
linearly dependent, 30

linearly independent, 30
span

R
2, 32

R
3, 32

velocity, 164
vertex, p(a)rabola122, e(l)lipse124,

h(y)perbola125
vertical line test, 178

Volterra, Vito (1860-1940), 598

Wilson, Edwin Bidwell (1879-1964)
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Gibbs’ Vector Analysis (1901),
23, 50

work, 571

x-axis, 1
xy-plane, 4

y-axis, 1
y-intercept, 33

z-axis, 4
zero vector, 26
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