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CHAPTER 11

Vectors and the Space Geometry

Our space may be viewed as a collection of points. Every geometri-
cal figure, such as a sphere, plane, or line, is a special subset of points in
space. The main purpose of an algebraic description of various objects
in space is to develop a systematic representation of these objects by
numbers. Interestingly enough, our experience shows that so far real
numbers and basic rules of their algebra appear to be sufficient to de-
scribe all fundamental laws of nature, model everyday phenomena, and
even predict many of them. The evolution of the Universe, forces bind-
ing particles in atomic nuclei, and atomic nuclei and electrons forming
atoms and molecules, star and planet formation, chemistry, DNA struc-
tures, and so on, all can be formulated as relations between quantities
that are measured and expressed as real numbers. Perhaps, this is
the most intriguing property of the Universe, which makes mathemat-
ics the main tool of our understanding of the Universe. The deeper
our understanding of nature becomes, the more sophisticated are the
mathematical concepts required to formulate the laws of nature. But
they remain based on real numbers. In this course, basic mathematical
concepts needed to describe various phenomena in a three-dimensional
Euclidean space are studied. The very fact that the space in which
we live is a three-dimensional Euclidean space should not be viewed as
an absolute truth. All one can say is that this mathematical model of
the physical space is sufficient to describe a rather large set of physical
phenomena in everyday life. As a matter of fact, this model fails to
describe phenomena on a large scale (e.g., our galaxy). It might also
fail at tiny scales, but this has yet to be verified by experiments.

71. Rectangular Coordinates in Space

The elementary object in space is a point. So the discussion should
begin with the question: How can one describe a point in space by real
numbers? The following procedure can be adopted. Select a particular
point in space called the origin and usually denoted O. Set up three
mutually perpendicular lines through the origin. A real number is
associated with every point on each line in the following way. The
origin corresponds to 0. Distances to points on one side of the line

1



2 11. VECTORS AND THE SPACE GEOMETRY

from the origin are marked by positive real numbers, while distances
to points on the other half of the line are marked by negative numbers
(the absolute value of a negative number is the distance). The half-lines
with the grid of positive numbers will be indicated by arrows pointing
from the origin to distinguish the half-lines with the grid of negative
numbers. The described system of lines with the grid of real numbers
on them is called a rectangular coordinate system at the origin O. The
lines with the constructed grid of real numbers are called coordinate
axes.

71.1. Points in Space as Ordered Triples of Real Numbers. The position
of any point in space can be uniquely specified as an ordered triple of real
numbers relative to a given rectangular coordinate system. Consider
a rectangle whose two opposite vertices (the endpoints of the largest
diagonal) are the origin and a point P , while its sides that are adjacent
at the origin lie on the axes of the coordinate system. For every point P
there is only one such rectangle. The rectangle is uniquely determined
by its three sides adjacent at the origin. Let the number x marks the
position of one such side that lies on the first axis, the numbers y and z
do so for the second and third sides, respectively. Note that, depending
on the position of P , the numbers x, y, and z may be negative, positive,
or even 0. In other words, any point in space is associated with a
unique ordered triple of real numbers (x, y, z) determined relative to a
rectangular coordinate system. This ordered triple of numbers is called
rectangular coordinates of a point. To reflect the order in (x, y, z), the
axes of the coordinate system will be marked as x, y, and z axes. Thus,
to find a point in space with rectangular coordinates (1, 2,−3), one has
to construct a rectangle with a vertex at the origin such that its sides
adjacent at the origin occupy the intervals [0, 1], [0, 2], and [−3, 0] along
the x, y, and z axes, respectively. The point in question is the vertex
opposite to the origin.

71.2. A Point as an Intersection of Coordinate Planes. The plane con-
taining the x and y axes is called the xy plane. For all points in this
plane, the z coordinate is 0. The condition that a point lies in the xy
plane can therefore be stated as z = 0. The xz and yz planes can be
defined similarly. The condition that a point lies in the xz or yz plane
reads y = 0 or x = 0, respectively. The origin (0, 0, 0) can be viewed
as the intersection of three coordinate planes x = 0, y = 0, and z = 0.
Consider all points in space whose z coordinate is fixed to a particular
value z = z0 (e.g., z = 1). They form a plane parallel to the xy plane
that lies |z0| units of length above it if z0 > 0 or below it if z0 < 0.
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Figure 11.1. Left: Any point P in space can be viewed
as the intersection of three coordinate planes x = x0, y =
y0, and z = z0; hence, P can be given an algebraic de-
scription as an ordered triple of numbers P = (x0, y0, z0).
Right: Translation of the coordinate system. The origin
is moved to a point (x0, y0, z0) relative to the old coor-
dinate system while the coordinate axes remain parallel
to the axes of the old system. This is achieved by trans-
lating the origin first along the x axis by the distance x0

(as shown in the figure), then along the y axis by the
distance y0, and finally along the z axis by the distance
z0. As a result, a point P that had coordinates (x, y, z)
in the old system will have the coordinates x′ = x− x0,
y′ = y−y0, and z′ = z−z0 in the new coordinate system.

A point P with coordinates (x0, y0, z0) can therefore be viewed as an
intersection of three coordinate planes x = x0, y = y0, and z = z0 as
shown in Figure 11.1. The faces of the rectangle introduced to specify
the position of P relative to a rectangular coordinate system lie in the
coordinate planes. The coordinate planes are perpendicular to the cor-
responding coordinate axes: the plane x = x0 is perpendicular to the
x axis, and so on.

71.3. Changing the Coordinate System. Since the origin and directions
of the axes of a coordinate system can be chosen arbitrarily, the co-
ordinates of a point depend on this choice. Suppose a point P has
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coordinates (x, y, z). Consider a new coordinate system whose axes are
parallel to the corresponding axes of the old coordinate system, but
whose origin is shifted to the point O′ with coordinates (x0, 0, 0). It
is straightforward to see that the point P would have the coordinates
(x− x0, y, z) relative to the new coordinate system (Figure 11.1, right
panel). Similarly, if the origin is shifted to a point O′ with coordinates
(x0, y0, z0), while the axes remain parallel to the corresponding axes of
the old coordinate system, then the coordinates of P are transformed as

(11.1) (x, y, z) −→ (x− x0, y − y0, z − z0) .

One can change the orientation of the coordinate axes by rotating
them about the origin. The coordinates of the same point in space are
different in the original and rotated rectangular coordinate systems.
Algebraic relations between old and new coordinates, similar to (11.1),
can be established. A simple case, when a coordinate system is rotated
about one of its axes, is discussed at the end of this section.

It is important to realize that no physical or geometrical quantity
should depend on the choice of a coordinate system. For example, the
length of a straight line segment must be the same in any coordinate
system, while the coordinates of its endpoints depend on the choice of
the coordinate system. When studying a practical problem, a coordi-
nate system can be chosen in any way convenient to describe objects in
space. Algebraic rules for real numbers (coordinates) can then be used
to compute physical and geometrical characteristics of the objects. The
numerical values of these characteristics do not depend on the choice
of the coordinate system.

71.4. Distance Between Two Points. Consider two points in space, P1

and P2. Let their coordinates relative to some rectangular coordinate
system be (x1, y1, z1) and (x2, y2, z2), respectively. How can one calcu-
late the distance between these points, or the length of a straight line
segment with endpoints P1 and P2? The point P1 is the intersection
point of three coordinate planes x = x1, y = y1, and z = z1. The
point P2 is the intersection point of three coordinate planes x = x2,
y = y2, and z = z2. These six planes contain faces of the rectangle
whose largest diagonal is the straight line segment between the points
P1 and P2. The question therefore is how to find the length of this
diagonal.

Consider three sides of this rectangle that are adjacent, say, at the
vertex P1. The side parallel to the x axis lies between the coordinate
planes x = x1 and x = x2 and is perpendicular to them. So the
length of this side is |x2 − x1|. The absolute value is necessary as the
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difference x2 − x1 may be negative, depending on the values of x1 and
x2, whereas the distance must be nonnegative. Similar arguments lead
to the conclusion that the lengths of the other two adjacent sides are
|y2 − y1| and |z2 − z1|. If a rectangle has adjacent sides of length a, b,
and c, then the length d of its largest diagonal satisfies the equation

d2 = a2 + b2 + c2 .

Its proof is based on the Pythagorean theorem (see Figure 11.2). Con-
sider the rectangle face that contains the sides a and b. The length f
of its diagonal is determined by the Pythagorean theorem f 2 = a2 + b2.
Consider the cross section of the rectangle by the plane that contains
the face diagonal f and the side c. This cross section is a rectangle
with two adjacent sides c and f and the diagonal d. They are related
as d2 = f 2+c2 by the Pythagorean theorem, and the desired conclusion
follows.

Figure 11.2. Distance between two points with coor-
dinates P1 = (x1, y1, z1) and P2 = (x2, y2, z2). The line
segment P1P2 is viewed as the largest diagonal of the
rectangle whose faces are the coordinate planes corre-
sponding to the coordinates of the points. Therefore, the
distances between the opposite faces are a = |x1 − x2|,
b = |y1 − y2|, and c = |z1 − z2|. The length of the diag-
onal d is obtained by the double use of the Pythagorean
theorem in each of the indicated rectangles: d2 = c2 + f 2

(top right) and f 2 = a2 + b2 (bottom right).
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Put a = |x2−x1|, b = |y2−y1|, and c = |z2−z1|. Then d = |P1P2| is
the distance between P1 and P2. The distance formula is immediately
found:

(11.2) |P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Note that the numbers (coordinates) (x1, y1, z1) and (x2, y2, z2) depend
on the choice of the coordinate system, whereas the number |P1P2| re-
mains the same in any coordinate system! For example, if the origin of
the coordinate system is translated to a point (x0, y0, z0) while the ori-
entation of the coordinate axes remains unchanged, then, according to
rule (11.1), the coordinates of P1 and P2 relative to the new coordinate
become (x1− x0, y1− y0, z1− z0) and (x2− x0, y2− y0, z2− z0), respec-
tively. The numerical value of the distance does not change because
the coordinate differences, (x2 − x0) − (x1 − x0) = x2 − x1 (similarly
for the y and z coordinates), do not change.
Rotations in Space. The origin can always be translated to P1 so
that in the new coordinate system P1 is (0, 0, 0) and P2 is (x2−x1, y2−
y1, z2− z1). Since the distance should not depend on the orientation of
the coordinate axes, any rotation can now be described algebraically
as a linear transformation of an ordered triple (x, y, z) under which
the combination x2 + y2 + z2 remains invariant. A linear transforma-
tion means that the new coordinates are linear combinations of the
old ones. It should be noted that reflections of the coordinate axes,
x → −x (similarly for y and z), are linear and also preserve the dis-
tance. However, a coordinate system obtained by an odd number of
reflections of the coordinate axes cannot be obtained by any rotation
of the original coordinate system. So, in the above algebraic definition
of a rotation, the reflections should be excluded.

71.5. Spheres in Space. In this course, relations between two equivalent
descriptions of objects in space—the geometrical and the algebraic—
will always be emphasized. One of the course objectives is to learn
how to interpret an algebraic equation by geometrical means and how
to describe geometrical objects in space algebraically. The simplest
example of this kind is a sphere.

Geometrical Description of a Sphere. A sphere is a set of
points in space that are equidistant from a fixed point. The fixed point
is called the sphere center. The distance from the sphere center to any
point of the sphere is called the sphere radius.

Algebraic Description of a Sphere. An algebraic description of
a sphere implies finding an algebraic condition on coordinates (x, y, z)
of points in space that belong to the sphere. So let the center of the
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Figure 11.3. Left: A sphere is defined as a point set
in space. Each point P of the set has a fixed distance R
from a fixed point P0. The point P0 is the center of the
sphere, and R is the radius of the sphere.
Right: Transformation of coordinates under a rotation
of the coordinate system in a plane.

sphere be a point P0 with coordinates (x0, y0, z0) (defined relative to
some rectangular coordinate system). If a point P with coordinates
(x, y, z) belongs to the sphere, then the numbers (x, y, z) must be such
that the distance |PP0| is the same for any such P and equal to the
sphere radius, denoted R, that is, |PP0| = R or |PP0|2 = R2 (see
Figure 11.3, left panel). Using the distance formula, this condition can
be written as

(11.3) (x− x0)2 + (y − y0)2 + (z − z0)2 = R2 .

For example, the set of points with coordinates (x, y, z) that satisfy the
condition x2 + y2 + z2 = 4 is a sphere of radius R = 2 centered at the
origin x0 = y0 = z0 = 0.

71.6. Algebraic Description of Point Sets in Space. The idea of an alge-
braic description of a sphere can be extended to other sets in space. It
is convenient to introduce some brief notation for an algebraic descrip-
tion of sets. For example, for a set S of points in space with coordinates
(x, y, z) such that they satisfy the algebraic condition (11.3), one writes

S =
{

(x, y, z)
∣∣∣ (x− x0)2 + (y − y0)2 + (z − z0)2 = R2

}
.

This relation means that the set S is a collection of all points (x, y, z)
such that (the vertical bar) their rectangular coordinates satisfy (11.3).
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Similarly, the xy plane can be viewed as a set of points whose z coor-
dinates vanish:

P =
{

(x, y, z)
∣∣∣ z = 0

}
.

The solid region in space that consists of points whose coordinates are
non negative is called the first octant:

O1 =
{

(x, y, z)
∣∣∣ x ≥ 0, y ≥ 0, z ≥ 0

}
.

The spatial region

B =
{

(x, y, z)
∣∣∣ x > 0, y > 0, z > 0, x2 + y2 + z2 < 4

}
is the collection of all points in the portion of a ball of radius 2 that
lies in the first octant. The strict inequalities imply that the boundary
of this portion of the ball does not belong to the set B.

71.7. Study Problems.

Problem 11.1. Show that the coordinates of the midpoint of a straight
line segment are (

x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
if the coordinates of its endpoints are (x1, y1, z1) and (x2, y2, z2).

Solution: Let P1 and P2 be the endpoints and let M be the midpoint.
One has to verify the condition |P2M | = |MP1| or |P2M |2 = |MP1|2
by means of the distance formula. The x-coordinate differences for
the segments P2M and MP1 read x2 − (x1 + x2)/2 = (x2 − x1)/2 and
(x1 + x2)/2 − x1 = (x2 − x1)/2, respectively; that is, they coincide.
Similarly, the differences of the corresponding y and z coordinates are
the same. By the distance formula, it is then concluded that |P2M |2 =
|MP1|2. �

Problem 11.2. Let (x, y, z) be coordinates of a point P . Consider
a new coordinate system that is obtained by rotating the x and y axes
about the z axis counterclockwise as viewed from the top of the z axis
through an angle φ. Let (x′, y′, z′) be coordinates of P in the new coor-
dinate system. Find the relations between the old and new coordinates.

Solution: The height of P relative to the xy plane does not change
upon rotation. So z′ = z. It is therefore sufficient to consider rota-
tions in the xy plane, that is, for points P with coordinates (x, y, 0).
Let r = |OP | (the distance between the origin and P ) and let θ be the
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angle counted from the positive x axis toward the ray OP counterclock-
wise (see Figure 11.3, right panel). Then x = r cos θ and y = r sin θ
(the polar coordinates of P ). In the new coordinate system, the an-
gle between the positive x′ axis and the ray OP becomes θ′ = θ − φ.
Therefore,

x′ = r cos θ′ = cos(θ − φ) = r cos θ cos φ + r sin θ sin φ

= x cos φ + y sin φ ,

y′ = r sin θ′ = r sin(θ − φ) = r sin θ cos φ− r cos θ sin φ

= y cos φ− x sin φ .

�
Problem 11.3. Give a geometrical description of the set

S =
{

(x, y, z)
∣∣∣ x2 + y2 + z2 − 4z = 0

}
.

Solution: The condition on the coordinates of points that belong
to the set contains the sum of squares of the coordinates just like the
equation of a sphere. The difference is that (11.3) contains the sum
of perfect squares. So the squares must be completed in the above
equation and the resulting expression compared with (11.3). One has
z2−4z = (z−2)2−4 so that the condition becomes x2+y2+(z−2)2 = 4.
It describes a sphere of radius R = 2 that is centered at the point
(x0, y0, z0) = (0, 0, 2); that is, the center of the sphere is on the z axis
at a distance of 2 units above the xy plane. �

Problem 11.4. Give a geometrical description of the set

C =
{

(x, y, z)
∣∣∣ x2 + y2 − 2x− 4y = 4

}
.

Solution: As in the previous problem, the condition can be written
as the sum of perfect squares (x − 1)2 + (y − 2)2 = 9 by means the
of relations x2 − 2x = (x − 1)2 − 1 and y2 − 4y = (y − 2)2 − 4. In
the xy plane, this is nothing but the equation of a circle of radius 3
whose center is the point (1, 2, 0). In any plane z = z0 parallel to the
xy plane, the x and y coordinates satisfy the same equation, and hence
the corresponding points also form a circle of radius 3 with the center
(1, 2, z0). Thus, the set is a cylinder of radius 3 whose axis is parallel
to the z axis and passes through the point (1, 2, 0). �

Problem 11.5. Give a geometrical description of the set

P =
{

(x, y, z)
∣∣∣ z(y − x) = 0

}
.
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Solution: The condition is satisfied if either z = 0 or y = x. The
former equation describes the xy plane, while the latter represents a
line in the xy plane. Since it does not impose any restriction on the z
coordinate, each point of the line can be moved up and down parallel
to the z axis. The resulting set is a plane that contains the line y = x
in the xy plane and the z axis. Thus, the set P is the union of this
plane and the xy plane. �

71.8. Exercises. (1) Find the distance between the following specified
points:

(i) A(1, 2, 3) and B(−1, 0, 2)
(ii) A(−1, 3,−2) and B(−1, 2,−1)

(2) Let the set S consist of points (t, 2t, 3t) where −∞ < t < ∞.
Find the point of S that is the closest to the point A(3, 2, 1). Describe
the set S geometrically.

(3) Give a geometrical description of the following sets defined al-
gebraically and sketch them:

(i) x2 + y2 + z2 − 2x + 4y − 6z = 0
(ii) x2 + y2 + z2 ≥ 4
(iii) x2 + y2 + z2 ≤ 4, z > 0
(iv) x2 + y2 − 4y < 0, z > 0
(v) 4 ≤ x2 + y2 + z2 ≤ 9
(vi) x2 + y2 ≥ 1, x2 + y2 + z2 ≤ 4
(vii) x2 + y2 + z2 − 2z < 0, z > 1
(viii) x2 + y2 + z2 − 2z = 0, z = 1
(ix) (x− a)(y − b)(z − c) = 0

(4) Sketch each of the following sets and give their algebraic de-
scription:

(i) A sphere whose diameter is the straight line segment AB,
where A = (1, 2, 3) and B = (3, 2, 1).

(ii) A sphere centered at (1, 2, 3) that lies in the first octant and
touches one of the coordinate planes.

(iii) The largest solid cube that is contained in a ball of radius R
centered at the origin. Solve the same problem if the ball is
not centered at the origin.

(iv) The solid region that is a ball of radius R that has a cylindrical
hole of radius R/2 whose axis is at a distance of R/2 from the
center of the ball. Choose a convenient coordinate system.
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(v) The portion of a ball of radius R that lies between two parallel
planes each of which is at s distance of a < R from the center
of the ball. Choose a convenient coordinate system.

72. Vectors in Space

72.1. Oriented Segments and Vectors. Suppose there is a point like ob-
ject moving in space with a constant rate, say, 5 m/s. If the object
was initially at a point P1, and in 1 second it arrives at a point P2,
then the distance traveled is |P1P2| = 5 m. The rate (or speed) 5 m/s
does not provide a complete description of the motion of the object
in space because it only answers the question “How fast does the ob-
ject move?” but it does not say anything about “Where to does the
object move?” Since the initial and final positions of the object are
known, both questions can be answered, if one associates an oriented
segment �P1P2 with the moving object. The arrow specifies the direc-
tion, “from P1 to P2,” and the length |P1P2| defines the rate (speed) at
which the object moves. So, for every moving object, one can assign
an oriented segment whose length equals its speed and whose direc-
tion coincides with the direction of motion. This oriented segment
is called a velocity. The concept of velocity as an oriented segment
still has a drawback. Indeed, consider two objects moving parallel
with the same speed. The oriented segments corresponding to the ve-
locities of the objects have the same length and the same direction,
but they are still different because their initial points do not coincide.
On the other hand, the velocity should describe a particular physical
property of the motion itself (“how fast and where to”), and there-
fore the spatial position where the motion occurs should not matter.
This observation leads to the concept of a vector as an abstract math-
ematical object that represents all oriented segments that are parallel
and have the same length. If the velocity is a vector, then two ob-
jects have the same velocity if they move parallel with the same rate.
The concept of velocity as a vector no longer has the aforementioned
drawback.

Vectors will be denoted by boldface letters. Two oriented segments
�AB and �CD represent the same vector a if they are parallel and |AB| =
|CD|; that is, they can be obtained from one another by transporting
them parallel to themselves in space. A representation of an abstract
vector by a particular oriented segment is denoted by the equality a =
�AB or a = �CD. The fact that the oriented segments �AB and �CD

represent the same vector is denoted by the equality �AB = �CD.
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Figure 11.4. Left: Oriented segments obtained from
one another by parallel transport. They all represent the
same vector.
Right: A vector as an ordered triple of numbers. An ori-
ented segment is transported parallel so that its initial
point coincides with the origin of a rectangular coordi-
nate system. The coordinates of the terminal point of
the transported segment, (a1, a2, a3), are components of
the corresponding vector. So a vector can always be writ-
ten as an ordered triple of numbers: a = 〈a1, a2, a3〉. By
construction, the components of a vector depend on the
choice of the coordinate system (the orientation of the
coordinate axes in space).

72.2. Vector as an Ordered Triple of Numbers. Here an algebraic repre-
sentation of vectors in space will be introduced. Consider an oriented
segment �AB that represents a vector a (i.e., a = �AB). An oriented seg-
ment �A′B′ represents the same vector if it is obtained by transporting
�AB parallel to itself. In particular, let us take A′ = O, where O is the

origin of some rectangular coordinate system. Then a = �AB = �OB′.
The direction and length of the oriented segment �OB′ is uniquely deter-
mined by the coordinates of the point B′. Thus, we have the following
algebraic definition of a vector.

Definition 11.1. (Vectors).
A vector in space is an ordered triple of real numbers:

a = 〈a1 , a2 , a3〉 .
The numbers a1, a2, and a3 are called components of the vector a.

Note that the numerical values of the components depend on the
choice of coordinate system. From a geometrical point of view, the
ordered triple (a1, a2, a3) is the coordinates of the point B′, that is, the
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endpoint of the oriented segment that represents a if the initial point
coincides with the origin.

Definition 11.2. (Equality of Two Vectors).
Two vectors a and b are equal or coincide if their corresponding com-
ponents are equal:

a = b ⇐⇒ a1 = b1, a2 = b2, a3 = b3 .

This definition agrees with the geometrical definition of a vector
as a class of all oriented segments that are parallel and have the same
length. Indeed, if two oriented segments represent the same vector,
then, after parallel transport such that their initial points coincide
with the origin, their final points coincide too and hence have the same
coordinates.

Example 11.1. Find the components of a vector �P1P2 if the coor-
dinates of P1 and P2 are (x1, y1, z1) and (x2, y2, z2), respectively.

Solution: Consider a rectangle whose largest diagonal coincides with
the segment P1P2 and whose sides are parallel to the coordinate axes.
After parallel transport of the segment so that P1 moves to the origin,
the coordinates of the other endpoint are the components of �P1P2.
Alternatively, the origin of the coordinate system can be moved to the
point P1, keeping the directions of the coordinate axes. Therefore,

�P1P2 = 〈x2 − x1, y2 − y1, z2 − z1〉,
according to the coordinate transformation law (11.1), where P0 = P1.
Thus, in order to find the components of the vector �P1P2 from the
coordinates of its points, one has to subtract the coordinates of the
initial point P1 from the corresponding components of the final point
P2. �

Definition 11.3. (Norm of a Vector). The number

‖a‖ =
√

a2
1 + a2

2 + a2
3

is called the norm of a vector a.

By Example 11.1 and the distance formula (11.2), the norm of a
vector is the length of any oriented segment representing the vector.
The norm of a vector is also called the magnitude or length of a vector.

Definition 11.4. (Zero Vector).
A vector with vanishing components, 0 = 〈0, 0, 0〉, is called a zero
vector.
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A vector a is a zero vector if and only if its norm vanishes, ‖a‖ = 0.
Indeed, if a = 0, then a1 = a2 = a3 = 0 and hence ‖a‖ = 0. For the
converse, it follows from the condition ‖a‖ = 0 that a2

1 + a2
2 + a2

3 = 0,
which is only possible if a1 = a2 = a3 = 0, or a = 0. Recall that an “if
and only if” statement actually implies two statements. First, if a = 0,
then ‖a‖ = 0 (the direct statement). Second, if ‖a‖ = 0, then a = 0
(the converse statement).

72.3. Vector Algebra. Continuing the analogy between the vectors and
velocities of a moving object, consider two objects moving parallel but
with different rates (speeds). Their velocities as vectors are parallel,
but they have different magnitudes. What is the relation between the
components of such vectors? Take a vector a = 〈a1, a2, a3〉. It can be
viewed as the largest diagonal of a rectangle with one vertex at the
origin and the opposite vertex at coordinates (a1, a2, a3). The adjacent
sides of the rectangle have lengths given by the corresponding com-
ponents of a (modulo the signs if they happen to be negative). The
direction of the diagonal does not change if the sides of the rectangle
are scaled by the same factor, while the length of the diagonal is scaled

Figure 11.5. Left: Multiplication of a vector a by a
number s. If s > 0, the result of the multiplication is a
vector parallel to a whose length is scaled by the factor
s. If s < 0, then sa is a vector whose direction is the
opposite to that of a and whose length is scaled by |s|.
Middle: Construction of a unit vector parallel to a. The
unit vector â is a vector parallel to a whose length is 1.
Therefore, it is obtained from a by dividing the latter by
its length ‖a‖, i.e., â = sa, where s = 1/‖a‖.
Right: A unit vector in a plane can always be viewed as
an oriented segment whose initial point is at the origin
of a coordinate system and whose terminal point lies on
the circle of unit radius centered at the origin. If θ is the
polar angle in the plane, then â = 〈cos θ, sin θ, 0〉.
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by this factor. This geometrical observation leads to the following al-
gebraic rule.

Definition 11.5. (Multiplication of a Vector by a Number).
A vector a multiplied by a number s is a vector whose components are
multiplied by s:

sa = 〈sa1, sa2, sa3〉.
If s > 0, then the vector sa has the same direction as a. If s < 0,

then the vector sa has the direction opposite to a. For example, the
vector −a has the same magnitude as a but points in the direction
opposite to a. The magnitude of sa reads:

‖sa‖ =
√

(sa1)2 + (sa2)2 + (sa3)2 =
√

s2
√

a2
1 + a2

2 + a2
3 = |s| ‖a‖ ;

that is, when a vector is multiplied by a number, its magnitude changes
by the factor |s|. The geometrical analysis of the multiplication of a
vector by a number leads to the following simple algebraic criterion for
two vectors being parallel.

Theorem 11.1. Two nonzero vectors are parallel if they are pro-
portional:

a ‖ b ⇐⇒ a = sb
for some real s.

If all the components of the vectors in question do not vanish, then
this criterion may also be written as

a ‖ b ⇐⇒ s =
a1

b1
=

a2

b2
=

a3

b3
,

which is easy to verify. If, say, b1 = 0, then b is parallel to a when
a1 = b1 = 0 and a2/b2 = a3/b3.

Definition 11.6. (Unit Vector).
A vector â is called a unit vector if its norm equals 1, ‖â‖ = 1.

Any nonzero vector a can be turned into a unit vector â that is
parallel to a. The norm (length) of the vector sa reads ‖sa‖ = |s|‖a‖ =
s‖a‖ if s > 0. So, by choosing s = 1/‖a‖, the unit vector parallel to a
is obtained:

â =
1
‖a‖ a =

〈
a1

‖a‖ ,
a2

‖a‖ ,
a3

‖a‖
〉

.

For example, owing to the trigonometric identity, cos2 θ + sin2 θ = 1,
any unit vector in the xy plane can always be written in the form
â = 〈cos θ, sin θ, 0〉, where θ is the angle counted from the positive x axis
toward the vector a counterclockwise. Note that, in many practical
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applications, the components of a vector often have dimensions. For
instance, the components of a displacement vector are measured in
units of length (meters, inches, etc.), the components of a velocity
vector are measured in, for example, meters per second, and so on.
The magnitude of a vector a has the same dimension as its components.
Therefore, the corresponding unit vector â is dimensionless. It specifies
only the direction of a vector a.

72.3.1. The Parallelogram Rule. Suppose a person is walking on the
deck of a ship with speed v m/s. In 1 second, the person goes a distance
v from point A to B of the deck. The velocity vector relative to the
deck is v = �AB and ‖v‖ = |AB| = v (the speed). The ship moves
relative to the water so that in 1 second it comes to a point D from a
point C on the surface of the water. The ship’s velocity vector relative
to the water is then u = �CD with magnitude u = ‖u‖ = |CD|. What
is the velocity vector of the person relative to the water? Suppose
the point A on the deck coincides with the point C on the surface
of the water. Then the velocity vector is the displacement vector of
the person relative to the water in 1 second. As the person walks on
the deck along the segment AB, this segment travels the distance u
parallel to itself along the vector u relative to the water. In 1 second,
the point B of the deck is moved to a point B′ on the surface of the
water so that the displacement vector of the person relative to the
water will be �AB′. Apparently, the displacement vector �BB′ coincides
with the ship’s velocity u because B travels the distance u parallel to
u. This suggests a simple geometrical rule for finding �AB′ as shown in
Figure 11.6. Take the vector �AB = v, place the vector u so that its
initial point coincides with B, and make the oriented segment with the
initial point of v and the final point of u in this diagram. The resulting
vector is the displacement vector of the person relative to the surface
of the water in 1 second and hence defines the velocity of the person
relative to the water. This geometrical procedure is called addition of
vectors.

Consider a parallelogram whose adjacent sides, the vectors a and
b, extend from the vertex of the parallelogram. The sum of the vec-
tors a and b is a vector, denoted a + b, that is the diagonal of the
parallelogram extended from the same vertex. Note that the parallel
sides of the parallelogram represent the same vector (they are parallel
and have the same length). This geometrical rule for adding vectors
is called the parallelogram rule. It follows from the parallelogram rule
that the addition of vectors is commutative:

a + b = b + a;
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Figure 11.6. Left: Parallelogram rule for adding two
vectors. If two vectors form adjacent sides of a parallel-
ogram at a vertex A, then the sum of the vectors is a
vector that coincides with the diagonal of the parallelo-
gram and originates at the vertex A.
Right: Adding several vectors by using the parallelo-
gram rule. Given the first vector in the sum, all other
vectors are transported parallel so that the initial point
of the next vector in the sum coincides with the termi-
nal point of the previous one. The sum is the vector
that originates from the initial point of the first vec-
tor and terminates at the terminal point of the last
vector. It does not depend on the order of vectors in
the sum.

that is, the order in which the vectors are added does not matter. To
add several vectors (e.g., a + b + c), one can first find a + b by the
parallelogram rule and then add c to the vector a + b. Alternatively,
the vectors b and c can be added first, and then the vector a can be
added to b + c. According to the parallelogram rule, the resulting
vector is the same:

(a + b) + c = a + (b + c) .

This means that the addition of vectors is associative. So several vec-
tors can be added in any order. Take the first vector, then move the
second vector parallel to itself so that its initial point coincides with
the final point of the first vector. The third vector is moved parallel so
that its initial point coincides with the final point of the second vector,
and so on. Finally, make a vector whose initial point coincides with
the initial point of the first vector and whose final point coincides with
the final point of the last vector in the sum. To visualize this process,
imagine a man walking along the first vector, then going parallel to
the second vector, then parallel to the third vector, and so on. The
endpoint of his walk is independent of the order in which he chooses
the vectors.
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72.3.2. Algebraic Addition of Vectors.

Definition 11.7. The sum of two vectors a = 〈a1, a2, a3〉 and
b = 〈b1, b2, b3〉 is a vector whose components are the sums of the cor-
responding components of a and b:

a + b = 〈a1 + b1, a2 + b2, a3 + b3〉.
This definition is equivalent to the geometrical definition of adding

vectors, that is, the parallelogram rule that has been motivated by
studying the velocity of a combined motion. Indeed, put a = �OA,
where the endpoint A has the coordinates (a1, a2, a3). A vector b rep-
resents all parallel segments of the same length ‖b‖. In particular, b is
one such oriented segment whose initial point coincides with A. Sup-
pose that a+b = �OC = 〈c1, c2, c3〉, where C has coordinates (c1, c2, c3).
By the parallelogram rule, b = �AC = 〈c1 − a1, c2 − a2, c3 − a3〉, where
the relation between the components of a vector and the coordinates
of its endpoints has been used. The equality of two vectors means
the equality of the corresponding components, that is, b1 = c1 − a1,
b2 = c2 − a2, and b3 = c3 − a3, or c1 = a1 + b1, c2 = a2 + b2, and
c3 = a3 + b3 as required by the algebraic addition of vectors.

72.3.3. Rules of Vector Algebra. Combining addition of vectors with
multiplication by real numbers, the following simple rule can be estab-
lished by either geometrical or algebraic means:

s(a + b) = sa + sb , (s + t)a = sa + ta .

The difference of two vectors can be defined as a − b = a + (−1)b.
In the parallelogram with adjacent sides a and b, the sum of vectors
a and (−1)b represents the vector that originates from the endpoint
of b and ends at the endpoint of a because b + [a + (−1)b] = a in
accordance with the geometrical rule for adding vectors; that is a± b
are two diagonals of the parallelogram. The procedure is illustrated in
Figure 11.7 (left panel).

72.4. Study Problems.

Problem 11.6. Consider two nonparallel vectors a and b in a plane.
Show that any vector c in this plane can be written as a linear combi-
nation c = ta + sb for some real t and s.

Solution: By parallel transport, the vectors a, b, and c can be moved
so that their initial points coincide. The vectors ta and sb are parallel
to a and b, respectively, for all values of s and t. Consider the lines
La and Lb that contain the vectors a and b, respectively. Construct
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Figure 11.7. Left: Subtraction of two vectors. The
difference a − b is viewed as the sum of a and −b, the
vector that has the direction opposite to b and the same
length as b. The parallelogram rule for adding a and
−b shows that the difference a − b = a + (−b) is the
vector that originates from the terminal point of b and
ends at the terminal of a if a and b are adjacent sides of
a parallelogram; that is, the sum a+b and the difference
a− b are the two diagonals of the parallelogram.
Right: Illustration to Study Problem 11.6. Any vector
in a plane can always be represented as a linear combi-
nation of two nonparallel vectors.

two lines through the end point of c; one is parallel to La and the
other to Lb as shown in Figure 11.7 (right panel). The intersection
points of these lines with La and Lb and the initial and final points of
c form the vertices of the parallelogram whose diagonal is c and whose
adjacent sides are parallel to a and b. Therefore, a and b can always be
scaled so that ta and sb become the adjacent sides of the constructed
parallelogram. For a given c, the reals t and s are uniquely defined
by the proposed geometrical construction. By the parallelogram rule,
c = ta + sb. �

Problem 11.7. Find the coordinates of a point B that is at a distance
of 6 units of length from the point A(1,−1, 2) in the direction of the
vector v = 〈2, 1,−2〉.
Solution: The position vector of the point A is a = �OA = 〈1,−1, 2〉.
The position vector of the point B is b = a + sv, where s is a positive
number to be chosen such that the length |AB| = s‖v‖ equals 6. Since
‖v‖ = 3, one finds s = 2. Therefore, b = 〈1,−1, 2〉 + 2〈2, 1,−2〉 =
〈5, 1,−2〉. �

Problem 11.8. Consider a straight line segment with the endpoints
A(1, 2, 3) and B(−2,−1, 0). Find the coordinates of the point C on the
segment such that it is twice as far from A as it is from B.
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Solution: Let a = 〈1, 2, 3〉, b = 〈−1, 0, 1〉, and c be position vectors
of A, B, and C, respectively. The question is to express c via a and b.
One has c = a+ �AC. The vector �AC is parallel to �AB = 〈−3,−3,−3〉
and hence �AC = s �AB. Since |AC| = 2|CB|, |AC| = 2

3 |AB| and
therefore s = 2

3 . Thus, c = a + 2
3

�AB = a + 2
3(b− a) = 〈−1, 0, 1〉. �

Problem 11.9. In Study Problem 11.6, let ‖a‖ = 1, ‖b‖ = 2, and
the angle between a and b be 2π/3. Find the coefficients s and t if the
vector c has a norm of 6 and bisects the angle between a and b.

Solution: It follows from the solution of Study Problem 11.6 that
the numbers s and t do not depend on the coordinate system rel-
ative to which the components of all the vectors are defined. So
choose the coordinate system so that a is parallel to the x axis and
b lies in the xy plane. With this choice, a = 〈1, 0, 0〉 and b =
〈‖b‖ cos(2π/3), ‖b‖ sin(2π/3), 0〉 = 〈−1,

√
3, 0〉. Similarly, c is the vec-

tor of length ‖c‖ = 6 that makes the angle π/3 with the x axis, and
therefore c = 〈3, 3√3, 0〉. Equating the corresponding components in
the relation c = ta + sb, one finds 3 = t− s and 3

√
3 = s

√
3, or s = 3

and t = 6. Hence, c = 6a + 3b. �
Problem 11.10. Suppose the three coordinate planes are all mirrored.

A light ray strikes the mirrors. Determine the direction in which the
reflected ray will go.

Solution: Let u be a vector parallel to the incident ray. Under
a reflection from a plane mirror, the component of u perpendicular to
the plane changes its sign. Therefore, after three consecutive reflections
from each coordinate plane, all three components of u change their
signs, and the reflected ray will go parallel to the incident ray but in
the exact opposite direction. For example, suppose the ray is reflected
first by the xz plane, then by the yz plane, and finally by the xy plane.
In this case, u = 〈u1, u2, u3〉 → 〈u1,−u2, u3〉 → 〈−u1,−u2, u3〉 →
〈−u1,−u2,−u3〉 = −u. �
Remark. This principle is used to design reflectors like the cat’s-
eyes on bicycles and those that mark the border lines of a road. No
matter from which direction such a reflector is illuminated (e.g., by the
headlights of a car), it reflects the light in the opposite direction (so
that it will always be seen by the driver).

72.5. Exercises. (1) Find the components of each of the following
vectors and their norms:

(i) The vector has endpoints A(1, 2, 3) and B(−1, 5, 1) and is di-
rected from A to B.
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(ii) The vector has endpoints A(1, 2, 3) and B(−1, 5, 1) and is di-
rected from B to A.

(iii) The vector has the initial point A(1, 2, 3) and the final point
C that is the midpoint of the line segment AB, where B =
(−1, 5, 1).

(iv) The position vector is of a point P obtained from the point
A(−1, 2,−1) by transporting the latter along the vector u =
〈2, 2, 1〉 3 units of length and then along the vector w =
〈−3, 0,−4〉 10 units of length.

(v) The position vector of the vertex C of a triangle ABC in the
xy plane if A is at the origin, B = (a, 0, 0), the angle at the
vertex B is π/3, and |BC| = 3a.

(2) Consider a triangle ABC. Let a be a vector from the vertex
A to the midpoint of the side BC, let b be a vector from B to the
midpoint of AC, and let c be a vector from C to the midpoint of AB.
Use vector algebra to find a + b + c.

(3) Let uk, k = 1, 2, ..., n, be unit vectors in the plane such that
the smallest angle between the two vectors uk and uk+1 is 2π/n. What
can be said about the sum u1 + u2 + · · · + un? What happens when
n→∞?

(4) A plane flies at a speed of v mi/h relative to the air. There is
a wind blowing at a speed of u mi/h in the direction that makes the
angle θ with the direction in which the plane moves. What is the speed
of the plane relative to the ground?

(5) Let pointlike massive objects be positioned at Pi, i = 1, 2, ..., n,
and let mi be the mass at Pi. The point P0 is called the center of
mass if

m1r1 + m2r2 + · · ·+ mnrn = 0,

where ri is the vector from P0 to Pi. Express the position vector of the
center of mass via the position vectors of the point masses. In particu-
lar, find the center of mass of three point masses, m1 = m2 = m3 = m,
located at the vertices of a triangle ABC for A(1, 2, 3), B(−1, 0, 1), and
C(1, 1,−1).

73. The Dot Product

Definition 11.8. (Dot Product).
The dot product a ·b of two vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉
is a number:

a · b = a1b1 + a2b2 + a3b3.
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It follows from this definition that the dot product has the following
properties:

a · b = b · a ,

(sa) · b = s(a · b) ,

a · (b + c) = a · b + a · c,
which hold for any vectors a, b, and c and a number s. The first
property states that the order in which two vectors are multiplied in the
dot product does not matter; that is, the dot product is commutative.
The second property means that the result of the dot product does not
depend on whether the vector a is scaled first and then multiplied by
b or the dot product a · b is computed first and the result multiplied
by s. The third relation shows that the dot product is distributive.

73.1. Geometrical Significance of the Dot Product. As it stands, the dot
product is an algebraic rule for calculating a number out of six given
numbers that are components of the two vectors involved. The com-
ponents of a vector depend on the choice of the coordinate system.
Naturally, one should ask whether the numerical value of the dot prod-
uct depends on the coordinate system relative to which the components
of the vectors are determined. It turns out that it does not. Therefore,
it represents an intrinsic geometrical quantity associated with two vec-
tors involved in the product. To elucidate the geometrical significance
of the dot product, note first the relation between the dot product and
the norm (length) of a vector:

a · a = a2
1 + a2

2 + a2
3 = ‖a‖2 or ‖a‖ =

√
a · a.

Thus, if a = b in the dot product, then the latter does not depend
on the coordinate system with respect to which the components of a
are defined. Next, consider the triangle whose adjacent sides are the
vectors a and b as depicted in Figure 11.8 (left panel).

Then the other side of the triangle can be represented by the dif-
ference c = b− a. The squared length of this latter side is

(11.4) c · c = (b− a) · (b− a) = b · b + a · a− 2a · b,

where the algebraic properties of the dot product have been used.
Therefore, the dot product can be expressed via the geometrical in-
variants, namely, the lengths of the sides of the triangle:

(11.5) a · b =
1
2
(‖c‖2 − ‖b‖2 − ‖a‖2) .
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Figure 11.8. Left: Independence of the dot product
from the choice of a coordinate system. The dot product
of two vectors that are adjacent sides of a triangle can be
expressed via the lengths of the triangle sides as shown
in (11.5).
Right: Geometrical significance of the dot product.
It determines the angle between two vectors as stated
in (11.6). Two nonzero vectors are perpendicular if and
only if their dot product vanishes. This follows from
(11.5) and the Pythagorean theorem: ‖a‖2+‖b‖2 = ‖c‖2
for a right-angled triangle.

This means that the numerical value of the dot product is independent
of the choice of coordinate system. Thus, it can be computed in any
coordinate system. In particular, let us take the coordinate system
in which the vector a is parallel to the x axis and the vector b lies
in the xy plane as shown in Figure 11.8 (right panel). Let the angle
between a and b be θ. By definition, this angle lies in the interval
[0, π]. When θ = 0, the vectors a and b point in the same direction.
When θ = π/2, they are perpendicular, and they point in the opposite
directions if θ = π. In the chosen coordinate system, a = 〈‖a‖, 0, 0〉
and b = 〈‖b‖ cos θ, ‖b‖ sin θ, 0〉. Hence,

(11.6) a · b = ‖a‖‖b‖ cos θ or cos θ =
a · b
‖a‖‖b‖ .

Equation (11.6) reveals the geometrical significance of the dot product.
It determines the angle between two oriented segments in space. It
provides a simple algebraic method to establish a mutual orientation
of two straight line segments in space. The following theorem is useful
in practical applications.
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Theorem 11.2. (Geometrical Significance of the Dot Product).
Two nonzero vectors are perpendicular if and only if their dot product
vanishes:

a ⊥ b ⇐⇒ a · b = 0.

In particular, for a triangle with sides a, b, and c and an angle θ
between sides a and b, it follows from the relation (11.4) that

c2 = a2 + b2 − 2ab cos θ.

For a right-angled triangle, the Pythagorean theorem is recovered: c2 =
a2 + b2.

Example 11.2. Consider a triangle whose vertices are A(1, 1, 1),
B(−1, 2, 3), and C(1, 4,−3). Find all the angles of the triangle.

Solution: Let the angles at the vertices A, B, and C be α, β, and γ,
respectively. Then α + β + γ = 180◦. So it is sufficient to find any two
angles. To find the angle α, define the vectors a = �AB = 〈−2, 1, 2〉
and b = �AC = 〈0, 3,−4〉. The initial point of these vectors is A, and
hence the angle between the vectors coincides with α. Since ‖a‖ = 3
and ‖b‖ = 5, by the geometrical property of the dot product,

cos α =
a · b
‖a‖‖b‖ =

0 + 3− 8
15

= −1
3

=⇒
α = cos−1(−1/3) ≈ 109.5◦ .

To find the angle β, define the vectors a = �BA = 〈2,−1,−2〉 and
b = �BC = 〈2, 2,−6〉 with the initial point at the vertex B. Then the
angle between these vectors coincides with β. Since ‖a‖ = 3, ‖b‖ =
2
√

11, and a · b = 4 − 2 + 12 = 14, one finds cosβ = 14/(6
√

11) and
β = cos−1(7/(3

√
11)) ≈ 45.3◦. Therefore, γ ≈ 180◦ − 109.5◦ − 45.3◦ =

25.2◦. Note that the range of the function cos−1 must be taken from
0◦ to 180◦ in accordance with the definition of the angle between two
vectors. �

Theorem 11.3. (Cauchy-Schwarz Inequality).
For any two vectors a and b,

|a · b| ≤ ‖a‖ ‖b‖,
where the equality is reached only if the vectors are parallel.

This inequality is a direct consequence of the first relation in (11.6)
and the inequality | cos θ| ≤ 1. The equality is reached only when θ = 0
or θ = π, that is, when a and b are parallel.
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Theorem 11.4. (Triangle Inequality).
For any two vectors a and b,

‖a + b‖ ≤ ‖a‖+ ‖b‖.
Proof. Put ‖a‖ = a and ‖b‖ = b so that a · a = ‖a‖2 = a2 and
similarly b · b = b2. Using the algebraic rules for the dot product,

‖a+b‖2 = (a+b) · (a+b) = a2 + b2 +2a ·b ≤ a2 + b2 +2ab = (a+ b)2,

where the Cauchy-Schwarz inequality has been used. By taking the
square root of both sides, the triangle inequality is obtained. �

The triangle inequality has a simple geometrical meaning. Consider
a triangle with sides a, b, and c. The directions of the vectors are
chosen so that c = a+b. The triangle inequality states that the length
‖c‖ cannot exceed the total length of the other two sides. It is also
clear that the maximal length ‖c‖ = ‖a‖+‖b‖ is attained only if a and
b are parallel and point in the same direction. If they are parallel but
point in the opposite direction, then the length ‖c‖ becomes minimal
and coincides with the difference of ‖a‖ and ‖b‖. This observation can
be stated in the following algebraic form:

(11.7)
∣∣∣‖a‖ − ‖b‖∣∣∣ ≤ ‖a + b‖ ≤ ‖a‖+ ‖b‖.

73.2. Direction Angles. Consider three unit vectors ê1 = 〈1, 0, 0〉, ê2 =
〈0, 1, 0〉, and ê3 = 〈0, 0, 1〉 that are parallel to the coordinate axes x, y,
and z, respectively. By the rules of vector algebra, any vector can be
written as the sum of three mutually perpendicular vectors:

a = 〈a1, a2, a3〉 = a1ê1 + a2ê2 + a3ê3 .

The vectors a1ê1, a2ê2, and a3ê3 are adjacent sides of the rectan-
gle whose largest diagonal coincides with the vector a as shown in
Figure 11.9 (right panel).

Define the angle α that is counted from the positive direction of the
x axis toward the vector a. In other words, the angle α is the angle
between ê1 and a. Similarly, the angles β and γ are, by definition, the
angles between a and the unit vectors ê2 and ê3, respectively. Then

cos α =
ê1 · a
‖ê1‖‖a‖ =

a1

‖a‖ , cos β =
ê2 · a
‖ê2‖‖a‖ =

a2

‖a‖ ,

cos γ =
ê3 · a
‖ê3‖‖a‖ =

a3

‖a‖ .
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Figure 11.9. Left: Direction angles of a vector are de-
fined as the angles between the vector and three coor-
dinates axes. Each angle ranges between 0 and π and
is counted from the corresponding positive coordinate
semiaxis toward the vector. The cosines of the direction
angles of a vector are components of the unit vector par-
allel to that vector.
Right: Decomposition of a vector into the sum of three
mutually perpendicular vectors that are parallel to the
coordinate axes of a rectangular coordinate system. The
vector is the diagonal of the rectangle, whereas the vec-
tors in the sum form the edges of the rectangle.

These cosines are nothing but the components of the unit vector parallel
to a:

â =
1
‖a‖ a = 〈cos α, cos β, cos γ〉 .

Thus, the angles α, β, and γ uniquely determine the direction of a
vector. For this reason, they are called direction angles. Note that they
cannot be set independently because they always satisfy the condition
‖â‖ = 1 or

cos2 α + cos2 β + cos2 γ = 1 .

In practice (physics, mechanics, etc.), vectors are often specified by
their magnitude ‖a‖ = a and direction angles. The components are
then found by a1 = a cos α, a2 = a cos β, and a3 = a cos γ.
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73.3. Practical Applications.

73.3.1. Static Problems. According to Newton’s mechanics, a pointlike
object that was at rest remains at rest if the vector sum of all forces
applied to it vanishes. This is the fundamental law of statics:

F1 + F2 + · · ·+ Fn = 0.

This vector equation implies three scalar equations that require vanish-
ing each of the three components of the total force. If there is a system
of pointlike objects, then the system is at rest if each object is at rest,
and hence the sum of all forces applied to each object vanishes. This
gives a system of vector equations, each of which is the above equilib-
rium condition for a particular object. A typical static problem is to
determine either the magnitudes of some forces or the values of some
geometrical parameters at which the system in question is at rest.

Example 11.3. Let a ball of mass m be attached to the ceiling by
two ropes so that the smallest angle between the first rope and the ceiling
is θ1 and the angle θ2 is defined similarly for the second rope. Find the
magnitudes of the tension forces in the ropes.

Solution: Set the coordinate system so that the x axis is horizontal
and oriented from the first rope to the second ropes as depicted in
Figure 11.10 (left panel). The ropes are in the xy plane, while the
gravitational force is in the direction opposite to the y axis. Let T1 and
T2 be the magnitudes of the tension forces. Then in this coordinate
system the forces acting on the ball are

T1 = 〈−T1 cos θ1, T1 sin θ1, 0〉 ,
T2 = 〈T2 cos θ2, T2 sin θ2, 0〉 , G = 〈0,−mg, 0〉 ,

where G is the gravitational force and g is the acceleration of the
free fall (g ≈ 9.8 m/s2); that is, mg is the weight of the ball. The
equilibrium condition

T1 + T2 + G = 0

leads to two equations for the components (the third components of all
vectors are identically 0):

−T1 cos θ1 + T2 cos θ2 = 0 , T1 sin θ1 + T2 sin θ2 −mg = 0,

which can be solved for T1 and T2. By multiplying the first equation
by sin θ1 and the second by cos θ1 and then adding them, one gets
T2 = mg cos θ1/ sin(θ1 + θ2). Substituting T2 into the first equation,
the tension T1 is obtained. �
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Figure 11.10. Left: Illustration to Example 11.3. At
equilibrium, the vector sum of all forces acting on the
ball vanishes. The components of the forces are easy to
find in the coordinate system in which the x axis is hor-
izontal and the y axis is vertical.
Right: Illustration to Study Problem 11.11. The vector
c is the projection of a vector b onto a. It is a vector par-
allel to a. The initial points of b and c coincide. The line
through the terminal points of b and c is perpendicular
to a.

73.3.2. Work Done by a Force. Suppose that an object of mass m moves
with speed v. The quantity K = mv2/2 is called the kinetic energy of
the object. Suppose that the object has moved along a straight line
segment from a point P1 to a point P2 under the action of a constant
force F. A law of physics states that a change in an object’s kinetic
energy is equal to the work W done by this force:

K2 −K1 = F · �P1P2 = W ,

where K1 and K2 are the kinetic energies at the initial and final points
of the motion, respectively.

Example 11.4. Let an object slide on an inclined plane without
friction under the gravitational force. Find the final speed v of the
object if the relative height of the initial and final points is h and the
object was initially at rest.

Solution: Choose the coordinate system so that the displacement
vector �P1P2 and the gravitational force are in the xy plane. Let the
y axis be vertical so that the gravitational force is F = 〈0,−mg, 0〉,
where m is the mass and g is the acceleration of the free fall. The initial
point is chosen to have the coordinates (0, h, 0) while the final point
is (L, 0, 0), where L is the distance the object travels in the horizontal
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direction while sliding. The displacement vector is �P1P2 = 〈L,−h, 0〉.
Since K1 = 0, one has

mv2

2
= W = F · �P1P2 = mgh =⇒ v =

√
2gh .

Note that the speed is independent of the mass of the object and the
inclination angle of the plane (its tangent is h/L); it is fully determined
by the relative height only. �

73.4. Study Problems.

Problem 11.11. (Projection of b onto a).
Consider two vectors a and b with a common initial point O. Consider
the line through the endpoint of b that is perpendicular to a. Let C be
the point intersection of this line with the line containing the vector a.
Find the vector c = �OC. This vector is called a projection of b onto a.

Solution: (See the right panel of Fig. 11.10). By construction, c
is parallel to a and hence proportional to it; c = sa for some real s.
Let the angle between b and a be θ. Then, by construction, s > 0 if
θ < 90◦ (c and a point in the same direction) and s < 0 if θ > 90◦

(c and a point in the opposite directions). Also, from the right-angled
triangle, ‖c‖ = ‖b‖ cos θ if θ < 90◦ and ‖c‖ = −‖b‖ cos θ if θ > 90◦.
Therefore,

c = sa , s =
‖b‖ cos θ

‖a‖ =
‖b‖‖a‖ cos θ

‖a‖2 =
a · b
‖a‖2 .

�

Problem 11.12. Find all values of t for which the vectors a = 〈2t, 3−
t,−1〉 and b = 〈t, t, 3 + t〉 are orthogonal.

Solution: By the geometrical property of the dot product, two vec-
tors are orthogonal if and only if their dot product vanishes. Therefore,
a · b = 2t2 + t(3− t)− (3 + t) = (t + 1)2 − 4 = 0. The solutions of this
equation are t = 1 and t = −3. �

Problem 11.13. Describe the set of points in space whose position
vector r satisfies the condition (r − a) · (r − b) = 0. Hint: Note that
the position vector satisfying the condition ‖r − c‖ = R describes a
sphere of radius R whose center has the position vector c.

Solution: The equation of a sphere can also be written in the form
‖r− c‖2 = (r− c) · (r− c) = R2. The equation (r−a) · (r−b) = 0 can
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be transformed into the sphere equation by completing the squares.
Using the algebraic properties of the dot product,

(r− a) · (r− b) = r · r− r · (a + b) + a · b
= (r− c) · (r− c)− c · c + a · b,

c = 1
2(a + b),

c · c− a · b = R ·R , R = 1
2(a− b) .

Hence, the set is a sphere of radius R = ‖R‖, and its center is positioned
at c. �

73.5. Exercises.
(1) Find the dot product a · b if

(i) a = 〈1, 2, 3〉 and b = 〈−1, 2, 0〉
(ii) a = ê1 + 3ê2 − ê3 and b = 3ê1 − 2ê2 + ê3

(2) For what values of b are the vectors 〈−6 , b , 2〉 and 〈b , b2 , b〉
orthogonal?

(3) Find the angle at the vertex A of a triangle ABC for A(1, 0, 1),
B(1, 2, 3), and C(0, 1, 1).

(4) Find the cosines of the angles of a triangle ABC for A(0, 1, 1),
B(−2, 4, 3), and C(1, 2,−1).

(5) Find the unit vector parallel to a = 〈2,−1,−2〉 and the unit
vector whose direction is opposite to a.

(6) Consider a triangle whose any two adjacent sides are unit vec-
tors. What are possible values of the dot products of any two such unit
vectors?

(7) Consider a cube whose edges have length a. Find the angle
between its largest diagonal and any edge adjacent to the diagonal.

(8) A vector a makes the angle π/3 with the positive x axis, the
angle π/6 with the negative y axis, and the angle π/4 with the positive
z axis. Find the components of a if its length is 6.

(9) Find the components of all unit vectors û that make the angle
π/6 with the positive z axis.
Hint: Put û = av̂+ bê3, where v̂ is a unit vector in the xy plane. Find
a, b, and all v̂ using the polar angle in the xy plane.

(10) If c = ‖a‖b+‖b‖a, where a and b are non zero vectors, show
that c bisects the angle between a and b.

(11) Let the vectors a and b have the same length. Show that the
vectors a + b and a− b are orthogonal.

(12) Consider a parallelogram with adjacent sides of length a and
b. If d1 and d2 are the lengths of the diagonals, prove the parallelogram
law: d2

1 + d2
2 = 2(a2 + b2).
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Hint: Consider the vectors a and b that are adjacent sides of the
parallelogram and express the diagonals via a and b. Use the dot
product to evaluate d2

1 + d2
2.

(13) Two balls of mass m and 3m, respectively, are connected by
a piece of rope of length h. Then the balls are attached to different
points on a horizontal ceiling by a piece of rope with the same length
h so that the distance L between the points is greater than h but less
than 3h. Find the equilibrium positions of the balls.

74. The Cross Product

74.1. Determinant of a Square Matrix.

Definition 11.9. The determinant of a 2×2 matrix is the number
computed by the following rule:

det
(

a11 a12

a21 a22

)
= a11a22 − a12a21,

that is, the product of the diagonal elements minus the product of the
off-diagonal elements.

Definition 11.10. The determinant of a 3 × 3 matrix A is the
number obtained by the following rule:

det

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ = a11 det A11 − a12 det A12 + a13 det A13

=
3∑

k=1

(−1)k+1a1k det A1k,

A11 =
(

a22 a23

a32 a33

)
, A12 =

(
a21 a23

a31 a33

)
, A13 =

(
a21 a22

a31 a32

)
,

where the matrices A1k, k = 1, 2, 3, are obtained from the original
matrix A by removing the row and column containing the element a1k.

It is straightforward to verify that the determinant can be expanded
over any row or column:

det A =
3∑

k=1

(−1)k+mamk det Amk for any m = 1, 2, 3,

det A =
3∑

m=1

(−1)k+mamk det Amk for any k = 1, 2, 3,
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where the matrix Amk is obtained from A by removing the row and
column containing amk. This definition of the determinant is extended
to N ×N square matrices by letting k and m range over 1, 2, ..., N .

In particular, the determinant of a triangular matrix (i.e., the ma-
trix all of whose elements either above or below the diagonal vanish) is
the product of its diagonal elements:

det

⎛
⎝a1 b c

0 a2 d
0 0 a3

⎞
⎠ = det

⎛
⎝a1 0 0

b a2 0
c d a3

⎞
⎠ = a1a2a3

for any numbers b, c, and d. Also, it follows from the expansion of the
determinant over any column or row that, if any two rows or any two
columns are swapped in the matrix, its determinant changes sign.

Example 11.5. Calculate det A, where

A =

⎛
⎝ 1 2 3

0 1 3
−1 2 1

⎞
⎠ .

Solution: Expanding the determinant over the first row yields

det A = 1(1 · 1− 2 · 3)− 2(0 · 1− (−1) · 3) + 3(0 · 2− (−1) · 1) = −8 .

Alternatively, expanding the determinant over the second row yields
the same result:

det A = −0(2 · 1− 3 · 2) + 1(1 · 1− (−1) · 3)− 3(1 · 2− (−1) · 2) = −8 .

One can check that the same result can be obtained by expanding the
determinant over any row or column. �

74.2. The Cross Product of Two Vectors.

Definition 11.11. (Cross Product).
The cross product of two vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is
a vector that is the determinant of the formal matrix expanded over the
first row:

a× b = det

⎛
⎝ê1 ê2 ê3

a1 a2 a3

b1 b2 b3

⎞
⎠

= ê1 det
(

a2 a3

b2 b3

)
− ê2 det

(
a1 a3

b1 b3

)
+ ê3 det

(
a1 a2

b1 b2

)
= 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.(11.8)
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Note that the first row of the matrix consists of the unit vectors
parallel to the coordinate axes rather than numbers. For this reason, it
is referred as to a formal matrix. The use of the determinant is merely
a compact way to write the algebraic rule to compute the components
of the cross product.

The cross product has the following properties that follow from its
definition:

a× b = −b× a,

(a + c)× b = a× b + c× b,

(sa)× b = s(a× b).

The first property is obtained by swapping the components of b and a
in (11.8). It states that the cross product is skew-symmetric (i.e., it is
not commutative and the order in which the vectors are multiplied is
essential); changing the order leads to the opposite vector. The cross
product is distributive according to the second property. To prove it,
change ai to ai + ci, i = 1, 2, 3, in (11.8). If a vector a is scaled by a
number s and the resulting vector is multiplied by b, the result is the
same as the cross product a × b computed first and then scaled by s
(change ai to sai in (11.8) and then factor out s).

74.3. Geometrical Significance of the Cross Product. The above alge-
braic definition of the cross product uses a particular coordinate sys-
tem relative to which the components of the vectors are defined. Does
the cross product depend on the choice of the coordinate system? To
answer this question, one should investigate whether both its direction
and its magnitude depend on the choice of the coordinate system. Let
us first investigate the mutual orientation of the oriented segments a,
b, and a × b. A simple algebraic calculation leads to the following
result:

a · (a× b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0.

By the skew symmetry of the cross product, it is also concluded that
b · (a × b) = −b · (b × a) = 0. By the geometrical property of the
dot product, the cross product must be perpendicular to both vectors
a and b:

(11.9) a ·(a×b) = b ·(a×b) = 0 ⇐⇒ a×b ⊥ a and a×b ⊥ b.

This shows that the direction of the cross product does not depend on
the choice of the coordinate system modulo the reflection a×b→ a×b.
So, by a suitable rotation, the coordinate system can be oriented so that
the cross product is parallel to the z axis. Then the vectors a and b
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Figure 11.11. Left: Geometrical interpretation of the
cross product of two vectors. The cross product is a vec-
tor that is perpendicular to both vectors in the product.
Its length equals the area of the parallelogram whose ad-
jacent sides are the vectors in the product. If the fingers
of the right hand curl in the direction of a rotation from
the first to second vector through the smallest angle be-
tween them, then the thumb points in the direction of
the cross product of the vectors.
Right: Illustration to Study Problem 11.15.

are in the xy plane. Let θa and θb be angles counted from the positive
x axis counterclockwise toward the vectors a and b, respectively. The
components of these vectors are a = 〈‖a‖ cos θa, ‖a‖ sin θa, 0〉 and b =
〈‖b‖ cos θb, ‖b‖ sin θb, 0〉 (compare with the polar coordinates of two
points in a plane with the position vectors a and b). Then the cross
product reads:

a× b = ê3‖a‖‖b‖(cos θa sin θb − sin θa cos θb) = ê3‖a‖‖b‖ sin(θb − θa) .

Two important conclusions can be deduced from this expression.

74.3.1. The Right-Hand Rule (the Cross-Product Direction). By defini-
tion, the angles θa and θb range over the interval [0, 2π). Let 0 ≤ θ ≤ π
be the (smallest) angle between the vectors a and b (just as defined by
their dot product). The lengths ‖a‖ and ‖b‖ and the angle difference
θb− θa are independent of the orientation of the coordinate axes in the
plane and so must be the cross product. In particular, one can choose
the x axis parallel to the vector a (or θa = 0). Then θb = θ if θb ≤ π
and θb = 2π− θ if π < θb < 2π. In the former case, sin(θb− θa) = sin θ
and the cross product points in the same direction as the z axis, while
in the latter case, sin(θb − θa) = − sin θ and the cross product points
in the direction opposite to the z axis. This leads to the coordinate
independent rule that determines the direction of the cross product
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known as the right-hand rule: If the fingers of the right hand curl in
the direction of a rotation from a toward b through the smallest angle
between them, then the thumb points in the direction of a× b.

Thus, the cross product is always perpendicular to the plane con-
taining a and b and oriented (“up” or “down” relative to the plane)
according to the right-hand rule.

Remark. The transformation in which the coordinate axes change
their direction to the opposite is called the parity transformation. Ev-
idently, under the parity transformation, coordinates of every point
change their sign, and hence every vector (defined as an ordered triple
of numbers) changes its direction, a = 〈a1, a2, a3〉 → 〈−a1,−a2,−a3〉 =
−a. However, the cross product of two vectors does not change under
the parity transformation: a × b → (−a) × (−b) = a × b. For this
reason, the cross product is sometimes referred to as a pseudovector or
an axial vector. The coordinate systems related by the parity trans-
formation cannot be obtained from one another by rotations, just like
“left” and “right” are swapped in a mirror reflection. There are forces
in nature that are axial vectors. So the world and its mirror image can
be distinguished by studying the results of the actions of such forces.
Physical experiments reveal that the parity symmetry is indeed broken
in our Universe!

74.3.2. The Area of a Parallelogram (the Cross-Product Magnitude). By
the definition of the angle θ, sin θ ≥ 0. Therefore, the magnitude of the
cross product is expressed via the geometrical invariants—the length
of the vectors and the angle between them:

‖a× b‖ = ‖a‖‖b‖ sin θ .

Now consider the parallelogram with adjacent sides a and b. If ‖a‖
is the length of its base, then h = ‖b‖ sin θ is its height. Then the
magnitude of the cross product, ‖a× b‖ = ‖a‖h, must be the area of
the parallelogram. This completes a proof of the following theorem.

Theorem 11.5. (Geometrical Significance of the Cross Product).
The cross product a × b of vectors a and b is the vector that is per-
pendicular to both vectors, a × b⊥ a and a × b⊥b, has a magnitude
equal to the area of the parallelogram with adjacent sides a and b, and
is directed according to the right-hand rule.

It should be emphasized that no coordinate system is required to
determine the cross product of two vectors. The geometrical properties
of the cross product can be used to obtain another algebraic criterion
for two vectors that are parallel.
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Corollary 11.1. Two nonzero vectors are parallel if and only if
their cross product vanishes:

a× b = 0 ⇐⇒ a ‖b .

When two vectors are parallel, the area of the corresponding par-
allelogram vanishes, ‖a × b‖ = 0. The latter is true if and only if
a × b = 0. Conversely, for two parallel vectors, there is a number s
such that a = sb. Hence, a× b = (sa)× b = s(b× b) = 0.

One of the most important applications of the cross product is in
calculations of the areas of planar figures in space.

Corollary 11.2. (Area of a Triangle).
Consider a triangle with two adjacent sides represented by the vectors
a and b such that the vectors have the same initial point at a vertex of
the triangle. Then the area of the triangle is

Area 
 =
1
2
‖a× b‖.

Indeed, by the geometrical construction, the area of the triangle is
half of the area of a parallelogram with adjacent sides a and b.

Example 11.6. Let A = (1, 1, 1), B = (2,−1, 3), and C = (−1, 3, 1).
Find the area of the triangle ABC and a vector normal to the plane
that contains the triangle.

Solution: According to the geometrical properties of the cross prod-
uct, in order to find a vector normal to a plane, one should take
the cross product of any two nonparallel vectors in the plane. For
example, a = �AB = 〈1,−2, 2〉 and b = �AC = 〈−2, 2, 0〉. Then
a × b = 〈−4,−4,−6〉 is normal to the plane. Note that the cross
product of any other pair of vectors corresponding to the sides of the
triangle can only be a scaled vector s〈−4,−4, 6〉 because any two nor-
mal vectors of a given plane must be parallel and hence proportional.
Since ‖〈−4,−4,−6〉‖ = 2‖〈2, 2, 3〉‖ = 2

√
17, the area of the triangle

ABC is
√

17 by Corollary 11.2. The units here are squared units of
length used to measure the coordinates of the triangle vertices (e.g.,
m2 if the coordinates are measured in meters). �

74.4. Study Problems.

Problem 11.14. Find the most general vector r that satisfies the equa-
tions a · r = 0 and b · r = 0, where a and b are nonzero, nonparallel
vectors.
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Solution: The conditions imposed on r hold if and only if the vector
r is orthogonal to both vectors a and b. Therefore, it must be parallel
to their cross product. Thus, r = t(a× b) for any real t. �

Problem 11.15. Use geometrical means to find the cross products of
the unit vectors parallel to the coordinate axes.

Solution: Consider ê1× ê2. Since ê1⊥ ê2 and ‖ê1‖ = ‖ê2‖ = 1, their
cross product must be a unit vector perpendicular to both ê1 and ê2.
There are only two such vectors, ±ê3. By the right-hand rule, it follows
that

ê1 × ê2 = ê3 .

Similarly, the other cross products are shown to be obtained by cyclic
permutations of the indices 1, 2, and 3 in the above relation. A permu-
tation of any two indices leads to a change in sign (e.g., ê2× ê1 = −ê3).
Since a cyclic permutation of three indices {ijk} → {kij} (and so on)
consists of two permutations of any two indices, the relation between
the unit vectors can be cast in the form

êi = êj × êk , {ijk} = {123} and cyclic permutations.

�
Problem 11.16. Prove the “bac − cab” rule:

d = a× (b× c) = b(a · c)− c(a · b).

Solution: If c and b are parallel, then d = 0. If c and b are not
parallel, then d must be perpendicular to both a and b × c. From
the condition d⊥b × c, it follows that d lies in the plane containing
b and c and hence is a linear combination of them, d = sb + tc.
From the condition d⊥ a or a · d = 0, it follows that s = p(a · c) and
t = −p(a ·b) for some real p. Since the magnitude of the cross product
is independent of the choice of the coordinate system, the number p
can be fixed by computing d in any convenient coordinate system. By
rotating the coordinate system, one can always direct the x axis along
the vector c so that c = ‖c‖ê1, while the vector b lies in the xy plane
so that b = b1ê1 + b2ê2. Then b × c = −ê3b2‖c‖ and therefore, for a
generic a = 〈a1, a2, a3〉,
a× (b× c) = −ê1‖c‖a2b2 + ê2b2‖c‖a1 = −ca2b2 + (b− b1ê1)‖c‖a1

=b‖c‖a1 − c(a1b1 + a2b2) = b(c · a)− c(a · b) ,

that is, p = 1. Of course, the statement can also be proved by a
direct use of the algebraic definition of the cross product (a brute-force
method). �
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Problem 11.17. Prove the Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0.

Solution: Note that the second and third terms on the left side are
obtained from the first by cyclic permutations of the vectors. Making
use of the bac – cab rule for the first term and then adding to it its
two cyclic permutations, one can convince oneself that the coefficients
at each of the vectors a, b, and c are added up to make 0. �
Remark. Note that the Jacobi identity implies in particular that

a× (b× c) �= (a× b)× c;

that is, the multiplication law defined by the cross product does not
generally obey the associative law for multiplication of numbers.

Problem 11.18. Consider all vectors in a plane. Any such vector
a can be uniquely determined by specifying its length a = ‖a‖ and the
angle θa that is counted from the positive x axis toward the vector a (i.e.,
0 ≤ θa < 2π). The relation 〈a1, a2〉 = 〈a cos θa, a sin θa〉 establishes a
one-to-one correspondence between ordered pairs (a1, a2) and (a, θa).
Define the vector product of two vectors a and b as the vector c for
which c = ab and θc = θa + θb. Show that this product is associative
and commutative, that is, that c does not depend on the order of vectors
in the product.

Solution: Let us denote the vector product by a small circle to
distinguish it from the dot and cross products, a ◦ b = c. Since
c = 〈ab cos(θa + θb), ab sin(θa + θb)〉, the commutativity of the vector
product a ◦ b = b ◦ a follows from the commutativity of the product
and addition of numbers: ab = ba and θa + θb = θb + θa. Similarly,
the associativity of the vector product (a ◦ b) ◦ c = a ◦ (b ◦ c) follows
from the associativity of the product and addition of ordinary numbers:
(ab)c = a(bc) and (θa + θb) + θc = θa + (θb + θc). �
Remark. The vector product introduced for vectors in a plane is
known as the product of complex numbers. It is interesting to note
that no commutative and associative vector product (i.e., “vector times
vector = vector”) can be defined in a Euclidean space of more than two
dimensions.

Problem 11.19. Let u be a vector rotating in the xy plane about the
z axis. Given a vector v, find the position of u such that the magnitude
of the cross product v × u is maximal.
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Solution: For any two vectors, ‖v × u‖ = ‖v‖‖u‖ sin θ, where θ
is the angle between v and u. The magnitude of v is fixed, while
the magnitude of u does not change when rotating. Therefore, the
absolute maximum of the cross-product magnitude is reached when
sin θ = 1 or cos θ = 0 (i.e., when the vectors are orthogonal). The
corresponding algebraic condition is v ·u = 0. Since u is rotating in the
xy plane, its components are u = 〈‖u‖ cos φ, ‖u‖ sin φ, 0〉, where 0 ≤
φ < 2π is the angle counted counterclockwise from the x axis toward
the current position of u. Put v = 〈v1, v2, v3〉. Then the direction of
u is determined by the equation v · u = ‖u‖(v1 cos φ + v2 sin φ) = 0,
and hence tan φ = −v1/v2. This equation has two solutions in the
range 0 ≤ φ < 2π: φ = − tan−1(v1/v2) and φ = − tan−1(v1/v2) + π.
Geometrically, these solutions correspond to the case when u is parallel
to the line y = −(v1/v2)x in the xy plane. �

74.5. Exercises. (1) Find the cross product a× b if
(i) a = 〈1, 2, 3〉 and b = 〈−1, 0, 1〉
(ii) a = ê1 + 3ê2 − ê3 and b = 3ê1 − 2ê2 + ê3

(2) Find the area of a triangle ABC for A(1, 0, 1), B(1, 2, 3), and
C(0, 1, 1) and a nonzero vector perpendicular to the plane containing
the triangle.

(3) Suppose a lies in the xy plane, its initial point is at the origin,
and its terminal point is in first quadrant of the xy plane. Let b be
parallel to ê3. Use the right-hand rule to determine whether the angle
between a× b and the unit vectors parallel to the coordinate axes lies
in the interval (0, π/2) or (π/2, π) or equals π/2.

(4) If vectors a, b, and c have the initial point at the origin and
lie, respectively, in the positive quadrants of the xy, yz, and xz planes,
find the octants in which the pairwise cross products of these vectors
lie.

(5) Let A = (1, 2, 1) and B = (−1, 0, 2) be vertices of a parallelo-
gram. If the other two vertices are obtained by moving A and B by
3 units of length along the vector a = 〈2, 1,−2〉, find the area of the
parallelogram.

(6) Consider four points in space. Suppose that the coordinates
of the points are known. Describe a procedure based on vector al-
gebra to determine whether the points are in one plane. In partic-
ular, are the points (1, 2, 3), (−1, 0, 1), (1, 3,−1), and (0, 1, 2) in one
plane?

(7) Let the sides of a triangle have lengths a, b, and c and let the
angles at the vertices opposite to the sides a, b, and c be, respectively,
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α, β, and γ. Prove that
sin α

a
=

sin β

b
=

sin γ

c
.

Hint: Define the sides as vectors and express the area of the triangle
via the vectors at each vertex of the triangle.

(8) Consider a polygon with four vertices A, B, C, and D. If the
coordinates of the vertices are specified, describe the procedure based
on vector algebra to calculate the area of the polygon. In particular,
put A = (0, 0) B = (x1, y1), C = (x2, y2), and D = (x3, y3), and express
the area via xi and yi, i = 1, 2, 3.

(9) Consider a parallelogram. Construct another parallelogram
whose adjacent sides are diagonals of the first parallelogram. Find
the relation between the areas of the parallelograms.

(10) Given two nonparallel vectors a and b, show that any vector
r in space can be written as a linear combination r = xa+ yb+ za×b
and that the numbers x, y, and z are unique for every r.
Hint: See Study Problems 11.14 and 11.6.

(11) A tetrahedron is a solid with four vertices and four triangular
faces. Let v1, v2, v3, and v4 be vectors with lengths equal to the areas
of the faces and directions perpendicular to the faces and pointing
outward. Show that v1 + v2 + v3 + v4 = 0.

(12) If a · b = a · c and a× b = a× c, does it follow that b = c?

75. The Triple Product

Definition 11.12. The triple product of three vectors a, b, and c
is a number obtained by the rule: a · (b× c).

It follows from the algebraic definition of the cross product and the
definition of the determinant of a 3× 3 matrix that

a · (b× c) = a1 det
(

b2 b3

c2 c3

)
− a2 det

(
b1 b3

c1 c3

)
+ a3 det

(
b1 b2

c1 c2

)

= det

⎛
⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎠.

This provides a convenient way to calculate the numerical value of
the triple product. If two rows of a matrix are swapped, then its
determinant changes sign. Therefore,

a · (b× c) = −b · (a× c) = −c · (b× a) .

This means, in particular, that the absolute value of the triple product
is independent of the order of the vectors in the triple product.
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Figure 11.12. Left: Geometrical interpretation of the
triple product as the volume of the parallelepiped whose
adjacent sides are the vectors in the product: h =
‖a‖ cos θ, A = ‖b × c‖, V = hA = ‖a‖ ‖b × c‖ cos θ =
a · (b× c).
Right: Test for the coplanarity of three vectors. Three
vectors are coplanar if and only if their triple product
vanishes: a · (b× c) = 0.

75.1. Geometrical Significance of the Triple Product. Suppose that b
and c are not parallel (otherwise, b×c = 0). Let θ be the angle between
a and b × c as shown in Figure 11.12 (left panel). If a⊥b × c (i.e.,
θ = π/2), then the triple product vanishes. Let θ �= π/2. Consider the
parallelepiped whose adjacent sides being are the vectors a, b, and c.
The faces of the parallelepiped are the parallelograms whose adjacent
sides are pairs of the vectors. In particular, the cross product b × c
is perpendicular to the face containing the vectors b and c, whereas
A = ‖b × c‖ is the area of this face of the parallelepiped (the area of
the parallelogram with adjacent sides b and c). By the geometrical
property of the dot product, a · (b × c) = A‖a‖ cos θ. On the other
hand, the distance between the two faces parallel to both b and c
(or the height of the parallelepiped) is h = ‖a‖ cos θ if θ < π/2 and
h = −‖a‖ cos θ if θ > π/2 or, h = ‖a‖| cos θ|. The volume of the
parallelepiped is V = Ah. This leads to the following theorem.

Theorem 11.6. (Geometrical Significance of the Triple Product).
The volume V of a parallelepiped whose adjacent sides are the vectors
a, b, and c is the absolute value of their triple product:

V = |a · (b× c)| .
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Thus, the triple product is a convenient algebraic tool for calculat-
ing volumes. There is a useful consequence of this theorem.

Definition 11.13. (Coplanar Vectors).
Vectors are said to be coplanar if they are in one plane.

Clearly, any two vectors are always coplanar. What is an algebraic
condition for three vectors being coplanar?

Corollary 11.3. (Criterion for Three Vectors to Be Coplanar).
Three vectors are coplanar if and only if their triple product vanishes:

a, b, c are coplanar ⇐⇒ a · (b× c) = 0.

Indeed, if the vectors are coplanar (Figure 11.12, right panel), then
the cross product of any two vectors must be perpendicular to the
plane where the vectors are and therefore the triple product vanishes.
If, conversely, the triple product vanishes, then either b × c = 0 or
a⊥b× c. In the former case, b is parallel to c, or c = tb, and hence a
always lies in a plane with b and c. In the latter case, all three vectors
a, b, and c are perpendicular to b × c and therefore must be in one
plane (perpendicular to b× c).

Example 11.7. Determine whether the points A(1, 1, 1), B(2, 0, 2),
C(3, 1,−1), and D(0, 2, 3) are in the same plane.

Solution: Consider the vectors a = �AB = 〈1,−1, 1〉, b = �AC =
〈2, 0, 2〉, and c = �AD = 〈−1, 1, 2〉. The points in question are in the
same plane if and only if the vectors a, b, and c are coplanar, or
a · (b× c) = 0. One finds.

a · (b×c) = det

⎛
⎝ 1 −1 1

2 0 2
−1 1 2

⎞
⎠ = 1(0−2)+1(4+2)+1(2−0) = 6 �= 0 .

Therefore, the points are not in the same plane. �
The triple product can be used to find the distances between two sets
of points in space. Let S1 and S2 be two sets of points in space. Let a
point A1 belong to S1, let a point A2 belong to S2, and let |A1A2| be
the distance between them.

75.2. Distances Between Lines and Planes. If the lines or planes in
space are not intersecting, then how can one find the distance between
them? This question can be answered using the geometrical properties
of the triple and cross products.
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Definition 11.14. (Distance Between Sets in Space).
The distance D between two sets of points in space, S1 and S2, is the
largest number that is less than or equal to all the numbers |A1A2| when
the point A1 ranges over S1 and the point A2 ranges over S2.

Naturally, if the sets have at least one common point, the distance
between them vanishes. The distance between sets may vanish even
if the sets have no common points. For example, let S1 be an open
interval (0, 1) on, say, the x axis, while S2 is the interval (1, 2) on the
same axis. Apparently, the sets have no common points (the point
x = 1 does not belongs to either of them). The distance is the largest
number D such that D ≤ |x1 − x2|, where 0 < x1 < 1 and 1 < x2 < 2.
The value of |x1 − x2| > 0 can be made smaller than any preassigned
positive number by taking x1 and x2 close enough to 1. Since the
distance D ≥ 0, the only possible value is D = 0. Intuitively, the sets
are separated by a single point that is not an “extended” object, and
hence the distance between them should vanish. In other words, there
are situations in which the minimum of |A1A2| is not attained for some
A1 ∈ S1, or some A2 ∈ S2, or both. Nevertheless, the distance between
the sets is still well defined as the largest number that is less than or
equal to all numbers |A1A2|. Such a number is called the infimum of
the set of numbers |A1A2| and denoted inf |A1A2|. Thus,

D = inf |A1A2| , A1 ∈ S1 , A2 ∈ S2 .

The notation A1 ∈ S1 stands for “a point A1 belongs to the set S1,”
or simply “A1 is an element of S1.” The definition is illustrated in
Figure 11.13 (left panel).

Theorem 11.7. (Distance Between Parallel Planes).
The distance between parallel planes P1 and P2 is given by

D =
| �AP · ( �AB × �AC)|
‖ �AB × �AC‖ ,

where A, B, and C are any three points in the plane P1 that are not
on the same line, and P is any point in the plane P2.

Proof. Since the points A, B, and C are not on the same line, the
vectors b = �AB and c = �AC are not parallel and their cross product
is a vector perpendicular to the planes (see Figure 11.13, right panel).
Consider the parallelepiped with adjacent sides a = �AP , b, and c. Two
of its faces lie in the parallel planes, one in P1 and the other in P2 (i.e.,
the parallelograms with adjacent sides b and c). The distance between
the planes is, by construction, the parallelepiped height, which is equal
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Figure 11.13. Left: Distance between two point sets
S1 and S2 defined as the largest distance that is less than
or equal to all distances |A1A2|, where A1 ranges over all
points in S1 and A2 ranges over all points in S2.
Right: Distance between two parallel planes (Theorem
11.7). Consider a parallelepiped whose opposite faces lie
in the planes P1 and P2. Then the distance D between
the planes is the height of the parallelepiped, which can
be computed as the ratio D = V/A, where V = |a·(b×c)|
is the volume of the parallelepiped and A = ‖b × c‖ is
the area of the face.

to V/A, where V and A are the parallelepiped volume and area of the
face parallel to b and c. The conclusion follows from the geometrical
properties of the triple and cross products: V = |a · (b × c)| and
A = ‖b× c‖. �

Similarly, the distance between two parallel lines L1 and L2 can be
determined. Recall that lines are parallel if they are not intersecting
and lie in the same plane. Let A and B be any two points on the line
L1 and let C be any point on the line L2. Consider the parallelogram
with adjacent sides a = �AB and b = �AC as depicted in Figure 11.14
(left panel). The distance between the lines is the height of this par-
allelogram, which is A/‖a‖, where A = ‖a × b‖, is the parallelogram
area and ‖a‖ is the length of its base.

Corollary 11.4. (Distance Between Parallel Lines).
The distance between two parallel lines L1 and L2 is

D =
‖ �AB × �AC‖
‖ �AB‖ ,

where A and B are any two distinct points on the line L1 and C is any
point on the line L2.

By construction, D is the height of the parallelogram whose adja-
cent sides are the vectors �AB and �AC. Therefore, D is its area divided
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Figure 11.14. Left: Distance between two parallel
lines. Consider a parallelogram whose two parallel sides
lie in the lines. Then the distance between the lines is
the height of the parallelogram (Corollary 11.4).
Right: Distance between skew lines. Consider a paral-
lelepiped whose two non parallel edges AB and CP in
the opposite faces lie in the skew lines L1 and L2, re-
spectively. Then the distance between the lines is the
height of the parallelepiped, which can be computed as
the ratio of the volume and the area of the face (Corol-
lary 11.5).

by the length of the base �AB. By the geometrical properties of the
cross product, ‖ �AB × �AC‖ is the area of the parallelogram.

Definition 11.15. (Skew Lines).
Two lines that are not intersecting and not parallel are called skew
lines.

To determine the distance between skew lines L1 and L2, consider
any two points A and B on L1 and any two points C and P on L2.
Define the vectors b = �AB and c = �CP that are parallel to lines L1

and L2, respectively. Since the lines are not parallel, the cross product
b × c does not vanish. The lines L1 and L2 lie in the parallel planes
perpendicular to b×c (by the geometrical properties of the cross prod-
uct, b×c is perpendicular to b and c). The distance between the lines
coincides with the distance between these parallel planes. Consider the
parallelepiped with adjacent sides a = �AC, b, and c as shown in Figure
11.14 (right panel). The lines lie in the parallel planes that contain the
faces of the parallelepiped parallel to the vectors b and c. Thus, the
distance between skew lines can be found from the distance between
the parallel planes containing them, D = V/A, where V and A are the
parallelepiped volume and the area of the base A = ‖b× c‖.
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Corollary 11.5. (Distance Between Skew Lines).
The distance between two skew lines L1 and L2 is

D =
| �AC · ( �AB × �CP )|
‖ �AB × �CP‖ ,

where A and B are any two distinct points on L1, while C and P are
any two distinct points on L2.

Note that, given any two lines, one can calculate D, provided, of
course, that the vectors �AB and �CP are not parallel; that is, the lines
are not parallel. If D = 0, then the lines must intersect. This gives a
simple algebraic criterion for two lines being skew or intersecting.

75.3. Study Problems.

Problem 11.20. Find the most general vector r that satisfies the equa-
tion a · (r× b) = 0, where a and b are nonzero, nonparallel vectors.

Solution: By the algebraic property of the triple product, a·(r×b) =
r·(b×a) = 0. Hence, r⊥ a×b. The vector r lies in the plane parallel to
both a and b because a×b is orthogonal to these vectors. Any vector
in the plane is a linear combination of any two nonparallel vectors in
it: r = ta + sb for any real t and s (see Study Problem 11.6). �

Problem 11.21. (Volume of a Tetrahedron). A tetrahedron is a solid
with four vertices and four triangular faces. Its volume V = 1

3Ah,
where h is the distance from a vertex to the opposite face and A is the
area of that face. Given coordinates of the vertices B, C, D, and P ,
express the volume of the tetrahedron through them.

Solution: Put b = �BC, c = �BD, and a = �AP . The area of the
triangle BCD is A = 1

2‖b× c‖. The distance from P to the plane P1

containing the face BCD is the distance between P1 and the parallel
plane P2 through the vertex P . Hence,

V =
1
3

A
|a · (b× c)|
‖b× c‖ =

1
6
|a · (b× c)| .

So the volume of a tetrahedron with adjacent sides a, b, and c is one-
sixth the volume of the parallelepiped with the same adjacent sides.
Note the result does not depend on the choice of a vertex. Any vertex
could have been chosen instead of B in the above solution. �
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75.4. Exercises. (1) Determine whether the points A = (1, 2, 3), B =
(1, 0, 1), C = (−1, 1, 2), and D = (−2, 1, 0) are in one plane and, if not,
find the volume of the parallelepiped with adjacent edges AB, AC,
and AD.

(2) Find
(i) all values of s at which the points A(s, 0, s), B(1, 0, 1), C(s, s, 1),
and D(0, 1, 0) are in the same plane
(ii) all values of s at which the volume of the parallelepiped with adja-
cent sides AB, AC, and AD is 9 units

(3) Verify whether the vectors a = ê1 +2ê2− ê3, b = 2ê1− ê2 + ê3,
and c = 3ê1 + ê2 − 2ê3 are coplanar.

(4) Let the numbers u, v, and w be such that uvw = 1 and u3 +
v3 +w3 = 1. Are the vectors a = uê1 +vê2 +wê3, b = vê1 +wê2 +uê3,
and c = wê1 + uê2 + vê3 coplanar? If not, what is the volume of the
parallelepiped with adjacent edges a, b, and c?

(5) Prove that

(a× b) · (c× d) = det
(

a · c b · c
a · d b · d

)
.

Hint: Use the invariance of the triple product under a cyclic permuta-
tion of vectors in it and Study Problem 11.16.

(6) Let a set S1 be the circle x2 + y2 = 1 and let a set S2 be the
line through the points (0, 2) and (2, 0). What is the distance between
the sets S1 and S2?

(7) Consider a plane through three points A = (1, 2, 3), B =
(2, 3, 1), and C = (3, 1, 2). Find the distance between the plane and a
point P obtained from A by moving the latter 3 units of length along
the vector a = 〈−1, 2, 2〉.

(8) Consider two lines. The first line passes through the points
(1, 2, 3) and (2,−1, 1), while the other passes through the points (−1, 3, 1)
and (1, 1, 3). Find the distance between the lines.

(9) Find the distance between the line through the points (1, 2, 3)
and (2, 1, 4) and the plane through the points (1, 1, 1), (3, 1, 2), and
(1, 2,−1).
Hint: If the line is not parallel to the plane, then they intersect and the
distance is 0. So check first whether the line is parallel to the plane.
How can this be done?

(10) Consider the line through the points (1, 2, 3) and (2, 1, 2). If
a second line passes through the points (1, 1, s) and (2,−1, 0), find all
values of s, if any, at which the distance between the lines is 9/2 units.
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76. Planes in Space

76.1. A Geometrical Description of a Plane in Space. Let a plane P
go through a point P0. Clearly, there are many planes that contain
a particular point in space. All such planes can be obtained from a
particular plane by a general rotation about the point P0. To eliminate
this freedom and define the plane uniquely, one can demand that every
line in the plane be perpendicular to a given vector n. This vector is
called a normal of the plane P . Thus, the geometrical description of a
plane P in space entails specifying a point P0 that belongs to P and a
normal n of P .

76.2. An Algebraic Description of a Plane in Space. Let a plane P be
defined by a point P0 that belongs to it and a normal n. In some
coordinate system, the point P0 has coordinates (x0, y0, z0) and the
vector n is specified by its components n = 〈n1, n2, n3〉. A generic
point in space P has coordinates (x, y, z). An algebraic description of
a plane amounts to specifying conditions on the variables (x, y, z) such
that the point P (x, y, z) belongs to the plane P . Let r0 = 〈x0, y0, z0〉
and r = 〈x, y, z〉 be the position vectors of a particular point P0 in
the plane and a generic point P in space, respectively. Consider the
vector �P0P = r − r0 = 〈x − x0, y − y0, z − z0〉. This vector lies in the
plane P if and only if it is orthogonal to the normal n, according to the
geometrical description of a plane (see Figure 11.15, left panel). The
algebraic condition equivalent to the geometrical one, n⊥ �P0P , reads
n · �P0P = 0. Thus, the following theorem has just been proved.

Theorem 11.8. (Equation of a Plane).
A point with coordinates (x, y, z) belongs to a plane through a point
P0(x0, y0, z0) and normal to a vector n = 〈n1, n2, n3〉 if and only if

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0 or n · r = n · r0,

where r and r0 are position vectors of a generic point and a particular
point P0 in the plane.

So a general solution of the equation n · r = d, where n is a given
vector and d is a given number, is a set of position vectors of all points
of the plane that is perpendicular to n. The number d determines the
position of the plane in space in the following way. If r0 is the position
vector of a particular point in the plane, then d = n · r0. The position
vector of another point in the very same plane is r0 + a, where the
vector a is in the plane (a particular point P0 has just been displaced
in the plane along the vector a). The number d is independent of the
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Figure 11.15. Left: Algebraic description of a plane.
If r0 is a position vector of a particular point in the plane
and r is the position vector of a generic point in the
plane, then the vector r − r0 lies in the plane and is
perpendicular to its normal, that is, n · (r− r0) = 0.
Right: Equations of parallel planes differ only by their
constant terms. The difference of the constant terms
determines the distance between the planes as stated in
(11.12).

choice of a particular point in the plane because d = n · (r0 +a) = n ·r0

and the vectors n and a are orthogonal, n⊥ a. The number d changes
if the point P0 is moved along the normal n, but the result of such a
displacement of P0 is a point that is not in the original plane. Thus,
the equations n · r = d1 and n · r = d2 describe two parallel planes
if d1 �= d2; that is, variations of d correspond to shifts of the plane
parallel to itself along its normal (see Figure 11.15, right panel).

Note also that the normal vector of a given plane is not uniquely
defined because its magnitude is irrelevant for the geometrical descrip-
tion of the plane. If n is a normal, then sn is also a normal of the same
plane for any nonzero real s. In the algebraic approach, the scaling of
n does not change the equation of the plane, (sn) · r = (sn) · r0, or,
by cancelling the scaling factor s in this equation, n · r = n · r0. Thus,
two planes are parallel if their normals are parallel. From the algebraic
point of view, two planes are parallel if their normals are proportional:

P1 ‖ P1 ←→ n1 ‖ n2 ←→ n1 = sn2

for some real s.
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Definition 11.16. (Angle Between Two Planes).
The angle between the normals of two planes is called the angle between
the planes.

If n1 and n2 are the normals, then the angle θ between them is
determined by

cos θ =
n1 · n2

‖n1‖ ‖n2‖ = n̂1 · n̂2.

Note that a plane as a geometrical set of points in space is not changed
if the direction of its normal is reversed (i.e., n→ −n). So the range of
θ can always be restricted to the interval [0, π/2]. Indeed, if θ happens
to be in the interval [π/2, π] (i.e., cos θ ≤ 0), then the angle θ−π/2 can
also be viewed as the angle between the planes because one can always
reverse the direction of one of the normals n1 → −n1 or n2 → −n2 so
that cos θ → − cos θ.

The planes are perpendicular if their normals are perpendicular.
For example, the planes x + y + z = 1 and x + 2y − 3z = 4 are
perpendicular because their normals n1 = 〈1, 1, 1〉 and n2 = 〈1, 2,−3〉
are perpendicular: n1 · n2 = 1 + 2− 3 = 0 (i.e., n1⊥n2).

Example 11.8. Find an equation of the plane through three given
points A(1, 1, 1), B(2, 3, 0), and C(−1, 0, 3).

Solution: A plane is specified by a particular point P0 in it and by
a vector n normal to it. Three points on the plane are given, so any
of them can be taken as P0, for example, P0 = A or (x0, y0, z0) =
(1, 1, 1). A vector normal to a plane can be found as the cross product
of any two nonparallel vectors in that plane (see Figure 11.16, left
panel). So put a = �AB = 〈1, 2,−1〉 and b = �AC = 〈−2,−1, 2〉. Then
one can take n = a × b = 〈3, 0,−3〉. An equation of the plane is
3(x− 1) + 0(y− 1) + (−3)(z− 1) = 0, or x− z = 0. Since the equation
does not contain the variable y, the plane is parallel to the y axis.
Note that if the y component of n vanishes (i.e., there is no y in the
equation), then n is orthogonal to ê2 because n · ê2 = 0; that is, the y
axis is perpendicular to n and hence parallel to the plane. �

76.3. The Distance Between a Point and a Plane. Consider the plane
through a point P0 and normal to a vector n. Let P1 be a point in
space. What is the distance between P1 and the plane? Let the angle
between n and the vector �P0P1 be θ (see Figure 11.16, right panel).
Then the distance in question is D = ‖ �P0P1‖ cos θ if θ ≤ π/2 (the
length of the straight line segment connecting P1 and the plane along



76. PLANES IN SPACE 51

Figure 11.16. Left: Illustration to Example 11.8. The
cross product of two non parallel vectors in a plane is a
normal of the plane.
Right: Distance between a point P1 and a plane. An
illustration to the derivation of the distance formula
(11.10). The segment P1B is parallel to the normal n
so that the triangle P0P1B is right-angled. Therefore,
D = |P1B| = |P0P1| cos θ.

the normal n). For θ > π/2, cos θ must be replaced by − cos θ because
D ≥ 0. So

(11.10) D = ‖ �P0P1‖| cos θ| = ‖n‖‖
�P0P1‖| cos θ|
‖n‖ =

|n · �P0P1|
‖n‖ .

Note that this distance formula can be obtained from the distance
between two parallel planes (Corollary 11.7). Indeed, the vector �AB×
�AC is the cross product of two vectors in the plane and hence can be

used as the normal n, whereas the vector �AP can be used as �P0P1.
Let r0 and r1 be position vectors of P0 and P1, respectively. Then

�P0P1 = r1 − r0, and

(11.11) D =
|n · (r1 − r0)|
‖n‖ =

|n · r1 − d|
‖n‖ ,

which is a bit more convenient for calculating the distance if the plane
is defined algebraically by an equation n · r = d.

76.3.1. Distance Between Parallel Planes. Equation (11.11) allows us
to obtain a simple formula for the distance between two parallel planes
defined by the equations n · r = d1 and n · r = d2 (see Figure 11.15,
right panel):

(11.12) D =
|d1 − d2|
‖n‖ .

Indeed, the distance between two parallel planes is the distance between
the first plane and any point r0 in the second plane. By (11.11), this
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distance is D = |n · r1 − d1|/‖n‖ = |d2 − d1|/‖n‖ because n · r0 = d2

for any point in the second plane.

Example 11.9. Find an equation of a plane that is parallel to the
plane 2x− y + 2z = 2 and at a distance of 3 units from it.

Solution: There are a few ways to solve this problem. From the
geometrical point of view, a plane is defined by a particular point in it
and its normal. Since the planes are parallel, they must have the same
normal n = 〈2,−1, 2〉. Note that the coefficients at the variables in the
plane equation define the components of the normal vector. Therefore,
the problem is reduced to finding a particular point. Let P0 be a
particular point on the given plane. Then a point on a parallel plane
can be obtained from it by shifting P0 by a distance of 3 units along
the normal n. If r0 is the position vector of P0, then a point on a
parallel plane has a position vector r0 + sn, where the displacement
vector sn must have a length of 3, or ‖sn‖ = |s|‖n‖ = 3|s| = 3 and
therefore s = ±1. Naturally, there should be two planes parallel to
the given one and at the same distance from it. To find a particular
point on the given plane, one can set two coordinates to 0 and find
the value of the third coordinate from the equation of the plane. Take,
for instance, P0(1, 0, 0). Particular points on the parallel planes are
r0 + n = 〈1, 0, 0〉 + 〈2,−1, 2〉 = 〈3,−1, 2〉 and, similarly, r0 − n =
〈−1, 1,−2〉. Using these points in the standard equation of a plane,
the equations of two parallel planes are obtained:

2x− y + 2z = 11 and 2x− y + 2z = −7.

An alternative algebraic solution is based on the distance formula
(11.12) for parallel planes. An equation of a plane parallel to the given
one should have the form 2x−y+2z = d. The number d is determined
by the condition that |d− 2|/‖n‖ = 3 or |d− 2| = 9, or d = ±9 + 2. �

76.4. Study Problems.

Problem 11.22. Find an equation of the plane that is normal to
a straight line segment AB and bisects it if A = (1, 1, 1) and B =
(−1, 3, 5).

Solution: One has to find a particular point in the plane and its
normal. Since AB is perpendicular to the plane, n = �AB = 〈−2, 2, 4〉.
The midpoint of the segment lies in the plane. Hence, P0(0, 2, 3) (the
coordinates of the midpoints are the half sums of the corresponding
coordinates of the endpoints). The equation reads −2x + 2(y − 2) +
4(z − 3) = 0 or −x + y + 2z = 8. �
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Problem 11.23. Find an equation of the plane through the point
P0(1, 2, 3) that is perpendicular to the planes x+ y + z = 1 and x− y +
2z = 1.

Solution: One has to find a particular point in the plane and any
vector perpendicular to it. The first part of the problem is easy to solve:
P0 is given. Let n be a normal of the plane in question. Then, from the
geometrical description of a plane, it follows that n⊥n1 = 〈1, 1, 1〉 and
n⊥n2 = 〈1,−1, 2〉, where n1 and n2 are normals of the given planes. So
n is a vector perpendicular to two given vectors. By the geometrical
property of the cross product, such a vector can be constructed as
n = n1 × n2 = 〈3,−1,−2〉. Hence, the equation reads 3(x− 1)− (y −
2)− 2(z − 3) = 0 or 3x− y − 2z = −5. �

Problem 11.24. Determine whether two planes x + 2y − 2z = 1 and
2x + 4y + 4z = 10 are parallel and, if not, find the angle between them.

Solution: The normals are n1 = 〈1, 2,−2〉 and n2 = 〈2, 4, 4〉 =
2〈1, 2, 2〉 (i.e., they are not proportional). Hence, the planes are not
parallel. Since ‖n1‖ = 3, ‖n1‖ = 6, and n1 · n2 = 2, the angle is
determined by cos θ = 2/18 = 1/9 or θ = cos−1(1/9). �

76.5. Exercises. (1) Find an equation of the plane through the origin
and parallel to the plane 2x−2y+z = 4. What is the distance between
the two planes?

(2) Do the planes 2x + y − z = 1 and 4x + 2y − 2z = 10 intersect?
(3) Consider a parallelepiped with one vertex at the origin at which

the adjacent sides are the vectors a = 〈1, 2, 3〉, b = 〈2, 1, 1〉, and c =
〈−1, 0, 1〉. Find equations of the planes that contain the faces of the
parallelepiped.

(4) Determine whether the planes 2x+ y− z = 3 and x+ y + z = 1
are intersecting. If they are, find the angle between them.

(5) Find an equation of the plane with x intercept a, y intercept
b, and z intercept c. What is the distance between the origin and the
plane?

(6) Find an equation for the set of points that are equidistant from
the points (1, 2, 3) and (−1, 2, 1). Give a geometrical description of the
set.

(7) Find an equation of the plane that is perpendicular to the
plane x + y + z = 1 and contains the line through the points (1, 2, 3)
and (−1, 1, 0).

(8) To which of the planes x + y + z = 1 and x + 2y − z = 2 is the
point (1, 2, 3) the closest?
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(9) Give a geometrical description of the following families of planes:
(i) x + y + z = c
(ii) x + y + cz = 1
(iii) x sin c + y cos c + z = 1
where c is a parameter.

(10) Consider three planes with normals n1, n2, and n3 such that
each pair of the planes is intersecting. Under what condition on the
normals are the three lines of intersection parallel or even coincide?

77. Lines in Space

77.1. A Geometrical Description of a Line in Space. Consider two points
in space. They can be connected by a path. Among all the continuous
paths that connect the two points, there is a distinct one, namely, the
one that has the smallest length. This path is called a straight line
segment.

Definition 11.17. (Geometrical Description of a Line).
A line L is a set of points in space such that the shortest path connecting
any pair of points of L belongs to L.

Given a point P0, there are infinitely many lines through P0, all of
which are related by rigid rotations about the point P0. Therefore, to
fix a line uniquely, one should specify a direction to which the line is
parallel, in addition to its position P0. The direction can be determined
by a vector v. It follows from the geometrical description of a line that
v is a vector connecting any two points of the line. The length or norm
of v is irrelevant for specifying the direction; that is, any parallel vector
(or the oriented segment between another pair of points of the line) is
just as good as v. Thus, a line L is uniquely specified by a particular
point P0 of L and any vector v to which the line is parallel, v ‖ L.

Remark. The very notion of a line, defined as the shortest path be-
tween two points in space, is deeply rooted in the very structure of
space itself. How can a line be realized in the space in which we live?
One can use a piece of rope, as in the ancient world, or the “line
of sight” (i.e., the path traveled by light from one point to another).
Einstein’s theory of gravity states that “straight lines” defined as tra-
jectories traversed by light are not exactly the same as “straight lines”
in a Euclidean space. So a Euclidean space may only be viewed as a
mathematical approximation (or model) of our space. A good analogy
would be to compare the shortest paths in a plane and on the surface of
a sphere; they are not the same as the latter are “curved.” The concept
of curvature of a path is discussed in the next chapter. The shortest
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path between two points in a space is called a geodesic (by analogy
with the shortest path on the surface of the Earth). The geodesics
of a Euclidean space (straight lines) do not have curvature, whereas
the geodesics of our space (i.e., the paths traversed by light) do have
curvature that is determined by the distribution of gravitating masses
(planets, stars, etc.). A deviation of the geodesics from straight lines
near the surface of the Earth is very hard to notice. However, a devia-
tion of the trajectory of light from a straight line has been observed for
the light coming from a distant star to the Earth and passing near the
Sun. Einstein’s theory of general relativity asserts that a better model
of our space is a Riemann space. A sufficiently small neighborhood in
a Riemann space looks like a portion of a Euclidean space.

77.2. An Algebraic Description of a Line. In some coordinate system, a
particular point of a line L has coordinates P0(x0, y0, z0), and a vec-
tor parallel to L is defined by its components, v = 〈v1, v2, v3〉. Let
r = 〈x, y, z〉 be a position vector of a generic point of L and let
r0 = 〈x0, y0, z0〉 be the position vector of P0. The vector r − r0 must
be parallel to L because it is the oriented straight line segment con-
necting two points of L (see Figure 11.17, left panel). Hence, a point
(x, y, z) belongs to L if and only if r− r0 ‖ v. The equivalent algebraic
condition reads r− r0 = tv for some real t. To obtain all points of L,
one should let t range over all real numbers.

Figure 11.17. Left: Algebraic description of a line L
through r0 and parallel to a vector v. If r0 and r are
position vectors of particular and generic points of the
line, then the vector r−r0 is parallel to the line and hence
must be proportional to a vector v, that is, r − r0 = tv
for some real number t.
Right: Distance between a point P1 and a line L through
a point P0 and parallel to a vector v. It is the height of
the parallelogram whose adjacent sides are the vectors

�P0P1 and v.
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Theorem 11.9. (Equations of a Line).
The coordinates of the points of the line L through a point P0 and
parallel to a vector v satisfy the vector equation

(11.13) r = r0 + tv , −∞ < t <∞.

or the parametric equations

(11.14) x = x0 + tv1 , y = y0 + tv2 , x = z0 + tv3 , −∞ < t <∞.

The parametric equations of the line can be solved for t. As a result,
one infers equations for the coordinates x, y, and z:

t =
x− x0

v1
=

y − y0

v2
=

z − z0

v3
,

provided none of the components of v vanish. These equations are
called symmetric equations of a line. Note that these equations make
sense only if all the components of v do not vanish. If, say, v1 = 0,
then the first equation in (11.14) does not contain the parameter t at
all. So the symmetric equations are written in the form

x = x0 ,
y − y0

v2
=

z − z0

v3
.

Example 11.10. Find the vector, parametric, and symmetric equa-
tions of the line through the points A(1, 1, 1) and B(1, 2, 3).

Solution: Take v = �AB = 〈0, 1, 2〉 and P0 = A. Then

r = 〈1, 1, 1〉+ t〈0, 1, 2〉,
x = 1 , y = 1 + t , z = 1 + 2t ,

x = 1 , y − 1 =
z − 1

2
are the vector, parametric, and symmetric equations of the line,
respectively. �

77.2.1. Distance Between a Point and a Line. Consider a line L through
P0 parallel to v. What is the distance between a given point P1 and the
line L? Consider a parallelogram with vertex P0 and whose adjacent
sides are the vectors v and �P0P1 as depicted in Figure 11.17 (right
panel). The distance in question is the height of this parallelogram,
which is therefore its area divided by the length of the base ‖v‖. If
r0 and r1 are position vectors of P0 and P1, then �P0P1 = r1 − r0 and
hence

D =
‖v × �P0P1‖
‖v‖ =

‖v × (r1 − r0)‖
‖v‖ .
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77.3. Relative Positions of Lines in Space. Two lines in space can be
intersecting, parallel, or skew. Given an algebraic description of the
lines, how can one find out which of the above three cases occurs? If
the lines are intersecting, how can one find the coordinates of the point
of intersection? Suppose the line L1 contains a point P1 and is parallel
to v1, while L2 contains a point P2 and is parallel to v2.

Corollary 11.6. (Criterion for Two Lines to Parallel).
Two lines are parallel if and only if their direction vectors v1 and v2

are parallel:

L1 ‖ L2 ⇐⇒ v1 ‖ v2 ⇐⇒ v1 = sv2 for some real s.

Suppose that the lines are not parallel. Then they are either skew
or intersecting. In the latter case, the distance between the lines is 0 as
they have a common point (see Section 75), whereas in the former case
the distance cannot be 0. Since the lines are not parallel, v1 × v2 �= 0.
Making use of the distance formula between skew lines (see Corollary
11.5), one proves the following.

Corollary 11.7. (Criteria for Two Non-parallel Lines to Be Skew or
Intersecting).
Let P1 be a point of L1 and let P2 be a point of L2. Let v1‖L1 and
v2‖L2 and let the lines L1 and L2 be nonparallel. Then

�P1P2 · (v1 × v2) �= 0 ⇐⇒ L1 ,L2 are skew,

�P1P2 · (v1 × v2) = 0 ⇐⇒ L1 ,L2 are intersecting.

Let L1 and L2 be intersecting. How can one find the point of
intersection? To solve this problem, consider the vector equations for
the lines rt = r1+tv1 and rs = r2+sv2. When changing the parameter
t, the terminal point of rt slides along the line L1, while the terminal
point of rs slides along the line L2 when changing the parameter s as
depicted in Figure 11.18 (left panel). Note that the parameters of both
lines are not related in any way according to the geometrical description
of the lines. If two lines are intersecting, then there should exist a pair
of numbers (t, s) = (t0, s0) at which the terminal points of vectors rt

and rs coincide, rt = rs. Let vi = 〈ai, bi, ci〉, i = 1, 2. Writing this
vector equation in componentform, the following system of equations
is obtained:

x1 + ta1 = x2 + sa2,

y1 + tb1 = x2 + sb2,

z1 + tc1 = x2 + sc2.
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Figure 11.18. Left: Intersection point of two lines L1

and L2. The terminal point of the vector rt traverses
L1 as t ranges over all real numbers, while the terminal
point of the vector rs traverses L2 as s ranges over all real
numbers independently of t. If the lines are intersecting,
then there should exist a pair of numbers (t, s) = (t0, s0)
such that the vectors rt and rs coincide, which means
that their components must be the same. This defines
three equations on two variables t and s.
Right: Intersection point of a line L and a plane P . The
terminal point of the vector rt traverses L as t ranges
over all real numbers. If the line intersects the plane
defined by the equation r ·n = d, then there should exist
a particular value of t at which the vector rt satisfies the
equation of the plane: rt · n = d.

The system has three equations for only two variables. It is an overde-
termined system, which may or may not have a solution. From the
above geometrical analysis, it follows that, if the lines are parallel (i.e.,
v1 × v2 = 0), then the system has no solution (the lines are distinct),
or it might have infinitely many solutions (the lines coincide). For
example, put P1 = P2 and v1 = 2v2. Then the system is satisfied by
any pair (t, s = 2t), where t is any real. The system has no solution if
the criterion for two lines to be skew is satisfied. Finally, the system
must have the only solution if the criterion for two nonparallel lines to
be intersecting is satisfied. Let (t, s) = (t0, s0) be a solution. Then the
position vector of the point of intersection is r1 + t0v1 or r2 + s0v2.

77.4. Relative Positions of Lines and Planes. Consider a line L and a
plane P . The question of interest is to determine whether they are
intersecting or parallel. If the line does not intersect the plane, then
they must be parallel. In the latter case, the line must be perpendicular
to the normal of the plane.



77. LINES IN SPACE 59

Corollary 11.8. (Criterion for a Line and a Plane to Be Parallel).
Let v be a vector parallel to a line L and let n be a normal of a plane
P. Then

L ‖ P ⇐⇒ v ‖ n ⇐⇒ v · n = 0.

If the line intersects the plane, then there should exist a particular
value of the parameter t for which the position vector rt = r0 + tv
of a point of L also satisfies the plane equation r · n = d (see Figure
11.18, right panel). The value of the parameter t that corresponds to
the point of intersection is determined by the equation

rt · n = d ⇒ r0 · n + tv · n = d ⇒ t =
d− r0 · n

v · n .

The position vector of the point of intersection is found by substituting
this value of t into the vector equation of the line rt = r0 + tv.

Example 11.11. Find an equation of the plane P that is per-
pendicular to the plane P1, x + y − z = 1, and contains the line
x− 1 = y/2 = z + 1.

Solution: The plane P must be parallel to the line (P contains it)
and the normal n1 = 〈1, 1,−1〉 of P1 (as P⊥P1). So the normal n of P
is perpendicular to both n1 and the vector v = 〈1, 2, 1〉 that is parallel
to the line. Therefore, one can take n = n1 × v = 〈3,−2, 1〉. To find
a particular point of P , note that the point of intersection of P1 and
the line belongs to the plane P . The line contains the point (1, 0,−1).
Put rt = r0 + tv = 〈1 + t, 2t,−1 + t〉. The equation rt · n1 = 1 or
2 + 2t = 1 has the solution t = −1/2. Hence, the position vector of a
particular point of P is rt=−1/2 = 〈1/2,−1,−3/2〉. An equation of P
reads 3(x + 1/2)− 2(y + 1) + (z + 3/2) = 0 or 3x− 2y + z = −1. �

77.5. Study Problems.

Problem 11.25. Let L1 be the line through P1(1, 1, 1) and parallel to
v1 = 〈1, 2,−1〉 and let L2 be the line through P2(4, 0,−2) and parallel
to v2 = 〈2, 1, 0〉. Determine whether the lines are parallel, intersecting,
or skew and find the line L that is perpendicular to both L1 and L2 and
intersects them.

Solution: The vectors v1 and v2 are not proportional, and hence
the lines are not parallel. One has �P1P2 = 〈3,−1,−3〉 and v1 × v2 =
〈1,−2,−3〉. Therefore, �P1P2 · (v1 × v2) = 14 �= 0, and the lines are
skew by Corollary 11.7. To find the line L, note that it has to contain
one point of each line. Let rt = r1 + tv1 be a position vector of a point
of L1 and let rs = r2 + sv2 be a position vector of a point of L2 as



60 11. VECTORS AND THE SPACE GEOMETRY

Figure 11.19. Left: Illustration to Study Problem
11.25. The vectors rs and rt trace out two given skewed
lines L1 and L2, respectively. There are particular values
of t and s at which the distance ‖rt− rs‖ becomes mini-
mal. Therefore, the line L through such points rt and rs

is perpendicular to both L1 and L2.
Right: Intersection of a line L and a sphere S. An il-
lustration to Study Problem 11.26. The terminal point
of the vector rt traverses the line as t ranges over all real
numbers. If the line intersects the sphere, then there
should exist a particular value of t at which the compo-
nents of the vector rt satisfy the equation of the sphere.
This equation is quadratic in t, and hence it can have
two distinct real roots, one multiple real root, or no real
roots. These three cases correspond to two, one, or no
points of intersection. One intersection point means that
the line is tangent to the sphere.

shown in Figure 11.19 (left panel). As the line L should intersect both
L1 and L2, there should exist a pair of values (t, s) of the parameters
at which the vector rs − rt is parallel to L; that is, the vector rs − rt

becomes perpendicular to both vectors v1 and v2. The corresponding
algebraic conditions are

rs − rt ⊥ v1 ⇐⇒ (rs − rt) · v1 = 4 + 4s− 6t = 0,
rs − rt ⊥ v1 ⇐⇒ (rs − rt) · v2 = 5 + 5s− 4t = 0.

This system has the solution t = 0 and s = −1. Thus, the points with
the position vectors rt=0 = r1 and rs=−1 = r2−v2 = 〈2,−1,−2〉 belong
to L. So the vector v = rs=−1 − rt=0 = 〈1,−3,−1〉 is parallel to L.
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Taking a particular point of L to be P1, the parametric equations read
x = 1 + t, y = 1− 3t, z = 1− t. �

Problem 11.26. Consider a line through the origin that is parallel to
the vector v = 〈1, 1, 1〉. Find the portion of this line that lies inside the
sphere x2 + y2 + z2 − x− 2y − 3z = 9.

Solution: The parametric equations of the line are x = t, y = t,
z = t. If the line intersects the sphere, then there should exist particular
values of t at which the coordinates of a point of the line also satisfy the
sphere equation (see Figure 11.19, right panel). In general, parametric
equations of a line are linear in t, while a sphere equation is quadratic in
the coordinates. Therefore, the equation that determines the values of
t corresponding to the points of intersection is quadratic. A quadratic
equation has two, one, or no real solutions. Accordingly, these cases
correspond to two, one, and no points of intersection, respectively. In
our case, 3t2 − 6t = 9 or t2 − 2t = 3 and hence t = −1 and t = 3. The
points of intersection are (−1,−1,−1) and (3, 3, 3). The line segment
connecting them can be described by the parametric equations x = t,
y = t, z = t, where −1 ≤ t ≤ 3. �

77.6. Exercises. (1) Find parametric equations of the line through
the point (1, 2, 3) and perpendicular to the plane x + y + 2z = 1. Find
the point of intersection of the line and the plane.

(2) Find parametric and symmetric equations of the line of inter-
section of the planes x + y + z = 1 and 2x− 2y + z = 1.

(3) Is the line through the points (1, 2, 3) and (2,−1, 1) perpendic-
ular to the line through the points (0, 1,−1) and (1, 0, 2)? Are the lines
intersecting? If so, find the point of intersection.

(4) Determine whether the lines x = 1 + 2t, y = 3t, z = 2− t and
x + 1 = y − 4 = (z − 1)/3 are parallel, skew, or intersecting. If they
intersect, find the point of intersection.

(5) Find the vector equation of the straight line segment from the
point (1, 2, 3) to the point (−1, 1, 2).

(6) Let r1 and r2 be position vectors of two points in space. Find
the vector equation of the straight line segment from r1 to r2.

(7) Consider the plane x + y + z = 0 and a point P = (1, 2,−3) in
it. Find parametric equations of the lines through the origin that are
at a distance of 1 unit from P .

(8) Find parametric, symmetric, and vector equations of the line
through (0, 1, 2) that is perpendicular to v = 〈1, 2, 1〉 and parallel to
the plane x + 2y + z = 3.
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(9) Find parametric equations of the line that is parallel to v =
〈2,−1, 2〉 and goes through the center of the sphere x2 + y2 + z2 =
2x+6z−6. Restrict the range of the parameter to describe the portion
of the line that is inside the sphere.

(10) Let the line L1 pass through the point A(1, 1, 0) parallel to
the vector v = 〈1,−1, 2〉 and let the line L2 pass through the point
B(2, 0, 2) parallel to the vector w = 〈−1, 1, 2〉. Show that the lines are
intersecting. Find the point C of intersection and parametric equations
of the line L3 through C that is perpendicular to L1 and L2.

78. Quadric Surfaces

Definition 11.18. (Quadric Surface).
The set of points whose coordinates in a rectangular coordinate system
satisfy the equation

Ax2 + By2 + Cz2 + pxy + qxz + vyz + αx + βy + γz + D = 0,

where A, B, C, p, q, v, α, β, γ, and D are real numbers, is called a
quadric surface.

A sphere provides a simple example of a quadric surface: x2 + y2 +
z2 − R2 = 0, that is, A = B = C = 1, p = q = v = 0, α = β = γ,
and D = −R2, where R is the radius of the sphere. The equation that
defines quadric surfaces is the most general equation quadratic in all the
coordinates. This is why surfaces defined by it are called quadric. The
task here is to classify all the shapes of quadric surfaces. The shape
does not change under its rigid rotations and translations. On the
other hand, the equation that describes the shape would change under
rotations and translations of the coordinate system (see Section 71
and Example 11.2). The freedom in choosing the coordinate system
can be used to simplify the equation for quadric surface and obtain a
classification of different shapes described by it.

78.1. Quadric Cylinders. Consider first a simpler problem in which the
equation of a quadric surface does not contain one of the coordinates,
say, z (i.e., C = q = v = γ = 0). Then the set S,

S =
{

(x, y, z)
∣∣∣Ax2 + By2 + pxy + αx + βy + D = 0

}
,

is the same curve in every horizontal plane z = const. For example,
if A = B = 1, p = 0, and D = −R2, the cross section of the surface
S by any horizontal plane is a circle x2 + y2 = R2. So the surface S
is a cylinder of radius R that is swept by the circle when the latter
is shifted up and down parallel to the z axis. Similarly, a general
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cylindrical shape is obtained by shifting a curve in the xy plane up and
down parallel to the z axis. The task here is to classify all possible
shapes of quadric cylinders.

In Example 11.2, it was established that, under a counterclockwise
rotation of the coordinate system through an angle φ, x → x cos φ +
y sin φ and y → y cos φ − x sin φ. By substituting the transformed co-
ordinates into the equation for S, one obtains the equation for the very
same shape in the new rotated coordinate system. The freedom of
choosing the rotation angle φ can be used to simplify the equation. In
particular, it is always possible to adjust φ so that in the new coordi-
nate system the equation for S does not contain the “mixed” term xy.
Indeed, after the substitution of the transformed coordinates into the
equation, the coefficient at xy defines a new p:

p→ 2(A−B) cos φ sin φ + a(cos2 φ− sin2 φ) = (A−B) sin(2φ)
+ a cos(2φ) = p′.

Therefore, the term xy disappears from the equation if the angle φ
satisfies the condition p′ = 0 or

(11.15) tan(2φ) =
q

B − A
, and φ =

π

4
if A = B.

The coefficients A and B (the factors at x2 and y2) and α and β (the
factors at x and y) are transformed as

A → 1
2 [A + B + (A−B) cos(2φ)− a sin(2φ)] = A′,

B → 1
2 [A + B − (A−B) cos(2φ) + a sin(2φ)] = B′,

α → α cos φ− β sin φ = α′,

β → β cos φ + α sin φ = β′,

where φ satisfies (11.15).
Depending on the values of A, B, and p, the following three cases

can occur. First, A′ = B′ = 0, which is only possible if A = B = p = 0.
In this case, S is defined by the equation α′x + β′y + D = 0, which is
a plane parallel to the z axis.

Second, only one of A′ and B′ vanishes, say, B′ = 0 (note that for
establishing the shape it is irrelevant how the horizontal and vertical
coordinates in the xy plane are called). In this case, the equation for
S assumes the form A′x2 + α′x + β′y + D = 0 or, by completing the
squares,

A′

β′

(
x− x0

)2
+ (y − y0) = 0 , x0 =

α′

2A′ , y0 =
1
β′

(
Ax2

0 −D
)

;
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here it is assumed that β′ �= 0 (otherwise, the equation does not define
a curve in the xy plane and hence S is not a surface). This equation
defines a parabola y = A′′x2, A′′ = A′/β′, after the translation of the
coordinate system: x→ x + x0 and y → y + y0 (see Section 71).

Third, both A′ and B′ do not vanish. Then, after the completion
of squares, the equation can be brought to the form

A′(x− x0)2 + B′(y − y0)2 = D′,

where

x0 = − α′

2A′ , y0 = − β′

2B′ , D′ = −D +
1
2
(A′x2

0 + B′y2
0).

Finally, after the translation of the origin to the point (x0, y0), the
equation becomes

A′x2 + B′y2 = D′.
If D′ = 0, then this equation defines two straight lines y = ±mx, where
m = (−A′/B′)−1/2, provided A′ and B′ have opposite signs (otherwise,
the equation has no solution). If D′ �= 0, then the equation can be
written as (A′/D′)x2 + (B′/D′)y2 = 1. One can always assume that
A′/D′ > 0 (as the shape of the curve is independent of how the coor-
dinate axes are called). Note also that the rotation of the coordinate
system through the angle π/2 swaps the axes, (x, y)→ (y,−x), which
can be used to reverse the sign of A′/D′. Now put A′/D′ = 1/a2 and
B′/D′ = ±1/b2 (depending on whether B′/D′ is positive or negative)
so that the equation becomes

x2

a2 ±
y2

b2 = 1.

When the plus is taken, this equation defines an ellipse. When the
minus is taken, this equation defines a hyperbola.

The above results are summarized in the following theorem (see
Figure 11.20).

Theorem 11.10. (Classification of Quadric Cylinders).
A general equation for quadric cylinders

S =
{

(x, y, z)
∣∣∣Ax2 + By2 + pxy + αx + βy + D = 0

}
can be brought to one of the following standard forms by a suitable
rotation and translation of the coordinate system:

y − ax2 = 0 (parabolic cylinder),
x2

a2 +
y2

b2 = 1 (elliptic cylinder),



78. QUADRIC SURFACES 65

Figure 11.20. Left: Parabolic cylinder. The cross sec-
tion by any horizontal plane z = const is a parabola
y = ax2.
Middle: An elliptic cylinder. The cross section by any
horizontal plane z = const is an ellipse x2/a2+y2/b2 = 1.
Right: A hyperbolic cylinder. The cross section by
any horizontal plane z = const is a hyperbola x2/a2−
y2/b2 = 1.

x2

a2 −
y2

b2 = 1 (hyperbolic cylinder),

provided A, B, and p do not vanish simultaneously. If A = B = p = 0,
then S is a plane.

78.2. Classification of General Quadric Surfaces. The classification of
general quadric surfaces can be carried out in the same way (i.e., by
simplifying the general quadratic equation by means of rotations and
translations of the coordinate system). First, one can prove that there
exists a rotation of the coordinate system such that in the new coor-
dinate system the quadratic equation does not have “mixed” terms:
p → p′ = 0, q → q′ = 0, and v → v′ = 0. Depending on how many of
the coefficients A′, B′, and C ′ do not vanish, some of the linear terms or
all of them can be eliminated by translations of the coordinate system.
The corresponding technicalities require a substantial use of linear al-
gebra methods, which goes beyond the scope of this course. So the
final result is given without a proof.

Theorem 11.11. (Classification of Quadric Surfaces).
By rotating and translating a rectangular coordinate system, a gen-
eral equation for quadric surfaces can be brought either to one of the
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Figure 11.21. Left: An ellipsoid. A cross section by
any coordinate plane is an ellipse.
Right: An elliptic double cone. A cross section by a hor-
izontal plane z = const is an ellipse. A cross section by
any vertical plane through the z axis is two lines through
the origin.

standard equations for quadric cylinders or to one of the following six
forms:

x2

a2 +
y2

b2 +
z2

c2 = 1 (ellipsoid),

z2

c2 =
x2

a2 +
y2

b2 (elliptic double cone),

x2

a2 +
y2

b2 −
z2

c2 = 1 (hyperboloid of one sheet),

−x2

a2 −
y2

b2 +
z2

c2 = 1 (hyperboloid of two sheets),

z

c
=

x2

a2 +
y2

b2 (elliptic paraboloid),

z

c
=

x2

a2 −
y2

b2 (hyperbolic paraboloid).

It should be noted again that the shape of the surface does not
depend on how the coordinate axes are called. So the shape does
not change under any permutation of the coordinates (x, y, z) in the
standard equations; only the orientation of the shape relative to the
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Figure 11.22. Left: A hyperboloid of one sheet. A
cross section by a horizontal plane z =const is an ellipse.
A cross section by a vertical plane x =const or y =const
is a hyperbola.
Right: A hyperboloid of two sheets. A nonempty cross
section by a horizontal plane is an ellipse. A cross section
by a vertical plane is a hyperbola.

Figure 11.23. Left: An elliptic paraboloid. A
nonempty cross section by a horizontal plane is an el-
lipse. A cross section by a vertical plane is a parabola.
Right: A hyperbolic paraboloid (a “saddle”). A cross
section by a horizontal plane is a hyperbola. A cross
section by a vertical plane is a parabola.



68 11. VECTORS AND THE SPACE GEOMETRY

coordinate system changes. For example, the equations x2 + y2 = R2

and y2 + z2 = R2 describe a cylinder of radius R, but in the former
case the cylinder axis coincides with the z axis, while the cylinder axis
is the x axis in the latter case.

78.3. Visualization of Quadric Surfaces. The shape of a quadric surface
can be understood by studying intersections of the surface with the
coordinate planes x = x0, y = y0, and z = z0. These intersections are
also called traces.

An Ellipsoid. If a2 = b2 = c2 = R2, then the ellipsoid becomes a
sphere of radius R. So, intuitively, an ellipsoid is a sphere “stretched”
along the coordinate axes. Traces of an ellipsoid in the planes x =
x0, |x0| < a, are ellipses y2/b2 + z2/c2 = k, where k = 1 − x2

0/a
2.

Apparently, the traces in the planes x = ±a consist of a single point
(±a, 0, 0), and there is no trace in any plane x = x0 if |x0| > a. Traces
in the planes y = y0 and z = z0 are also ellipses and exist only if
|y0| ≤ b and |z0| ≤ c. Thus, the characteristic geometrical property of
an ellipsoid is that its traces are ellipses.

A Paraboloid. Suppose c > 0. Then the paraboloid lies above
the xy plane because it has no trace in all horizontal planes below the
xy plane, z = z0 < 0. In the xy plane, its trace contains just the
origin. Similarly, a paraboloid with c > 0 lies below the xy plane.
Horizontal traces (in the planes z = z0) of the paraboloid are ellipses,
x2/a2 + y2/b2 = k, where k = z0/c. The ellipses become wider as z0

gets larger (c > 0). For the sake of simplicity, put c = 1. Vertical
traces (traces in the planes x = x0 or y = y0) are parabolas z − k =
y2/b2, where k = x2

0/a
2, or z − k = x2/a2, where k = y2

0/b
2. So the

characteristic geometrical property of a paraboloid is that its horizontal
traces are ellipses, while its vertical ones are parabolas. If a = b, the
ellipsoid is also called a circular ellipsoid because its horizontal traces
are circles.

A Double Cone. Horizontal traces are ellipses x2/a2 + y2/b2 = k,
where k = z2

0/c
2. They become wider as |z0| grows, that is, as the

horizontal plane moves away from the xy plane (z = 0). In the xy
plane, the cone has a trace that consists of a single point (the origin).
The vertical traces in the planes x = 0 or y = 0 are a pair of lines
z = ±(c/b)y or z = ±(c/a)x. Vertical traces in the planes x = x0 �= 0
or y = y0 �= 0 are hyperbolas y2/b2 − z2/c2 = k, where k = −x2

0/a
2, or

x2/a2−z2/c2 = k, where k = −y2
0/b

2. So the characteristic geometrical
property of a cone is that horizontal traces are ellipses; its vertical
traces are either a pair of lines, if the plane contains the cone axis,
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or hyperbolas. If a = b, the cone is called a circular cone. In this
case, vertical traces in the planes containing the cone axis are a pair
of lines with the same slope c/a = c/b. The angle φ between the axis
of the cone and any of these lines defines the cone uniquely because
c/a = cot φ, and the equation of the cone can be written as

z2 = cot2(φ)(x2 + y2) , 0 < φ < π/2 .

The equation for an upper or lower cone of the double circular cone is

z = ± cot(φ)
√

x2 + y2 .

A Hyperbolic Paraboloid. Horizontal traces are hyperbolas
x2/a2 − y2/b2 = k, where k = z0/c. For simplicity, put a = b and
c = −1. Then, if z0 < 0 (horizontal planes below the xy plane), then
the hyperbolas are symmetric about the x axis, and their branches lie
either in x > 0 or in x < 0 (i.e., they do not intersect the y axis). If
z0 > 0, then the hyperbolas are symmetric about the y axis, and their
branches lie either in y > 0 or in y < 0 (i.e., they do not intersect
the x axis). Vertical traces in the planes x = x0 are upward parabo-
las, whereas in the planes y = y0 they are downward parabolas. The
hyperbolic paraboloid has the characteristic shape of a “saddle.”

A Hyperboloid of One Sheet. The characteristic geometrical
property of a hyperboloid of one sheet is that its horizontal traces are
ellipses and its vertical traces are hyperbolas. Every horizontal plane
has a trace of the hyperboloid, and the smallest one is in the xy plane
(an ellipse with semi axes a and b). The semiaxes of the ellipses increase
as the plane moves away from the xy plane.

A Hyperboloid of Two Sheets. A distinctive feature of this
surface is that it consists of two sheets. Indeed, the hyperboloid has
no trace in the horizontal planes z = z0 if −c < z0 < c. So one sheet
lies above the plane z = c and the other lies below the plane z = −c.
Horizontal traces in the planes z = z0 > c or z = z0 < −c are ellipses.
The upper sheet touches the plane z = c at the point (0, 0, c), while the
lower sheet touches the plane z = −c at the point (0, 0,−c). Vertical
traces are hyperbolas. So the characteristic geometrical properties of
hyperboloids of one sheet and two sheets are similar, apart from the fact
that the latter one consists of two sheets. Also, in the asymptotic region
|z| � c, the hyperboloids approach the surface of the double cone.
Indeed, in this case, z2/c2 � 1, and hence the equations x2/a2+y2/b2 =
±1+ z2/c2 can be well approximated by the double-cone equation (±1
can be neglected on the right side of the equations). In the region
z > 0, the hyperboloid of one sheet approaches the double cone from
below, while the hyperboloid of two sheets approaches it from above.
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For z < 0, the converse holds. In other words, the hyperboloid of two
sheets lies “inside” the cone, while the hyperboloid of one sheet lies
“outside” it.

78.4. Study Problems.

Problem 11.27. Classify the quadric surface 3x2 + 3y3 − 2xy = 4.

Solution: The equation does not contain one variable (the z coor-
dinate). The surface is a cylinder. To determine the type of cylin-
der, consider a rotation of the coordinate system in the xy plane and
choose the rotation angle so that the coefficient at the “mixed” term
vanishes. According to (11.15), A = B = 3 and hence φ = π/4. Then
A′ = (A + B − a)/2 = 4 and B′ = (A + B + a)/2 = 2. So, in the new
coordinates, the equation becomes x2 + y2/2 = 1, which is an ellipse
with semiaxes a = 1 and b =

√
2. The surface is an elliptic cylinder. �

Problem 11.28. Classify the quadric surface x2 − 2x + y + z = 0.

Solution: By completing the squares, the equation can be trans-
formed into the form (x−1)2 +(y−1)+z = 0. After shifting the origin
to the point (1, 1, 0), the equation becomes x2 +y−z = 0. Consider ro-
tations of the coordinate system about the x axis: y → cos φy +sin φz,
z → cos φz − sin φy. Under this rotation, y − z → (cos φ + sin φ)y +
(sin φ − cos φ)z. Therefore, for φ = π/4, the equation assumes one of
the standard forms x2 +

√
2 y = 0, which corresponds to a parabolic

cylinder. �
Problem 11.29. Classify the quadric surface x2+z2−2x+2z−y = 0.

Solution: By completing the squares, the equation can be trans-
formed into the form (x − 1)2 + (z + 1)2 − (y + 2) = 0. The latter
can be brought into one of the standard forms by shifting the origin to
the point (1,−2,−1): x2 + z2 = y, which is a circular paraboloid. Its
symmetry axis is parallel to the y axis (the line of intersection of the
planes x = 1 and z = −1) and its vertex is (1,−2,−1). �

Problem 11.30. Sketch and/or describe the set of points in space
formed by a family of lines through the point (1, 2, 0) and parallel to
vθ = 〈cos θ, sin θ, 1〉, where θ ∈ [0, 2π] labels lines in the family.

Solution: The parametric equations of each line are x = 1 + t cos θ,
y = 2 + t sin θ, and z = t. Therefore, (x − 1)2 + (y − 2)2 = z2 for all
values of t and θ. Thus, the lines form a double cone whose axis is
parallel to the z axis and whose vertex is (1, 2, 0). Alternatively, one
could notice that the vector vθ rotates about the z axis as θ changes.
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Figure 11.24. An illustration to Study Problem 11.30.
The vector ûθ rotates about the vertical line so that the
line through (1, 2, 0) and parallel to vθ sweeps a double
cone with the vertex at (1, 2, 0).

Indeed, put vθ = û+ êz, where û = 〈cos θ, sin θ, 0〉 is the unit vector in
the xy plane as shown in Figure 11.24. It rotates as θ changes, making
a full turn as θ increases from 0 to 2π. So the set in question can be
obtained by rotating a particular line, say, the one corresponding to
θ = 0, about the vertical line through (1, 2, 0). The line sweeps the
double cone. �

78.5. Exercises. (1) Use traces to sketch and identify each of the fol-
lowing surfaces:
(i) y2 = x2 + 9z2

(ii) y = x2 − z2

(iii) 4x2 + 2y2 + z2 = 4
(iv) x2 − y2 + z2 = −1
(v). y2 + 4z2 = 16
(vi). x2 − y2 + z2 = 1

(2) Reduce each of the following equations to one of the standard
form, classify the surface, and sketch it:
(i) x2 + y2 + 4z2 − 2x + 4y = 0
(ii) x2 − y2 + z2 + 2x− 2y + 4z + 2 = 0
(iii) x2 + 4y2 − 6x + z = 0

(3) Find an equation for the surface obtained by rotating the line
y = 2x about the y axis.

(4) Find an equation for the surface consisting of all points that
are equidistant from the point (1, 1, 1) and the plane z = 2.
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(5) Sketch the solid region bounded by the surface z =
√

x2 + y2

from below and by x2 + y2 + z2 − 2z = 0 from above.
(6) Find an equation for the surface consisting of all points P for

which the distance from P to the y axis is twice the distance from P
to the zx plane. Identify the surface.

(7) Show that if the point (a, b, c) lies on the hyperbolic parab-
oloid z = y2 − x2, then the lines through (a, b, c) and parallel to
v = 〈1, 1, 2(b − a)〉 and u = 〈1,−1,−2(b − a)〉 both lie entirely on
this paraboloid. Deduce from this result that the hyperbolic parab-
oloid can be generated by the motion of a straight line. Show that
hyperboloids of one sheet, cones, and cylinders can also be obtained by
the motion of a straight line.

Remark. The fact that hyperboloids of one sheet are generated by the
motion of a straight line is used to produce gear transmissions. The
cogs of the gears are the generating lines of the hyperboloids.

(8) Find an equation for the cylinder of radius R whose axis goes
through the origin and is parallel to a vector v.

(9) Show that the curve of intersection of the surfaces x2 − 2y2 +
3z2 − 2x + y − z = 1 and 2x2 − 4y2 + 6z2 + x − y + 2z = 4 lies in a
plane.



CHAPTER 12

Vector Functions

79. Curves in Space and Vector Functions

To describe the motion of a pointlike object in space, its position
vectors must be specified at every moment of time. A vector is defined
by three components in a coordinate system. Therefore, the motion of
the object can be described by an ordered triple of real-valued func-
tions of time. This observation leads to the concept of vector-valued
functions of a real variable.

Definition 12.1. (Vector Function).
Let D be a set of real numbers. A vector function r(t) of a real variable
t is a rule that assigns a vector to every value of t from D. The set D
is called the domain of the vector function.

Most commonly used rules to define a vector function are alge-
braic rules that specify components of a vector function in a coordi-
nate system as functions of a real variable: r(t) = 〈x(t), y(t), z(t)〉. For
example,

r(t) = 〈√1− t , ln(t) , t2〉 or x(t) =
√

1− t , y(t) = ln(t) , z(t) = t2 .

Unless specified otherwise, the domain of the vector function is the set
D of all values of t at which the algebraic rule makes sense; that is,
all three components can be computed for any t from D. In the above
example, the domain of x(t) is −∞ < t ≤ 1, the domain of y(t) is
0 < t < ∞, and the domain of z(t) is −∞ < t < ∞. The domain of
the vector function is the intersection of the domains of its components:
D = (0, 1].

Suppose that the components of a vector function r(t) are contin-
uous functions on D = [a, b]. Consider all vectors r(t), as t ranges
over the domain D, positioned so that their initial points are at a
fixed point (e.g., the origin of a coordinate system). Then the terminal
points of the vectors r(t) form a curve in space as depicted in Fig-
ure 12.1 (left panel). The simplest example is provided by the motion
along a straight line, which is described by a linear vector function
r(t) = r0 + tv. Thus, the range of a vector function defines a curve in

73
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Figure 12.1. Left: The terminal point of a vector r(t)
whose components are continuous functions of t traces
out a curve in space.
Right: Graphing a space curve. Draw a curve in the xy
plane defined by the parametric equations x = x(t), y =
y(t). It is traced out by the vector R(t) = 〈x(t), y(t), 0〉.
This planar curve defines a cylindrical surface in space
in which the space curve in question lies. The space
curve is obtained by raising or lowering the points of
the planar curve along the surface by the amount z(t),
that is, r(t) = R(t) + ê3z(t). In other words, the graph
z = z(t) is wrapped around the cylindrical surface.

space, and a graph of a vector function is a curve in space. There is
a difference between graphs of ordinary functions and graphs of vector
functions, though. The function of a real variable is uniquely defined
by its graph. This is not so for vector functions. Suppose the shape of
a curve is described geometrically, that is, as a point set in space (e.g.,
a line through two given points). One might ask the question: What is
a vector function that traces out a given curve in space? The answer
to this question is not unique. For example, a line L as a point set in
space is uniquely defined by its particular point and a vector v parallel
to it. If r1 and r2 are position vectors of two particular points of L,
then both vector functions r1(t) = r1 + tv and r2(t) = r2 − 2tv trace
out L because the vector −2v is also parallel to L.

The following, more sophisticated example is also of interest. Sup-
pose one wants to find a vector function that traces out a semicircle
of radius R. Let the semicircle be positioned in the upper part of the
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xy plane (y ≥ 0). The following three vector functions trace out the
semicircle:

r1(t) = 〈t,
√

R2 − t2, 0〉 , −R ≤ t ≤ R ,

r2(t) = 〈R cos t, R sin t, 0〉 , 0 ≤ t ≤ π ,

r3(t) = 〈−R cos t, R sin t, 0〉 , 0 ≤ t ≤ π .

This is easy to see by computing the norm of these vector functions:
‖ri(t)‖2 = R2 or x2

i (t) + y2
i (t) = R2, where i = 1, 2, 3, for any value

of t; that is, the endpoints of the vectors ri(t) always remain on the
semi circle of radius R as t ranges over the specified interval. It can
therefore be concluded that there are many vector functions that trace
out the same curve in space defined as a point set in space.

Another observation is that there are vector functions that trace
out the same curve in opposite directions. In the above example, the
vector function r2(t) traces out the semicircle counterclockwise, while
the functions r1(t) and r3(t) do so clockwise. So a vector function
defines the orientation of a spatial curve. However, this notion of the
orientation of a curve should be regarded with caution. For example,
the vector function r(t) = 〈R cos t, R| sin t|, 0〉 traces out the semicircle
twice, back and forth, when t ranges from 0 to 2π. In this case, the
range of r(t) should be considered as two semicircles (one is oriented
counterclockwise and the other clockwise), and these semicircles are
superimposed one onto the other.

79.1. Graphing Space Curves. To visualize the shape of a curve C
traced out by a vector function, it is convenient to think about r(t)
as a trajectory of motion. The position of a particle in space may be
determined by its position in a plane and its height relative to that
plane. For example, this plane can be chosen to be the xy plane. Then

r(t) = 〈x(t), y(t), z(t)〉 = 〈x(t), y(t), 0〉+〈0, 0, z(t)〉 = R(t)+z(t)ê3.

Consider the curve defined by the parametric equations x = x(t),
y = y(t) in the xy plane. One can mark a few points along the
curve corresponding to particular values of t, say, Pn with coordinates
(x(tn), y(tn)), n = 1, 2, ..., N . Then the corresponding points of the
curve C are obtained from them by moving the points Pn along the
direction normal to the plane (i.e., along the z axis in this case), by
the amount z(tn); that is, Pn goes up if z(tn) > 0 or down if z(tn) < 0.
In other words, as a particle moves along the curve x = x(t), y = y(t),
it ascends or descends according to the corresponding value of z(t).
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The curve can also be visualized by using a piece of paper. Consider
a general cylinder with the horizontal trace being the curve x = x(t),
y = y(t), like a wall of the shape defined by this curve. Then make a
graph of the function z(t) on a piece of paper (wallpaper) and glue it to
the wall so that the t axis of the graph is glued to the curve x = x(t),
y = y(t) (i.e., each point t on the t axis is glued to the corresponding
point (x(t), y(t)) of the curve). After such a procedure, the graph of
z(t) along the wall would coincide with the curve C traced out by r(t).
The procedure is illustrated in Figure 12.1 (right panel).

Example 12.1. Graph the vector function r = 〈cos t, sin t, t〉, where
t ranges over the real line.

Solution: It is convenient to represent r(t) as the sum of a vector
in the xy plane and a vector parallel to the z axis. In the xy plane,
the curve x = cos t, y = sin t is the circle of unit radius traced out
counterclockwise so that the point (1, 0, 0) corresponds to t = 0. The
circular motion is periodic with period 2π. The height z(t) = t rises
linearly as the point moves along the circle. Starting from (1, 0, 0),
the curve makes one turn on the surface of the cylinder of unit radius
climbing up by 2π in each turn. Think of a piece of paper with a
straight line depicted on it that is wrapped around the cylinder. Thus,
the curve traced by r(t) lies on the surface of a cylinder of unit radius
and periodically winds about it climbing by 2π per turn. Such a curve
is called a helix. The procedure is shown in Figure 12.2. �

79.2. Limits and Continuity of Vector Functions.

Definition 12.2. (Limit of a Vector Function).
A vector r0 is called the limit of a vector function r(t) as t→ t0 if

lim
t→t0
‖r(t)− r0‖ = 0 ;

the limit is denoted as limt→t0 r(t) = r0.

The left and right limits, limt→t−0
r(t) and limt→t+0

r(t), are defined
similarly. This definition says that the length or norm of the vector
r(t)− r0 approaches 0 as t tends to t0. The norm of a vector vanishes
if and only if the vector is the zero vector. Therefore, the following
theorem holds.

Theorem 12.1. (Limit of a Vector Function).
Let r(t) = 〈x(t), y(t), z(t)〉 and let r0 = 〈x0, y0, z0〉. Then

lim
t→t0

r(t) = r0 ⇐⇒ lim
t→t0

x(t) = x0 , lim
t→t0

y(t) = y0 , lim
t→t0

z(t) = z0.
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Figure 12.2. Graphing a helix. Right: The curve
R(t) = 〈cos t, sin t, 0〉 is a circle of unit radius, traced
out counterclockwise. So the helix lies on the cylinder of
unit radius whose symmetry axis is the z axis.
Middle: The graph z = z(t) = t is a straight line that
defines the height of helix points relative to the circle
traced out by R(t).
Right: The graph of the helix r(t) = R(t) + z(t)ê3.
As R(t) traverses the circle, the height z(t) = t rises
linearly. So the helix can be viewed as a straight line
wrapped around the cylinder.

This theorem reduces the problem of finding the limit of a vector
function to the problem of finding limits of three ordinary functions.
It also says that the limit of a vector function exists if and only if the
limits of its all components exist.

Example 12.2. Find the limit of r(t) = 〈sin(t)/t , t ln t , (et−
1− t)/t2〉 as t→ 0+.

Solution: By l’Hospital’s rule,

lim
t→0+

sin t

t
= lim

t→0+

cos t

1
= 1,

lim
t→0+

t ln t = lim
t→0+

ln t

t−1 = lim
t→0+

t−1

−t−2 = − lim
t→0+

t = 0,

lim
t→0+

et − 1− t

t2
= lim

t→0+

et − 1
2t

= lim
t→0+

et

2
=

1
2
.

Therefore, limt→0+ r(t) = 〈1, 0, 1/2〉. �
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Definition 12.3. (Continuity of a Vector Function).
A vector function r(t), t ∈ [a, b], is said to be continuous at t = t0 ∈
[a, b] if

lim
t→t0

r(t) = r(t0) .

A vector function r(t) is continuous in the interval [a, b] if it is contin-
uous at every point of [a, b].

By Theorem 12.1, a vector function is continuous if and only if all
its components are continuous functions.

Example 12.3. Determine whether the vector function r(t) = 〈sin
(2t)/t , t2, et〉 for all t �= 0 and r(0) = 〈1, 0, 1〉 is continuous.

Solution: The components y(t) = t2 and z(t) = et are continuous for
all real t and y(0) = 0 and z(0) = 1. The component x(t) = sin(2t)/t
is continuous for all t �= 0 because the ratio of two continuous functions
is continuous. By l’Hospital’s rule,

lim
t→0

x(t) = lim
t→0

sin(2t)
t

= lim
t→0

2 cos(2t)
1

= 2 ⇒ lim
t→0

x(t) �= x(0) = 1;

that is, x(t) is not continuous at t = 0. Thus, r(t) is continuous
everywhere, but t = 0. �

79.3. Space Curve as a Continuous Vector Function. A curve in space
can be understood as a continuous transformation (or a deformation
without breaking) of a straight line segment in space. Conversely, every
space curve can be continuously deformed to a straight line segment. So
a space curve is a continuous deformation of a straight line segment,
and this deformation has a continuous inverse. This motivates the
following (simpler) definition of a spatial curve that is sufficient for all
applications discussed in this course.

Definition 12.4. (Curve in Space).
A curve in space is the range of a continuous vector function.

If a curve in space is defined as a point set by geometrical means
(e.g., as an intersection of two surfaces), then this definition implies
that there is a continuous vector function whose range coincides with
the point set. It should be understood that there are different contin-
uous vector functions with the same range, and a continuous vector
function may traverse the same point set several times. For example,
the vector function r(t) = (t2, t2, t2) is continuous on the interval [−1, 1]
and traces out the straight line segment, x = y = z, between the points
(0, 0, 0) and (1, 1, 1) twice.



79. CURVES IN SPACE AND VECTOR FUNCTIONS 79

A curve is said to be simple if it does not intersect itself at any
point; that is, a simple curve is a continuous vector function r(t) for
which r(t1) �= r(t2) for any t1 �= t2 in the open interval (a, b). A simple
curve is always oriented because the function r(t) traces out its range
only once from the initial point r(a) to the terminal point r(b). A curve
is closed if r(a) = r(b). The definition of a space curve as a continuous
vector function is rather fruitful because it allows us to give a precise
algebraic description of the geometrical properties a space curve may
have.

79.4. Study Problems.

Problem 12.1. Find a vector function that traces out a helix of radius
R that climbs up along its axis by h.

Solution: Let the helix axis be the z axis. The motion in the xy
plane must be circular with radius R. Suitable parametric equations
of the circle are x(t) = R cos t, y(t) = R sin t. With this parameter-
ization of the circle, the motion has a period of 2π. On the other
hand, z(t) must rise linearly by h as t changes over the period. There-
fore, z(t) = ht/(2π). The vector function may be chosen in the form
r(t) = 〈R cos t, R sin t, ht/(2π)〉. �

Problem 12.2. Sketch and/or describe the curve traced out by the
vector function r(t) = 〈cos t, sin t, sin(4t)〉 if t ranges in the interval
[0, 2π].

Solution: In the xy plane, the motion goes along the circle of unit
radius, counterclockwise, starting from the point (1, 0, 0). As t ranges
over the specified interval, the circle is traced out only once. The
height z(t) = sin(4t) has a period of 2π/4 = π/2. Therefore, the graph
of sin(4t) makes four ups and four downs if 0 ≤ t ≤ 2π. The curve looks
like the graph of sin(4t) wrapped around the cylinder of unit radius.
It makes one up and one down in each quarter of the cylinder. The
procedure is shown in Figure 12.3. �

Problem 12.3. Sketch and/or describe the curve traced out by the
vector function r(t) = 〈t cos t, t sin t, t〉.
Solution: The components of r(t) satisfy the equation x2(t)+y2(t) =
z2(t) for all values of t. Therefore, the curve lies on the double cone
x2 + y2 = z2. Since x2(t) + y2(t) = t2, the motion in the xy plane is
a spiral (think of a rotational motion about the origin such that the
radius increases linearly with the angle of rotation). If t increases from
t = 0, the curve in question is traced by a point that rises linearly with
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Figure 12.3. Illustration to Study Problem 12.2. Left:
The curve lies on the cylinder of unit radius. It may
be viewed as the graph of z = sin(4t) on the interval
0 ≤ t ≤ 2π wrapped around the cylinder.
Right: The circle traced out by R(t) = 〈cos t, sin t, 0〉
(top). It defines the cylindrical surface on which the
curve lies. The graph z = z(t) = sin(4t), which defines
the height of points of the curve relative to the circle in
the xy plane (bottom).

the distance from the origin as it travels along the spiral. If t decreases
from t = 0, instead of rising, the point would descend (z(t) = t < 0).
So the curve winds about the axis of the double cone while remaining
on its surface. The procedure is shown in Figure 12.4. �

Problem 12.4. Find the portion of the elliptic helix r(t) = 〈2 cos(πt),
t, sin(πt)〉 that lies inside the ellipsoid x2 + y2 + 4z2 = 13.

Solution: The helix here is called elliptic because it lies on the surface
of an elliptic cylinder. Indeed, in the xz plane, the motion goes along
the ellipse x2/4 + z2 = 1. So the curve remains on the surface of the
elliptic cylinder parallel to the y axis. One turn around the ellipse
occurs as t changes from 0 to 2. The helix rises by 2 along the y axis
per turn. Now, to solve the problem, one has to find the values of t
at which the helix intersects the ellipsoid. The intersection happens
when the components of r(t) satisfy the equation of the ellipsoid, that
is, when x2(t)+y2(t)+4z2(t) = 1 or 4+t2 = 13 and hence t = ±3. The
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Figure 12.4. Illustration to Study Problem 12.3. Left:
The height of the graph relative to the xy plane (top).
The curve R = 〈t cos t, t sin t, 0〉. For t ≥ 0, it looks like
an unwinding spiral (bottom).
Right: For t > 0, the curve is traversed by the point
moving along the spiral while rising linearly with the
distance traveled along the spiral. It can be viewed as a
straight line wrapped around the cone x2 + y2 = z2.

position vectors of the points of intersection are r(±3) = 〈−2,±3, 0〉.
The portion of the helix that lies inside the ellipsoid corresponds to the
range −3 ≤ t ≤ 3. �

Problem 12.5. Consider two curves C1 and C2 traced out by the
vector functions r1(t) = 〈t2, t, t2 + 2t− 8〉 and r2(s) = 〈8− 4s, 2s, s2 +
s − 2〉, respectively. Do the curves intersect? If so, find the points of
intersection. Suppose two particles have the trajectories r1(t) and r2(t),
where t is time. Do the particles collide?

Solution: The curves intersect if there are values of the pair (t, s)
such that r1(t) = r2(s). This vector equation is equivalent the system
of three equations x1(t) = x2(s), y1(t) = y2(s), z1(t) = z2(s). It follows
from the second equation that t = 2s. Substituting this into the first
equation, one finds that (2s)2 = 8−4s whose solutions are s = −2 and
s = 1. One has yet to verify that the third equation t2+2t−8 = s2+s−2
holds for the pairs (t, s) = (−4,−2) and (t, s) = (2, 1) (otherwise, the
z components do not match). A simple calculation shows that indeed
both pairs satisfy the equation. So the position vectors of the points
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of intersection are r1(−4) = r2(−2) = 〈16,−4, 0〉 and r1(2) = r2(1) =
〈4, 2, 0〉. Although the curves along which the particles travel intersect,
this does not mean that the particles would necessarily collide because
they may not arrive at a point of intersection at the same moment of
time, just like two cars traveling along intersecting streets may or may
not collide at the street intersection. The collision condition is more
restrictive, r1(t) = r2(t) (i.e., the time t must satisfy three conditions).
For the problem at hand, these conditions cannot be fulfilled for any t
because, among all the solutions of r1(t) = r2(s), there is no solution
for which t = s. Thus, the particles do not collide. �

Problem 12.6. Find a vector function that traces out the curve of
intersection of the paraboloid z = x2 +y2 and the plane 2x+2y +z = 2
counterclockwise as viewed from the top of the z axis.

Solution: One has to find the components x(t), y(t), and z(t) such
that they satisfy the equations of the paraboloid and plane simultane-
ously for all values of t. This ensures that the endpoint of the vector r(t)
remains on both surfaces, that is, traces out their curve of intersection
(see Figure 12.5). Consider first the motion in the xy plane. Solving
the plane equation for z, z = 2−2x−2y, and substituting the solution
into the paraboloid equation, one finds 2 − 2x − 2y = x2 + y2. After

Figure 12.5. Illustration to Study Problem 12.6. The
curve is an intersection of the paraboloid and the plane
P . It is traversed by the point moving counterclockwise
about the circle in the xy plane (indicated by P0) and
rising so that it remains on the paraboloid.
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completing the squares, this equation becomes 4 = (x + 1)2 + (y + 1)2,
which describes a circle of radius 2 centered at (−1,−1). The cir-
cle lies in the plane P0 in Figure 12.5. Its parametric equations read
x = x(t) = −1 + 2 cos t, y = y(t) = −1 + 2 sin t. As t increases
from 0 to 2π, the circle is traced out counterclockwise as required.
Thus, r(t) = 〈−1 + 2 cos t,−1 + 2 sin t, 6 − 2 cos t − 2 sin t〉, where
t ∈ [0, 2π]. �

79.5. Exercises. (1) Find the domain of each of the following vector
functions:
(i) r(t) = 〈√9− t2, ln t, cos t〉
(ii) r(t) = 〈ln(9− t2), ln |t|, (1 + t)/(2 + t)〉

(2) Find each of the following limits or show that it does not exist:
(i) limt→0+〈(e2t − 1)/t, (

√
1 + t− 1)/t, t ln t〉

(ii) limt→0〈sin2(2t)/t2, t2 + 2, (cos t− 1)/t2〉
(iii) limt→0〈(e2t − t)/t, t cot t,

√
1 + t〉

(3) Sketch each of the following curves and identify the direction
in which the curve is traced out as the parameter t increases:
(i) r(t) = 〈t, cos(3t), sin(3t)〉
(ii) r(t) = 〈2 sin(5t), 4, 3 cos(5t)〉
(iii) r(t) = 〈2t sin t, 3t cos t, t〉
(iv) r(t) = 〈sin t, cos t, ln t〉

(4) Two objects are said to collide if they are at the same position
at the same time. Two trajectories are said to intersect if they have
common points. Let t be the physical time. Let two objects travel along
the space curves r1(t) = 〈t, t2, t3〉 and r2(t) = 〈1 + 2t, 1 + 6t, 1 + 14t〉.
Do the objects collide? Do their trajectories intersect? If so, find the
collision and intersection points.

(5) Find a vector function that traces out the curve of intersection
of two surfaces:
(i) x2 + y2 = 9 and z = xy
(ii) x2 + y2 = z2 and x + y + z = 1
(iii) z = x2 + y2 and y = x2

(6) Suppose that the limits limt→a v(t) and limt→a u(t) exist. Prove
the basic laws of limits for the following vector functions:

lim
t→a

(v(t) + u(t)) = lim
t→a

v(t) + lim
t→a

u(t),

lim
t→a

(sv(t)) = s lim
t→a

v(t),

lim
t→a

(v(t) · u(t)) = lim
t→a

v(t) · lim
t→a

u(t),

lim
t→a

(v(t)× u(t)) = lim
t→a

v(t)× lim
t→a

u(t).
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(7) To appreciate the basic laws of limits established in exercise 6,
put v(t) = 〈(e2t − 1)/t, (

√
1 + t− 1)/t, t ln t〉 and u(t) = 〈sin2(2t)/t2,

t2 + 2, (cos t− 1)/t2〉 (see exercise 2) and find:
(i) limt→0+(v(t) + u(t))
(ii) limt→0+(v(t) · u(t))
(iii) limt→0+(v(t)× u(t))
Think of the amount of technicalities needed to obtain the answers
without the laws of limits (e.g., calculating the cross product first and
then finding the limit value).

(8) Find the values of the parameters a and b at which the curve
r(t) = 〈1 + at2, b− t, t3〉 passes through the point (1, 2, 8).

(9) Let r(0) = 〈a, b, c〉 and let r(t) = 〈t cot(2t), t1/3 ln |t|, t2 + 2〉 for
t �= 0. Find the values of a, b, and c at which the vector function is
continuous.

(10) Suppose that the vector function v(t) × u(t) is continuous.
Does this imply that both vector functions v(t) and u(t) are continu-
ous? Support your arguments by examples.

80. Differentiation of Vector Functions

Definition 12.5. (Derivative of a Vector Function).
Suppose a vector function r(t) is defined on an interval [a, b] and t0 ∈
[a, b]. If the limit

lim
h→0

r(t0 + h)− r(t0)
h

= r′(t0) =
dr
dt

(t0)

exists, then it is called the derivative of a vector function r(t) at t = t0,
and r(t) is said to be differentiable at t0. For t0 = a or t0 = b, the limit
is understood as the right (h > 0) or left (h < 0) limit, respectively. If
the derivative exists for all points in [a, b], then the vector function r(t)
is said to be differentiable on [a, b].

It follows from the definition of the limit that a vector function is
differentiable if and only if all its components are differentiable:

r′(t) = lim
h→0

〈x(t + h)− x(t)
h

,
y(t + h)− y(t)

h
,

z(t + h)− z(t)
h

〉
= 〈x′(t) , y′(t) , z′(t)〉 .(12.1)

For example,

r(t) = 〈sin(2t), t2− t, e−3t〉 ⇒ r′(t) = 〈2 cos(2t), 2t− 1, −3e−3t〉.
Definition 12.6. (Continuously Differentiable Vector Function).

If the derivative r′(t) is a continuous vector function on an interval
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[a, b], then the vector function r(t) is said to be continuously differen-
tiable on [a, b].

Higher-order derivatives are defined similarly: the second derivative
is the derivative of r′(t), r′′(t) = (r′(t))′, the third derivative is the
derivative of r′′(t), r′′′(t) = (r′′(t))′, and r(n)(t) = (r(n−1)(t))′, provided
they exist.

80.1. Differentiation Rules. The following rules of differentiation of vec-
tor functions can deduced from (12.1).

Theorem 12.2. (Differentiation Rules).
Suppose u(t) and v(t) are differentiable vector functions and f(t) is a
real-valued differentiable function. Then

d

dt

[
v(t) + u(t)

]
= v′(t) + u′(t),

d

dt

[
f(t)v(t)

]
= f ′(t)v(t) + f(t)v′(t),

d

dt

[
v(t) · u(t)

]
= v′(t) · u(t) + v(t) · u′(t),

d

dt

[
v(t)× u(t)

]
= v′(t)× u(t) + v(t)× u′(t).

d

dt

[
v(f(t))

]
= f ′(t)v′(f(t)).

The proof is based on a straightforward use of the rule (12.1) and
basic rules of differentiation for ordinary functions and left as an exer-
cise to the reader.

80.2. Differential of a Vector Function. If r(t) is differentiable, then

(12.2) ∆r(t) = r(t + ∆t)− r(t) = r′(t) ∆t + u(∆t) ∆t,

where u(∆t) → 0 as ∆t → 0. Indeed, by the definition of the de-
rivative, u(∆t) = ∆r/∆t − r′(t) → 0 as ∆t → 0. Therefore, the
components of the difference ∆r− r′ ∆t converge to 0 faster than ∆t.
As for ordinary functions, situations in which all such terms can be
neglected is described by the concept of the differential.

Definition 12.7. (Differential of a Vector Function).
Let r(t) be a differentiable vector function. Then the vector

dr(t) = r′(t) dt

is called the differential of r(t).
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In particular, the derivative is the ratio of the differentials, r′(t) =
dr/dt. In a small enough neighborhood of any particular t = t0, a
differentiable vector function can be well approximated by a linear
vector function because ∆r ≈ dr(t0) or with dt = ∆t:

r(t0 + ∆t) ≈ L(t) = r(t0) + r′(t0)∆t, ∆t = t− t0.

The linear vector function L(t) defines a line passing through the point
r(t0). This line is called the tangent line to the curve traced out by r(t).
Thus, the differential dr(t) at a point of the curve r(t) is the increment
of the position vector along the line tangent to the curve at that point.

80.3. Geometrical Significance of the Derivative. Consider a vector func-
tion that traces out a line parallel to a vector v, r(t) = r0 + tv. Then
r′(t) = v; that is, the derivative is a vector parallel or tangent to the
line. This observation is of a general nature; that is, the vector r′(t0) is
tangent to the curve traced out by r(t) at the point whose position vector
is r(t0). Let P0 and Ph have position vectors r(t0) and r(t0 + h). Then

�P0Ph = r(t0 +h)− r(t0) is a secant vector. As h→ 0, �P0Ph approaches
a vector that lies on the tangent line as depicted in Figure 12.6. On
the other hand, it follows from (12.2) that, for small enough h = dt,

�P0Ph = dr(t0) = r′(t0)h, and therefore the tangent line is parallel to
r′(t0). The direction of the tangent vector also defines the orientation

Figure 12.6. Left: A secant line through two points
of the curve, P0 and Ph. As h gets smaller, the direction
of the vector �P0Ph = r(t0 + h)− r(t0) becomes closer to
the tangent to the curve at P0.
Right: The derivative r′(t) defines a tangent vector to
the curve at the point with the position vector r(t). It
also specifies the direction in which r(t) traverses the
curve with increasing t. T̂(t) is the unit tangent vector.
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of the curve, that is, the direction in which the curve is traced out
by r(t).

Example 12.4. Find the line tangent to the curve r(t) = 〈2t, t2 −
1, t3 + 2t〉 at the point P0(2, 0, 3).

Solution: By the geometrical property of the derivative, a vector
parallel to the line is v = r′(t0), where t0 is the value of the parameter
t at which r(t0) = 〈2, 0, 3〉 is the position vector of P0. Therefore,
t0 = 1. Then v = r′(1) = 〈2, 2t, 3t + 2〉|t=1 = 〈2, 2, 5〉. Parametric
equations of the line through P0 and parallel to v are x = 2 + 2t,
y = 2t, z = 3 + 5t. �

If the derivative r′(t) exists and does not vanish, then, at any point
of the curve traced out by r(t), a unit tangent vector can be defined by

T̂(t) =
r′(t)
‖r′(t)‖ .

In Section 79.3, spatial curves were identified with continuous vector
functions. Intuitively, a smooth curve as a point set in space should
have a unit tangent vector that is continuous along the curve. Recall
also that, for any curve as a point set in space, there are many vector
functions whose range coincides with the curve.

Definition 12.8. (Smooth Curve).
A point set in space is called a smooth curve if there is a continuously
differentiable vector function whose range coincides with the point set
and whose derivative does not vanish.

A smooth curve r(t) is oriented by the direction of the unit tangent
vector T̂(t).

Consider the planar curve r = 〈t3, t2, 0〉. The vector function is dif-
ferentiable everywhere, r′(t) = 〈2t, 3t2, 0〉, and the derivative vanishes
at the origin, r′(0) = 0. The unit tangent vector T̂(t) is not defined at
t = 0. In the xy plane, the curve traces out the graph y = x2/3, which
has a cusp at x = 0. The graph is not smooth at the origin. The tan-
gent line is the vertical line x = 0 because y′(x) = (2/3)x−1/3 → ±∞ as
x → 0±. The graph approaches it from the positive half-plane y > 0,
forming a hornlike shape at the origin. A cusp does not necessarily
occur at a point where the derivative r′(t) vanishes. For example, con-
sider r(t) = 〈t3, t5, 0〉 such that r′(0) = 0. The curve traces out the
graph y = x5/3, which has no cusp at x = 0 (it has an inflection point
at x = 0). There is another vector function R(s) = 〈s, s5/3, 0〉 that
traces out the same graph, but R′(0) = 〈1, 0, 0〉 �= 0, and the curve is
smooth. So the vanishing of the derivative is merely associated with a
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poor choice of the vector function. Note that r(t) = R(s) identically
if s = t3. By the chain rule, d

dt
r(t) = d

dt
R(s) = R′(s)(ds/dt). This

shows that, even if R′(s) never vanishes, the derivative r′(t) can van-
ish, provided ds/dt vanishes at some point, which is indeed the case in
the considered example as ds/dt = 3t2 vanishes at t = 0.

80.4. Study Problems.

Problem 12.7. Prove that, for any smooth curve on a sphere, a tan-
gent vector at any point P is perpendicular to the vector from the sphere
center to P .

Solution: Let r0 be the position vector of the center of a sphere of
radius R. The position vector r of any point of the sphere satisfies the
equation ‖r− r0‖ = R or (r− r0) · (r− r0) = R2 (because ‖a‖2 = a · a
for any vector a). Let r(t) be a vector function that traces out a curve
on the sphere. Then, for all values of t, (r(t) − r0) · (r(t) − r0) = R2.
Differentiating both sides of the latter relation, one infers r′(t) · (r(t)−
r0) = 0. This algebraic condition is equivalent to the geometrical one:
r′(t) ⊥ r(t)− r0. If r(t) is the position vector of P and O is the center
of the sphere, then �OP = r(t) − r0, and hence the tangent vector
r′(t) at P is perpendicular to �OP for any t or at any point P of the
curve. �

80.5. Exercises. (1) Find the derivatives and differentials of each of
the following curves:
(i) r(t) = 〈cos t, sin2(t), t2〉
(ii) r(t) = 〈ln(t), e2t, te−t〉
(iii) r(t) = 〈 3

√
t− 2,

√
t2 − 4, t〉

(iv) r(t) = a + bt2 − cet

(v) r(t) = ta× (b− cet)
(2) Determine if the curve traced out by each of the following vector

functions is smooth for a specified interval of the parameter. If the
curve is not smooth at a particular point, graph it near that point.
(i) r(t) = 〈t, t2, t3〉, 0 ≤ t ≤ 1
(ii) r(t) = 〈t2, t3, 2〉, −1 ≤ t ≤ 1
(iii) r(t) = 〈t1/3, t, t3〉, −1 ≤ t ≤ 1
(vi) r(t) = 〈t5, t3, t4〉, −1 ≤ t ≤ 1

(3) Find the parametric equations of the tangent line to each of the
following curves at a specified point:
(i) r(t) = 〈t2 − t, t3/3, 2t〉, P0 = (6, 9, 6)
(ii) r(t) = 〈ln t, 2

√
t, t2〉, P0 = (0, 2, 1)
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(4) Is there a point on the curve r(t) = 〈t2 − t, t3/3, 2t〉 at which
the tangent line is parallel to the vector v = 〈−5/2, 2, 1〉? If so, find
the point.

(5) Let r(t) = 〈et, 2 cos t, sin(2t)〉. Use the tangent line approxi-
mation to find r(0.2). Use a calculator to assess the accuracy of the
approximation.

(6) Suppose a smooth curve r(t) does not intersect a plane through
a point P0 and perpendicular to a vector n. What is the angle between
n and r′(t) at the point of the curve that is the closest to the plane?

(7) Does the curve r(t) = 〈2t2, 2t, 2− t2〉 intersect the plane x+y+
z = −3? If not, find a point on the curve that is closest to the plane.
What is the distance between the curve and the plane.

(8) Find the point intersection of two curves r1(t) = 〈1, 1 − t,
3 + t2〉 and r1(s) = 〈3− s, s− 2, s2〉. If the angle at which two curves
intersect is defined as the angle between their tangent lines at the point
of intersection, find the angle at which the above two curves intersect.

(9) Suppose r(t) is twice differentiable. Show that (r(t)× r′(t))′ =
r(t)× r′′(t).

(10) Suppose that r(t) is differentiable three times. Put v = r ·
(r′ × r′′). Show that v′ = r · (r′ × r′′′).

81. Integration of Vector Functions

Definition 12.9. (Definite Integral of a Vector Function).
Let r(t) be defined on the interval [a, b]. The vector whose components
are the definite integrals of the corresponding components of r(t) =
〈x(t), y(t), z(t)〉 is called the definite integral of r(t) over the interval
[a, b] and denoted as

(12.3)
∫ b

a

r(t) dt =
〈∫ b

a

x(t) dt ,

∫ b

a

y(t) dt ,

∫ b

a

x(t) dt
〉
.

If the integral (12.3) exists, then r(t) is said to be integrable on [a, b].

By this definition, a vector function is integrable if and only if all
its components are integrable functions. Recall that a continuous real-
valued function is integrable. Therefore, the following theorem holds.

Theorem 12.3. If a vector function is continuous on the interval
[a, b], then it is integrable on [a, b].

Definition 12.10. (Indefinite Integral of a Vector Function).
A vector function R(t) is called an indefinite integral of r(t) if R′(t) =
r(t).
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If R(t) = 〈X(t), Y (t), Z(t)〉 and r(t) = 〈x(t), y(t), z(t)〉. Then, ac-
cording to (12.1), the functions X(t), Y (t), and Z(t) are antiderivatives
of x(t), y(t), and z(t), respectively,

X(t) =
∫

x(t) dt+c1 , Y (t) =
∫

y(t) dt+c2 , Z(t) =
∫

z(t) dt+c3 ,

where c1, c2, and c3 are constants. The latter relations can be combined
into a single vector relation:

R(t) =
∫

r(t) dt + c ,

where c is an arbitrary constant vector. Applying the fundamental
theorem of calculus to every component on the right side of (12.3), the
fundamental theorem of calculus can be extended to vector functions.

Theorem 12.4. (Fundamental Theorem of Calculus for Vector
Functions).
If R(t) is an indefinite integral of r(t), then∫ b

a

r(t) dt = R(b)−R(a).

Example 12.5. Find r(t) if r′(t) = 〈2t, 1, 6t2〉 and r(1) = 〈2, 1, 0〉.
Solution: Taking the antiderivative of r′(t), one finds r(t) =

∫ 〈2t, 1,
6t2〉 dt+c = 〈t2, t, 3t3〉+c. The constant vector c is determined by the
condition r(1) = 〈2, 1, 0〉, which gives 〈1, 1, 3〉 + c = 〈2, 1, 0〉. Hence,
c = 〈1, 0,−3〉 and r(t) = 〈t2 + 1, t, 3t3 − 3〉. �

In general, the solution of the equation r′(t) = v(t) satisfying the
condition r(t0) = r0 can be written in the form

r′(t) = v(t) and r(t0) = r0 ⇒ r(t) = r0 +
∫ t

t0

v(s) ds

if v(t) is a continuous vector function. Recall that if the integrand is a
continuous function, then the derivative of the integral with respect to
its upper limit is the value of the integrand at that limit. Therefore,
(d/dt)

∫ t

t0
v(s) ds = v(t), and hence r(t) is an antiderivative of v(t).

When t = t0, the integral vanishes and r(t0) = r0 as required.

81.1. Applications to Mechanics. Let r(t) be the position vector of a
particle as a function of time t. The first derivative r′(t) = v(t) is
called the velocity of the particle. The magnitude of the velocity vector
v(t) = ‖v(t)‖ is called the speed. The speed of a car is a number shown
on the speedometer. The velocity defines the direction in which the
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particle travels and the instantaneous rate at which it moves in that
direction. The second derivative r′′(t) = v′(t) = a(t) is called the
acceleration. If m is the mass of a particle and F is the force acting on
the particle, according to Newton’s second law, the acceleration and
force are related as

F = ma .

If the force is known as a vector function of time, then this relation
is an equation of motion that determines a particle’s trajectory. The
problem of finding the trajectory amounts to reconstructing the vector
function r(t) if its second derivative r′′(t) = (1/m)F(t) is known; that
is, r(t) is given by the second antiderivative of (1/m)F(t). Indeed, the
velocity v(t) is an antiderivative of (1/m)F(t), and the position vector
r(t) is an antiderivative of the velocity v(t). As shown in the previous
section, an antiderivative is not unique, unless its value at a particular
point is specified. So the trajectory of motion is uniquely determined
by Newton’s equation, provided the position and velocity vectors are
specified at a particular moment of time, for example, r(t0) = r0 and
v(t0) = v0. The latter conditions are called initial conditions. Given
the initial conditions, the trajectory of motion is uniquely defined by
the relations:

v(t) = v0 +
1
m

∫ t

t0

F(s) ds , r(t) = r0 +
∫ t

t0

v(s) ds

if the force is a continuous vector function of time.

Remark. If the force is a function of a particle’s position, then the
Newton’s equation becomes a system of ordinary differential equations
that is a set of some relations between components of the vector func-
tions, its derivatives, and time.

Example 12.6. (Motion Under a Constant Force).
Prove that the trajectory of motion under a constant force is a parabola.

Solution: Let F be a constant force. Without loss of generality, the
initial conditions can be set at t = 0, r(0) = r0, and v(0) = v0. Then

v(t) = v0 +
t

m
F , r(t) = r0 + tv0 +

t2

2m
F .

The vector r(t)−r0 is a linear combination of v0 and F and hence must
be perpendicular to n = v0×F by the geometrical property of the cross
product. Therefore, the particle remains in the plane through r0 that is
parallel to F and v0 or perpendicular to n, that is, (r(t)−r0)·n = 0 (see
Figure 12.7, left panel). The shape of a space curve does not depend
on the choice of the coordinate system. Let us choose the coordinate
system such that the origin is at the initial position r0 and the plane
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Figure 12.7. Left: Motion under a constant force F0.
The trajectory is a parabola that lies in the plane through
the initial point of the motion r0 and perpendicular to
the vector n = v0 × F, where v0 is the initial velocity.
Right: Motion of a projectile thrown at an angle θ and
an initial height h. The trajectory is a parabola. The
point of impact defines the range L(θ).

in which the trajectory lies coincides with the zy plane so that F is
parallel to the z axis. In this coordinate system, r0 = 0, F = 〈0, 0,−F 〉,
and v0 = 〈0, v0y, v0z〉. The parametric equations of the trajectory of
motion assume the form x = 0, y = v0yt, and z = v0zt−t2F/(2m). The
substitution of t = y/v0y into the latter equation yields z = ay2 + by,
where a = −Fv2

0y/(2m) and b = v0z/v0y, which defines a parabola in
the zy plane. Thus, the trajectory of motion under a constant force is
a parabola through the point r0 that lies in the plane containing the
force and initial velocity vectors F and v0. �

81.2. Motion Under a Constant Gravitational Force. The magnitude of
the gravitational force that acts on an object of mass m near the surface
of the Earth is mg, where g ≈ 9.8 m/s2 is a universal constant called
the acceleration of a free fall. According to the previous section, any
projectile fired from some point follows a parabolic trajectory. This
fact allows one to predict the exact positions of the projectile and,
in particular, the point at which it impacts the ground. In practice,
the initial speed v0 of the projectile and angle of elevation θ at which
the projectile is fired are known (see Figure 12.7, right panel). Some
practical questions are: At what elevation angle is the maximal range
reached? At what elevation angle does the range attain a specified
value (e.g., to hit a target)?
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To answer these and related questions, choose the coordinate sys-
tem such that the z axis is directed upward from the ground and the
parabolic trajectory lies in the zy plane. The projectile is fired from
the point (0, 0, h), where h is the initial elevation of the projectile above
the ground (firing from a hill). In the notation of the previous section,
F = −mg (F is negative because the gravitational force is directed
toward the ground, while the z axis points upward), v0y = v0 cos θ, and
v0z = v0 sin θ. The trajectory is

y = tv0 cos θ , z = h + tv0 sin θ − 1
2
gt2 , t ≥ 0 .

It is interesting to note that the trajectory is independent of the mass
of the projectile. Light and heavy projectiles would follow the same
parabolic trajectory, provided they are fired from the same position,
at the same speed, and at the same angle of elevation. The height of
the projectile relative to the ground is given by z(t). The horizontal
displacement is y(t). Let tL > 0 be the moment of time when the
projectile lands; that is, when t = tL, the height vanishes, z(tL) = 0.
A positive solution of this equation is

tL =
v0 sin θ +

√
v2

0 sin2 θ + 2gh

g
.

The distance L traveled by the projectile in the horizontal direction
until it lands is the range:

L = y(tL) = tLv0 cos θ .

For example, if the projectile is fired from the ground, h = 0, then
tL = 2v0 sin θ/g and the range is L = v2

0 sin(2θ)/g. The range attains its
maximal value v2

0/g when the projectile is fired at an angle of elevation
θ = π/4. The angle of elevation at which the projectile hits a target at a
given range L = L0 is θ = (1/2) sin−1(L0g/v2

0). For h �= 0, the angle at
which L = L(θ) attains its maximal values can be found by solving the
equation L′(θ) = 0, which defines critical points of the function L(θ).
The angle of elevation at which the projectile hits a target at a given
range is found by solving the equation L(θ) = L0. The technicalities
are left to the reader.

Remark. In reality, the trajectory of a projectile deviates from a
parabola because there is an additional force acting on a projectile
moving in the atmosphere, the friction force. The friction force de-
pends on the velocity of the projectile. So a more accurate analysis of
the projectile motion in the atmosphere requires methods of ordinary
differential equations.
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81.3. Study Problems.

Problem 12.8. The acceleration of a particle is a = 〈2, 6t, 0〉. Find
the position vector of the particle and its velocity in two units of time t
if the particle was initially at the point (−1,−4, 1) and had the velocity
〈0, 2, 1〉.
Solution: The velocity vector is v(t) =

∫
a(t) dt+c = 〈2t, 3t2, 0〉+c.

The constant vector c is fixed by the initial condition v(0) = 〈0, 2, 1〉,
which yields c = 〈0, 2, 1〉. Thus, v(t) = 〈2t, 3t2 + 2, 1〉 and v(2) =
〈2, 8, 1〉. The position vector is r(t) =

∫
v(t) dt+ c = 〈t2, t3 +2t, t〉+ c.

Here the constant vector c is determined by the initial condition r(0) =
〈0, 2, 1〉, which yields c = 〈−1,−4, 1〉. Thus, r(t) = 〈t2 − 1, t3 + 2t −
4, t + 1〉 and r(2) = 〈3, 4, 3〉. �

Problem 12.9. Show that if the velocity and position vectors of a
particle remains orthogonal during the motion, then the trajectory lies
on a sphere.

Solution: If v(t) = r′(t) and r(t) are orthogonal, then r′(t) · r(t) = 0
for all t. Since (r · r)′ = r′ · r + r · r′ = 2r′ · r = 0, one concludes that
r(t) · r(t) = R2 = const or ‖r(t)‖ = R for all t; that is, the particle
remains at a fixed distance R from the origin all the time. �

Problem 12.10. A. charged particle moving in a magnetic field B is
subject to the Lorentz force F = (e/c)v × B, where e is the electric
charge of the particle and c is the speed of light in vacuum. Assume
that the magnetic field is a constant vector parallel to the z axis and
the initial velocity is v(0) = 〈v⊥, 0, v‖〉. Show that the trajectory is a
helix:

r(t) = 〈R sin(ωt), R cos(ωt), v‖t〉, ω =
eB

mc
, R =

v⊥
ω

,

where B = ‖B‖ is the magnetic field magnitude and m is the particle
mass.

Solution: Newton’s second law reads

mv′ =
e

c
v ×B.

Put B = 〈0, 0, B〉. Then

v = r′ = 〈ωR cos(ωt),−ωR sin(ωt), v‖〉,
v ×B = 〈−ωB cos(ωt),−ωR sin(ωt), 0〉,

v′ = 〈−ω2R cos(ωt),−ω2R sin(ωt), 0〉.
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The substitution of these relations into Newton’s second law yields
mω2R = eBRω/c and hence ω = (eB)/(mc). Since v(0) = 〈ωR, 0, v‖〉
= 〈v⊥, 0, v‖〉, it follows that R = v⊥/ω. �
Remark. Note that the equations of motion involve only the velocity
v. For this reason, the velocity vector is uniquely determined by the
initial condition v(0) = v0, while the initial condition for the position
vector is not needed (the vector function r(t) + r0 is also a solution
for an arbitrary constant vector r0). The rate at which the helix rises
along the magnetic field is determined by the magnitude (speed) of the
initial velocity component v‖ parallel to the magnetic field, whereas the
radius of the helix is determined by the magnitude of the initial velocity
component v⊥ perpendicular to the magnetic field. A particle makes
one full turn about the magnetic field in time T = 2π/ω = 2πmc/(eB),
that is, the larger the magnetic field, the faster the particle rotates
about it.

81.4. Exercises. (1) Find the indefinite and definite integrals over a
specified interval for each of the following functions:
(i) r(t) = 〈sin t, t3, cos t〉, −π ≤ t ≤ π
(ii) r(t) = 〈t2, t√t− 1,

√
t〉, 0 ≤ t ≤ 1

(iii) r(t) = 〈t ln t, t2, e2t〉, 0 ≤ t ≤ 0
(2) Find r(t) if the derivatives r′(t) and r(t0) are given:

(i) r′(t) = 〈t− 1, t2,
√

t〉, r(1) = 〈1, 0, 1〉
(ii) r′(t) = 〈sin(2t), 2 cos t, sin2 t〉, r(π) = 〈1, 2, 3〉

(3) If a particle was initially at point (1, 2, 1) and had velocity
v = 〈0, 1,−1〉. Find the position vector of the particle after it has
been moving with acceleration a(t) = 〈1, 0, t〉 for 2 units of time.

(4) A particle of unit mass moves under a constant force F. If a
particle was initially at the point r0 and passed through the point r1

after 2 units of time, find the initial velocity of the particle. What was
the velocity of the particle when it passed through r1?

(5) The position vector of a particle is r(t) = 〈t2, 5t, t2−16t〉. Find
r(t) when the speed of the particle is maximal.

(6) A projectile is fired at an initial speed of 400 m/s and at an
angle of elevation of 30◦. Find the range of the projectile, the maximum
height reached, and the speed at impact.

(7) A ball of mass m is thrown southward into the air at an initial
speed of v0 at an angle of θ to the ground. An east wind applies a
steady force of magnitude F to the ball in a westerly direction. Find
the trajectory of the ball. Where does the ball land and at what speed?
Find the deviation of the impact point from the impact point A when
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no wind is present. Is there any way to correct the direction in which
the ball is thrown so that the ball still hits A?

(8) A rocket burns its onboard fuel while moving through space.
Let v(t) and m(t) be the velocity and mass of the rocket at time t.
It can be shown that the force exerted by the rocket jet engines is
m′(t)vg, where vg is the velocity of the exhaust gases relative to the
rocket. Show that v(t) = v(0) − ln(m(0)/m(t))vg. The rocket is to
accelerate in a straight line from rest to twice the speed of its own
exhaust gases. What fraction of its initial mass would the rocket have
to burn as fuel?

(9) The acceleration of a projectile is a(t) = 〈0, 2, 6t〉. The projec-
tile is shot from (0, 0, 0) with an initial velocity v(0) = 〈1,−2,−10〉. It
is supposed to destroy a target located at (2, 0,−12). The target can
be destroyed if the projectile’s speed is at least 3.1 at impact. Will the
target be destroyed?

82. Arc Length of a Curve

Consider a partition of a curve C, that is, a collection of points of C,
Pk, k = 0, 1, ..., N , where P0 and PN are the endpoints of the curve. A
partition is said to be refined if the number of partition points increases
so that maxk |Pk−1Pk| → 0 as N → ∞; here |Pk−1Pk| is the distance
between the points Pk−1 and Pk.

Definition 12.11. (Arc Length of a Curve).
The arc length of a curve C is the limit

L = lim
N→∞

N∑
k=1

|Pk−1Pk|,

provided it exists and is independent of the choice of partition. If L <
∞, the curve is called measurable or rectifiable.

The geometrical meaning of this definition is rather simple. Here
the sum of |Pk−1Pk| is the length of a polygonal path with vertices at
P0, P1,..., PN in this order. As the partition becomes finer and finer,
this polygonal path approaches the curve more and more closely (see
Figure 12.8, left panel). In certain cases, the arc length is given by the
Riemann integral.

Theorem 12.5. (Arc Length of a Curve).
Let C be a curve traced out by a continuously differentiable vector func-
tion r(t), which defines a one-to-one correspondence between points of
C and the interval t ∈ [a, b]. Then
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Figure 12.8. Left: The arc length of a curve is defined
as the limit of the sequence of lengths of polygonal paths
through partition points of the curve.
Right: Natural parameterization of a curve. Given a
point A of the curve, the arc length s is counted from it
to any point P of the curve. The position vector of P is a
vector R(s). If the curve is traced out by another vector
function r(t), then there is a relation s = s(t) such that
r(t) = R(s(t)).

L =
∫ b

a

‖r′(t)‖ dt .

Proof. For any partition Pk of C, there is a partition tk of [a, b]
such that t0 = a < t1 < · · · < tN−1 < tN = b and rk = r(tk) are
position vectors of Pk, k = 0, 1, ..., N . Put ∆tk = tk − tk−1 > 0,
k = 1, 2, ..., N . In the limit N → ∞, ∆tk → 0 because rk − rk−1 → 0
for all k. Let r′

k−1 = r′(tk−1). The differentiability of r(t) implies that
rk − rk−1 = r′

k−1 ∆tk + uk ∆tk, where uk → 0 as ∆tk → 0 for every k
(cf. (12.2)). Then, by the triangle inequality (11.7),

‖r′
k−1‖∆tk − ‖uk‖∆tk ≤ ‖rk − rk−1‖ ≤ ‖r′

k−1‖∆tk + ‖uk‖∆tk.

By the continuity of the derivative, the function ‖r′(t)‖ is continuous
and hence integrable. Therefore, its Riemann sum converges:

N∑
k=1

‖r′
k−1‖∆tk →

∫ b

a

‖r′(t)‖ dt as N →∞ .
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Put maxk ‖uk‖ = MN (the largest ‖uk‖ for a given partition size N).
Then

N∑
k=1

‖uk‖∆tk ≤MN

N∑
k=1

∆tk = MN(b− a)→ 0 as N →∞

because ‖uk‖ → 0 as ∆tk → 0 for all k, and hence MN → 0 as N →∞.
It follows from the squeeze principle that the limit of

∑N
k=1 ‖rk− rk−1‖

as N →∞ exists and equals
∫ b

a
‖r′(t)‖ dt. �

Remark. Let r(t) be continuously differentiable on [a, b] but does
not necessarily define a one-to-one correspondence with its range C.
Then the integral

∫ b

a
‖r′(t)‖ dt is not the length of the curve C as a

point set in space because r(t) may traverse a part of C several times.
However, it is also useful in practical applications. Suppose r(t) is a
trajectory of a particle. Then its velocity is v(t) = r′(t) and its speed
is v(t) = ‖v(t)‖. The distance traveled by the particle in the time
interval [a, b] is given by

D =
∫ b

a

v(t) dt =
∫ b

a

‖r′(t)‖ dt.

If a particle travels along the same space curve (or some of its parts)
several times, then the distance traveled does not coincide with the arc
length of the curve.

Example 12.7. Find the arc length of one turn of a helix of radius
R that rises by h per each turn.

Solution: Let the helix axis be the z axis. The helix is traced out
by the vector function r(t) = 〈R cos t, R sin t, th/(2π)〉. One turn cor-
responds to the interval t ∈ [0, 2π]. Therefore,

‖r′(t)‖ = ‖〈−R sin t, R cos t, h/(2π)〉‖ =
√

R2 + (h/(2π))2 .

So the norm of the derivative turns out be constant. The arc length is

L =
∫ 2π

0
‖r′(t)‖ dt =

√
R2 + (h/(2π))2

∫ 2π

0
dt =

√
(2πR)2 + h2 .

This result is rather easy to obtain without calculus. The helix lies on
a cylinder of radius R. If the cylinder is cut parallel to its axis and
unfolded into a strip, then one turn of the helix becomes the hypotenuse
of the right-angled triangle with catheti 2πR and h. The result follows
from the Pythagorean theorem. �
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82.1. Reparameterization of a Curve. In Section 79, it was shown that
a space curve defined as a point set in space can be traced by different
vector functions. For example, a semicircle of radius R is traced out
by the vector functions

r(t) = 〈R cos t, R sin t, 0〉 , t ∈ [0, π] ,

R(u) = 〈u,
√

R2 − u2, 0〉 , u ∈ [−R, R] .

These vector functions are related to one another by the composition
rule:

R(u) = r(t(u)) , t(u) = cos−1(u/R) or
r(t) = R(u(t)) , u(t) = R cos t .

This example illustrates the concept of a reparameterization of a curve.
A reparameterization of a curve is a change of the parameter that labels
points of the curve.

Definition 12.12. (Reparameterization of a Curve).
Let r(t) trace out a curve C if t ∈ [a, b]. Consider a one-to-one mapping
[a, b] → [a′, b′], that is, a function u = u(t) with the domain [a, b] and
the range [a′, b′] that has the inverse t = t(u). The vector function
R(u) = r(t(u)) is called a reparameterization of C.

It should be emphasized that the geometrical properties of the curve
(e.g., its shape or length) do not depend on a parameterization of the
curve because the vector functions r(t) and R(u) have the same range.
A reparameterization of a curve is a technical tool to find an algebraic
description of the curve convenient for particular applications.

82.2. A Natural Parameterization of a Smooth Curve. Suppose one is
traveling along a highway from town A to town B and comes upon
an accident. How can the location of the accident be reported to the
police? If one has a GPS navigator, one can report coordinates on the
surface of the Earth. This implies that the police should use a spe-
cific (GPS) coordinate system to locate the accident. Is it possible to
avoid any reference to a coordinate system? A simpler way to define
the position of the accident is to report the distance traveled from A
along the highway to the point where the accident happened (by using,
e.g., mile markers). No coordinate system is needed to uniquely label
all points of the highway by specifying the distance from a particular
point A to the point of interest along the highway. This observation
can be extended to all smooth curves (see Figure 12.8, right panel).



100 12. VECTOR FUNCTIONS

Definition 12.13. (Natural or Arc Length Parameterization).
Let C be a smooth curve of length L between points A and B. Let r(t),
t ∈ [a, b], be a one-to-one vector function that traces out C so that r(a)
and r(b) are position vectors of A and B, respectively. Then the arc
length s = s(t) of the portion of the curve between r(a) and r(t) is a
function of the parameter t:

s = s(t) =
∫ t

a

‖r′(u)‖du , s ∈ [0, L] .

The vector function R(s) = r(t(s)) is called a natural or arc length
parameterization of C, where t(s) is the inverse function of s(t).

Example 12.8. Find the coordinates of a point P that is 5π/3
units of length away from the point (4, 0, 0) along the helix r(t) =
〈4 cos(πt), 4 sin(πt), 3πt〉.
Solution: The initial point of the helix corresponds to t = 0. So the
arc length counted from (4, 0, 0) as a function of t is

s(t) =
∫ t

0
‖r′(u)‖ du =

∫ t

0
5π du = 5πt

because r′(u) = 〈−4π sin(πu), 4π cos(πu), 3π〉 and therefore ‖r′(u)‖ =
5π. Hence, the inverse is t = s/(5π), and the natural parameteriza-
tion reads R(s) = r(t(s)) = 〈4 cos(s/5), 4 sin(s/5), 3s/5〉. The position
vector of P is R(5π/3) = 〈2, 2√3, π〉. Note that there are two points
of the helix at the specified distance from (4, 0, 0). One such point
is upward along the helix, and the other is downward along it. The
downward point corresponds to t < 0. Hence, its position vector is
R(−5π/3) = 〈2,−2

√
3,−π〉. �

By definition, the arc length is independent of a parameterization of
a space curve. For smooth curves, this can also be established through
the change of variables in the integral that determines the arc length.
Indeed, let r(t), t ∈ [a, b], be a one-to-one continuously differentiable
vector function that traces out a curve C of length L. Consider the
change of the integration variable t = t(s), s ∈ [0, L]. Then ds =
s′(t) dt = ‖r′(t)‖ dt (by differentiating the integral for s(t) with respect
to the upper limit) and

L =
∫ b

a

‖r′(t)‖ dt =
∫ L

0
ds

for any parameterization of the curve C.
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Figure 12.9. Left: A straight line does not bend. The
unit tangent vector has zero rate of change relative to
the arc length parameter s.
Right: Curvature of a smooth curve. The more a
smooth curve bends, the larger the rate of change of the
unit tangent vector relative to the arc length parameter
becomes. So the magnitude of the derivative (curvature)
‖T̂′(s)‖ = κ(s) can be taken as a geometrical measure of
bending.

82.3. Exercises. (1) Find the arc length of each of the following curves:
(i) r(t) = 〈3 cos t, 2t, 3 sin t〉, −2 ≤ t ≤ 2
(ii) r(t) = 〈2t, t3/3, t2〉, 0 ≤ t ≤ 1

(2) Find the arc length of the portion of the helix r(t) = 〈cos t, sin t, t〉
that lies inside the sphere x2 + y2 + z2 = 2.

(3) Find the arc length of the portion of the curve r(t) = 〈2t, 3t2, 3t3〉
that lies between the planes z = 3 and z = 24.

(4) Let C be the curve of intersection of the surfaces z2 = 2y and
3x = yz. Find the length of C from the origin to the point (36, 18, 6).

(5) Reparameterize each of the following curves with respect to
the arc length measure from the point where t = 0 in the direction of
increasing t:
(i) r = 〈t, 1− 2t, 5 + 3t〉
(ii) r = 2t

t2+1 ê1 + ( 2
t2+1 − 1)ê3

(6) A particle travels along a helix of radius R that rises h units
of length per turn. Let the z axis be the symmetry axis of the helix.
If a particle travels the distance 4πR from the point (R, 0, 0), find the
position vector of the particle.

83. Curvature of a Space Curve

Consider two curves passing through a point P . Both curves bend
at P . Which one bends more than the other and how much more?
The answer to this question requires a numerical characterization of
bending, that is, a number computed at P for each curve with the
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property that it becomes larger as the curve bends more. Naturally, this
number should not depend on a parameterization of a curve. Suppose
that a curve is smooth so that a unit tangent vector can be attached
to every point of the curve. A straight line does not bend (does not
“curve”) so it has the same unit tangent vector at all its points. If
a curve bends, then its unit tangent vector becomes a function of its
position on the curve. The position on the curve can be specified in a
coordinate- and parameterization-independent way by the arc length
s counted from a particular point of the curve. If T̂(s) is the unit
tangent vector as a function of s, then its derivative T̂′(s) vanishes for
a straight line (see Figure 12.9), while this would not be the case for a
general curve. From the definition of the derivative

T̂′(s0) = lim
s→s0

T̂(s)− T̂(s0)
s− s0

,

it follows that the magnitude ‖T̂′(s0)‖ becomes larger when the curve
“bends more.” For a fixed distance s − s0 between two neighboring
points of the curve, the magnitude ‖T̂(s) − T̂(s0)‖ becomes larger
when the curve bends more at the point corresponding to s0. So the
number ‖T′(s0)‖ can be used as a numerical measure of the bending
or curvature of a curve.

Definition 12.14. (Curvature of a Smooth Curve).
Let C be a smooth curve and let T̂(s) be the unit tangent vector as a
differentiable function of the arc length counted from a particular point
of C. The number

κ(s) =
∥∥∥ d

ds
T(s)

∥∥∥
is called the curvature of C at the point corresponding to the value s
of the arc length.

In practice, a curve may not be given in the natural parameteriza-
tion. Therefore, a question of interest is to find a method to calculate
the curvature in any parameterization.

Let r(t) be a vector function in [a, b] that traces out a curve C such
that the arc length parameter can be defined as a function of t, s = s(t),
and it has the inverse function t = t(s). The unit tangent vector as
a function of the parameter t has the form T̂(t) = r′(t)/‖r′(t)‖. So,
to calculate the curvature as a function of t, the relation between the
derivatives d/ds and d/dt has to be found. The graphs of s(t) and its
inverse are obtained from one another by the reflection about the line
s = t. Let (t1, s1) and (t2, s2) be points on the graph of s(t), that is,
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s1,2 = s(t1,2). Then the points (s1, t1) and (s2, t2) lie on the graph of
the inverse of s(t), where t1,2 = t(s1,2). Consider the identity

t(s1)− t(s2)
s1 − s2

=
t1 − t2
s1 − s2

=
1

s1−s2
t1−t2

=
1

s(t1)−s(t2)
t1−t2

.

When t2 → t1, the right side tends to 1/s′(t1) because s(t) is differen-
tiable and, moreover, s′(t) = ‖r′(t)‖ > 0 for t > a. Hence, the limit
of the left side as s2 → s1 exists too and, by the definition of the de-
rivative, must be equal to t′(s1). This is known as the inverse function
theorem for a real-valued function of one real argument.

Theorem 12.6. (Inverse Function Theorem).
Let s(t) have a continuous derivative such that s′(t) > 0. Then there
exists an inverse differentiable function t = t(s) and t′(s) = 1/s′(t),
where t = t(s) on the right side.

The condition s′(t) > 0 guarantees the existence of a one-to-one
correspondence between the variables s and t and hence the existence
of the inverse function (see Calculus I). Recall that the derivative can
be written as the ratio of differentials s′(t) = ds/dt. The advantage
of this representation is that the differentials can be manipulated as
numbers. So the theorem can be stated in the compact form

ds(t)
dt

=
1

dt(s)
ds

, s = s(t) .

Making use of this relation, one finds
d

ds
=

1
s′(t)

d

dt
=

1
‖r′(t)‖

d

dt

and therefore

(12.4) κ(t) =
‖T̂′(t)‖
‖r′(t)‖ .

Note that the existence of the curvature requires that r(t) be twice
differentiable because T̂(t) is proportional to r′(t). Differentiation of
the unit vector T̂ can sometimes be a tedious technical task. The
following theorem provides a more convenient way to calculate the
curvature.

Theorem 12.7. (Curvature of a Curve).
Let a curve be traced out by a twice-differentiable vector function r(t).
Then the curvature is

(12.5) κ(t) =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 .
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Proof. Put v(t) = ‖r′(t)‖. With this notation,

r′(t) = v(t)T̂(t) .

Differentiating both sides of this relation, one infers

(12.6) r′′(t) = v′(t)T̂(t) + v(t)T̂′(t) =
v′(t)
v(t)

r′(t) + v(t)T̂′(t) .

Since the cross product of two parallel vectors vanishes, it follows from
(12.6) that

(12.7) r′(t)× r′′(t) = v(t)
(
r′(t)× T̂′(t)

)
.

Therefore,

(12.8) ‖r′(t)× r′′(t)‖ = v(t)‖r′(t)× T̂′(t)‖ = ‖r′(t)‖2‖T̂′(t)‖ sin θ,

where θ is the angle between T̂′(t) and the tangent vector r′(t). By
construction, T̂(t) is a unit vector, ‖T̂(t)‖2 = T̂(t) · T̂(t) = 1. By
taking the derivative of both sides of the latter relation, one obtains
T̂′(t)·T̂(t) = 0, which means that the derivative of a unit tangent vector
is always perpendicular to the unit tangent vector. Since v is parallel
to T̂, the vector T̂′ is perpendicular to v as well. Hence, θ = π/2 and
sin θ = 1. Substituting the latter relation and ‖T̂′(t)‖ = κ(t)‖r′(t)‖
(see (12.4)) into (12.8), the expression (12.5) is derived. �

Example 12.9. Find the curvature of the curve r(t) = 〈ln t, t2, 2t〉
at the point P0(0, 1, 2).

Solution: The point P0 corresponds to t = 1 because r(1) = 〈0, 1, 2〉
coincides with the position vector of P0. Hence, one has to calculate
κ(1):

r′(1) = 〈t−1, 2t, 2〉
∣∣∣
t=1

= 〈1, 2, 2〉 ⇒ ‖r′(1)‖ = 3 ,

r′′(1) = 〈−t−2, 2, 0〉
∣∣∣
t=1

= 〈−1, 2, 0〉 ⇒ r′(1)× r′′(1)

= −2〈2, 1,−2〉 ,

κ(1) =
‖r′(1)× r′′(1)‖
‖r′(1)‖3 =

2 ‖〈2, 1,−2〉‖
33 =

6
27

=
2
9
.

�
Equation (12.5) can be simplified in two particularly interesting

cases. If a curve is planar (i.e., it lies in a plane), then, by choosing
the coordinate system so that the xy plane coincides with the plane
in which the curve lies, one has r(t) = 〈x(t), y(t), 0〉. Since r′ and
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r′′ are in the xy plane, their cross product is parallel to the z axis:
r′ × r′′ = 〈0, 0, x′y′′ − x′′y′〉. Then we have the following result.

Corollary 12.1. (Curvature of a Planar Curve).
For a planar curve r(t) = 〈x(t), y(t), 0〉, the curvature is given by

κ =
|x′y′′ − x′′y′|

[(x′)2 + (y′)2]3/2 .

A further simplification occurs when the planar curve is a graph
y = f(x). The graph is traced out by the vector function r(t) =
〈t, f(t), 0〉. Then, in the above corollary, x′(t) = 1, x′′(t) = 0, and
y′′(t) = f ′′(t) = f ′′(x), which leads to the following result.

Corollary 12.2. (Curvature of a Graph).
The curvature of the graph y = f(x) is given by

κ(x) =
|f ′′(x)|

[1 + (f ′(x))2]3/2 .

83.1. Geometrical Significance of the Curvature. Let us calculate the
curvature of a circle of radius R. Put r(t) = 〈R cos t, R sin t, 0〉. Then
‖r′(t)‖ = ‖〈−R sin t, R cos t, 0〉‖ = R and |x′y′′−x′′y′| = R2. Therefore,
the curvature is constant along the circle and equals a reciprocal of its
radius, κ = 1/R. The fact that the curvature is independent of its
position on the circle can be anticipated from the rotational symmetry
of the circle (it bends uniformly). Naturally, if two circles of different
radii pass through the same point, then the circle of smaller radius
bends more. Note also that the curvature has the dimension of the
inverse length. This motivates the following definition.

Definition 12.15. (Curvature Radius).
The reciprocal of the curvature of a curve is called the curvature radius
ρ(t) = 1/κ(t).

Let a planar curve have a curvature κ at a point P . Consider a
circle of radius ρ = 1/κ through the same point P . The curve and
the circle have the same curvature at P ; that is, in a sufficiently small
neighborhood of P , the circle approximates well the curve as they are
equally bent at P . So, if one says that the curvature of a curve at a
point P is κ inverse meters, then the curve looks like a circle of radius
1/κ meters near P .

For a general spatial curve, not every circle of radius ρ = 1/κ that
passes through P would approximate well the curve near P . The best
approximation is attained when the circle and the curve “bend” in the
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Figure 12.10. Left: Curvature radius. A smooth
curve near a point P can be approximated by a por-
tion of a circle of radius ρ = 1/κ. The curve bends in the
same way as a circle of radius that is the reciprocal of
the curvature. A large curvature at a point corresponds
to a small curvature radius.
Middle: Osculating plane and osculating circle. The os-
culating plane at a point P contains the tangent vector
T̂ and its derivative T̂′ at P and hence is perpendicular
to n = T̂×T̂′. The osculating circle lies in the osculating
plane, it has radius ρ = 1/κ, and its center is a distance
ρ from P in the direction of T̂′. One says that the curve
“bends” in the osculating plane.
Right: For a curve traced out by a vector function r(t),
the derivatives r′ and r′′ at any point P0 lie in the oscu-
lating plane through P0. So the normal to the osculating
plane can also be computed as n = r(t0)′× r′′(t0), where
r(t0) is the position vector of P0.

same plane. From the discussion at the beginning of this section, it
might be concluded that a curve bends in the plane that contains the
unit tangent vector T̂ and its derivative T̂′.

Definition 12.16. (Osculating Plane and Circle).
The plane through a point P of a curve that is parallel to the unit
tangent vector T̂ and its derivative T̂′ �= 0 at P is called the osculating
plane at P . The circle of radius ρ = 1/κ, where κ is the curvature at
P , through P that lies in the osculating plane and whose center is in
the direction of T̂′ from P is called the osculating circle at P .

Recall that T̂′⊥T̂ (see the proof of Theorem 12.7). By the geomet-
rical interpretation of the derivative, T̂′ should point in the direction
in which the curve bends. Hence, the osculating circle must have the
same T̂′ at a common point P in order to make the best approximation
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to the curve near P . Therefore, its center must be in the direction of
T̂′ from P , not in the opposite one.

Theorem 12.8. (Equation of the Osculating Plane).
Let a curve C be traced out by a twice-differentiable vector function r(t).
Let P0 be a point of C such that its position vector is r(t0) = 〈x0, y0, z0〉
at which the vector n = r′(t0)× r′′(t0) does not vanish. An equation of
the osculating plane through P0 is

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0 , n = 〈n1, n2, n3〉.
Proof. It follows from (12.6) that the second derivative r′′(t0) lies
in the osculating plane because it is a linear combination of T̂(t0) and
T̂′(t0). Hence, the osculating plane contains the first and second deriva-
tives r′(t0) and r′′(t0). Therefore, their cross product n = r′(t0)×r′′(t0)
is perpendicular to the osculating plane, and the conclusion of the the-
orem follows. �

Example 12.10. For the curve r(t) = 〈t, t2, t3〉, find the osculating
plane through the point (1, 1, 1).

Solution: The point in question corresponds to t = 1. Therefore, the
normal of the osculating plane is n = r′(1)×r′′(1) = 〈1, 2, 3〉×〈0, 2, 6〉 =
〈6,−6, 2〉. The osculating plane is 6(x − 1) − 6(y − 1) + 2(z − 1) = 0
or 3x− 3y + z = 1. �

83.2. Study Problems.

Problem 12.11. Find the maximal curvature of the graph of the ex-
ponential, y = ex, and the point(s) at which it occurs.

Solution: The curvature of the graph is given by κ(x) = ex/(1 +
e2x)3/2. Critical points are determined by κ′(x) = 0 or

κ′(x) =
ex(1 + e2x)1/2[2e2x − 1]

(1 + e2x)3 = 0 ⇒ 2e2x − 1 = 0

⇒ x = − ln 2
2

.

From the shape of the graph of the exponential, it is clear that κ(x) at-
tains its absolute maximum (maximal bending) and κmax = κ(− ln(2)/
2) = 2/33/2. �

Problem 12.12. (Equation of the Osculating Circle).
Find a vector function that traces out the osculating circle of a curve
r(t) at a point r(t0).
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Solution: Put r0 = r(t0) and T̂0 = T̂(t0) (the unit tangent vector
to the curve at the point with the position vector r0). Put N̂0 =
T̂′(t0)/‖T̂′(t0)‖; it is a unit vector in the direction of T̂′(t0). Let ρ0 =
1/κ(t0) be the curvature radius at the point r0. The center of the
osculating circle must lie ρ0 units of length from the point r0 in the
direction of N̂0. Thus, its position vector is R0 = r0 + ρ0N̂0. Let R(t)
be the position vector of a generic point of the osculating circle. Then
the vector R(t)−R0 lies in the osculating plane and hence must be a
linear combination of T̂0 and N̂0, that is, R(t)−R0 = a(t)N̂0 +b(t)T̂0.
To find the functions a(t) and b(t), note that the vector R(t)−R0 traces
out a circle of radius ρ0. In a coordinate system in which N̂0 coincides
with êx and T̂0 with êy (such a coordinate system always exists because
N̂0 and T̂0 are unit orthogonal vectors), the vector −ρ0 cos(t)êx +
ρ0 sin(t)êy traces out a circle of radius ρ0 in the xy plane. Thus, one
can always put a(t) = −ρ0 cos t and b(t) = ρ0 sin t, and the vector
function that traces out the osculating circle is

R(t) = r0 + ρ0

(
1− cos t

)
N̂0 + ρ0 sin t T̂0,

where t ∈ [0, 2π]. �

Problem 12.13. Consider a helix r(t) = 〈R cos(ωt), R sin(ωt), ht〉,
where ω and h are numerical parameters. The arc length of one turn of
the helix is a function of the parameter ω, L = L(ω), and the curvature
at any fixed point of the helix is also a function of ω, κ = κ(ω). Use
only geometrical arguments (no calculus) to find the limits of L(ω) and
κ(ω) as ω →∞.

Solution: The vector function r(t) traces out one turn of the helix
when t ranges over the period of cos(ωt) or sin(ωt) (i.e., over the interval
of length 2π/ω). Thus, the helix rises by 2πh/ω = H(ω) along the
z axis per each turn. When ω → ∞, the height H(ω) tends to 0 so
that each turn of the helix becomes closer and closer to a circle of radius
R. Therefore, L(ω)→ 2πR (the circumference) and κ(ω)→ 1/R (the
curvature of the circle) as ω →∞.

A calculus approach requires a lot more work to establish this result:

L(ω) =
∫ 2π/ω

0
‖r′(t)‖ dt =

2π
ω

√
(Rω)2 + h2

= 2π
√

R2 + (h/ω)2 → 2πR,
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κ(ω) =
‖r′(t)× r′′(t)‖
‖r′(t)‖3 =

Rω2[(Rω)2 + h2]1/2

[(Rω)2 + h2]3/2

=
R

R2 + (h/ω)2 →
1
R

as ω →∞. �

83.3. Exercises. (1) Find the curvature of r(t) = 〈t, t2/2, t3/3〉 at the
point of its intersection with the plane z = 2xy + 1/3.

(2) Find the maximal and minimal curvatures of the graph y =
cos(ax) and the points at which they occur.

(3) Use a geometrical interpretation of the curvature to guess the
point on the graphs y = ax2 and y = ax4 where the maximal curvature
occurs. Then verify your guess by calculations.

(4) Let r(t) = 〈t3, t2, 0〉. This curve has a cusp at t = 0. Find the
curvature for t �= 0 and investigate its limit as t→ 0.

(5) Find an equation for the osculating and normal planes for the
curve r(t) = 〈 ln(t) , 2t , t2〉 at the point P0 of its intersection with the
plane y− z = 1. A plane is normal to a curve at a point if the tangent
to the curve at that point is normal to the plane.

(6) Prove that the trajectory of a particle is planar if its velocity
v(t) remains perpendicular to a constant vector n and its acceleration
is a(t) = n × v(t) + µ(t)v(t), where µ(t) is a function of time. Find
an equation of the plane in which the trajectory lies if the particle is
known to pass a point r0.

84. Practical Applications

84.1. Tangential and Normal Accelerations. Let r(t) be the trajectory
of a particle (t is time). Then v(t) = r′(t) and a(t) = v′(t) are the
velocity and acceleration of the particle. The magnitude of the velocity
vector is the speed, v(t) = ‖v(t)‖. If T̂(t) is the unit tangent vector
to the trajectory, then T̂′(t) is perpendicular to it. The unit vector
N̂(t) = T̂′(t)/‖T̂′(t)‖ is called a unit normal to the trajectory. In
particular, the osculating plane at any point of the trajectory contains
T̂(t) and N̂(t). It follows from (12.6) that the acceleration always lies
in the osculating plane:

a = v′T̂ + vT̂′ = v′T + v‖T′‖N̂ .
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Figure 12.11. Left: Decomposition of the acceleration
a of a particle into normal and tangential components.
The tangential component aT is the scalar projection of a
onto the unit tangent vector T̂. The normal component
is the scalar projection of a onto the unit normal vector
N̂. The vectors r and v are the position and velocity
vectors of the particle.
Right: The tangent, normal, and binormal vectors asso-
ciated with a smooth curve. These vectors are mutually
orthogonal and have unit length. The binormal is de-
fined by B̂ = T̂× N̂. The shape of the curve is uniquely
determined by the orientation of the triple of vectors T̂,
N̂, and B̂ as functions of the arc length parameter up to
general rigid rotations and translations of the curve as
the whole.

Furthermore, substituting the relations κ = ‖T̂′‖/v and ρ = 1/κ
into the latter equation, one finds (see Figure 12.11, left panel) that

a = aT T̂ + aNN̂,

aT = v′ = T̂ · a =
v · a

v
,

aN = κv2 =
v2

ρ
=
‖v × a‖

v
.

Definition 12.17. (Tangential and Normal Accelerations).
Scalar projections aT and aN of the acceleration vector onto the unit
tangent and normal vectors at any point of the trajectory of motion are
called tangential and normal accelerations, respectively.

The tangential acceleration aT determines the rate of change of
a particle’s speed, while the normal acceleration appears only when
the particle makes a “turn.” In particular, a circular motion with a
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constant speed, v = v0, has no tangential acceleration, aT = 0, and
the normal acceleration is constant, aN = v2

0/R, where R is the circle
radius.

To gain an intuitive understanding of the tangential and normal
accelerations, consider a car moving along a road. The speed of the car
can be changed by pressing the gas or brake pedals. When one of these
pedals is suddenly pressed, one can feel a force along the direction of
motion of the car (the tangential direction). The car speedometer also
shows that the speed changes, indicating that this force is due to the ac-
celeration along the road (i.e., the tangential acceleration aT = v′ �= 0).
When the car moves along a straight road with a constant speed, its
acceleration is 0. When the road takes a turn, the steering wheel must
be turned in order to keep the car on the road, while the car main-
tains a constant speed. In this case, one can feel a force normal to
the road. It is larger for sharper turns (larger curvature or smaller
curvature radius) and also grows when the same turn is passed with a
greater speed. This force is due to the normal acceleration, aN = v2/ρ,
and is called a centrifugal force. When making a turn, the car does not
slide off the road as long as the friction force between the tires and the
road compensates for the centrifugal force. The maximal friction force
depends on the road and tire conditions (e.g., a wet road and worn
tires reduce substantially the maximal friction force). The centrifugal
force is determined by the speed (the curvature of the road is fixed by
the road shape). So, for a high enough speed, the centrifugal force can
no longer be compensated for by the friction force and the car would
skid off the road. For this reason, suggested speed limit signs are often
placed at highway exits. If one drives a car on a highway exit with
a speed twice as high as the suggested speed, the risk of skidding off
the road is quadrupled, not doubled, because the normal acceleration
aN = v2/ρ quadruples when the speed v is doubled.

Example 12.11. A road has a parabolic shape, y = x2/(2R), where
(x, y) are coordinates of points of the road and R is a constant (all
measured in units of length, e.g., meters). A safety assessment requires
that the normal acceleration on the road should not exceed a threshold
value am (e.g., meters per second squared) to avoid skidding off the
road. If a car moves with a constant speed v0 along the road, find the
portion of the road where the car might skid off the road.

Solution: The normal acceleration of the car as a function of position
(not time!) is aN(x) = κ(x)v2

0. The curvature of the graph y = x2/(2R)
is κ(x) = (1/R)[1+(x/R)2]−3/2. The maximal curvature and hence the
maximal normal acceleration are attained at x = 0. So, if the speed
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is such that aN(0) = v2
0/R < am, no accident can happen. Otherwise,

the inequality aN(x) ≤ am yields

v2
0

R

1
[1 + (x/R)2]3/2 ≤ am ⇒ |x| ≤ R

√
ν − 1 , ν =

( v2
0

Ram

)2/3
.

Here the constant ν always exceeds 1 if aN(0) = v2
0/R > am. The car

can skid off the road when moving on its portion corresponding to the
interval −R(ν − 1)1/2 ≤ x ≤ R(ν − 1)1/2. �

84.2. Frenet-Serret Formulas. The shape of a space curve as a point set
is independent of a parameterization of the curve. A natural question
arises: What parameters of the curve determine its shape? Suppose
the curve is smooth enough so that the unit tangent vector T̂(s) and its
derivative T̂′(s) can be defined as functions of the arc length s counted
from an endpoint of the curve. Let N̂(s) be the unit normal vector of
the curve.

Definition 12.18. (Binormal Vector).
Let T̂ and N̂ be the unit tangent and normal vectors at a point of a
curve. The unit vector B̂ = T̂×N̂ is called the binormal (unit) vector.

So, with every point of a smooth curve, one can associate a triple
unit of mutually orthogonal vectors so that one of them is tangent to
the curve while the other two span the plane normal to the tangent
vector (normal to the curve). By a suitable rotation, the triple of
vectors T̂, N̂, and B̂ can be oriented parallel to the axes of any given
coordinate system, that is, parallel to êx, êy, and êz, respectively (note
that êx× êy = êz; this is why the binormal is defined as T̂× N̂, not as
N̂× T̂ = −T̂× N̂). The orientation of the unit tangent, normal, and
binormal vectors relative to some coordinate system depends on the
point of the curve. The triple of these vectors can only rotate as the
point slides along the curve (the vectors are mutually orthogonal and
unit at any point). Therefore, the rates with respect to the arc length
at which these vectors change must be characteristic for the shape of
the curve (see Figure 12.11, right panel).

By the definition of the curvature, T̂′(s) = κ(s)N̂(s). Next, con-
sider the rate:

B̂′ = (T̂× N̂)′ = T̂′ × N̂ + T̂× N̂′ = T̂× N̂′

because T̂′(s) is parallel to N̂(s). It follows from this equation that
B̂′ is perpendicular to T̂, and, since B̂ is a unit vector, its derivative
must also be perpendicular to B̂. Thus, B̂′ must be parallel to N̂.
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This conclusion establishes the existence of another scalar quantity
that characterizes the curve shape.

Definition 12.19. (Torsion of a Curve).
Let N̂(s) and B̂(s) be unit normal and binormal vectors of the curve
as functions of the arc length s. Then

dB̂(s)
ds

= −τ(s)N̂(s)

and the number τ(s) is called the torsion of the curve.

By definition, the torsion is measured in units of a reciprocal length,
just like the curvature, because the unit vectors T̂, N̂, and B̂ are
dimensionless.

At any point of a curve, the binormal B̂ is perpendicular to the
osculating plane. So, if the curve is planar, then B̂ does not change
along the curve, B̂′(s) = 0, because the osculating plane at any point
coincides with the plane in which the curve lies. Thus, the torsion is a
local numerical characteristic that determines how fast the curve devi-
ates from the osculating plane while bending in it with some curvature
radius.

It follows from the relation N̂ = B̂× T̂ (compare êy = êz× êx) that

N̂′ = (B̂× T̂)′ = B̂′× T̂ + B̂× T̂′ = −τN̂× T̂ + κB̂× N̂ = τB̂− κT̂ ,

where the definitions of the torsion and curvature have been used. The
obtained rates of the unit vectors are known as the Frenet-Serret for-
mulas:

T̂′(s) = κ(s)N̂(s) ,(12.9)

N̂′(s) = −κ(s)T̂(s) + τ(s)B̂(s) ,(12.10)

B̂′(s) = −τ(s)N̂(s) .(12.11)

Suppose that the vectors T̂(0), N̂(0), and B̂(0) are given at an initial
point of the curve. Then T̂(s), N̂(s), and B̂(s) are uniquely deter-
mined by solving the Frenet-Serret equations, provided the curvature
and torsion are given as functions of the arc length. This establishes a
fundamental theorem about the shape of a space curve.

Theorem 12.9. (Shape of a Smooth Curve in Space).
A curve in space is determined by its curvature and torsion as functions
of the arc length up to rigid rotations and translations of the curve as
a whole.
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A curve with zero curvature and torsion is a straight line. Indeed,
in this case, the tangent, normal, and binormal vectors remain constant
along the curve, T̂(s) = T̂(0), N̂(s) = N̂(0), and B̂(s) = B̂(0); that
is, it has a constant unit tangent vector, which is the characteristic
property of a straight line.

Example 12.12. Prove that a curve with a constant curvature κ(s) =
κ0 �= 0 and zero torsion τ(s) = 0 is a circle (or its portion) of radius
R = 1/κ0.

Solution: Let the coordinate system be set so that T(0) = êx,
N(0) = êy, and B̂(0) = êz. Since the torsion is 0, the binormal
does not change along the curve, B̂(s) = êz. Any unit vector T̂ in
the xy plane can be written as T̂ = 〈cos ϕ, sin ϕ, 0〉, where ϕ = ϕ(s)
such that ϕ(0) = 0. Then a unit vector N̂ perpendicular to T̂ such
that T̂ × N̂ = B̂ = êz must have the form N̂ = 〈− sin ϕ, cos ϕ, 0〉.
Equation (12.9) gives T̂′ = ϕ′N̂ = κ0N̂ and therefore ϕ′(s) = κ0 or
ϕ(s) = κ0s. Let r(s) = 〈x(s), y(s), 0〉 be a natural parameterization of
the curve. It follows from the definition of the arc length parameter s
that r′(s) = T̂(s) (see the relation above (12.4)). Hence,

r′(s) = 〈cos(κ0s), sin(κ0s), 0〉 ⇒
r(s) = r0 + 〈κ−1

0 sin(κ0s),−κ−1
0 cos(κ0s), 0〉,

where r0 = 〈x0, y0, z0〉. Thus, the curve lies in the plane z = z0 and
(x(s) − x0)2 + (y(s) − y0)2 = R2, where R = 1/κ0, for all values of s;
that is, the curve is a circle (or its portion) of radius R. �

Theorem 12.10. (Torsion of a Curve).
The torsion of a curve traced out by r(t) is given by

τ(t) =
(r′(t)× r′′(t)) · r′′′(t)
‖r′(t)× r′′(t)‖2 .

Proof. Put ‖r′(t)‖ = v(t) (if s = s(t) is the arc length as a function
of t, then s′ = v). By (12.6) and the definition of the curvature,

(12.12) r′′ = v′T̂ + κv2N̂ ,

and by (12.7) and the definition of the binormal,

(12.13) r′ × r′′ = vT̂× r′′ = κv3B̂.

Differentiation of both sides of (12.12) gives

r′′′ = v′′T̂ + v′T̂′ + (κ′v2 + 2κvv′)N̂ + κv2N̂′.
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The derivatives T̂′(t) and N̂′(t) are found by making use of the differen-
tiation rule d/ds = (1/s′(t))(d/dt) = (1/v)(d/dt) in the Frenet-Serret
equations (12.9) and (12.10):

T̂′ = κvN̂ , N̂′ = −κvT̂ + τvB̂ .

Therefore,

(12.14) r′′′ = (v′′ − κ2v3)T̂ + (3κvv′ + κ′v2)N̂ + κτv3B̂.

Since the tangent, normal, and binormal vectors are unit and orthogo-
nal to each other, (r′ × r′′) · r′′′ = κv3(r′ × r′′) · B̂ = κ2v6τ . Therefore,

τ =
(r′ × r′′) · r′′′

κ2v6

and the conclusion of the theorem follows from Theorem 12.7, κ =
‖r′ × r′′‖/v3. �
Remark. Relation (12.13) is often more convenient for calculating
the unit binormal vector rather than its definition. The unit tangent,
normal, and binormal vectors at a particular point r(t0) of the curve
r(t) are

T̂(t0) =
r′(t0)
‖r′(t0)‖ , B̂(t0) =

r′(t0)× r′′(t0)
‖r′(t0)× r′′(t0)‖ , N̂(t0) = B̂(t0)×T̂(t0).

84.3. Study Problems.

Problem 12.14. Find the position vector r(t) of a particle as a func-
tion of time t if the particle moves clockwise along a circular path of
radius R in the xy plane through r(0) = 〈R, 0, 0〉 with a constant speed
v0.

Solution: For a circle of radius R in the xy plane through the point
(R, 0, 0), r(t) = 〈R cos ϕ, R sin ϕ, 0〉, where ϕ = ϕ(t) such that ϕ(0) =
0. Then the velocity is v(t) = r′(t) = ϕ′〈−R sin ϕ, R cos ϕ, 0〉. Hence,
the condition ‖v(t)‖ = v0 yields R|ϕ′(t)| = v0 or ϕ(t) = ±(v0/R)t and

r(t) = 〈R cos(ωt),±R sin(ωt), 0〉 ,
where ω = v0/R is the angular velocity. The second component must be
taken with the minus sign because the particle revolves clockwise (the
second component should become negative immediately after
t = 0). �
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Problem 12.15. Let the particle position vector as a function of time
t be r(t) = 〈ln(t), t2, 2t〉, t > 0. Find the speed, tangential and normal
accelerations, the unit tangent, normal, and binormal vectors, and the
torsion of the trajectory at the point P0(0, 1, 2).

Solution: By Example 12.9, the velocity and acceleration vectors at
P0 are v = 〈1, 2, 2〉 and a = 〈−1, 2, 0〉. So the speed is v = ‖v‖ = 3.
The tangential acceleration is aT = v·a/v = 1. As v×a = 2〈−2,−1, 2〉,
the normal acceleration is aN = ‖v×a‖/v = 6/3 = 2. The unit tangent
vector is T̂ = v/v = (1/3)〈1, 2, 2〉 and the unit binormal vector is
B̂ = v× a/‖v× a‖ = (1/3)〈−2,−1, 2〉 as the unit vector along v× a.
Therefore, the unit normal vector is N̂ = T̂× B̂ = (1/9)v× (v× a) =
(1/3)〈−2, 2,−1〉. To find the torsion at P0, the third derivative at t = 0
has to be calculated, r′′′(1) = 〈2/t2, 0, 0〉|t=1 = 〈2, 0, 0〉 = b. Therefore,
τ(1) = (v × a) · b/‖v × a‖2 = −8/36 = −2/9. �

Problem 12.16. (Curves with Constant Curvature and Torsion).
Find the shape of a curve that has constant, nonzero curvature and
torsion.

Solution: Put κ(s) = κ0 �= 0 and τ(s) = τ0 �= 0. It follows from
(12.9) and (12.11) that the vector w = τT̂+κB̂ does not change along
the curve, w′(s) = 0. Indeed, because κ′(s) = τ ′(s) = 0, one has
w′ = τT̂′ + κB̂′ = (τκ − τκ)N̂ = 0. It is therefore convenient to
introduce new unit vectors orthogonal to N̂:

û = cos(α)T̂− sin(α)B̂ , ŵ = sin(α)T̂ + cos(α)B̂,

where cos α = κ0/ω, sin α = τ0/ω, and ω = (κ2
0 + τ 2

0 )1/2. By con-
struction, the unit vectors û, ŵ, and N̂ are mutually orthogonal unit
vectors, which is easy to verify by calculating the corresponding dot
products, û · û = ŵ · ŵ = 1 and û · ŵ = 0. Also,

û× ŵ = N̂ .

It has been established that the vector w(s) is constant along the curve
and so is its unit vector ŵ(s) = w(s)/ω. Therefore, one can always
choose the coordinate system so that

ŵ(s) = ŵ(0) = êz.

By differentiating the vector û and using the Frenet-Serret equations,

û′ = ωN .

Put û = 〈cos ϕ, sin ϕ, 0〉, where ϕ = ϕ(s). Then the unit normal vector
is N̂ = û × ŵ = 〈− sin ϕ, cos ϕ, 0〉 and û′ = ϕ′N̂. Hence, ϕ′(s) = ω
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or ϕ(s) = ωs (the integration constant is set to 0; see Example 12.12).
Expressing the vector T̂ via û and ŵ,

T̂ = cos(α)û + sin(α)ŵ ,

one infers (compare Example 12.12)

r′(s) = T̂(s) =
〈κ0

ω
cos(ωs),

κ0

ω
sin(ωs),

τ0

ω

〉
,

where r(s) is a natural parameterization of the curve. The integration
of this equation gives

r(s) = r0 + 〈R sin(ωs), −R cos(ωs), hs〉 , R =
κ0

ω2 , h =
τ0

ω
,

where ω = (κ2
0 + τ 2

0 )1/2. This is a helix of radius R whose axis goes
through the point r0 parallel to the z axis; the helix climbs along its
axis by 2πh/ω per each turn. �
Remark. A curve in a neighborhood of its particular point P0 can be
well approximated by a helix through that point whose curvature and
torsion coincide with the curvature and torsion of the curve at P0. Such
an approximation is better than the approximation by an osculating
circle because the latter does not take into account the rate at which
the curve deviates from the osculating plane (which is determined by
the torsion).

Problem 12.17. (Motion in a Constant Magnetic Field, Revisited).
The force acting on a charged particle moving in the magnetic field B is
given by F = (e/c)v×B, where e is the electric charge of the particle,
c is the speed of light, and v is its velocity. Show that the trajectory of
the particle in a constant magnetic field is a helix whose axis is parallel
to the magnetic field.

Solution: In contrast to Study Problem 12.10, here the shape of the
trajectory is to be obtained directly from Newton’s second law with
arbitrary initial conditions. Choose the coordinate system so that the
magnetic field is parallel to the z axis, B = Bêz, where B is the
magnitude of the magnetic field. Newton’s law of motion, ma = F,
where m is the mass of the particle, determines the acceleration, a =
µv×B = µBv× êz, where µ = e/(mc). First, note that a3 = êz ·a = 0.
Hence, v3 = v‖ = const. Second, the acceleration, and velocity remain
orthogonal during the motion, and therefore the tangential acceleration
vanishes, aT = v·a = 0. Hence, the speed of the particle is a constant of
motion, v = v0 (because v′ = aT = 0). Put v = v⊥ + v‖êz, where v⊥ is
the projection of v onto the xy plane. Since ‖v‖ = v0, the magnitude of
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v⊥ is also constant, ‖v⊥‖ = v⊥ = (v2
0−v2

‖)
1/2. The velocity vector may

therefore be written in the form v = 〈v⊥ cos ϕ, v⊥ sin ϕ, vz0〉, where ϕ =
ϕ(t). Taking the derivative a = v′ and substituting it into Newton’s
equation, one finds ϕ′(t) = µB or ϕ(t) = µBt + ϕ0. Integration of the
equation r′ = v yields the trajectory of motion:

r(t) = r0 + 〈R sin(ωt + ϕ0),−R cos(ωt + ϕ0), v‖t〉,

where ω = eB/(mc) is the so-called cyclotron frequency and R =
v⊥/ω. This equation describes a helix of radius R whose axis goes
through r0 parallel to the z axis. So a charged particle moves along a
helix that winds about force lines of the magnetic field. The particle
revolves in the plane perpendicular to the magnetic field with frequency
ω = eB/(mc). In each turn, the particle moves along the magnetic
field a distance h = 2πv‖/ω. In particular, if the initial velocity is
perpendicular to the magnetic field (i.e., v‖ = 0), then the trajectory
is a circle of radius R. �

Problem 12.18. Suppose that the force acting on a particle of mass
m is proportional to the position vector of the particle (such forces
are called central). Prove that the angular momentum of the particle,
L = mr× v, is a constant of motion (i.e., dL/dt = 0).

Solution: Since a central force F is parallel to the position vector
r, their cross product vanishes, r × F = 0. By Newton’s second law,
ma = F and hence mr× a = 0. Therefore,

dL
dt

= m(r× v)′ = m(r′ × v + r× v′) = mr× a = 0,

where r′ = v, v = a, and v × v = 0 have been used. �

Problem 12.19. (Kepler’s Laws of Planetary Motion). Newton’s law of
gravity states that two masses m and M at a distance r are attracted
by a force of magnitude GmM/r2, where G is the universal constant
(called Newton’s constant). Prove Kepler’s laws of planetary motion:
1. A planet revolves around the Sun in an elliptical orbit with the Sun
at one focus.
2. The line joining the Sun to a planet sweeps out equal areas in equal
times.
3. The square of the period of revolution of a planet is proportional to
the cube of the length of the major axis of its orbit.
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Solution: Let the Sun be at the origin of a coordinate system and
let r be the position vector of a planet. Let r̂ = r/r be the unit vector
parallel to r. Then the gravitational force is

F = −GMm

r2 r̂ = −GMm

r3 r,

where M is the mass of the Sun and m is the mass of a planet. The
minus sign is necessary because an attractive force must be opposite
to the position vector. By Newton’s second law, the trajectory of a
planet satisfies the equation ma = F and hence

a = −GM

r3 r.

The gravities force is a central force, and, by Study Problem 12.18, the
vector r × v = l is a constant of motion. One has v = r′ = (rr̂)′ =
r′r̂+rr̂′. Using this identity, the constant of motion can also be written
as

l = r× v = rr̂× v = r(r′r̂× r̂ + rr̂× r̂′) = r2(r̂× r̂′).

Using the rule for the double cross product (see Study Problem 11.17),
one infers that

a× l = −GM

r2 r̂× l = −GM r̂× (r̂× r̂′) = GM r̂′,

where r̂ · r̂ = 1 has been used. On the other hand,

(v × l)′ = v′ × l + v × l′ = a× l

because l′ = 0. It follows from these two equations that

(v × l)′ = GM r̂′ =⇒ v × l = GM r̂ + c,

where c is a constant vector. The motion is characterized by two
constant vectors l and c. It occurs in the plane through the origin
that is perpendicular to the constant vector l because l = r × v must
be orthogonal to r. It is therefore convenient to choose the coordinate
system so that l is parallel to the z axis and c to the x axis as shown
in Figure 12.12 (left panel).

The vector r lies in the xy plane. Let θ be the polar angle of r (i.e.,
r · c = rc cos θ, where c = ‖c‖ is the length of c). Then

r · (v × l) = r · (GM r̂ + c) = GMr + rc cos θ.

On the other hand, using a cyclic permutation in the triple product,

r · (v × l) = l · (r× v) = l · l = l2,



120 12. VECTOR FUNCTIONS

Figure 12.12. Left: The setup of the coordinate sys-
tem for the derivation of Kepler’s first law.
Right: An illustration to the derivation of Kepler’s sec-
ond law.

where l = ‖l‖ is the length of l. The comparison of the last two
equations yields the equation for the trajectory:

l2 = r(GM + b cos θ) =⇒ r =
ed

1 + e cos θ
,

where d = l2/c and e = c/(GM). This is the polar equation of a
conic section with focus at the origin and eccentricity e (see Calculus
II). Thus, all possible trajectories of any massive body in a solar sys-
tem are conic sections! This is a quite remarkable result. Parabolas
and hyperbolas do not correspond to a periodic motion. So a planet
must follow an elliptic trajectory with the Sun at one focus. All ob-
jects coming to the solar system from outer space (i.e., those that are
not confined by the gravitational pull of the Sun) should follow either
parabolic or hyperbolic trajectories.

To prove Kepler’s second law, put r̂ = 〈cos θ, sin θ, 0〉 and hence
r̂′ = 〈−θ′ sin θ, θ′ cos θ, 0〉. Therefore,

l = r2(r̂× r̂′) = 〈0, 0, r2θ′〉 =⇒ l = r2θ′ .

The area of a sector with angle dθ swept by r is dA = 1
2r

2 dθ (see
Calculus II; the area bounded by a polar graph r = r(θ)). Hence,

dA

dt
=

1
2

r2dθ

dt
=

l

2
.
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For any moments of time t1 and t2, the area of the sector between r(t1)
and r(t2) is

A12 =
∫ t2

t1

dA

dt
dt =

∫ t2

t1

l

2
dt =

l

2
(t2 − t1).

Thus, the position vector r sweeps out equal areas in equal times (see
Figure 12.12, right panel).

Kepler’s third law follows from the last equation. Indeed, the entire
area of the ellipse A is swept when t2 − t1 = T is the period of the
motion. If the major and minor axes of the ellipse are 2a and 2b,
respectively, a > b, then A = πab = lT/2 and T = 2πab/l. Now
recall that ed = b2/a for an elliptic conic section (see Calculus II) or
b2 = eda = l2a/(GM). Hence,

T 2 =
4π2a2b2

l2
=

4π2

GM
a3.

Note that the proportionality constant 4π2/(GM) is independent of the
mass of a planet; therefore, Kepler’s laws are universal for all massive
objects trapped by the Sun (planets, asteroids, and comets). �

84.4. Exercises. (1) Find the normal and tangential accelerations of
a particle with the position vector r(t) = 〈t2 + 1, t3, t2 − 1〉 when the
particle is at the least distance from the origin.

(2) Find the tangential and normal accelerations of a particle with
the position vector r(t) = 〈R sin(ωt+ϕ0),−R cos(ωt+ϕ0), v0t〉, where
R, ω, ϕ0, and v0 are constants (see Study Problem 12.17).

(3) The shape of a winding road can be approximated by the graph
y = L cos(x/L), where the coordinates are in miles and L = 1 mile.
The condition of the road is such that if the normal acceleration of a
car on it exceeds 10 m/s2, the car may skid off the road. Recommend
a speed limit for this portion of the road.

(4) Suppose a particle moves so that its tangential acceleration
is constant, while the normal acceleration remains 0. What is the
trajectory of the particle?

(5) Suppose a particle moves so that its tangent acceleration re-
mains 0, while the normal acceleration is constant. What is the trajec-
tory of the particle?
Hint: Prove first that the acceleration of the particle has the form
a = b × v, where v is the velocity and b is a vector that can depend
on time. Use this fact to prove that the torsion of the trajectory is
constant. Then see Study Problem 12.16.





CHAPTER 13

Differentiation of Multivariable
Functions

85. Functions of Several Variables

The concept of a function of several variables can be qualitatively
understood from simple examples in everyday life. The temperature in
a room may vary from point to point. A point in space can be defined
by an ordered triple of numbers that are coordinates of the point in
some coordinate system, say, (x, y, z). Measurements of the tempera-
ture at every point from a set D in space assign a real number T (the
temperature) to every point of D. The dependence of T on coordi-
nates of the point is indicated by writing T = T (x, y, z). Similarly,
the concentration of a chemical can depend on a point in space. In
addition, if the chemical reacts with other chemicals, its concentration
at a point may also change with time. In this case, the concentration
C depends on four variables—three spatial coordinates and the time
t—C = C(x, y, z, t). In general, if the value of a quantity f depends
on values of several other quantities, say, x1, x2,..., xn, this depen-
dence is indicated by writing f = f(x1, x2, ..., xn). In other words,
f = f(x1, x2, ..., xn) indicates a rule that assigns a number f to each
ordered n-tuple of real numbers (x1, x2, ..., xn). Each number in the
n-tuple may be of a different nature. In the above example, the con-
centration depends on ordered quadruples (x, y, z, t), where x, y, and
z are the coordinates of a point in space and t is time.

Definition 13.1. (Real-Valued Function of Several Variables).
Let D be a set of ordered n-tuples of real numbers (x1, x2, ..., xn). A
function f of n variables is a rule that assigns to each n-tuple in the
set D a unique real number denoted by f(x1, x2, ..., xn). The set D is
the domain of f , and its range is the set of values that f takes on it,
that is, {f(x1, x2, ..., xn) | (x1, x2, ..., xn) ∈ D}.

The rule may be defined by different means. If D is a finite set,
a function f can be defined by a table (Pi, f(Pi)), where Pi ∈ D, i =
1, 2, ..., N , are elements (ordered n-tuples) of D, and f(Pi) is the value
of f at Pi. A function f can be defined geometrically. For example, the

123
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height of a mountain relative to sea level is a function of its position on
the globe. So the height is a function of two variables, the longitude and
latitude. A function can be defined by an algebraic rule that prescribes
algebraic operations to be carried out with real numbers in any n-tuple
to obtain the value of the function. For example, f(x, y, z) = x2−y+z3.
The value of this function at (1, 2, 3) is f(1, 2, 3) = 12 − 2 + 33 = 28.
Unless specified otherwise, the domain D of a function defined by an
algebraic rule is the set of n-tuples for which the rule makes sense.

Example 13.1. Find the domain and the range of the function of
two variables f(x, y) = ln(1− x2 − y2).

Solution: The logarithm is defined for any strictly positive number.
Therefore, the doublets (x, y) must be such that 1 − x2 − y2 > 0 or
x2 +y2 < 1. Hence, D = {(x, y) |x2 +y2 < 1}. Since any doublet (x, y)
can be uniquely associated with a point on a plane, the set D can be
given a geometrical description as a disk of radius 1 whose boundary,
the circle x2 + y2 = 1, is not included in D. For any point in the
interior of the disk, the argument of the logarithm lies in the interval
0 ≤ 1 − x2 − y2 < 1. So the range of f is the set of values of the
logarithm in the interval (0, 1], which is −∞ < f ≤ 0. �

Example 13.2. Find the domain and the range of the function of
three variables f(x, y, z) = x2

√
z − x2 − y2.

Solution: The square root is defined only for nonnegative numbers.
Therefore, ordered triples (x, y, z) must be such that z − x2 − y2 ≥ 0,
that is, D = {(x, y, z) | z ≥ x2+y2}. This set can be given a geometrical
description as a point set in space because any triple can be associated
with a unique point in space. The equation z = x2 + y2 describes a cir-
cular paraboloid. So the domain is the spatial (solid) region containing
points that lie on or above the paraboloid. The function is nonnega-
tive. By fixing x and y and increasing z, one can see that the value of
f can be any positive number. So the range is 0 ≤ f(x, y, z) <∞. �

85.1. The Graph of a Function of Two Variables. The graph of a function
of one variable f(x) is the set of points of a plane {(x, y) | y = f(x)}.
The domain D is a set of points on the x axis. The graph is obtained
by moving a point of the domain parallel to the y axis by an amount
determined by the value of the function y = f(x). The graph provides a
useful picture of the behavior of the function. The idea can be extended
to functions of two variables.
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Definition 13.2. (Graph of a Function of Two Variables).
The graph of a function f(x, y) with domain D is the point set in space

{(x, y, z) | z = f(x, y), (x, y) ∈ D}.
The domain D is a set of points in the xy plane. The graph is

then obtained by moving each point of D parallel to the z axis by an
amount equal to the corresponding value of the function z = f(x, y). If
D is a portion of the plane, then the graph of f is generally a surface.
One can think of the graph as “mountains” of height f(x, y) on the xy
plane.

Example 13.3. Sketch the graph of the function f(x, y) =√
1− (x/2)2 − (y/3)2.

Solution: The domain is the portion of the xy plane (x/2)2+(y/3)2 ≤
1; that is, it is bounded by the ellipse with semiaxes 2 and 3. The graph
is the surface defined by the equation z =

√
1− (x/2)2 − (y/3)2. By

squaring both sides of this equation, one finds (x/2)2 + (y/3)2 + z2 =
1, which defines an ellipsoid. The graph is its upper portion with
z ≥ 0. �

The concept of the graph is obviously hard to extend to functions
of more than two variables. The graph of a function of three variables
would be a three-dimensional surface in four-dimensional space. So the
qualitative behavior of a function of three variables should be studied
by different graphical means.

85.2. Level Curves. When visualizing the shape of quadric surfaces,
the method of cross sections by coordinate planes has been helpful. It
can also be applied to visualize the shape of the graph z = f(x, y).
In particular, consider the cross sections of the graph with horizontal
planes z = k. The curve of intersection is defined by the equation
f(x, y) = k. Continuing the analogy that f(x, y) defines the height of
a mountain, a hiker traveling along the path f(x, y) = k does not have
to climb or descend as the height along the path remains constant.

Definition 13.3. (Level Curves).
The level curves of a function f of two variables are the curves along
which the function remains constant; that is, they are determined by
the equation f(x, y) = k, where k is a number from the range of f .

Definition 13.4. (Contour Map).
A collection of level curves is called a contour map of the function f .

The contour map of the function in Example 13.3 consists of ellipses.
Indeed, the range is the interval [0, 1]. For any k ∈ [0, 1], a level curve
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is an ellipse, 1 − (x/2)2 + (y/3)2 = k2 or (x/a)2 + (y/b)2 = 1, where
a = 2

√
1− k2 and b = 3

√
1− k2.

A contour map is a useful tool for studying the qualitative behavior
of a function. Consider the contour map that consists of level curves
Ci, i = 1, 2, ..., f(x, y) = ki, where ki+1 − ki = ∆k is fixed. The
values of the function along the neighboring curves Ci and Ci+1 differ
by ∆k. So, in the region where the level curves are dense (close to one
another), the function f(x, y) changes rapidly. Indeed, let P be a point
of Ci and let ∆s be the distance from P to Ci+1 along the normal to
Ci. Then the slope of the graph of f or the rate of change of f at P
in that direction is ∆k/∆s. Thus, the closer the curves Ci are to one
another, the faster the function changes. Such contour maps are used
in topography to indicate the steepness of mountains on maps.

85.3. Level Surfaces. In contrast to the graph of a function, the method
of level curves does not require a higher-dimensional space to study the
behavior of a function of two variables. So the concept can be extended
to functions of three variables.

Definition 13.5. (Level Surface).
The level surfaces of a function f of three variables are the surfaces
along which the function remains constant; that is, they are determined
by the equation f(x, y, z) = k, where k is a number from the range of f .

The shape of the level surfaces may be studied, for example, by the
method of cross sections with coordinate planes. A collection of level
surfaces Si, f(x, y, z) = ki, ki+1− ki = ∆k, i = 1, 2, ..., can be depicted
in the domain of f . The closer the level surfaces Si are to one another,
the faster the function changes.

Example 13.4. Sketch and/or describe the level surfaces of the
function
f(x, y, z) = z/(1 + x2 + y2).

Solution: The domain is the entire space, and the range contains
all real numbers. The equation f(x, y, z) = k can be written in the
form z − k = k(x2 + y2), which defines a circular paraboloid whose
symmetry axis is the z axis and whose vertex is at (0, 0, k). For larger
k, the paraboloid rises faster. For k = 0, the level surface is the xy
plane. For k > 0, the level surfaces are paraboloids above the xy plane,
(i.e., they are concave downward). For k < 0, the paraboloids are below
the xy plane (i.e., they are concave upward). �
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85.4. Euclidean Spaces. When the number of variables is greater than
3, the geometrical visualization of the domain is not so simple. The
goal is achieved with the help of the concept of a higher-dimensional
Euclidean space. The plane and space are particular cases of two- and
three-dimensional Euclidean spaces.

With every ordered pair of numbers (x, y), one can associate a point
in a plane and its position vector relative to a fixed point (0, 0) (the
origin), r = 〈x, y〉. With every ordered triple of numbers (x, y, z), one
can associate a point in space and its position vector (again relative
to the origin (0, 0, 0)), r = 〈x, y, z〉. So the plane can be viewed as
the set of all two-component vectors; similarly, space is the set of all
three-component vectors. From this point of view, the plane and space
have characteristic common features. First, their elements are vectors.
Second, they are closed relative to addition of vectors and multiplica-
tion of vectors by a real number; that is, if a and b are elements of
space or a plane and c is a real number, then a + b and ca are also
elements of space (ordered triples of numbers) or a plane (ordered pairs
of numbers). Third, the norm or length of a vector ‖r‖ vanishes if and
only if the vector has zero components. Consequently, two elements
of space or a plane coincide if and only if the norm of their difference
vanishes, that is, a = b ⇔ ‖a − b‖ = 0. From this point of view,
there is no difference between a vector 〈a1, a2, a3〉 and an ordered triple
(a1, a2, a3) as they represent the very same point in space; that is, there
is no confusion in writing a = (a1, a2, a3). Finally, the dot product a ·b
of two elements is defined in the same way for two- or three-component
vectors (plane or space) so that ‖a‖2 = a · a. These observations can
be extended to ordered n-tuples for any n and lead to the notion of a
Euclidean space.

Definition 13.6. (Euclidean Space).
For each positive integer n, consider the set of all ordered n-tuples
of real numbers. For any two elements a = (a1, a2, ..., an) and b =
(b1, b2, ..., bn) and a number c, put

a + b = (a1 + b1, a2 + b2, ..., an + bn),
c a = (ca1, ca2, ..., can),

a · b = a1b1 + a2b2 + · · ·+ anbn,

‖a‖ =
√

a · a =
√

a2
1 + a2

2 + · · ·+ a2
n .

The set of all ordered n-tuples in which the addition, the multiplication
by a number, the dot product, and the norm are defined by these rules
is called an n-dimensional Euclidean space.
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Two points of a Euclidean space are said to coincide, a = b, if the
corresponding components are equal, that is, ai = bi for i = 1, 2, ..., n.
It follows that a = b if and only if ‖a − b‖ = 0. Indeed, by the
definition of the norm, ‖c‖ = 0 if and only if c = (0, 0, ..., 0). Put
c = a−b. Then ‖a−b‖ = 0 if and only if a = b. The number ‖a−b‖
is called the distance between points a and b of a Euclidean space.

The dot product in a Euclidean space has the same geometrical
properties as in two and three dimensions. The Cauchy-Schwarz in-
equality can be extended to any Euclidean space (cf. Theorem 11.3).

Theorem 13.1. (Cauchy-Schwarz Inequality).

|a · b| ≤ ‖a‖‖b‖
for any vectors a and b in a Euclidean space, and the equality is reached
if and only if a = tb for some number t.

Proof. Put a = ‖a‖ and b = ‖b‖, that is, a2 = a · a and similarly
for b. If b = 0, then b = 0, and the conclusion of the theorem holds.
For b �= 0 and any real variable t, ‖a− tb‖2 = (a− tb) · (a− tb) ≥ 0.
Therefore, a2 − 2tc + t2b2 ≥ 0, where c = a · b. The right side of this
inequality is a downward concave parabola with respect to t, which
attains its absolute minimum at t = c/b2. Since the inequality is valid
for any t, it is satisfied for t = b2/c, that is, a2− c2/b2 ≥ 0 or c2 ≤ a2b2

or |c| ≤ ab, which is the conclusion of the theorem. The inequality
becomes an equality if and only if ‖a− tb‖2 = 0 and hence if and only
if a = tb. �

It follows from the Schwarz inequality that a · b = s‖a‖‖b‖, where
s is a number such that |s| ≤ 1. So one can always put s = cos θ,
where θ ∈ [0, π]. If θ = 0, then a = tb for some positive t > 0
(i.e., the vectors are parallel), and a = tb, t < 0, when θ = π (i.e., the
vectors are antiparallel). The dot product vanishes when θ = π/2. This
allows one to define θ as the angle between vectors in any Euclidean
space: cos θ = a · b/(‖a‖‖b‖) much like in two and three dimensions.
Consequently, the triangle inequality (11.7) holds in a Euclidean space
of any dimension.

In what follows, the domain of a function of n variables is viewed
as a subset in an n-dimensional Euclidean space. It is also convenient
to adopt the vector notation of the argument:

f(x1, x2, ..., xn) = f(r) , r = (x1, x2, ..., xn) .

For example, the domain of the function f(r) = (1 − x2
1 − x2

2 − · · · −
x2

n)1/2 = (1−‖r‖2)1/2 is the set of points in the n-dimensional Euclidean
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space whose distance from the origin (the zero vector) does not exceed
1, D = {r | ‖r‖ ≤ 1}; that is, it is an n-dimensional ball of radius 1.
So the domain of a multivariable function defined by an algebraic rule
can be described by conditions on the components (coordinates) of the
ordered n-tuple r under which the rule makes sense.

85.5. Exercises. (1) Find and sketch the domain of each of the fol-
lowing functions:
(i) f(x, y) = ln(9− x2 − (y/2)2)
(ii) f(x, y) =

√
1− (x/2)2 − (y/3)2

(iii) f(x, y, z) = ln(1− z + x2 + y2)
(iv) f(x, y) = ln(9− x2 − (y/2)2)
(v) f(x, y, z) =

√
x2 − y2 − z2

(vi) f(t,x) = (t2 − ‖x‖2)−1, x = (x1, x2, ..., xn)
(2) For each of the following functions, sketch the graph and a

contour map:
(i) f(x, y) = x2 + 4y2

(ii) f(x, y) = xy
(iii) f(x, y) = x2 − y2

(iv) f(x, y) =
√

x2 + 9y2

(v) f(x, y) = sin x
(3) Describe and sketch the level surfaces of each of the following

functions:
(i) f(x, y, z) = x + 2y + 3z
(ii) f(x, y, z) = x2 + 4y2 + 9z2

(iii) f(x, y, z) = z + x2 + y2

(iv) f(x, y, z) = x2 + y2 − z2

(4) Explain how the graph z = g(x, y) can be obtained from the
graph of f(x, y) if
(i) g(x, y) = k + f(x, y), where k is a constant
(ii) g(x, y) = mf(x, y), where m is a nonzero constant
(iii) g(x, y) = f(x− a, y − b), where a and b are constants
(iv) g(x, y) = f(px, qy), where p and q are nonzero constants
Let f(x, y) = x2 + y2. Sketch the graphs of g(x, y) defined above.
Analyze carefully various cases for values of the constants, for example,
m > 0, m < 0, p > 1, 0 < p < 1, and p = −1.

86. Limits and Continuity

The function f(x) = sin(x)/x is defined for all reals except x = 0.
So the domain D of the function contains points arbitrarily close to
the point x = 0, and therefore the limit of f(x) can be studied as
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x → 0. It is known (see Calculus I) that sin(x)/x → 1 as x → 0. A
similar question can be asked for functions of several variables. For
example, the domain of the function f(x, y) = sin(x2 + y2)/(x2 + y2) is
the entire plane except the point (x, y) = (0, 0). If (x, y) �= (0, 0), then,
in contrast to the one-dimensional case, the point (x, y) may approach
(0, 0) along various paths. So the very notion that (x, y) approaches
(0, 0) needs to be accurately defined.

As noted before, the domain of a function f of several variables is
a set in n-dimensional Euclidean space. Two points x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn) coincide if and only if the distance

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

vanishes.

Definition 13.7. A point r is said to approach a fixed point r0 if
the distance ‖r−r0‖ tends to 0. The limit ‖r−r0‖ → 0 is also denoted
by r→ r0.

In the above example, the limit (x, y)→ (0, 0) means that
√

x2 + y2

→ 0 or x2 + y2 → 0. Therefore,
sin(x2 + y2)

x2 + y2 =
sin u

u
→ 1 as x2 + y2 = u→ 0.

Note that here the limit point (0, 0) can be approached from any di-
rection in the plane. This is not always so. For example, the do-
main of the function f(x, y) = sin(xy)/(

√
x +
√

y) is the first quad-
rant, including its boundaries except the point (0, 0). The points (0, 0)
and (−1,−1) are not in the domain of the function. However, the
limit of f as (x, y) → (0, 0) can be defined, whereas the limit of f as
(x, y) → (−1,−1) does not make any sense. The difference between
these two points is that any neighborhood of (0, 0) contains points of
the domain, while this is not so for (−1,−1). So the limit can be
defined only for some special class of points called limit points of a
set D.

Definition 13.8. (Limit Point of a Set).
A point r0 is said to be a limit point of a set D if any open ball Bδ =
{r | ‖r − r0‖ < δ} centered at r0 contains a point of D that does not
coincide with r0 if r0 ∈ D.

In other words, a limit point r0 of D may or may not be in D,
but it can always be approached from within the set D in the sense
that r → r0 and r ∈ D because, no matter how small δ is, one can
always find a point r ∈ D whose distance from r0 is less than δ. In the
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above example of D being the first quadrant, the limit (x, y) → (0, 0)
is understood as x2 + y2 → 0 while (x, y) �= (0, 0) and x ≥ 0, y ≥ 0.

86.1. Limits of Functions of Several Variables.

Definition 13.9. (Limit of a Function of Several Variables).
Let f be a function of several variables whose domain is a set D in a
Euclidean space. Let r0 be a limit point of D. Then the limit of f(r) as
r→ r0 is said to be a number f0 if, for every number ε > 0, there exists
a corresponding number δ > 0 such that if r ∈ D and 0 < ‖r−r0‖ < δ,
then |f(r)− f0| < ε. In this case, one writes

lim
r→r0

f(r) = f0.

The number |f(r)−f0| determines a deviation of the value of f from
the number f0. The existence of the limit means that no matter how
small ε is, there is a neighborhood Nδ(r0) of r0 in D, which contains all
points of D whose distance from r0 does not exceed a number δ, such
that the values of the function f in Nδ(r0) deviate from the limit value
f0 no more than ε, that is, f0−ε < f(r) < f0+ε for all r ∈ Nδ(r0) ⊂ D.

The use of this definition is illustrated by the following example.

Example 13.5. Show that

lim
(x,y,z)→(0,0,0)

(x2y + yz2 − 6z3) = 0.

Solution: The distance between r = (x, y, z) and the limit point
r0 = (0, 0, 0) is R = ‖r− r0‖ =

√
x2 + y2 + z2. Then |x| ≤ R, |y| ≤ R,

and |z| ≤ R. Consider the deviation of values of the function from the
limiting value f0 = 0:

|f(r)− f0| = |x2y + yz2 − 6z3| ≤ |x2y|+ |yz2|+ 6|z3| ≤ 8R3,

where the inequality |a ± b| ≤ |a| + |b| and |ab| = |a||b| have been
used. Now fix ε > 0. To establish the existence of δ > 0, note that
the inequality 8R3 < ε or R < 3

√
ε/2 guarantees that |f(r) − f0| < ε.

Therefore, δ = 3
√

ε/2. For example, put ε = 10−6. Then, in the interior
of a ball of radius δ = 0.005, the values of the function can deviate
from f0 = 0 no more than 10−6. �
Remark. Note that δ depends on ε and, in general, on the limit
point r0.

Remark. The definition of the limit guarantees that if the limit ex-
ists, then it does depend on a path along which the limit point may be
approached. Indeed, take any curve that ends at the limit point r0 and
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fix ε > 0. Then, by the existence of the limit f0, there is a ball of
radius δ = δ(ε, r0) > 0 centered at r0 such that the values of f lie in
the interval f0 − ε < f(r0) < f0 + ε for all points r in the ball and
hence for all points of the portion of the curve in the ball. Since ε can
be chosen arbitrarily small, the limit along any path leading to r0 must
be f0. This is to be compared with the one-dimensional analog: if the
limit of f(x) exists as x→ x0, then the right x→ x+

0 and left x→ x−
0

limits exist and are equal (and vice versa).

Properties of the Limit. The basic properties of limits of functions of one
variable discussed in Calculus I are extended to the case of functions
of several variables.

Theorem 13.2. (Properties of the Limit).
Let f and g be functions of several variables that have a common
domain. Let c be a number. Suppose that limr→r0 f(r) = f0 and
limr→r0 g(r) = g0. Then the following properties hold:

lim
r→r0

(cf(r)) = c lim
r→r0

f(r) = cf0,

lim
r→r0

(g(r) + f(r)) = lim
r→r0

g(r) + lim
r→r0

f(r) = g0 + f0,

lim
r→r0

(g(r)f(r)) = lim
r→r0

g(r) lim
r→r0

f(r) = g0f0,

lim
r→r0

g(r)
f(r)

=
limr→r0 g(r)
limr→r0 f(r)

=
g0

f0
, if f0 �= 0.

The proof of these properties follows the same line of reasoning as
in the case of functions of one variable and is left to the reader as an
exercise.

Squeeze Principle. The solution to Example 13.5 employs a rather
general strategy to verify whether a particular number f0 is the limit
of f(r) as r→ r0.

Corollary 13.1. (Simplified Squeeze Principle).
If there exists a continuous function h of one variable such that

|f(r)− f0| ≤ h(R)→ 0 as ‖r− r0‖ = R→ 0+,

then limr→r0 f(r) = f0.

In Example 13.5, h(R) = 8R3. In general, the condition h(R)→ 0
as R→ 0+ implies that, for any ε > 0, there is an interval 0 < R < δ(ε)
in which h(R) < ε, where the number δ can be found by solving the
equation h(δ) = ε. Hence, |f(r)−f0| < ε whenever ‖r−r0‖ = R < δ(ε).
The corollary is also a consequence of a more general result called the
squeeze principle.
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Theorem 13.3. (Squeeze Principle).
Let the functions of several variables g, f , and h have a common do-
main D such that g(r) ≤ f(r) ≤ h(r) for any r ∈ D. If the limits of
g(r) and h(r) as r→ r0 exist and equal a number f0, then the limit of
f(r) as r→ r0 exists and equals f0, that is,

g(r) ≤ f(r) ≤ h(r) and lim
r→r0

g(r) = lim
r→r0

h(r) = f0 ⇒ lim
r→r0

f(r) = f0.

Proof. From the condition of the theorem, it follows that 0 ≤ f(r)−
g(r) ≤ h(r) − g(r). Put F (r) = f(r) − g(r) and H(r) = h(r) − g(r).
Then 0 ≤ F (r) ≤ H(r) implies |F (r)| ≤ |H(r)| (the positivity of F
is essential for this conclusion). By the basic properties of the limit,
H(r) → 0 as r → r0. Hence, for any ε > 0, there is a corresponding
number δ such that 0 ≤ |F (r)| ≤ |H(r)| < ε whenever 0 < ‖r− r0‖ <
δ. This inequality also implies that limr→r0 F (r) = 0. By the basic
properties of the limit, it is then concluded that f(r) = F (r) + g(r)→
0 + f0 = f0 as r→ r0. �

The simplified squeeze principle is a particular case of this theorem
because the condition |f(r)− f0| ≤ h(R) is equivalent to f0 − h(R) ≤
f(r) ≤ f0 + h(R).

Example 13.6. Show that

lim
(x,y)→(0,0)

f(x, y) = 0, where f(x, y) =
x3y − 3x2y2

x2 + y2 + x4 .

Solution: Let R =
√

x2 + y2 (the distance from the limit point
(0, 0)). Then |x| ≤ R and |y| ≤ R. Therefore,

|x3y − 3x2y2|
x2 + y2 + x4 ≤

|x|3|y|+ 3x2y2

x2 + y2 + x4 ≤
4R4

R2 + x4 ≤ 4R2 1
1 + (x4/R2)

≤ 4R2.

It follows from this inequality that −4(x2 + y2) ≤ f(x, y) ≤ 4(x2 + y2),
and, by the squeeze principle, f(x, y) must tend to 0 because ±4(x2 +
y2) = ±4R2 → 0 as R→ 0. In the definition of the limit, for any ε > 0,
the corresponding number δ is δ =

√
ε/2. �

86.2. Continuity of Functions of Several Variables.

Definition 13.10. (Continuity).
A function f of several variables with domain D is said to be continuous
at a point r0 ∈ D if

lim
r→r0

f(r) = f(r0) .

The function f is said to be continuous on D if it is continuous at
every point of D.
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Let f(x, y) = 1 if y ≥ x and let f(x, y) = 0 if y < x. The function
is continuous at every point (x0, y0) if y0 �= x0. Indeed, if y0 > x0, then
f(x0, y0) = 1. On the other hand, for every such point one can find a
neighborhood (x−x0)+(y−y0)2 < δ2 (a disk of radius δ > 0 centered at
(x0, y0)) that lies in the region y > x. Therefore, |f(r)−f(r0)| = 1−1 =
0 < ε for any ε > 0 in this disk, that is, limr→r0 f(r) = f(r0) = 1. The
same line of arguments applies to establish the continuity of f at any
point (x0, y0), where y0 < x0. If r0 = (x0, x0) that is, the point lies
on the line y = x), then f(r0) = 1. Any disk centered at such r0 is
split into two parts by the line y = x. In one part (y ≥ x), f(r) = 1,
whereas in the other part (y < x), f(r) = 0. So, for 0 < ε < 1, there
is no disk of radius δ > 0 in which |f(r) − f(r0)| = |f(r) − 1| < ε
because |f(r)− 1| = 1 for y < x in any such disk. The function is not
continuous along the line y = x in its domain.

Theorem 13.4. (Properties of Continuous Functions).
If f and g are continuous on D and c is a number, then cf(r), f(r) +
g(r), and f(r)g(r) are continuous on D, and f(r)/g(r) is continuous
at any point on D for which g(r) �= 0.

This theorem is a simple consequence of the basic properties of the
limit.

The use of the definition to establish the continuity of a function
defined by an algebraic rule is not convenient. The following two the-
orems are helpful when studying the continuity of a given function.

For an ordered n-tuple r = (x1, x2, ..., xn), the function xk1
1 xk2

2 · · ·xkn
n ,

where k1, k2, ..., kn are nonnegative integers, is called a monomial of de-
gree N = k1 + k2 + · · ·+ kn. For example, for two variables, monomials
of degree N = 3 are x3, x2y, xy2, and y3. A function f that is a linear
combination of monomials is called a polynomial function. The ratio
of two polynomial functions is called a rational function.

Theorem 13.5. (Continuity of Polynomial and Rational Functions).
Let f and g be the polynomial functions of several variables. Then
they are continuous everywhere, and the rational function f(r)/g(r) is
continuous at any point r0 if g(r0) �= 0.

Proof. A polynomial function in which the argument (x1, x2, ..., xn) is
changed to (x1+a1, x2+a2, ..., xn+an), where a1, a2, ..., an are constants,
is also a polynomial function. So it is sufficient to establish continuity
at any particular point, say, the origin. Also, by the basic properties of
the limit, the continuity of monomial functions implies the continuity
of polynomial functions. The monomial of degree N = 0 is a constant
function that is continuous. For a monomial function f of degree N > 0
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and origin r0, f(r0) = 0, one has |f(r) − f(r0)| = |f(r)| ≤ RN → 0
as R → 0 because |xi| ≤ R =

√
x2

1 + x2
2 + · · ·x2

n for any element
of the n-tuple. By the squeeze principle, f(r) → 0 = f(r0). The
rational function f(r)/g(r) is continuous as the ratio of two continuous
functions. �

Theorem 13.6. (Continuity of a Composition).
Let g(u) be continuous on the interval u ∈ [a, b] and let h be a function
of several variables that is continuous on D and has the range [a, b].
The composition f(r) = g(h(r)) is continuous on D.

The proof follows the same line of reasoning as in the case of the
composition of two functions of one variable in Calculus I and is left
to the reader as an exercise.

In particular, some basic functions studied in Calculus I, sin u, cos u,
eu, ln u, and so on, are continuous functions on their domains. If f(r)
is a continuous function of several variables, the elementary functions
whose argument is replaced by f(r) are continuous functions. In com-
bination with the properties of continuous functions, the composition
rule defines a large class of continuous functions of several variables,
which is sufficient for many practical applications.

86.3. Exercises. (1) Use the definition of the limit to verify each of
the following limits (i.e., given ε > 0, find the corresponding δ(ε)):

(i) lim
r→0

x3 − 4y2x + 5y3

x2 + y2 = 0

(ii) lim
r→0

x3 − 4y2x + 5y3

3x2 + 4y2 = 0

(iii) lim
r→0

x3 − 4y4 + 5y3x2

3x2 + 4y2 = 0

(iv) lim
r→0

x3 − 4y2x + 5y3

3x2 + 4y2 + y4 = 0

(2) Verify whether the given function is continuous on its domain:
(i) f(x, y) = yx/(x2 + y2) if (x, y) �= (0, 0) and f(0, 0) = 1
(ii) f(x, y, z) = yxz/(x2+y2+z2) if (x, y, z) �= (0, 0, 0) and f(0, 0, 0) = 0
(iii) f(x, y) = sin(

√
xy)

(iv) f(x, y) = cos(
√

xyz)/(x2y2 + 1)
(v) f(x, y) = (x2 + y2) ln(x2 + y2) if (x, y) �= (0, 0) and f(0, 0) = 0
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87. A General Strategy to Study Limits

The definition of the limit gives only the criterion for whether a
number f0 is the limit of f(r) as r → r0. In practice, however, a
possible value of the limit is typically unknown. Some studies are
needed to make an “educated” guess for a possible value of the limit.
Here a procedure to study limits is outlined that might be helpful. In
what follows, the limit point is often set to the origin r0 = (0, 0, ..., 0).
This is not a limitation because one can always translate the origin of
the coordinate system to any particular point by shifting the values of
the argument, for example,

lim
(x,y)→(x0,y0)

f(x, y) = lim
(x,y)→(0,0)

f(x + x0, y + y0) .

87.1. Step 1: Continuity Argument. The simplest scenario in studying
the limit happens when the function f in question is continuous at the
limit point:

lim
r→r0

f(r) = f(r0) .

For example,

lim
(x,y)→(1,2)

xy

x3 − y2 = −2
3

because the function in question is a rational function that is continuous
if x3 − y2 �= 0. The latter is indeed the case for the limit point (1, 2).
If the continuity argument does not apply, then it is helpful to check
the following.

87.2. Step 2: Composition Rule.

Theorem 13.7. (Composition Rule for Limits).
Let g(t) be a function of one variable and let h be a continuous function
of several variables such that h(r) → t0 = h(r0) as r → r0. Suppose
that the function f is the composition f(r) = g(h(r)). Then

lim
r→r0

f(r) = lim
t→t0

g(t).

The proof is omitted as it is similar to the case when h is a con-
tinuous function of one variable, which was proved in Calculus I. The
significance of this theorem is that, under the conditions of the theo-
rem, a tough problem of studying a multivariable limit is reduced to
the problem of the limit of a function of a single argument. The latter
problem can be studied, by, for example, l’Hospital’s rule. It must be
emphasized that there is no analog of l’Hospital’s rule for multivariable
functions.



87. A GENERAL STRATEGY TO STUDY LIMITS 137

Example 13.7. Find

lim
(x,y)→(0,0)

cos(xy)− 1
x2y2 .

Solution: The function in question is (cos t− 1)/t2, where the argu-
ment t is replaced by the function h(x, y) = xy. The function h is a
polynomial and hence continuous. In particular, h(x, y)→ h(0, 0) = 0
as (x, y) → (0, 0). Thus, all the hypotheses of the composition rule
theorem are fulfilled:

lim
(x,y)→(0,0)

cos(xy)− 1
x2y2 = lim

t→0

cos t− 1
t2

= lim
t→0

− sin t

2t
= lim

t→0

− cos t

2
= −1

2
.

where l’Hospital’s rule has been used twice to evaluate the single-
variable limit. �

It must be stressed that the hypothesis of the continuity of h(r) in
the composition rule theorem is crucial. If, for instance, in the above
example the argument of (cos t − 1)/t2 is replaced by h(x, y) = y/x,
the limit of the resulting function does not exist as (x, y)→ (0, 0). The
reason is that y/x is not continuous at the origin and its limit does not
exist as (x, y) → (0, 0). Simple means to establish the latter fact are
provided in the next step.

87.3. Step 3: Limits Along Curves. Recall the following result about
the limit of a function of one variable. The limit of f(x) as x → x0

exists and equals f0 if and only if the corresponding right and left limits
of f(x) exist and equal f0:

lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = f0 ⇐⇒ lim
x→x0

f(x) = f0.

In other words, if the limit exists, it does not depend on the direction
from which the limit point is approached. If the left and right limits
exist but do not coincide, then the limit does not exist.

For functions of several variables, there are infinitely many paths
along which the limit point can be approached. They include straight
lines and paths of any other shape, in contrast to the one-variable case.
Nevertheless, a similar result holds for multivariable limits (see the sec-
ond Remark at the end of Section 86.1), that is, if the limit exists, then
it should not depend on the curve along which the limit point may be
approached. If there are two curves along which the limits do not co-
incide, then the multivariable limit does not exist. This result provides
a powerful method to investigate the existence of a multivariable limit
and to make an “educated” guess about its possible value.
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Definition 13.11. (Curve in a Euclidean Space).
A curve in a Euclidean space is a set of points r(t) = (x1(t), x2(t), ...,
xn(t)), where xi(t), i = 1, 2, ..., n, are continuous functions of a variable
t ∈ [a, b].

This is a natural generalization of the concept of a curve in a plane
or space as a vector function defined by the parametric equations xi =
xi(t), i = 1, 2, ..., n.

Definition 13.12. (Limit Along a Curve).
Let r0 be a limit point of the domain D of a function f . Let r(t) =
(x1(t), x2(t), ..., xn(t)) be a curve C in D such that r(t)→ r0 as t→ t+0 .
The function F (t) = f(r(t)) defines the values of f on the curve C.
The limit

lim
t→t+0

F (t) = lim
t→t+0

f(x1(t), x2(t), ..., xn(t))

is called the limit of f along the curve C if it exists.

Suppose that the limit of f(r) as r→ r0 exists and equals f0. Let C
be a curve such that r(t)→ r0 as t→ t+0 . Fix ε > 0. By the existence of
the limit, there is a neighborhood Nδ(r0) = {r | r ∈ D, 0 < ‖r−r0‖ < δ}
in which the values of f deviate from f0 no more than ε, |f(r)−f0| < ε.
Since the curve C is continuous and passes through r0, there should
be a portion of it that lies in Nδ(r0); that is, there is a number δ′ such
that ‖r(t) − r0‖ < δ for all t ∈ (t0, t0 + δ′). Hence, for any ε > 0,
the deviation of values of f along the curve, F (t) = f(r(t)), does not
exceed ε, |F (t)− f0| < ε whenever 0 < |t− t0| < δ′. By the definition
of the one-variable limit, this implies that F (t)→ f0 as t→ t0 for any
curve C through r0. This proves the following.

Theorem 13.8. (Independence of the Limit from a Curve Through
the Limit Point).
If the limit of f(r) exists as r→ r0, then the limit of f along any curve
leading to r0 from within the domain of f exists and does not depend
on the curve.

An immediate consequence of this theorem is the following result,
which is very useful in many practical applications

Corollary 13.2. (Criterion for Nonexistence of the Limit).
Let f be a function of several variables on D. If there is a curve r(t) in
D such that r(t)→ r0 as t→ t+0 and the limit limt→t+0

f(r(t)) does not
exist, then the multivariable limit limr→r0 f(r) does not exist either. If
there are two curves in D leading to r0 such that the limits of f along
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them exist but do not coincide, then the multivariable limit limr→r0 f(r)
does not exist.

87.3.1. Limits Along Straight Lines. Let the limit point be the origin
r0 = (0, 0, ..., 0). The simplest curve leading to r0 is a straight line
xi = vit, where t → 0+ for some numbers vi, i = 1, 2, ..., n. The
limit of a function of several variables f along a straight line is then
limt→0+ f(v1t, v2t, ..., vnt), should exist and be the same for any choice
of numbers vi. For comparison, recall the vector equation of a straight
line in space through the origin: r = tv, where v is a vector parallel to
the line.

Example 13.8. Investigate the two-variable limit

lim
(x,y)→(0,0)

xy3

x4 + 2y4 .

Solution: Consider the limits along straight lines x = t, y = at (or
y = ax, where a is the slope) as t→ 0+:

lim
t→0+

f(t, at) = lim
t→0+

a3t4

t4(1 + 2a4)
=

a3

1 + 2a4 .

So the limit along a straight line depends on the slope of the line.
Therefore, the two-variable does not exist. �

Example 13.9. Investigate the limit

lim
(x,y)→(0,0)

sin(
√

xy)
x + y

.

Solution: The domain of the function consists of the first and third
quadrants as xy ≥ 0 except the origin. Lines approaching (0, 0) from
within the domain are x = t, y = at, a ≥ 0 and t → 0. Note the line
x = 0, y = t also lies in the domain (the line with an infinite slope).
The limit along a straight line approaching the origin from within the
first quadrant is

lim
t→0+

f(t, at) = lim
t→0+

sin(t
√

a)
t(1 + a)

= lim
t→0+

√
a cos(t

√
a)

1 + a
=
√

a

1 + a
,

where l’Hospital’s rule has been used to calculate the limit. The limit
depends on the slope of the line, and hence the two-variable limit does
not exist. �
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87.3.2. Limits Along Power Curves (Optional). If the limit along straight
lines exists and is independent of the choice of the line, the numerical
value of this limit provides a desired “educated” guess for the actual
multivariable limit. However, this has yet to be proved by means of
either the definition of the multivariable limit or, for example, the
squeeze principle. This comprises the last step of the analysis of limits
(Step 4; see below).

The following should be stressed. If the limits along all straight lines
happen to be the same number, this does not mean that the multivari-
able limit exists and equals that number because there might exist other
curves through the limit point along which the limit attains a different
value or does not even exist.

Example 13.10. Investigate the limit

lim
(x,y)→(0,0)

y3

x
.

Solution: The domain of the function is the whole plane with the
y axis removed (x �= 0). The limit along a straight line

lim
t→0+

f(t, at) = lim
t→0+

a3t3

t
= a3 lim

t→0+
t2 = 0

vanishes for any slope; that is, it is independent of the choice of the
line. However, the two-variable does not exist! Consider the power
curve x = t, y = at1/3 approaching the origin as t → 0+. The limit
along this curve can attain any value by varying the parameter a:

lim
t→0+

f(t, at1/3) = lim
t→0+

a3t

t
= a3.

Thus, the multivariable limit does not exist. �
In general, limits along power curves are convenient for studying

limits of rational functions because the values of a rational function
of several variables on a power curve are given by a rational function
of the curve parameter t. One can then adjust, if possible, the power
parameter of the curve so that the leading terms of the top and bottom
power functions match in the limit t→ 0+. For instance, in the example
considered, put x = t and y = atn. Then f(t, atn) = (a3t3n)/t. The
powers of the top and bottom functions in this ratio match if 3n = 1;
hence, for n = 1/3, the limit along the power path depends on the
parameter a and can be any number.

87.4. Step 4: Using the Squeeze Principle. If Steps 1 and 2 do not apply
to the multivariable limit in question, then an “educated” guess for a
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possible value of the limit is helpful. This is the outcome of Step 3. If
limits along a family of curves (e.g., straight lines) happen to be the
same number f0, then this number is the sought-for “educated” guess.
The definition of the multivariable limit or the squeeze principle can
be used to prove or disprove that f0 is the multivariable limit.

Example 13.11. Find the limit or prove that it does not exist:

lim
(x,y)→(0,0)

sin(xy2)
x2 + y2 .

Solution:
Step 1. The function is not defined at the origin. The continuity
argument does not apply.
Step 2. No substitution exists to transform the two-variable limit to a
one-variable limit.
Step 3. Put (x, y) = (t, at), where t → 0+. The limit along straight
lines

lim
t→0+

f(t, at) = lim
t→0+

sin(a2t3)
t2

= lim
u→0+

sin(a2u3/2)
u

= lim
u→0+

(3/2)a2u1/2 cos(a2u3/2)
1

= 0

vanishes (here the substitution u = t2 and l’Hospital’s rule have been
used to calculate the limit).
Step 4. If the two-variable limit exists, then it must be equal to 0.
This can be verified by means of the simplified squeeze principle; that
is, one has to verify that there exists h(R) such that |f(x, y) − f0| =
|f(x, y)| ≤ h(R)→ 0 as R =

√
x2 + y2 → 0. A key technical trick here

is the inequality | sin u| ≤ |u|, which holds for any real u. One has

|f(x, y)− 0| = | sin(xy2)|
x2 + y2 ≤ |xy2|

x2 + y2 ≤
R3

R2 = R→ 0,

where the inequalities |x| ≤ R and |y| ≤ R have been used. Thus, the
two-variable limit exists and equals 0. �

For two-variable limits, it is sometimes convenient to use polar co-
ordinates centered at the limit point x−x0 = R cos θ, y− y0 = R sin θ.
The idea is to find out whether the deviation of the function f(x, y)
from f0 (the “educated” guess from Step 3) can be bounded by h(R)
uniformly for all θ ∈ [0, 2π]:

|f(x, y)− f0| = |f(x0 +R cos θ, y0 +R sin θ)− f0| ≤ h(R)→ 0 R→ 0.
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This technical task can be accomplished with the help of the basic
properties of trigonometric functions, for example, | sin θ| ≤ 1, | cos θ|
≤ 1, and so on.

In Example 13.10, Step 3 gives f0 = 0 if only the limits along
straight lines have been studied. Then |f(R cos θ, R sin θ)| = R2 sin2(θ)
|tan θ|. Despite that the deviation is proportional to R2 → 0 as R→ 0,
it cannot be made as small as desired by decreasing R because tan θ is
not a bounded function. There is a sector in the plane corresponding
to angles near θ = π/2 where tan θ can be any large number whereas
sin2 θ is strictly positive in it so that the deviation of f from 0 can
be as large as desired no matter how small R is. So, for any ε > 0,
the inequality |f(r) − f0| < ε is violated in that sector of any disk
‖r− r0‖ < δ, and hence the limit does not exist.

Remark. For multivariable limits with n > 2, a similar approach
exists. If, for simplicity, r0 = (0, 0, ..., 0). Then put xi = Rui, where
the variables ui satisfy the condition u2

1 +u2
2 + · · ·+u2

n = 1. For n = 2,
u1 = cos θ and u2 = sin θ. For n ≥ 3, the variables ui can be viewed as
the directional cosines, that is, the cosines of the angles between r and
êi, ui = r · ei/‖r‖. Then one has to investigate whether there is h(R)
such that

|f(Ru1, Ru2, ..., Run)− f0| ≤ h(R)→ 0 , R→ 0 .

This technical, often rather difficult, task may be accomplished using
the inequalities |ui| ≤ 1 and some specific properties of the function f .
As noted, the variables ui are the directional cosines. They can also be
trigonometric functions of the angles in the spherical coordinate system
in an n-dimensional Euclidean space. The problem of the existence or
non-existence of the limit amounts to studying the behavior of some
trigonometric functions.

87.5. Study Problems.

Problem 13.1. Find the limit limr→r0 f(r) or show that it does not
exist, where

f(r) = f(x, y, z) = (x2 + 2y2 + 4z2) ln(x4 + y4 + z4) , r0 = (0, 0, 0).

Solution:
Step 1. The continuity argument does not apply because f is not
defined at r0.
Step 2. No substitution is possible to transform the limit to a one-
variable limit.
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Step 3. Put r(t) = (t, at, bt) for some constants a and b that define
the direction of the line. Then f(r(t)) = At2 ln(Bt4) = 4At2 ln(t) +
A ln(B)t2 → 0 as t→ 0+, where A = 1 + 2a2 + 4b2 and B = 1 + a4 + b4

(recall that by l’Hospital’s rule t ln(t) = ln(t)/t−1 → 0 as t→ 0+). So,
if the limit exists, then it must be equal to 0.
Step 4. Put R2 = x2+y2+z2. By making use of the inequalities |x| ≤ R,
|y| ≤ R, |z| ≤ R, one has x2 +2y2 +4z2 ≤ 7R2 and x4 + y4 + z4 ≤ 3R4.
Hence, by the monotonicity of the logarithm function,

|f(r)− 0| ≤ 7R2 ln(3R4) = 7R2(4 ln(R) + ln(3))→ 0 as R→ 0+.

By the squeeze principle, the limit exists and equals 0. �

Problem 13.2. Prove that the limit limr→r0 f(r) exists, where

f(r) = f(x, y) =
1− cos(x2y)

x2 + 2y2 , r0 = (0, 0) ,

and find a disk centered at r0 in which values of f deviate from the
limit no more than ε = 0.5× 10−4.

Solution:
Step 1. The continuity argument does not apply because f is not
defined at r0.
Step 2. No substitution is possible to transform the limit to a one-
variable limit.
Step 3. Put r(t) = (t, at). Then

lim
t→0+

f(r(t)) = lim
t→0+

1− cos(at3)
t2(1 + 2a2)

=
1

1 + 2a2 lim
u→0+

1− cos(au3/2)
u

=
1

1 + 2a2 lim
u→0+

au1/2 sin(au3/2)
1

= 0,

where the substitution u = t2 and l’Hospital’s rule have been used to
evaluate the limit. Therefore, if the limit exists, it must be equal to 0.
Step 4. Note first that 1 − cos u = 2 sin2(u/2) ≤ u2/2, where the
inequality | sin x| ≤ |x| has been used. Put R2 = x2 + y2. Then, by
making use of the above inequality with u = x2y together with |x| ≤ R
and |y| ≤ R, the following chain of inequalities is obtained:

|f(r)− 0| ≤ (x2y)2/2
x2 + 2y2 =

(x2y)2/2
R2 + y2 ≤

(x2y)2/2
R2 ≤ 1

2
R6

R2 =
R4

2
→ 0

as R → 0+. By the squeeze principle, the limit exists and equals 0.
From the above inequality, it follows that |f(r)| < ε if R4/2 < ε and
hence ‖r− r0‖ = R < δ(ε) = (2ε)1/4 = 0.1. �



144 13. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

Problem 13.3. Find the limit limr→r0 f(r) or show that it does not
exist, where

f(r) = f(x, y) =
x2y

x2 − y2 , r0 = (0, 0).

Solution:
Step 1. The continuity argument does not apply because f is not
defined at r0.
Step 2. No substitution is possible to transform the limit to a one-
variable limit.
Step 3. The domain D of the function is the whole plane with the
lines y = ±x excluded. So put r(t) = (t, at), where a �= ±1. Then
f(r(t)) = at3/t2(1− a2) = a(1− a2)−1t→ 0 as t→ 0+. So, if the limit
exists, then it must be equal to 0.
Step 4. In polar coordinates, x = R cos θ and y = R sin θ, where
‖r− r0‖ = R,

f(r) =
R3 cos2 θ sin θ

R2(cos2 θ − sin2 θ)
=

1
2

R cos θ sin(2θ)
cos(2θ)

=
R cos θ

2
tan(2θ).

Therefore, in any disk 0 < ‖r−r0‖ < R, there is a sector corresponding
to the polar angle π/4 < θ < π/4+∆θ in which the deviation |f(r)−0|
can be made larger that any positive number by taking ∆θ > 0 small
enough because tan(2θ) is not bounded in this interval. Hence, for any
ε > 0, there is no δ > 0 such that |f(r)| < ε whenever r ∈ D lies in
the disk ‖r− r0‖ < δ. Thus, the limit does not exist.
Step 3 (Optional). The nonexistence of the limit established in Step
4 implies that there should exist curves along which the limit differs
from 0. It is instructive to demonstrate this explicitly. Any such curve
should approach the origin from within one of the narrow sectors con-
taining the lines y = ±x (where tan(2θ) takes large values). So put,
for example, r(t) = (t, t − atn), where n > 1 and a �= 0 is a number.
Then f(r(t)) = (t3 + atn+2)/(2atn+1 − a2t2n). This function tends to
a number as t → 0+ if n is chosen to match the leading (smallest)
powers of the top and bottom of the ratio in this limit (i.e., 3 = n + 1
or n = 2). Thus, for n = 2, f(r(t)) → 1/(2a) as t → 0+ and f(r(t))
diverges for n > 2 in this limit. �
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87.6. Exercises. (1) Find each of the following limits or show that it
does not exist:

(i) cos(xy+z)
x4+y2z2+4 (ii) limr→0

cos2(xy)−1
xy

(iii) limr→0

√
xy2+1−1

xy2 (iv) limr→0
sin(xy3)

x2

(v) limr→0
x3+y5

x2+2y2 (vi) limr→0
e‖r‖−1−‖r‖

‖r‖2

(vii) limr→0
x2+sin2 y
x2+2y2 (viii) limr→0

xy2+x sin(xy)
x2+2y2

88. Partial Derivatives

The derivative f ′(x0) of a function f(x) at x = x0 contains impor-
tant information about the local behavior of the function near x = x0.
It defines the slope of the tangent line L(x) = f(x0) + f ′(x0)(x − x0),
and, for x close enough to x0, values of f can be well approximated by
the linearization L(x), that is, f(x) ≈ L(x). In particular, if f ′(x0) > 0,
f increases near x0, and, if f ′(x0) < 0, f decreases near x0. Further-
more, the second derivative f ′′(x0) supplies more information about f
near x0, namely, its concavity.

It is therefore important to develop a similar concept for functions
of several variables in order to study their local behavior. A significant
difference is that, given a point in the domain, the rate of change is
going to depend on the direction in which it is measured. For example,
if f(r) is the height of a hill as a function of position r, then the slopes
from west to east and from south to north may be different. This
observation leads to the concept of partial derivatives. If x and y are
the coordinates from west to east and from south to north, respectively,
then the graph of f is the surface z = f(x, y). At a fixed point r0 =
(x0, y0), the height changes as h(x) = f(x, y0) along the west–east
direction, and as g(y) = f(x0, y) along the south–north direction. Their
graphs are intersections of the surface z = f(x, y) with the coordinate
planes x = x0 and y = y0, that is, z = f(x0, y) = g(y) and z =
f(x, y0) = h(x). The slope along the west–east direction is then h′(x0),
and along the south–north direction, is g′(y0). These slopes are called
partial derivatives of f and denoted as

∂f

∂x
(x0, y0) =

d

dx
f(x, y0)

∣∣∣
x=x0

,

∂f

∂y
(x0, y0) =

d

dy
f(x0, y)

∣∣∣
y=y0

.
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The partial derivatives are often denoted as

∂f

∂x
(x0, y0) = f ′

x(x0, y0) ,
∂f

∂y
(x0, y0) = f ′

y(x0, y0).

The subscript of f ′ indicates the variable with respect to which the
derivative is calculated. The concept of partial derivatives can easily
be extended to functions of more than two variables.

88.1. Partial Derivatives of a Function of Several Variables. Let D be a
subset of an n-dimensional Euclidean space.

Definition 13.13. (Interior Point of a Set).
A point r0 is said to be an interior point of D if there is an open ball
Bδ(r0) = {r | ‖r− r0‖ < δ} of radius δ that lies in D (i.e., Bδ(r) ⊂ D).

In other words, r0 is an interior point of D if there is a positive
number δ > 0 such that all points whose distance from r0 is less than
δ also lie in D. For example, if D is a set points in a plane whose
coordinates are integers, then D has no interior points at all because
the points of a disk of radius 0 < a < 1 centered at any point r0 of
D do not belong to D except r0. If D = {(x, y) |x2 + y2 ≤ 1}, then
any point of D that does not lie on the circle x2 + y2 = 1 is an interior
point.

Definition 13.14. (Open Sets).
A set D in a Euclidean space is said to be open if all points of D are
interior points of D.

An open set is an extension of the notion of an open interval (a, b)
to the multivariable case. In particular, the whole Euclidean space is
open.

Recall that any vector in space may be written as a linear combi-
nation of three unit vectors, r = (x, y, z) = xê1 + yê2 + zê3, where
ê1 = (1, 0, 0), ê2 = (0, 1, 0), and ê3 = (0, 0, 1). Similarly, using the
rules for adding n-tuples and multiplying them by real numbers, one
can write

r = (x1, x2, ..., xn) = x1ê1 + x2ê2 + · · ·+ xnên,

where êi is the n-tuple whose components are zeros except the ith one,
which is equal to 1. Obviously, ‖êi‖ = 1, i = 1, 2, ..., n.

Definition 13.15. (Partial Derivatives at a Point).
Let f be a function of several variables (x1, x2, ..., xn). Let D be the
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domain of f and let r0 be an interior point of D. If the limit

f ′
xi

(r0) = lim
h→0

f(r0 + hêi)− f(r0)
h

exists, then it is called the partial derivative of f with respect to xi

at r0.

The reason the point r0 needs to be an interior point is simple. By
the definition of the one-variable limit, h can be negative or positive.
So the points r0 + hêi, i = 1, 2, ..., n, must be in the domain of the
function because otherwise f(r0 + hêi) is not even defined. This is
guaranteed if r0 is an interior point because all points r in the ball
Ba(r0) of sufficiently small radius a = |h| are in D.

Let r0 = (a1, a2, ..., an), where ai are fixed numbers. Consider the
function F (xi) of one variable xi (i is fixed), which is obtained from
f(r) by fixing all the variables xj = aj except the ith one (i.e., xj =
aj for all j �= i). By the definition of the ordinary derivative, the
partial derivative f ′

xi
(r0) exists if and only if the derivative F ′(ai) exists

because

(13.1) f ′
xi

(r0) = lim
h→0

F (ai + h)− F (ai)
h

=
dF (xi)

dxi

∣∣∣
xi=ai

just like in the case of two variables discussed at the beginning of this
section. This rule is practical for calculating partial derivatives as it
reduces the problem to computing ordinary derivatives.

Example 13.12. Find the partial derivatives of f(x, y, z) = x3−y2z
at the point (1, 2, 3).

Solution: By the rule (13.1),

f ′
x(1, 2, 3) =

d

dx
f(x, 2, 3)

∣∣∣
x=1

=
d

dx
(x3 − 12)

∣∣∣
x=1

= 3,

f ′
y(1, 2, 3) =

d

dy
f(1, y, 3)

∣∣∣
y=2

=
d

dy
(1− 3y2)

∣∣∣
y=2

= −12,

f ′
z(1, 2, 3) =

d

dz
f(1, 2, z)

∣∣∣
z=3

=
d

dz
(1− 4z)

∣∣∣
z=3

= −4.

�

88.1.1. Geometrical Significance of Partial Derivatives. From the rule
(13.1), it follows that the partial derivative f ′

xi
(r0) defines the rate of

change of the function f when only the variable xi changes while the
other variables are kept fixed. If, for instance, the function f in Ex-
ample 13.12 defines the temperature in degrees Celsius as a function
of position whose coordinates are given in meters, then, at the point
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(1, 2, 3), the temperature increases at the rate 4 degrees Celsius per
meter in the direction of the x axis, and it decreases at the rates −12
and −4 degrees Celsius per meter in the direction of the y and z axes,
respectively.

88.2. Partial Derivatives as Functions. Suppose that the partial deriva-
tives of f exist at all points of a set D (which is a subset of the domain
of f). Then each partial derivative can be viewed as a function of
several variables on D. These functions are denoted as f ′

xi
(r), where

r ∈ D. They can be found by the same rule (13.1) if, when differenti-
ating with respect to xi, all other variables are not set to any specific
values but rather viewed as independent of xi (i.e., dxj/dxi = 0 for all
j �= i). This agreement is reflected by the notation

f ′
xi

(x1, x2, ..., xn) =
∂

∂xi

f(x1, x2, ..., xn);

that is, the symbol ∂/∂xi means differentiation with respect to xi while
regarding all other variables as numerical parameters independent of xi.

Example 13.13. Find f ′
x(x, y) and f ′

y(x, y) if f(x, y) = x sin(xy).

Solution: Assuming first that y is a numerical parameter indepen-
dent of x, one obtains

f ′
x(x, y) =

∂

∂x
f(x, y) =

( ∂

∂x
x
)

sin(xy) + x
∂

∂x
sin(xy)

= sin(xy) + xy cos(xy)

by the product rule for the derivative. If now the variable x is viewed
as a numerical parameter independent of y, one obtains

f ′
y(x, y) =

∂

∂y
f(x, y) = x

∂

∂y
sin(xy) = x2 cos(xy).

�

88.3. Basic Rules of Differentiation. Since a partial derivative is just
an ordinary derivative with one additional agreement that all other
variables are viewed as numerical parameters, the basic rules of dif-
ferentiation apply to partial derivatives. Let f and g be functions of
several variables and let c be a number. Then

∂

∂xi

(cf) = c
∂f

∂xi

,
∂

∂xi

(f + g) =
∂f

∂xi

+
∂g

∂xi

,

∂

∂xi

(fg) =
∂f

∂xi

g + f
∂g

∂xi

,
∂

∂xi

(f

g

)
=

∂f
∂xi

g − f ∂g
∂xi

g2 .
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Let h(u) be a differentiable function of one variable and let g(r) be a
function of several variables whose range lies in the domain of f . Then
one can define the composition f(r) = h(g(r)). Assuming that the
partial derivatives of g exist, the chain rule holds

(13.2)
∂f

∂xi

= h′(g)
∂g

∂xi

.

Example 13.14. Find the partial derivatives of the function f(r) =
‖r‖−1, where r = (x1, x2, ..., xn).

Solution: Put h(u) = u−1/2 and g(r) = x2
1 + x2

2 + · · · + x2
n = ‖r‖2.

Then f(r) = h(g(r)). Since h′(u) = (−1/2)u−3/2 and ∂g/∂xi = 2xi,
the chain rule gives

∂

∂xi

‖r‖−1 = − xi

‖r‖3 .

�

88.4. Exercises. (1) Find the specified partial derivatives of each of
the following functions:
(i) f(x, y) = (x− y)/(x + y), f ′

x(1, 2), f ′
y(1, 2)

(ii) f(x, y, z) = (xy + z)/(z + y), f ′
x(1, 2, 3), f ′

y(1, 2, 3), f ′
z(1, 2, 3)

(iii) f(r) = (x1 + 2x2 + · · ·+ nxn)/(1 + ‖r‖2), f ′
xi

(0), i = 1, 2, ..., n
(iv) f(x, y, z) = x sin(yz), f ′

x(1, 2, π/2), f ′
y(1, 2, π/2), f ′

z(1, 2, π/2)
(2) Find the specified partial derivatives of each of the following

functions:
(i) f(x, y) = (x + y2)n, f ′

x(x, y), f ′
y(x, y)

(ii) f(x, y) = xy, f ′
x(x, y), f ′

y(x, y)
(iii) f(x, y) = xe(x+2y)2 , f ′

x(x, y), f ′
y(x, y)

(iv) f(x, y) = sin(xy) cos(x2 + y2), f ′
x(x, y), f ′

y(x, y)
(v) f(x, y, z) = ln(x + y2 + z3), f ′

x(x, y, z), f ′
y(x, y, z), f ′

z(x, y, z)
(v) f(x, y, z) = xy2 cos(z2x), f ′

x(x, y, z), f ′
y(x, y, z), f ′

z(x, y, z)
(vi) f(r) = (a1x1+a2x2+· · ·+anxn)m = (a·r)m, f ′

xi
(r), i = 1, 2, ..., n

(3) Determine whether the function f(x, y) increases or decreases
when x increases, while y is fixed, and when y increases, while x is
fixed at a specified point P0:
(i) f(x, y) = xy/(x + y), P0(1, 2)
(ii) f(x, y) = (x2 − 2y2)1/3, P0(1, 1)
(iii) f(x, y) = x2 sin(xy), P0(−1, π)

89. Higher-Order Partial Derivatives

Since partial derivatives of a function are also functions of several
variables, they can be differentiated with respect to any variable. For
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example, for a function of two variables, all possible second derivatives
are

∂f

∂x
�−→ ∂

∂x

∂f

∂x
=

∂2f

∂x2 ,
∂

∂y

∂f

∂x
=

∂2f

∂y ∂x
,

∂f

∂y
�−→ ∂

∂x

∂f

∂y
=

∂2f

∂x ∂y
,

∂

∂y

∂f

∂y
=

∂2f

∂y2 .

Throughout the text, brief notations for higher-order derivatives will
also be used. For example,

∂2f

∂x2 = (f ′
x)

′
x = f ′′

xx ,
∂2f

∂x ∂y
= (f ′

y)
′
x = f ′′

yx

and similarly for f ′′
yy and f ′′

xy. Derivatives of the third order are defined
as derivatives of second-order derivatives, and so on.

Example 13.15. For the function f(x, y) = x4 − x2y + y2, find all
second- and third-order derivatives.

Solution: The first derivatives are f ′
x = 4x3−2xy and f ′

y = −x2+2y.
Then the second derivatives are

f ′′
xx = (4x3 − 2xy)′

x = 12x2 − 2y , f ′′
yy = (−x2 + 2y)′

y = 2,

f ′′
xy = (4x3 − 2xy)′

y = −2x , f ′′
yx = (−x2 + 2y)′

x = −2x.

The third derivatives are found similarly:

f
′′′
xxx = (12x2 − 2y)′

x = 24x , f
′′′
yyy = (2)′

y = 0,

f
′′′
xxy = (12x2 − 2y)′

y = −2 , f
′′′
xyx = f

′′′
yxx = (−2x)′

x = −2,

f
′′′
yyx = (2)′

x = 0 , f
′′′
yxy = f

′′′
xyy = (−2x)′

y = 0.

�
In contrast to the one-variable case, there are higher-order deriva-

tives of a new type that are obtained by differentiating with respect
to different variables in different orders, like f ′′

xy and f ′′
yx. In the above

example, it has been found that

f ′′
xy = f ′′

yx,

f
′′′
xxy = f

′′′
xyx = f

′′′
yxx,

f
′′′
xyy = f

′′′
yyx = f

′′′
yxy;

that is, the result of differentiation is independent of the order in which
the derivatives have been taken. Is this a peculiarity of the function con-
sidered or a general feature of higher-order derivatives? The following
theorem answers this question.
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Theorem 13.9. (Clairaut’s or Schwarz’s Theorem).
Let f be a function of several variables (x1, x2, ..., xn) that is defined on
an open ball D in a Euclidean space. If the second derivatives f ′′

xixj
and

f ′′
xjxi

, where j �= i, are continuous functions on D, then f ′′
xixj

= f ′′
xjxi

at
any point of D.

A consequence of Clairaut’s theorem can be proved. It asserts that,
if higher-order derivatives are continuous functions, then the result of
differentiation is independent of the order in which the derivatives have
been taken. In many practical applications, it is not necessary to calcu-
late higher-order derivatives in all possible orders to verify the hypothe-
sis of Clairaut’s theorem (i.e., the continuity of the derivatives). Deriva-
tives of polynomials are polynomials and hence continuous. Derivatives
of basic elementary functions like the sine and cosine and exponential
functions are continuous. So compositions of these functions with mul-
tivariable polynomials have continuous derivatives of any order. In
other words, the continuity of the derivatives can often be established
by different, simpler means.

Example 13.16. Find the third derivatives f
′′′
xyz, f

′′′
yzx, f

′′′
zxy, and so

on, for all permutations of x, y, and z, if f(x, y, z) = sin(x2 + yz).

Solution: The sine and cosine functions are continuously differen-
tiable as many times as desired. The argument of the sine function is
a multivariable polynomial. By the composition rule (sin g)′

x = g′
x cos g

and similarly for the other derivatives, partial derivatives of any or-
der must be products of polynomials and the sine and cosine functions
whose argument is a polynomial. Therefore, they are continuous in
the entire space. The hypothesis of Clairaut’s theorem is satisfied, and
hence all the derivatives in question coincide and are equal to

f
′′′
xyz = (f ′

x)
′′
yz = (2x cos(x2 + yz))′′

yz = (−2xz sin(x2 + yz))′
z

= −2x sin(x2 + yz)− 2xyz cos(x2 + yz) .

�

89.1. Reconstruction of a Function from Its Derivatives. One of the stan-
dard problems in calculus is finding a function f(x) if its derivative
f ′(x) = F (x) is known. A sufficient condition for the existence of a
solution is the continuity of F (x). In this case,

f ′(x) = F (x) =⇒ f(x) =
∫

F (x) dx + c,
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where c is a constant. A similar problem can be posed for a function
of several variables. Given the first partial derivatives

(13.3) f ′
xi

(r) = Fi(r) , i = 1, 2, ..., n,

find f(r) if it exists. The existence of such f is a more subtle question
in the case of several variables. Suppose partial derivatives ∂Fi/∂xj are
continuous functions in an open ball. Then taking the derivative ∂/∂xj

of both sides of (13.3) and applying Clairaut’s theorem, one infers that

(13.4) f ′′
xixj

= f ′′
xjxi

=⇒ ∂Fi

∂xj

=
∂Fj

∂xi

.

Thus, the conditions (13.4) on the functions Fi must be fulfilled; oth-
erwise, f satisfying (13.3) does not exist. The conditions (13.4) are
called integrability conditions for the system of equations (13.3).

Example 13.17. Suppose that f ′
x(x, y) = 2x + y and f ′

y(x, y) =
2y − x. Does such a function f exist?

Solution: The first partial derivatives of f , F1(x, y) = 2x + y and
F2(x, y) = 2y − x, are polynomials, and hence their derivatives are
continuous in the entire plane. In order for f to exist, the integrability
condition ∂F1/∂y = ∂F2/∂x must hold in the entire plane. This is
not so because ∂F1/∂y = 1, whereas ∂F2/∂x = −1. Thus, no such f
exists. �

Suppose now that the integrability conditions (13.4) are satisfied.
How is a solution f to (13.3) to be found? Evidently, one has to
calculate an antiderivative of the partial derivative. In the one-variable
case, an antiderivative is defined up to an additive constant. This is
not so in the multivariable case. For example, let f ′

x(x, y) = 3x2y. An
antiderivative of f ′

x is a function whose partial derivative with respect
to x is 3x2y. It is easy to verify that x3y satisfy this requirement. It
is obtained by integrating 3x2y with respect to x while viewing y as
a numerical parameter independent of x. Just like in the one-variable
case, one can always add a constant to the integral, x3y + c and obtain
another solution. The key point to observe is that the integration
constant may be a function of y! Indeed, (x3y + g(y))′

x = 3x2y. Thus,
the general solution of f ′

x(x, y) = 3x2y is f(x, y) = x3y + g(y), where
g(y) is arbitrary.

If, in addition, the other partial derivative f ′
y is given, then an

explicit form of g(y) can be found. Put, for example, f ′
y(x, y) = x3 +

2y. The integrability conditions are fulfilled: (f ′
x)

′y = (3x2y)′
y = 3x2

and (f ′
y)

′
x = (x3 + 2y)′

x = 3x2. So a function with the said partial
derivatives does exist. The substitution of f(x, y) = x3y + g(y) into
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the equation f ′
y = x3 + 2y yields x3 + g′(y) = x3 + 2y or g′(y) = 2y

and hence g(y) = y2 + c. Note the cancellation of the x3 term. This
is a direct consequence of the fulfilled integrability condition. Had
one tried to apply this procedure without checking the integrability
conditions, one could have found that, in general, no such g(y) exists.
In Example 13.17, the equation f ′

x = 2x + y has a general solution
f(x, y) = x2 + yx + g(y). Its substitution into the second equation
f ′

y = 2y−x yields x+g′(y) = 2y−x or g′(y) = 2y−2x. The derivative
of g(y) cannot depend on x and hence no such g(y) exists.

Example 13.18. Find f(x, y, z) if f ′
x = yz + 2x = F1, f ′

y = xz +
3y2 = F2, and f ′

z = xy + 4z3 = F3 or show that it does not exist.

Solution: The integrability conditions (F1)′
y = (F2)′

x, (F1)′
z = (F3)′

x,
and (F2)′

z = (F3)′
z are satisfied (their verification is left to the reader).

So f exists. Taking the antiderivative with respect to x in the first
equation, one finds

f ′
x = yz + 2x =⇒ f(x, y, z) =

∫
(yz + 2x) dx = xyz + x2 + g(y, z),

where g(y, z) is arbitrary. The substitution of f into the second equa-
tions yields

f ′
y = xz + 3y2 =⇒ xz + g′

y(y, z) = xz + 3y2

=⇒ g′
y(y, z) = 3y2

=⇒ g(y, z) =
∫

3y2 dy = y3 + h(z)

=⇒ f(x, y, z) = xyz + x2 + y3 + h(z),

where h(z) is arbitrary. The substitution of f into the third equation
yields

f ′
z = xy + 4z3 =⇒ xy + h′(z) = xy + 4z3

=⇒ h′(z) = 4z3

=⇒ h(z) = z4 + c

=⇒ f(x, y, z) = xyz + x2 + y3 + z4 + c,

where c is a constant. �
The procedure of reconstructing f from its first partial derivatives

as well as the integrability conditions (13.4) will be important when
discussing conservative vector fields and the potential of a conservative
vector field.
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89.2. Partial Differential Equations. The relation between a function of
several variables and its partial derivatives (of any order) is called a
partial differential equation. Partial differential equations are a key
tool to study various phenomena in nature. Many fundamental laws of
nature can be state in the form of partial differential equations.

89.2.1. Diffusion Equation. Let n(r, t), where r = (x, y, z) is the posi-
tion vector in space and t is time, be a concentration of a substance,
say, in air or water or even in a solid. Even if there is no macroscopic
motion in the medium, the concentration changes with time due to
thermal motion of the molecules. This process is known as diffusion.
In some simple situations, the rate at which the concentration changes
with time at a point is

n′
t = D(n′′

xx + n′′
yy + n′′

zz),

where the parameter D is the diffusion constant. So the concentration
as a function of the spatial position and time must satisfy the above
partial differential equation.

89.2.2. Wave Equation. Sound in air is propagating disturbances of the
air density. If u(r, t) is the deviation of the air density from its constant
(nondisturbed) value u0 at the spatial point r = (x, y, z) and at time
t, then it can be shown that small disturbances u/u0 � 1 satisfy the
wave equation:

u′′
tt = c2(u′′

xx + u′′
yy + u′′

zz),

where c is the speed of sound in the air. Light is an electromagnetic
wave. Its propagation is also described by the wave equation, where c
is the speed of light in vacuum (or in a medium, if light goes through
a medium) and u is the amplitude of electric or magnetic fields.

89.2.3. Laplace and Poisson Equations. The equation

uxx + uyy + uzz = f,

where f is a given non-zero function of position r = (x, y, z) in space,
is called the Poisson equation. In the special case when f = 0, this
equation is known as the Laplace equation. The Poisson and Laplace
equations are used to determine static electromagnetic fields created
by static electric charges and currents.

Example 13.19. Let h(q) be a twice-differentiable function of a
variable q. Show that u(r, t) = h(ct − n̂ · r) is a solution of the wave
equation for any fixed unit vector n̂.
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Solution: Let n̂ = (n1, n2, n3), where n2
1 + n2

2 + n2
3 = 1 as n̂ is the

unit vector. Put q = ct− n̂ ·r = ct−n1x−n2y−n3z. By the chain rule
(13.2), u′

t = q′
th

′(q) and similarly for the other derivatives, one finds
u′

t = ch′(q), u′′
tt = c2h′′(q), u′

x = −n1h
′(q), u′′

xx = n2
1h

′′(q), and, in the
same fashion, u′′

yy = n2
2h

′′(q), u′′
zz = n2

3h
′′(q). Then u′′

xx + u′′
yy + u′′

zz =
(n2

1 + n2
2 + n2

3)h
′′(q) = h′′(q), which coincides with u′′

tt/c
2, meaning that

the wave equation is satisfied for any h. �
Consider the level surfaces of the solution of the wave equation

discussed in this example. They correspond to a fixed value of q = q0.
So, for each moment of time t, the disturbance of the air density u(r, t)
has a constant value h(q0) in the plane n̂ ·r = ct−q0 = d(t). All planes
with different values of the parameter d are parallel as they have the
same normal vector n̂. Since here d(t) is a function of time, the plane on
which the air density has a fixed value moves along the vector n̂ at the
rate d′(t) = c. Thus, a disturbance of the air density propagates with
speed c. This is the reason that the constant c in the wave equation
is called the speed of sound. Evidently, the same line of arguments
applies to electromagnetic waves; that is, they move through space at
the speed of light. The speed of sound in the air is about 342 meters
per second, or about 768 mph. The speed of light is 3 · 108 meters
per second, or 186 miles per second. If a lightning strike occurs a mile
away during a thunderstorm, it can be seen almost instantaneously,
while the thunder will be heard in about 5 seconds later.

89.3. Study Problems.

Problem 13.4. Find the value of a constant k for which the function

u(r, t) = t−3/2e−kr2/t , r = ‖r‖,
satisfies the diffusion equation for all t > 0.

Solution: Note that u depends on the combination r2 = x2 +y2 +z2.
To find the partial derivatives of u, it is convenient to use the chain
rule:

∂u

∂x
=

∂u

∂r2

∂r2

∂x
= 2x

∂u

∂r2 = −2kx

t
u,

u′′
xx =

∂

∂x

(∂u

∂x

)
= −2k

t
u− 2kx

t

∂u

∂x
=
(
−2k

t
+

4k2x2

t2

)
u.

To obtain u′′
yy and u′′

zz, note that r2 is symmetric with respect to per-
mutations of x, y, and z. Therefore, u′′

yy and u′′
zz are obtained from u′′

xx

by replacing, in the latter, x by y and x by z, respectively. Hence, the
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right side of the diffusion equation reads

D(u′′
xx + u′′

yy + u′′
zz) =

(
− 6Dk

t
+

4Dk2r2

t2

)
u.

Using the product rule to calculate the time derivative, one finds for
the left side

u′
t = −3

2
t−5/2e−kr2/t + t−3/2e−kr2/t kr2

t2
=
(
− 3

2t
+

kr2

t2

)
u.

Since both sides must be equal for all values of t > 0 and r2, the
comparison of the last two expressions yields two conditions: 6Dk =
3/2 (as the equality of the coefficients at 1/t) and k = 4Dk2 (as the
equality of the coefficients at r2/t2). The only common solution of
these conditions is k = 1/(4D). �

Problem 13.5. Consider the function

f(x, y) =
x3y − xy3

x2 + y2 if (x, y) �= (0, 0) and f(0, 0) = 0.

Find f ′
x(x, y) and f ′

y(x, y) for (x, y) �= (0, 0). Use the rule (13.1) to
find f ′

x(0, 0) and f ′
y(0, 0) and, thereby, to establish that f ′

x and f ′
y exist

everywhere. Use the rule (13.1) again to show that f ′′
xy(0, 0) = −1 and

f ′′
yx(0, 0) = 1, that is, f ′′

xy(0, 0) �= f ′′
yx(0, 0). Does this result contradict

Clairaut’s theorem?

Solution: Using the ratio rule for differentiation, one finds

f ′
x(x, y) =

x4y + 4x2y3 − y5

(x2 + y2)2 , f ′
y(x, y) =

x5 − 4x3y2 − xy4

(x2 + y2)2

if (x, y) �= (0, 0). Note that, owing to the symmetry f(x, y) = −f(y, x),
the derivative f ′

y is obtained from f ′
x by changing the sign of the latter

and swapping x and y. The derivatives at (0, 0) are found by the rule
(13.1):

f ′
x(0, 0) =

d

dx
f(x, 0)

∣∣∣
x=0

= 0 , f ′
y(0, 0) =

d

dy
f(0, y)

∣∣∣
y=0

= 0.

The derivatives are continuous functions (the proof is left to the reader
as an exercise). Next, one has

f ′′
xy(0, 0) =

d

dy
f ′

x(0, y)
∣∣∣
y=0

= lim
h→0

f ′
x(0, h)− f ′

x(0, 0)
h

= lim
h→0

−h− 0
h

= −1,
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f ′′
yx(0, 0) =

d

dx
f ′

y(x, 0)
∣∣∣
x=0

= lim
h→0

f ′
y(h, 0)− f ′

y(0, 0)
h

= lim
h→0

h− 0
h

= 1.

The result does not contradict Clairaut’s theorem because f ′′
xy(x, y)

and f ′′
yx(x, y) are not continuous at (0, 0). By using the ratio rule to

differentiate f ′
x(x, y) with respect to y, an explicit form of f ′′

xy(x, y) for
(x, y) �= (0, 0) can be obtained. By taking the limit of f ′′

xy(x, y) as
(x, y)→ (0, 0) along the straight line (x, y) = (t, at), t→ 0, one infers
that the limit depends on the slope a and hence the two-dimensional
limit does not exist, that is, lim(x,y)→(0,0) f ′′

xy(x, y) �= f ′′
xy(0, 0) = −1 and

f ′′
xy is not continuous at (0, 0). The technical details are left to the

reader. �

89.4. Exercises. (1) Find all second partial derivatives of each of the
following functions and verify Clairaut’s theorem:
(i) f(x, y) = tan−1 xy
(ii) f(x, y, z) = x sin(zy2)
(iii) f(x, y, z) = x3 + zy + z2

(iv) f(x, y, z) = (x + y)/(x + 2z)
(2) Find the indicated partial derivatives of each of the following

functions:
(i) f(x, y) = xn + xy + ym, f ′′′

xxy, f ′′′
xyx, f ′′′

yyx, f ′′′
xyy

(ii) f(x, y, z) = x cos(yx) + z3, f ′′′
xyz, f ′′′

xxz, f ′′′
yyz

(iii) f(x, y, z) = sin(xy)ez, ∂f 5/∂z5, f
(4)
xyzz, f

(4)
zyxz, f

(4)
zxzy

(3) Given partial derivatives, find the function or show that it does
not exist:
(i) f ′

x = 3x2y, f ′
y = x3 + 3y2

(ii) f ′
x = yz + 3x2, f ′

y = xz + 4y, f ′
z = xy + 1

(iii) f ′
xk

= kxk, k = 1, 2, ..., n
(iv) f ′

x = xy + z, f ′
y = x2/2, f ′

z = x + y

(v) f ′
x = sin(xy) + xy cos(xy), f ′

y = x2 cos(xy) + 1

(4) Verify that a given function is a solution of the indicated dif-
ferential equation:
(i) f(t, x) = A sin(ct− x) + B cos(ct + x), c−2f ′′

tt − f ′′
xx = 0

(ii) f(x, y) = ln(x2 + y2), f ′′
xx + f ′′

yy = 0
(iii) f(x, y) = ln(ex + ey), f ′

x + f ′
y = 1 and f ′′

xxf
′′
yy − (f ′′

xy)
2 = 0

(iv) f(r) = exp(a · r), where a · a = 1, f ′′
x1x1

+ f ′′
x2x2

+ · · ·+ f ′′
xnxn

= f
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90. Chain Rules and Implicit Differentiation

90.1. Chain Rules. Consider the function f(x, y) = x3 + xy2 whose
domain is the entire plane. Points of the plane can be labeled in a
different way. For example, the polar coordinates x = r cos θ, y =
r sin θ may be viewed as a rule that assigns an ordered pair (x, y) to
an ordered pair (r, θ). Using this rule, the function can be expressed
in the new variables as f(r cos θ, r sin θ) = r3 sin θ = F (r, θ). One can
compute the rates of change of f with respect to the new variables:

∂f

∂r
=

∂F

∂r
= 3r2 sin θ ,

∂f

∂θ
=

∂F

∂θ
= r3 cos θ.

Alternatively, these rates can be computed as

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
= (3x2 + y2) cos θ + 2xy sin θ = 3r2 sin θ,

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
= −(3x2 + y2)r sin θ + 2xyr cos θ = r3 cos θ,

where x and y have been expressed in the polar coordinates to obtain
the final expressions. The difference between the two approaches is that
in the second one an explicit form of the function in the new variables
is not required to find its rates with respect to the new variables.

Furthermore, consider the values of this function along the curve
x = t, y = t2, f(t, t2) = t3 + t5 = F (t). The rate of change of f with
respect to the curve parameter is

df

dt
=

dF

dt
= 3t2 + 5t4 .

It can also be obtained without calculating first the explicit form of
the function f as a function of the curve parameter in much the same
fashion as in the case of polar coordinates:

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= (3x2 + y2) + (2xy)(2t) = 3t2 + 5t4 .

Qualitatively, this expression of the rate df/dt is rather natural. If only
x depends on t while y does not (i.e., y = const), then the rate df/dt
is determined by an ordinary chain rule df/dt = f ′

xx
′(t); the y variable

is merely a numerical parameter. If y = y(t) and x = const, the chain
rule for one-variable functions gives df/dt = f ′

yy
′(t). When both x and

y depend on t, then df/dt becomes the sum of these two terms as both
rates x′(t) and y′(t) should contribute to df/dt.

The examples considered above illustrate a general rule of differen-
tiation called the chain rule.
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Theorem 13.10. (Chain Rule).
Let f be a function of n variables r = (x1, x2, ..., xn) such that all its
partial derivatives exist. Suppose that each variable xi is, in turn, a
function of m variables u = (u1, u2, ..., um) such that all its partial
derivatives exist. The composition of xi = xi(u) with f(r) defines f
as a function of u. Then its rate of change with respect to uj, j =
1, 2, ..., m, reads

∂f

∂uj

=
∂f

∂x1

∂x1

∂uj

+
∂f

∂x2

∂x2

∂uj

+ · · ·+ ∂f

∂xn

∂xn

∂uj

=
n∑

i=1

∂f

∂xi

∂xi

∂uj

.

The proof of this theorem is rather technical and is omitted.
For n = m = 1, this is the familiar chain rule for functions of one

variable df/du = f ′(x)x′(u). If n = 1 and m > 1, it is the chain
rule (13.2) established earlier. The example of polar coordinates cor-
responds to the case n = m = 2, where r = (x, y) and u = (r, θ). The
rate of change along a curve in a plane is the case n = 2, m = 1, where
r = (x, y) and u = t. Note also that some of the functions xi(u) may
not depend on all variables uj, and the corresponding partial deriva-
tives in the chain rule vanish.

Example 13.20. A function f(x, y, z) has the following rates of
change at the point r0 = (1, 2, 3), f ′

x(r0) = 1, f ′
y(r0) = 2, and f ′

z(r0) =
−2. Suppose that x = x(t, s) = t2s, y = y(t, s) = s + t, and z =
z(t, s) = 3s. Find the rates of change f with respect to t and s at the
point r0.

Solution: In the chain rule, put r = (x, y, z) and u = (t, s). The
point r0 = (1, 2, 3) corresponds to the point u0 = (1, 1) in the new
variables. Note that z = 3 gives 3s = 3 and hence s = 1. Then, from
y = 2, it follows that s + t = 2 or 1 + t = 2 or t = 1. Also, x(1, 1) = 1
as required. The partial derivatives of the old variables with respect to
the new ones are x′

t = 2ts, y′
t = 1, z′

t = 0, x′
s = t2, y′

s = 1, and z′
s = 3.

By the chain rule,

f ′
t(r0) = f ′

x(r0)x′
t(u0) + f ′

y(r0)y′
t(u0) + f ′

z(r0)z′
t(u0)

= 2 + 2 + 0 = 4,
f ′

s(r0) = f ′
x(r0)x′

s(u0) + f ′
y(r0)y′

s(u0) + f ′
z(r0)z′

s(u0)
= 1 + 2− 6 = −3.

�

90.2. Implicit Differentiation. Consider the function of three variables,
F (x, y, z) = x2 + y4 − z. The equation F (x, y, z) = 0 can be solved for
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one of the variables, say, z to obtain z as a function of two variables:

F (x, y, z) = 0 =⇒ z = z(x, y) = x2 + y4;

that is, the function z(x, y) is defined as a root of F (x, y, z) and has
the characteristic property that

(13.5) F (x, y, z(x, y)) = 0 for all (x, y).

In the example considered, the equation F (x, y, z) = 0 can be solved
analytically, and an explicit form of its root as a function of (x, y) can
be found.

In general, given a function F (x, y, z), an explicit form of a so-
lution to the equation F (x, y, z) = 0 is not always possible to find.
Putting aside the question about the very existence of a solution and
its uniqueness, suppose that this equation is proved to have a unique
solution when (x, y) ∈ D. In this case, the function z(x, y) with the
property (13.5) for all (x, y) ∈ D is said to be defined implicitly on D.

Although an analytic form of an implicitly defined function is un-
known, its rates of change can be found and provide important infor-
mation about its local behavior. Suppose that partial derivatives of F
exist. Furthermore, the rates z′

x(x, y) and z′
y(x, y) are also assumed to

exist on an open disk D in the plane. Since relation (13.5) holds for
all (x, y) ∈ D, the partial derivatives of its left side must also vanish in
D. The derivatives can be computed by the chain rule, n = 3, m = 2,
r = (x, y, z), and u = (u, v), where the relations between old and new
variables are x = u, y = v, and z = z(u, v). One has

∂

∂u
F (x, y, z(x, y)) =

∂F

∂x
+

∂F

∂z

∂z

∂x
= 0 =⇒ z′

x = −F ′
x

F ′
z

,

∂

∂v
F (x, y, z(x, y)) =

∂F

∂y
+

∂F

∂z

∂z

∂y
= 0 =⇒ z′

y = −F ′
y

F ′
z

,

where z′
u(u, v) = z′

x(x, y) and z′
v(u, v) = z′

y(x, y) because x = u and
y = v. These equations determine the rates of change of an implic-
itly defined function of two variables. Note that in order for these
equations to make sense, the condition F ′

z �= 0 must be imposed. Sev-
eral questions about the very existence and uniqueness of z(x, y) for
a given F (x, y, z) and the existence of derivatives of z(x, y) have been
left unanswered in the above analysis. The following theorem addresses
them all.

Theorem 13.11. (Implicit Function Theorem).
Let F be a function of n+1 variables, F (r, z), where r = (x1, x2, ..., xn)
and z is real, such that all its partial derivatives are continuous in an
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open ball B. Suppose that there exists a point (r0, z0) ∈ B such that
F (r0, z0) = 0 and F ′

z(r0, z0) �= 0. Then there exist a neighborhood D
of r0 and a unique function z = z(r) with continuous derivatives on D
such that

F (r, z(r)) = 0 and z′
xi

(r) = −F ′
xi

(r, z(r))
F ′

z(r, z(r))
.

for all r in D.

The proof of this theorem goes beyond the scope of this course. It
includes proofs of the existence and uniqueness of z(r) and the existence
of its derivatives. Once these facts are established, a derivation of the
implicit differentiation formula follows the same way as in the n = 2
case:

∂F

∂xi

+
∂F

∂z

∂z

∂xi

= 0 =⇒ z′
xi

(r) = −F ′
xi

(r, z(r))
F ′

z(r, z(r))
.

Example 13.21. Show that the equation z(3x − y) = π sin(xyz)
has a unique solution z = z(x, y) in a neighborhood of (1, 1) such that
z(1, 1) = π/2 and find the rates of change z′

x(1, 1) and z′
y(1, 1).

Solution: Put F (x, y, z) = π sin(xyz) − z(3x − y). Then the exis-
tence and uniqueness of the solution can be established by verifying
the hypotheses of the implicit function theorem in which r = (x, y),
r0 = (1, 1), and z0 = π/2. First, note that the function F is the sum of
a polynomial and the sine function of a polynomial. So its derivatives

F ′
x = πyz cos(xyz)− 3x , F ′

y = πxz cos(xyz) + z ,

F ′
z = πxy cos(xyz)− 3x + y

are continuous for all (x, y, z). Next, F (1, 1, π/2) = 0 as required.
Finally, F ′

z(1, 1, π/2) = −2 �= 0. Therefore, by the implicit function
theorem, there is an open disk in the xy plane containing the point
(1, 1) in which the equation has a unique solution z = z(x, y). By the
implicit differentiation formulas,

z′
x(1, 1) = −F ′

x(1, 1, π/2)
F ′

z(1, 1, π/2)
= −3π

4
, z′

y(1, 1) = −F ′
y(1, 1, π/2)

F ′
z(1, 1, π/2)

=
π

4
.

In particular, this result implies that, near the point (1, 1), the root
z(x, y) decreases in the direction of the x axis and increases in the
direction of the y axis. It should be noted that the numerical val-
ues of the derivatives can be used to accurately approximate the root
z(x, y) of a nonlinear equation in a neighborhood of (1, 1) by invoking
the concept of linearization discussed below (see also Study
Problem 13.6). �
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90.3. Exercises. (1) Use the chain rule to find dz/dt if z =√
1 + x2 + 2y2 and x = 2t3, y = ln t.
(2) Use the chain rule to find ∂z/∂s and ∂z/∂t if z = e−x sin(xy)

and x = ts, y =
√

s2 + t2.
(3) Use the chain rule to write the partial derivatives of F with

respect to the new variables:
(i) F = f(x, y), x = x(u, v, w), y = y(u, v, w)
(ii) F = f(x, y, z, t), x = x(u, v), y = y(u, v), z = z(w, s), t = t(w, s)

(4) Find the rates of change ∂z/∂u, ∂z/∂v, ∂z/∂w when (u, v, w) =
(2, 1, 1) if z = x2 + yx + y3 and x = uv2 + w3, y = u + v ln w.

(5) Find the rates of change ∂f/∂u, ∂f/∂v, ∂f/∂w when (x, y, z) =
(1/3, 2, 0) if x = 2/u− v + w, y = vuw, z = ew.

(6) Find the partial derivatives of z = f(x, y) defined implicitly by
the equation x− z = tan1(yz).

(7) Let the temperature of the air at a point (x, y, z) be T (x, y, z)
degrees Celsius. An insect flies through the air so that its position as a
function of time t in seconds is given by x =

√
1 + t, y = 2t, z = t2−1.

If T ′
x(2, 6, 8) = 2, T ′

y(2, 6, 8) = −1, and T ′
x(2, 6, 8) = 1, how fast is

the temperature rising (or decreasing) on the insect’s path as it flies
through the point (2, 6, 8)?

(8) Let a rectangular box have the dimensions x, y, and z that
change with time. Suppose that at a certain instant the dimensions
are x = 1 m, y = z = 2 m, and x and y are increasing at the rate 2
m/s and z is decreasing at the rate 3 m/s. At that instance, find the
rates at which the volume, the surface area, and the largest diagonal
are changing.

(9) A function is said to be homogeneous of degree n if, for any
number t, it has the property f(tx, ty) = tnf(x, y). Give an example
of a polynomial function that is homogeneous of degree n. Show that a
homogeneous differentiable function satisfies the equation xf ′

x + yf ′
y =

nf . Show also that f ′
x(tx, ty) = tn−1f(x, y).

(10) Suppose that the equation F (x, y, z) = 0 defines implicitly z =
f(x, y), or y = g(x, z), or x = h(y, z). Assuming that the derivatives
F ′

x, F ′
y, and F ′

z do not vanish, prove that (∂z/∂x)(∂x/∂y)(∂y/∂z) = −1.

91. Linearization of Multivariable Functions

A differentiable one-variable function f(x) can be approximated
near x = x0 by its linearization L(x) = f(x0) + f ′(x0)(x − x0) or the
tangent line. If x = x0 + ∆x, then

f(x)− L(x)
∆x

=
f(x0 + ∆x)− f(x0)

∆x
− f ′(x0)→ 0 as ∆x→ 0
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by the definition of the derivative f ′(x0). This relation implies that the
error of the linear approximation goes to 0 faster than the deviation
∆x = x− x0 of x from x0, that is,

f(x) = L(x) + ε(∆x) ∆x, where ε(∆x)→ 0 as ∆x→ 0 .

For example, if f(x) = x2, then its linearization at x = 1 is L(x) =
1 + 2(x− 1). It follows that f(1 + ∆x)−L(1 + ∆x) = ∆x2 or ε(∆x) =
∆x. In the interval x ∈ (0.9, 1.1), the absolute error of the linear
approximation is less than 0.01. So the linearization of f at x0 provides
a good approximation of f in a sufficiently small neighborhood of x0.
Naturally, such a useful tool needs to be extended to multivariable
functions.

91.1. Tangent Plane Approximation. Consider first the case of two-
variable functions. The graph of f(x, y) is the surface z = f(x, y).
Consider the curve of intersection of this surface with the coordinate
plane x = x0. Its equation is z = f(x0, y). The vector function
r(t) = (x0, t, f(x0, t)) traces out the curve of intersection. The curve
goes through the point r0 = (x0, y0, z0), where z0 = f(x0, y0), be-
cause r(y0) = r0. Its tangent vector at the point r0 is v1 = r′(y0) =
(0, 1, f ′

y(x0, y0)). The line parallel to v1 through the point r0 lies in
the plane x = x0 and is tangent to the intersection curve z = f(x0, y).
Similarly, the graph z = f(x, y) intersects the coordinate plane y = y0

along the curve z = f(x, y0) whose parametric equations are r(t) =
(t, y0, f(t, y0)). The tangent vector to this curve at the point r0 is
v2 = r′(x0) = (1, 0, f ′

x(x0, y0)). The line parallel to v2 through r0 lies
in the plane y = y0 and is tangent to the curve z = f(x, y0).

Now one can define a plane through the point r0 of the graph that
contains the two tangent lines. This plane is called the tangent plane to
the graph. Its normal must be perpendicular to both vectors v1 and v2

and, by the geometrical properties of the cross product, may be taken
as n = v1 × v2 = (f ′

x(x0, y0), f ′
y(x0, y0),−1). The standard equation of

the plane n · (r− r0) = 0 can then be written in the form

z = z0 + n1(x− x0) + n2(y − y0) , n1 = f ′
x(x0, y0), n2 = f ′

y(x0, y0).

The graph goes through the point r0 and so does the tangent plane. So
the tangent plane is expected to be close to the graph in a neighborhood
of r0. The exact meaning of “close” will be clarified in the following
section.

Example 13.22. Find the tangent plane to the paraboloid z = x2 +
3y2 at the point (2, 1, 7).
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Solution: The paraboloid is the graph of the function f(x, y) =
x2+3y2. The components of the normal are n1 = f ′

x(2, 1) = 2x|(2,1) = 4,
n2 = f ′

y(2, 1) = 6y|(2,1) = 6, and n3 = −1. An equation of the tangent
plane is 4(x− 2) + 6(y − 1)− (z − 7) = 0 or 4x + 6y − z = 7. �

By analogy with the one-variable case, one can define the lineariza-
tion of f(x, y) at a point (x0, y0) in the domain of f by the linear
function

L(x, y) = f(x0, y0) + f ′
x(x0, y0)(x− x0) + f ′

y(x0, y0)(y − y0).

The approximation f(x, y) ≈ L(x, y) is called a linear approximation of
f near (x0, y0). By analogy, the concepts of linearization and the linear
approximation are extended to functions of more than two variables.

Definition 13.16. (Linearization of a Multivariable Function).
Let f be a function of m variables r = (x1, x2, ..., xm) on D such that
its derivatives exist at an interior point r0 = (a1, a2, ..., am) of D. Put
ni = f ′

xi
(r0), i = 1, 2, ..., m. The function

L(r) = f(r0) + n1(x1 − a1) + n2(x2 − a2) + · · ·+ nm(xm − am)

is called the linearization of f at r0, and the approximation f(r) ≈ L(r)
is called the linear approximation of f near r0.

It is convenient to write the linearization in a more compact form

(13.6) L(r) = f(r0)+n1∆x1 +n2∆x2 + · · ·+nm∆xm , ni = f ′
xi

(r0) ,

where ∆xi is the deviation of xi from ai.

Example 13.23. Use the linear approximation to estimate the
number [(2.03)2 + (1.97)2 + (0.94)2]1/2.

Solution: Consider the function of three variables f(x, y, z) = [x2 +
y2 + z2]1/2. The number in question is the value of this function at
(x, y, z) = (2.03, 1.97, 0.94). This point is close to r0 = (2, 2, 1) at
which f(r0) = 3. The deviations are ∆x = x − 2 = 0.03, ∆y =
y − 2 = −0.03, and ∆z = 0.94 − 1 = −0.06. The partial derivatives
are f ′

x = x/(x2 + y2 + z2)1/2, f ′
y = y/(x2 + y2 + z2)1/2, and f ′

z =
z/(x2 + y2 + z2)1/2. Therefore, n1 = 2/3, n2 = 2/3, and n3 = 1/3. The
linear approximation gives

f(x, y, z) ≈ L(x, y, z) = 3 + (2/3) ∆x + (2/3) ∆y + (1/3) ∆z = 2.98.

�
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91.2. Differentiability of Multivariable Functions. The concepts of lin-
earization and the linear approximation have been formally extended
from the one-variable case in which the very existence of the deriva-
tive at a point is sufficient for the linear approximation to be good,
as argued at the beginning of this section. In the case of two-variable
functions, the existence of partial derivatives at a point allows one to
define the tangent plane to the graph. Based on this geometrical obser-
vation that the plane z = L(x, y) is tangent to the graph z = f(x, y), it
has been assumed that the difference f(x, y)−L(x, y) should decrease
with the decreasing distance (∆x2 + ∆y2)1/2 between the points (x, y)
and (x0, y0). The key difference between one-variable and multivariable
cases is that the mere existence of partial derivatives is not sufficient
to make the linear approximation a good one.

This can be illustrated by the following example. Put

(13.7) f(x, y) =
{ xy

x2+y2 if (x, y) �= (0, 0)
0 if (x, y) = (0, 0)

.

This function has the property that f(x, 0) = 0 for all x, which implies
that its rate along the x axis vanishes, f ′

x(x, 0) = 0. Similarly, the
function vanishes on the y axis, f(0, y) = 0, and hence has no rate
of change along it, f ′

y(0, y) = 0. In particular, the partial derivatives
exist at the origin, f ′

x(0, 0) = fy(0, 0) = 0. So the tangent plane should
coincide with the xy plane, z = 0, and the linearization is a constant
(zero) function, L(x, y) = 0. Can one say that f(x, y) − L(x, y) =
f(x, y) → 0 as (x, y) → (0, 0), that is, that the linear approximation
is a good one? To answer this question, the two-variable limit must
be studied. Consider this limit along the straight line (x, y) = (t, at),
t → 0+. One has f(t, at) = a/(1 + a2) �= 0. Thus, the limit does not
exist. In particular, the difference f−L remains a non zero constant as
the argument approaches the origin along a straight line. Furthermore,
the function is not even continuous at (0, 0) despite that the partial
derivatives exist at (0, 0)! This is quite a departure from the one-
variable case where the existence of the derivative implies that the
function is necessarily continuous. What has to be changed in the
multivariable case in order to achieve a similarity with the one-variable
case? The question is answered with the concept of differentiability of
a function of several variables.

Definition 13.17. (Differentiable Functions).
The function f of several variables r = (x1, x2, ..., xm) on an open set
D is said to be differentiable at a point r0 ∈ D if there exists a linear
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function L(r) such that

(13.8) lim
r→r0

f(r)− L(r)
‖r− r0‖ = 0.

If f is differentiable at all points of D, then f is said to be differentiable
on D.

This definition demands that f(r)−L(r) = ε(r)‖r−r0‖ and ε(r)→
0 as r → r0; that is, the error of the linear approximation decreases
faster than the distance ‖r− r0‖ between r and r0 just like in the one-
variable case. The function (13.7) is not differentiable at (0, 0) despite
the existence of its partial derivatives because it does not have a good
linear approximation at (0, 0) in the sense of (13.8). In general, one
can prove the following result.

Theorem 13.12. (Existence of Partial Derivatives).
If f is differentiable at a point r0, then its partial derivatives exist
at r0.

The converse is not true! This is the reason the linear approxi-
mation may be bad despite the existence of partial derivatives. With
some additional assumptions about the partial derivatives, the con-
verse statement can be established. It provides a useful criterion for
differentiability.

Theorem 13.13. (Differentiability and Partial Derivatives).
Let f be a function on an open set D of a Euclidean space. Then f
is differentiable on D if and only if its partial derivatives exist and are
continuous functions on D.

Thus, if, in addition to their existence, the partial derivatives hap-
pen to be continuous functions, then the linear approximation is always
a good one in the sense of (13.8). Conversely, the partial derivatives
of a differentiable function are continuous functions. It is straightfor-
ward to verify that f ′

x(x, y) and f ′
y(x, y) for the function (13.7) are not

continuous at (0, 0).

91.3. Study Problems.

Problem 13.6. Show that the equation z(3x − y) = π sin(xyz) has
a unique solution z = z(x, y) in a neighborhood of (1, 1) such that
z(1, 1) = π/2. Estimate z(1.04, 0.96).

Solution: In Example 13.21, the existence and uniqueness of z(x, y)
has been established by the implicit function theorem. The partial



92. THE DIFFERENTIAL AND TAYLOR POLYNOMIALS 167

derivatives have also been evaluated, z′
x(1, 1) = −3π/4 and z′

y(1, 1) =
π/4. The linearization of z(x, y) near (1, 1) is

z(1 + ∆x, 1 + ∆y) ≈ z(1, 1) + z′
x(1, 1) ∆x + z′

y(1, 1)

∆y =
π

2

(
1− 3∆x

2
+

∆y

2

)
.

Putting ∆x = 0.04 and ∆y = −0.04, this equation yields the esti-
mate z(1.04, 0.96) ≈ 0.45π. Note that the combination of the implicit
differentiation and linearization allows one to approximate the root of
a nonlinear equation in a small neighborhood of the point where the
value of the root is known. This is an extremely useful concept in many
practical applications. �

92. The Differential and Taylor Polynomials

Just like in the one-variable case, given variables r = (x1, x2, ..., xm),
one can introduce independent variables dr = (dx1, dx2, ..., dxm) that
are infinitesimal variations of r and also called differentials of r. The
word “infinitesimal” means here that powers (dxi)k can always be ne-
glected for k > 1.

Definition 13.18. (Differential).
Let f(r) be a differentiable function. The function

df(r) = f ′
x1

(r) dx1 + f ′
x2

(r) dx2 + · · ·+ f ′
xm

(r) dxm

is called the differential of f .

Note that the differential is a function of 2m independent variables
r and dr. The geometrical significance of the differential follows from
its relation with the linearization of f at a point r0:

L(r) = f(r0) + df(r0) , dxi = ∆xi , i = 1, 2, ..., m;

that is, if the infinitesimal variations (or differentials) dr are set to be
the deviations ∆r = r − r0 of the variables r from r0, then the dif-
ferential df at the point r0 defines the linearization of f at r0. This
linearization is a good one in the sense (13.8). From an algebraic point
of view, the differential determines variations of values of f under infini-
tesimal independent variations of its arguments such that contributions
of powers of the variations (dxi)k, k > 1, can be neglected.

92.1. Error Analysis. The volume of a rectangle with dimensions x, y,
and z is the function of three variables V (x, y, z) = xyz. In practice,
measurements of the dimensions always contain errors; that is, repet-
itive measurements give the values of x, y, and z from the intervals
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x ∈ [x0−∆x, x0+∆x], y ∈ [y0−∆y, y0+∆y], and z ∈ [z0−∆z, z0+∆z],
where r0 = (x0, y0, z0) are the mean values of the dimensions, while
∆r = (∆x, ∆y, ∆z) are the absolute errors of the measurements. Dif-
ferent methods of the length measurement would have different ab-
solute errors. In other words, the dimensions x, y, and z and the
errors ∆x, ∆y, and ∆z are all independent variables. Since the errors
should be small (at least, one wishes so), the values of the dimensions
obtained in each measurement are x = x0 + dx, y = y0 + dy, and
z = z0 + dz, where the differentials or infinitesimal variations can take
their values in the intervals dx ∈ [−∆x, ∆x] = I∆x and similarly for dy
and dz. The question arises: Given the mean values r0 = (x0, y0, z0)
and the absolute errors ∆r, what is the absolute error of the volume
value calculated at r0? For each particular measurement, the error is
V (r0 + dr) − V (r0) = dV (r0) as higher powers of the differentials dr
are irrelevant (small). The components of dr are independent variables
taking their values in the specified intervals. All such triples dr cor-
respond to points of the error rectangle R∆ = I∆x × I∆y × I∆z. Then
the maximal or absolute error is ∆V = |max dV (r0)|, where the max-
imum is taken over all dr ∈ R∆. For example, if r0 = (1, 2, 3) is in
centimeters and ∆r = (1, 1, 1) is in millimeters, then the absolute er-
ror of the volume is ∆V = |max dV (r0)| = max(y0z0 dx + x0z0 dy +
x0y0 dz) = 0.6 + 0.3 + 0.2 = 1.1 cm3, and V = 6 ± 1.1 cm3. Here the
maximum is reached at dx = dy = dz = 0.1 cm. This concept can be
generalized.

Definition 13.19. (Absolute and Relative Errors).
Let f be a quantity that depends on other quantities r = (x1, x2, ..., xm);
that is, f = f(r) is a function of r. Suppose that the values xi = ai are
known with the absolute errors ∆xi. Put r0 = (a1, a2, ..., am) and ∆f =
|max df(r0)| where the maximum is taken over all dxi ∈ [−∆xi, ∆xi].
The numbers ∆f and ∆f/|f(r0)| are called, respectively, the absolute
and relative errors of the value of f at r = r0.

In the above example, the relative error of the volume measurements
is 1.1/6 ≈ 0.18; that is, the accuracy of the measurements is about 18%.
In general, since

df(r0) =
m∑

i=1

f ′
xi

(r0) dxi

is linear in dxi, the maximum is attained at dxi = ∆xi if the coeffi-
cient f ′

xi
(r0) is positive, and at dxi = −∆xi if the coefficient f ′

xi
(r0) is
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negative. So the absolute error can be written in the form

∆f =
m∑

i=1

|f ′
xi

(r0)|∆xi.

92.2. Accuracy of the Linear Approximation. In the one-variable case,
the Taylor theorem asserts that if f(x) is an n times continuously
differentiable function, then there is a constant Mn > 0 such that

f(x) = Tn(x) + εn+1(x) ,

Tn(x) = f(x0) +
f ′(x0)

1!
∆ +

f ′′(x0)
2!

∆2 + · · ·+ f (n)(x0)
n!

∆n ,

|εn+1(x)| ≤ Mn+1

(n + 1)!
|x− x0|n+1 ,(13.9)

where ∆ = x−x0. The polynomial Tn(x) is called the Taylor polynomial
of degree n. The remainder εn+1(x) determines the accuracy of the
approximation f(x) ≈ Tn(x). If, in addition, the derivative f (n+1)

exists, the remainder is proved to have the form

εn+1(x) =
f (n+1)(ξ)
(n + 1)!

(x− x0)n+1.

In this case, Mn+1 is an upper bound of |f (n+1)(ξ)| over the interval
between x and x0.

The first-order Taylor polynomial is the linearization of f at x = x0,
T1(x) = L(x), and the remainder ε2(x) determines the accuracy of the
linear approximation. Suppose that f ′′(x) is bounded on an interval
(a, b), that is, |f ′′(x)| ≤M2 for all x ∈ (a, b). Then, for x0 ∈ (a, b), the
accuracy of the linear approximation is given by

(13.10) |ε2(x)| = |f(x)− L(x)| ≤ M2

2
(b− a)2 , x ∈ (a, b).

92.3. Two Variable Taylor Polynomials. There is a multivariable exten-
sion of the Taylor theorem that can be used to assess the accuracy of
the linear approximation as well as to obtain the Taylor polynomial
approximation when the linear one is not sufficiently accurate. The
two-variable case is discussed first. It is assumed in what follows that
functions have continuous partial derivatives of needed orders. The
following notation is adopted. Let f(x, y) be a function of two vari-
ables. The symbols ∂x and ∂y denote the operation of taking partial
derivatives with respect to x and y, that is,

(a∂x + b∂y)2f = (a2∂2
x + 2ab∂x∂y + b2∂2

y)f = a2f ′′
xx + 2abf ′′

xy + b2f ′′
yy
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for any numbers a and b. By an earlier assumption, all the deriva-
tives are continuous, and therefore Clairaut’s theorem applies, ∂x∂yf =
∂y∂xf ; that is, the order of differentiation is irrelevant.

Let r0 = (x0, y0) be a fixed point and let a function f(r), r =
(x, y), have continuous partial derivatives up to order n in an open
disk D containing r0. Let ∆ = (∆1, ∆2) be an ordered pair of numbers.
Consider a polynomial in the variables ∆ of degree n defined by

Pn(∆) = f(r0) +
1
1!

(∆1∂x + ∆2∂y)f(r0)

+
1
2!

(∆1∂x + ∆2∂y)2f(r0) + · · ·

+
1
n!

(∆1∂x + ∆2∂y)nf(r0)

=
n∑

k=0

1
k!

(∆1∂x + ∆2∂y)kf(r0),

where the partial derivatives are computed at the point r0. By con-
struction, these polynomials satisfy the recurrence relation:

(13.11) Pn(∆) = Pn−1(∆) +
1
n!

(∆1∂x + ∆2∂y)nf(r0).

Here the last term is computed by means of binomial coefficients (a +
b)n =

∑n
k=0 Bk

nan−kbk, where Bn
k = n!/(k!(n− k)!).

Definition 13.20. (Taylor Polynomials).
The polynomial Tn(r) = Pn(∆), where ∆ = r − r0 = (x − x0, y −
y0) is called the Taylor polynomial for a function f near the point
r0. The approximation f(r) ≈ Tn(r) is called the Taylor polynomial
approximation of degree n near r0.

For example, with ∆1 = x − x0 and ∆2 = y − y0, the first four
Taylor polynomials are

T0(r) = f(r0),
T1(r) = f(r0) + f ′

x(r0) ∆1 + f ′
y(r0) ∆2 = L(r),

T2(r) = T1(r) +
f ′′

xx(r0)
2

∆2
1 + f ′′

xy(r0) ∆1∆2 +
f ′′

yy(r0)
2

∆2
2,

T3(r) = T2(r) +
f ′′′

xxx(r0)
6

∆3
1 +

f ′′′
xxy(r0)

2
∆2

1∆2 +
f ′′′

xyy(r0)
2

∆1∆2
2

+
f ′′′

yyy(r0)
6

∆3
2.
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The linear or tangent plane approximation f(r) ≈ L(r) = T1(r) is
a particular case of the Taylor polynomial approximation of the first
degree.

The following theorem assesses the accuracy of the Taylor polyno-
mial approximation.

Theorem 13.14. (Accuracy of the Taylor Polynomial Approximation).
Let D be an open disk centered at r0 and let the partial derivatives of a
function f be continuous up to order n on D. Suppose that the partial
derivatives of order n are also bounded on D; that is, there are numbers
Mnk, k = 1, 2, ..., n, such that |∂n−k

x ∂k
yf(r)| ≤Mnk for all r ∈ D. Then

f(r) = Tn−1(r) + εn(r) where the remainder εn satisfies

|εn(r)| ≤
n∑

k=0

Bn
k Mnk

n!
|x− x0|n−k|y − y0|k

for all (x, y) ∈ D, where Bn
k = n!/(k!(n−k)!) are binomial coefficients.

Remark. In fact, the continuity of the nth-order partial derivatives
is not necessary; their existence and boundedness are sufficient for the
accuracy assessment. The discussion of this remark as well as the proof
of the theorem goes beyond the scope of the course.

To make the analogy of this theorem with the one-variable case,
note that |x − x0| ≤ ‖r − r0‖ and |y − y0| ≤ ‖r − r0‖ and hence
|x − x0|n−k|y − y0|k ≤ ‖r − r0‖n. Making use of this inequality, one
infers that

(13.12) |εn(r)| ≤ Mn

n!
‖r− r0‖n,

where the constant Mn =
∑n

k=0 Bn
k Mnk. In particular, for the linear

approximation n = 2,

|f(r)− L(r)| ≤ M20

2
(x− x0)2 + M11|(x− x0)(y − y0)|+

M02

2
(y − y0)2 ≤ M2

2
‖r− r0‖2 ≤ M2

2
R2 ,(13.13)

where M2 = M20 + 2M11 + M02 and R is the radius of the disk D.
The results (13.12) and (13.13) are to be compared with the similar
results (13.9) and (13.10) in the one-variable case. So, if the second
derivatives exist and are bounded, the error of the linear or tangent
plane approximation decreases as the squared distance ‖r− r0‖2.

Example 13.24. Use the linear approximation or the differential
to estimate the amount of aluminum in a closed aluminum can with
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diameter 10 cm and height 10 cm if the aluminum is 0.05 cm thick.
Assess the accuracy of the estimate.

Solution: The volume of a cylinder of radius r and height h is
f(h, r) = πhr2. The volume of a closed cylindrical shell (or the can)
of thickness δ is therefore V = f(h + 2δ, r + δ) − f(h, r), where h
and r are the internal height and radius of the shell. Since the vari-
ations ∆h = 2δ = 0.1 and ∆r = δ = 0.05 are small, this difference
can be estimated by linearizing the function f at (h, r) = (10, 5).
One has f ′

h = πr2 and f ′
r = 2πhr; hence, V ≈ Va = df(10, 5) =

f ′
h(10, 5) dh + f ′

r(10, 5) dr = 25π ∆h + 100π ∆r = 7.5π cm3, where
dh = ∆h and dr = ∆r.

To assess the accuracy, note that the approximation V ≈ Va is
based on the linear approximation of f(h, r), near the point (10, 5).
Put f(h, r) = L(h, r) + ε2(h, r), where L(h, r) is the linearization of
f at (10, 5) and ε2(h, r) is the remainder. Then, for h = 10 + 2δ
and r = 5 + δ, one has V = f(h, r) − f(10, 5) = L(h, r) − f(10, 5) +
ε2(h, r) = Va + ε2(h, r). To estimate the remainder, one has to find the
upper bounds on the second-order derivatives of f when (h, r) lies in
the disk of radius R = 2δ centered at (10, 5) (see (13.13)). One has
f ′′

hh = 0 = M20, f ′′
hr = 2πr ≤ 10.2π = M11, and f ′′

rr = 2πh ≤ 20.2π =
M02. Therefore, M2 = 40.4π, and the absolute error of the estimate
is |V − Va| = |ε2| ≤ (M2/2)R2 = 80.8πδ2 = 0.202π cm3. The relative
error reads |V − Va|/Va ≈ 0.026; that is, it is about 2.6%. �

92.4. Multivariable Taylor Polynomials. For more than two variables,
Taylor polynomials are defined similarly. Let r = (x1, x2, ..., xm) and let
∆ = (∆1, ∆2, ..., ∆m). Consider polynomials defined by the recurrence
relation (13.11), where ∆1∂x +∆2∂y is replaced by ∆1∂1 +∆2∂2 + · · ·+
∆m∂m = D∆ and ∂i means the operation of taking the derivative with
respect to xi, that is, ∂if = ∂f/∂xi. The Taylor polynomial Tn(r) of
degree n near the point r0 = (a1, a2, ..., am) is then obtained by setting
∆i = xi − ai in the polynomial Pn(∆); that is, in the compact form
the rule reads

Pn(∆) =
n∑

k=1

1
k!

Dk
∆f(r0) , Tn(r) = Pn(r− r0) .

The accuracy of the approximation f(r) ≈ Tn−1(r) can be assessed by
putting upper bounds on the nth-order derivatives of f in a ball cen-
tered at r0. Due to excessive technicalities, the details are omitted. It
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is worth noting that inequality (13.12) holds for any number of vari-
ables; that is the difference |f(r)− Tn−1(r)| tends to 0 no slower than
‖r− r0‖n as r→ r0.

For practical purposes, if the difference |Tn(r)−Tn−1(r)| is small as
compared to |Tn−1(r)| in a ball ‖r− r0‖ ≤ R, then the approximation
f(r) ≈ Tn−1(r) is accurate; that is, the approximation by a higher-order
polynomial Tn instead of Tn−1 is not going to significantly improve the
accuracy.

92.5. Study Problems.

Problem 13.7. Calculation of higher-order derivatives to find Taylor
polynomials might be a technically tedious problem. In some special
cases, however, it can be avoided. Suppose f is a composition of two
functions: f(r) = g(u), where u = u(r). Suppose that u(r0) = 0, that
is, f(r0) = g(0). Let Tn(r) = Pn(∆) be a Taylor polynomial for the
function u at r0. It has the property that it has no constant term as
u(r0) = 0. Therefore, its kth power, (Pn(∆))k, is a polynomial of degree
nk whose constant term, linear terms, quadratic terms, and so on up
to the (k − 1)th-degree terms vanish. Consider the Taylor polynomial
for the function g:

T g
n(u) = g(0) + g′(0)u +

g′′(0)
2!

u2 + · · ·+ g(n)(0)
n!

un.

If u is approximated by its Taylor polynomial Pn(∆) in this expression,
then the resulting expression will be a polynomial in ∆ whose degree is
n2 and whose terms up to degree n coincide with the Taylor polynomial
T f

n for f at r0. Indeed, any polynomial in ∆ is uniquely determined by
its coefficients, including T f

n . On the other hand, an approximation of
g by a higher-degree polynomial T g

n+1 will add the term un+1, which can
only contain terms in ∆ of degree n + 1 or higher, and hence will not
change the terms of degree less than or equal to n. Use this observation
to find T3 for the function f(x, y, z) = sin(xy + z) at the origin.

Solution: Put u = xy + z. The third-degree Taylor polynomial for
g(u) = sin u at u = 0 is T g

3 (u) = u − 1
6u

3. As u is a polynomial of
degree 2, its Taylor polynomial of degree 3 coincides with it, T3(r) =
u(r). Hence, T f

3 is obtained from T g
3 by omitting all terms of degree

higher than 3:

T g
3 = (xy+z)− 1

6
(xy+z)3 = z+xy− 1

6
(z3+3(xy)z2+3(xy)2z+(xy)3).

Therefore, T f
3 (r) = z+xy− 1

6z
3. Evidently, the procedure is far simpler

than calculating 19 partial derivatives (up to the third order)! �
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93. Directional Derivative and the Gradient

93.1. Directional Derivative. Let f be a function of several variables
r = (x1, x2, ..., xm). The partial derivative f ′

xi
(r0) is the rate of change

in the direction of the ith coordinate axis. This direction is defined by
the unit vector êi parallel to the corresponding coordinate axis. Let û
be a unit vector that does not coincide with any of the vectors êi. What
is the rate of change of f at r0 in the direction of û? For example, if
f(x, y) is the height of a mountain, where the x and y axes are oriented
along the west–east and south–north directions, respectively, then it is
reasonable to ask about the slopes, for example, in the south–east or
north–west directions. Naturally, these slopes generally differ from the
slopes f ′

x and f ′
y.

To answer the question about the slope in the direction of a unit
vector û, consider a straight line through r0 parallel to û. Its vector
equation is r(h) = r0 + hû, where h is a parameter that labels points
of the line. The values of f along the line are given by the composition
g(h) = f(r(h)). The numbers g(0) and g(h) are the values of f at a
given point r0 and the point r(h), h > 0, that is at the distance h from
r0 in the direction of û. So the slope is given by the derivative g′(0).
Therefore, the following definition is natural.

Definition 13.21. (Directional Derivative).
Let f be a function on an open set D. The directional derivative of f
at r0 ∈ D in the direction of a unit vector û is the limit

Duf(r0) = lim
h→0

f(r0 + hû)− f(r0)
h

if the limit exists.

The number Duf(r0) is the rate of change of f at r0 in the direction
of û. By definition, Duf(r0) = df(r(h))/dh taken at h = 0, where
r(h) = r0 + hû. So, by the chain rule, the directional derivative exists
if the partial derivatives of f at r0 exist:

df(r(h))
dh

= f ′
x1

(r(h))x′
1(h) + f ′

x2
(r(h))x′

2(h) + · · ·+ f ′
xm

(r(h))x′
m(h) .

Setting h = 0 in this relation and taking into account that r′(h) = û
or x′

i(h) = ui, where û = (u1, u2, ..., um), one infers that

(13.14) Duf(r0) = f ′
x1

(r0)u1 + f ′
x2

(r0)u2 + · · ·+ f ′
xm

(r0)um .



93. DIRECTIONAL DERIVATIVE AND THE GRADIENT 175

Equation (13.14) provides a convenient way to compute the directional
derivative. Recall also that if the direction is specified by a nonunit vec-
tor u, then the corresponding unit vector can be obtained by dividing
it by its length ‖u‖, that is, û = u/‖u‖.

Example 13.25. The height of a hill is f(x, y) = (9− 3x2− y2)1/2,
where the x and y axes are directed from west to east and from south
to north, respectively. A hiker is at the point r0 = (1, 2). Suppose the
hiker is facing in the north-west direction. What is the slope the hiker
sees?

Solution: A unit vector in the plane can always be written in the form
û = (cos ϕ, sin ϕ), where the angle ϕ is counted counterclockwise from
the positive x axis; that is, ϕ = 0 corresponds to the east direction,
ϕ = π/2 to the north direction, ϕ = π to the west direction, and so on.
So for the north–west direction ϕ = 3π/2 and û = (−1/

√
2, 1/
√

2) =
(u1, u2). The partial derivatives are f ′

x = −3x/(9 − 3x2 − y2)1/2 and
f ′

y = −y/(9 − 3x2 − y2)1/2. Their values at r0 = (1, 2) are f ′
x(1, 2) =

−3/
√

2 and f ′
y(1, 2) = −2/

√
2. By (13.14), the slope is

Duf(r0) = f ′
x(r0)u1 + f ′

y(r0)u2 = 3/2− 1/2 = 1 .

If the hiker goes north–west, he has to climb at an angle of 45◦ relative
to the horizon. �

Example 13.26. Find the directional derivative of f(x, y, z) =
x2 + 3xz + z2y at the point (1, 1,−1) in the direction toward the point
(3,−1, 0). Does the function increase or decrease in this direction?

Solution: Put r0 = (1, 1,−1) and r1 = (3,−1, 0). Then the vector
u = r1 − r0 = (2,−2, 1) points from the point r0 toward the point r1

according to the rules of vector algebra. But it is not a unit vector
because its length is ‖u‖ = 3. So the unit vector in the same direction
is û = u/3 = (2/3,−2/3, 1/3) = (u1, u2, u3). The partial derivatives
are f ′

x = 2x + 3z, f ′
y = z2, and f ′

z = 3x + 2zy. Their values at r0 read
f ′

x(r0) = −1, f ′
y(r0) = 1, and f ′

z(r0) = 1. By (13.14), the directional
derivative is

Duf(r0) = f ′
x(r0)u1 + f ′

y(r0)u2 + f ′
z(r0)u3 = −2/3− 2/3 + 1/3 = −1 .

Since the directional derivative is negative, the function decreases at
r0 in the direction toward r1 (the rate of change is negative in that
direction). �
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93.2. The Gradient and Its Geometrical Significance.

Definition 13.22. (The Gradient).
Let f be a function of several variables r = (x1, x2, ..., xm) on an open
set D and let r0 ∈ D. The vector whose components are partial deriva-
tives of f at r0,

∇f(r0) = (f ′
x1

(r0), f ′
x2

(r0), ... , f ′
xm

(r0)),

is the gradient of f at the point r0.

So, for two-variable functions f(x, y), the gradient is ∇f = (f ′
x, f ′

y);
for three-variable functions f(x, y, z), the gradient is ∇f = (f ′

x, f
′
y, f

′
z);

and so on. Comparing (13.14) with the definition of the gradient and
recalling the definition of the dot product, the directional derivative
can now be written in the compact form

(13.15) Duf(r0) = ∇f(r0) · û .

This equation is the most suitable for analyzing the significance of the
gradient.

Consider first the cases of two- and three-variable functions. The
gradient is either a vector in a plane or space. In Example 13.25,
the gradient at (1, 2) is ∇f(1, 2) = (−3/

√
2,−2/

√
2). In Example

13.26, the gradient at (1, 1,−1) is ∇f(1, 1,−1) = (−1, 1, 1). Recall the
geometrical property of the dot product a · b = ‖a‖‖b‖ cos θ, where
θ ∈ [0, π] is the angle between the vectors a and b. The value θ = 0
corresponds to parallel vectors a and b. When θ = π/2, the vectors
are orthogonal. The vectors point in the opposite directions if θ = π.
Let θ be the angle between the gradient ∇f(r0) and the unit vector û.
Then

(13.16) Duf(r0) = ∇f(r0) · û = ‖∇f(r0)‖‖û‖ cos θ = ‖∇f(r0)‖ cos θ

because ‖û‖ = 1 (the unit vector). As the components of the gradient
are fixed numbers (the values of the partial derivatives at a particular
point r0), the directional derivative at r0 varies only if the vector û
changes. Thus, the rates of change of f in all directions that have
the same angle θ with the gradient are the same. In the two-variable
case, only two such directions are possible if û is not parallel to the
gradient, while in the three-variable case the rays from r0 in all such
directions form a cone whose axis is along the gradient. It is then
concluded that the rate of change of f attains its absolute maximum
or minimum when cos θ does. Therefore, the maximal rate is attained
in the direction of the gradient (θ = 0) and is equal to the magnitude of
the gradient ‖∇f(r0)‖, whereas the minimal rate of change −‖∇f(r0)‖
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occurs in the direction of −∇f(r0), that is, opposite to the gradient
(θ = π).

The graph of a function of two variables z = f(x, y) may be viewed
as the shape of a hill. Then the gradient at a particular point shows
the direction of the steepest ascent, while its opposite points in the
direction of the steepest descent. In Example 13.25, the maximal slope
at the point (1, 2) is ‖∇f(r0)‖ = (1/

√
2) ‖(−3, 2)‖ =

√
13/2. It occurs

in the direction of (−3/
√

2, 2/
√

2) or (−3, 2) (the multiplication of a
vector by a positive constant does not change its direction). If ϕ is the
angle between the positive x axis (or the vector ê1) and the gradient,
then tan ϕ = −2/3 or ϕ ≈ 146◦. If the hiker goes in this direction, he
has to climb up at an angle of tan−1(

√
13/2) ≈ 69◦ with the horizon.

Also, note the hiker’s original direction was ϕ = 135◦, which makes
the angle 11◦ with the direction of the steepest ascent. So the slope in
the direction ϕ = 146◦ + 11◦ = 157◦ has the same slope as the hiker’s
original one. As has been argued, in the two-variable case, there can
only be two directions with the same slope.

Next, consider a level curve f(x, y) = k of a function of two vari-
ables. There is a vector function r(t) = (x(t), y(t)) that traces out
the level curve. This vector function is defined by the condition that
f(x(t), y(t)) = k for all values of the parameter t. By the definition of
level curves, the function f has a constant value k along its level curve.
Therefore, by the chain rule,

d

dt
f(x(t), y(t)) = 0 =⇒ df

dt
= f ′

xx
′(t)+f ′

yy
′(t) = ∇f(r(t))·r′(t) = 0

for any value of t. For any particular value t = t0, the point r0 = r(t0)
lies on the level curve, while the derivative r′(t0) is a tangent vector to
the curve at the point r0. Thus, the gradient ∇f(r0) is orthogonal to a
tangent vector at the point r0 to the level curve of f through that point.
One can also say the gradient of f is always normal to the level curves
of f .

Recall that a function f(x, y) can be described by a contour map,
which is a collection of level curves. If level curves are smooth enough to
have tangent vectors everywhere, then one can define a curve through a
particular point that is normal to all level curves in some neighborhood
of that point. This curve is called the curve of steepest descent or
ascent. The tangent vector of this curve at any point is parallel to the
gradient at that point. The values of the function increase (or decrease)
most rapidly along this curve. If a hiker follows the direction of the
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gradient of the height, he would go along the path of steepest ascent
or descent.

Consider a level surface f(x, y, z) = k. Let r(t) = (x(t), y(t), z(t))
be a smooth curve on the level surface, that is, f(r(t)) = k for all values
of t. Since the values of f do not change along the curve, df/dt = 0.
Making use of the chain rule, it is concluded that

df/dt = f ′
xx

′ + f ′
yy

′ + f ′
zz

′ = ∇f(r(t)) · r′(t) = 0.

There are many curves through a point r0 = r(t0) that lie in the level
surface. The gradient ∇f(r0) is orthogonal to a tangent vector to any
such curve, that is, to any line that is tangent to the level surface at r0.
Thus, the gradient ∇f(r0) is normal to the tangent plane to the level
surface through the point r0.

All the findings are summarized in the following theorem, which
has been proved above.

Theorem 13.15. (Geometrical Properties of the Gradient).
Let f be differentiable on an open set D and let r0 ∈ D. Let S be the
level surface (or curve) through the point r0. Then

(1) The maximal rate of change of f at r0 occurs in the direction
of the gradient ∇f(r0) and is equal to its magnitude ‖∇f(r0)‖.

(2) The minimal rate of change of f at r0 occurs in the direction
opposite to the gradient −∇f(r0) and equals −‖∇f(r0)‖.

(3) The gradient ∇f(r0) is normal to S at r0.

Example 13.27. Find an equation of the tangent plane to the el-
lipsoid x2 + 2y2 + 3z2 = 11 at the point (2, 1, 1).

Solution: The equation of the ellipsoid can be viewed as the level
surface f(x, y, z) = 11 of the function f(x, y, z) = x2+2y2+3z2 through
the point r0 = (2, 1, 1) because f(2, 1, 1) = 11. By the geometrical
property of the gradient, the vector n = ∇f(r0) is normal to the plane
in question. Since∇f = (2x, 4y, 6z), one has n = (4, 4, 6). An equation
of the plane through the point (2, 1, 1) and normal to n is 4(x − 2) +
4(y − 1) + 6(z − 1) = 0 or 2x + 2y + 3z = 9. �

Theorem 13.15 holds for functions of more than three variables
as well. Equation (13.15) was obtained for any number of variables,
and the representation of the dot product (13.16) holds in any Eu-
clidean space. Thus, the first two properties of the gradient are valid
in any multivariable case. The third property is harder to visual-
ize as the level surface of a function of m variables is an (m − 1)-
dimensional surface embedded in an m-dimensional Euclidean space.
Such surfaces are called hypersurfaces to emphasize the fact that they
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are not two-dimensional surfaces embedded in a three-dimensional Eu-
clidean space. However, if r(t) is a curve in the level hypersurface
f(r) = k, then the multivariable function f has a constant value along
any such curve, and, by the chain rule, it immediately follows that
df(r(t))/dt = ∇f(r(t)) · r′(t) = 0 for any t. Hence, the gradient is
normal to the level hypersurface in the sense that it is normal to any
curve in it.

Remark. It is interesting to note compact formulas for the lineariza-
tion L(r) of f(r) at r0 and the differential df :

L(r) = f(r0) +∇f(r0) · (r− r0) , df = ∇f · dr
that are valid for any number of variables.

93.3. Study Problems.

Problem 13.8. Suppose that three level surfaces f(x, y, z) = 1, g(x,
y, z) = 2, and h(x, y, z) = 3 of differentiable functions are intersecting
along a smooth curve C. Let P be a point on C. Find ∇f · (∇g×∇h)
at P .

Solution: Let v be a tangent vector to C at the point P (it exists
because the curve is smooth). Since C lies in the surface f(x, y, z) = 1,
the gradient ∇f(P ) is orthogonal to v. Similarly, the gradients ∇g(P )
and ∇h(P ) must be orthogonal to v. Therefore, all the gradients must
be in a plane perpendicular to the vector v. The triple product for
any three coplanar vectors vanishes, and hence ∇f · (∇g × ∇h) = 0
at P . �

Problem 13.9. Consider Newton’s second law ma = F. Suppose
that the force is the gradient F = −∇U , where U = U(r). Let r =
r(t) be the trajectory satisfying Newton’s law. Prove that the quantity
E = mv2/2 + U(r), where v = ‖r′(t)‖ is the speed, is a constant of
motion, that is, dE/dt = 0. This constant is called the total energy of a
particle.

Solution: First, note that v2 = v · v. Hence, (v2)′ = 2v · v′ =
2v · a. Using the chain rule, dU/dt = U ′

xx
′(t) + U ′

yy
′(t) + U ′

zz
′(t) =

r′· ∇U = v · ∇U . It follows from these two relations that

dE

dt
=

m

2
(v2)′ +

dU

dt
= mv · a + v · ∇U = v · (ma− F) = 0

So the total energy is conserved for the trajectory of the motion. �
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94. Maximum and Minimum Values

94.1. Critical Points of Multivariable Functions. The positions of the lo-
cal maxima and minima of a one-variable function play an important
role when analyzing its overall behavior. In Calculus I, it was shown
how the derivatives can be used to find local maxima and minima. Here
this analysis is extended to multivariable functions.

The following notation will be used. An open ball of radius δ cen-
tered at a point r0 is denoted Bδ = {r | ‖r−r0‖ < δ}; that is, it is a set
of points whose distance from r0 is less than δ > 0. A neighborhood
Nδ of a point r0 in a set D is a set of common points of D and Bδ; that
is, Nδ = D ∩Bδ contains all points in D whose distance from r0 is less
than δ.

Definition 13.23. (Absolute and Local Maxima or Minima).
A function f on a set D is said to have a local maximum at r0 ∈
D if there is a neighborhood Nδ of r0 such that f(r0) ≥ f(r) for all
r ∈ Nδ. The number f(r0) is called a local maximum value. If there
is a neighborhood Nδ of r0 such that f(r0) ≤ f(r) for all r ∈ Nδ,
then f is said to have a local minimum at r0 and the number f(r0)
is called a local minimum value. If the inequality f(r0) ≥ f(r) or
f(r0) ≤ f(r) holds for all points r in the domain of f , then f has an
absolute maximum or absolute minimum at r0, respectively.

There is an extension of Fermat’s theorem to multivariable func-
tions that is helpful in finding the possible positions of the local maxima
and minima, provided the function has first-order partial
derivatives.

Theorem 13.16. If f has a local maximum or minimum at an
interior point r0 of its domain D and the first-order partial derivatives
exist at r0, then they vanish at r0, f ′

xi
(r0) = 0, i = 1, 2, ..., m.

Proof. Consider a line r(t) = r0 + tû through r0 and parallel to a
unit vector u. The function F (t) = f(r(t)) defines the values of f
along the line. Therefore, F (t) must have a local maximum or min-
imum at t = 0. The derivative F ′ exists at t = 0 because, by the
definition of the directional derivative, F ′(0) = Duf(r0) = ∇f(r0) · û
and the gradient ∇f(r0) exists by the hypothesis. By Fermat’s theo-
rem, F ′(0) = 0. So the rate of change of f vanishes in any direction and,
in particular, along the coordinate axes, that is, û = êi and Duf(r0) =
f ′

xi
(r0) = 0. �
The converse of this theorem is not true. This is illustrated by

the example of the function f(x, y) = xy − 2y − x. It is differentiable
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everywhere. In particular, the system of equations f ′
x = y − 1 = and

f ′
y = x − 2 = 0 has the solution (x, y) = (2, 1). However, the function

has neither a local maximum nor a local minimum. Indeed, consider a
straight line through (2, 1), x = 2+u1t, y = 1+u2t, that is parallel to a
unit vector û = (u1, u2). Then the values of f along the line are F (t) =
f(x(t), y(t)) = −1 + at2, where a = u1u2. So F (t) has a minimum at
t = 0 if a > 0 or a maximum if a < 0. However, the coefficient a may
be either positive or negative, depending on the choice of the line (or
the components of û). Thus, the value F (0) = f(2, 1) = −1 cannot be
a local maximum or a local minimum value. The graph of f looks like
a saddle in the neighborhood of (2, 1).

Definition 13.24. (Saddle Point).
If the number f(r0) is the maximal value f along some lines through r0

in a small open ball (disk) centered at r0, whereas f(r0) is the minimal
value of f along all the other such lines, then r0 is called a saddle point
of f .

Remark. Consider all lines through a point r0 in the domain of a
function f . Suppose that f attains a local maximum along every line
through r0; that is, the function g(t) = f(r0+ut) has a local maximum
at t = 0 for any choice of the vector u. One might tend to conclude
that in this case the function f should have a local maximum at r0.
This conclusion is wrong! An example is given at the end of this section
(see Study Problems 13.9). The remark also applies to the case of a
local minimum.

A local maximum or minimum may occur at a point where some of
the partial derivatives do not exist. For example, f(x, y) = |x|+ |y| is
defined everywhere and has an absolute minimum at (0, 0). However,
the partial derivatives f ′

x(0, 0) and f ′
y(0, 0) do not exist.

Finally, a local minimum or maximum may occur at a point of the
domain that is not an interior point, and hence the partial derivatives
are not defined at that point. For example, the domain of the function
f(x, y) =

√
1− x2 − y2 is the disk x2 + y2 ≤ 1. Its boundary points

x2+y2 = 1 are not interior points. But this function attains its absolute
minimum on the circle x2 + y2 = 1.

Definition 13.25. (Critical Points).
An interior point r0 of the domain of a function f is said to be a critical
point of f if either ∇f(r0) = 0 or the gradient does not exist at r0.
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Thus, if f has a local maximum or minimum at r0, then r0 is a
critical point of f . However, not all critical points correspond to either
a local maximum or a local minimum.

94.2. Second-Derivative Test. Suppose that a function f(x, y) has con-
tinuous second derivatives in an open ball centered at r0. The sec-
ond derivatives a = f ′′

xx(r0), b = f ′′
yy(r0), and c = f ′′

xy(r0) = f ′′
yx(r0)

(Clairaut’s theorem) can be arranged into a 2 × 2 symmetric matrix
whose diagonal elements are a and b and whose off-diagonal elements c.
The quadratic polynomial of a variable λ,

P2(λ) = det
(

a− λ c
c b− λ

)
= (a− λ)(b− λ)− c2,

is called the characteristic polynomial of the matrix of second partial
derivatives of f at r0.

Theorem 13.17. (Second-Derivative Test).
Let r0 be a critical point of a function f . Suppose that the second-
order partial derivatives of f are continuous in an open ball (disk) Bδ

centered at r0. Let P2(λ) be the characteristic polynomial of the matrix
of second derivatives at r0. Let λi, i = 1, 2, be the roots of P2(λ). Then

• If the roots are strictly positive, λi > 0, then f has a local
minimum at r0.
• If the roots are strictly negative, λi < 0, then f has a local

maximum at r0.
• If the roots do not vanish but have different signs, then r0 is a

saddle point of f .
• If at least one of the roots vanishes, then f may have a local

maximum, a local minimum, a saddle, or none of the above
(the second-derivative test is inconclusive).

Proof. Consider the second directional derivative of f at any point r
in a neighborhood Nδ of r0:

D2
uf = Du(f ′

xu1 + f ′
yu2) = f ′′

xxu
2
1 + 2f ′′

xyu1u2 + f ′′
yyu

2
2,

which is a quadratic function in components of the vector û. It de-
termines the concavity of the curve obtained by the intersection of the
graph of f with a plane parallel to both the z axis and û and going
through the point r = (x, y). Hence, if D2

uf > 0 for all r in Nδ, then
the graph is concave downward and f must have a local minimum
at r0. Similarly, f has a local maximum at r0 if D2

uf < 0 for all r
in Nδ.
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For any unit vector, u1 = cos ϕ and u2 = sin ϕ. Making use of the
double-angle formulas cos2 ϕ = (1+cos(2ϕ)/2, sin2 ϕ = (1−cos(2ϕ)/2,
and 2 sin ϕ cos ϕ = sin(2ϕ), the second directional derivative can be
written in the form

2D2
uf = (f ′′

xx + f ′′
yy) + (f ′′

xx − f ′′
yy) cos(2ϕ) + 2f ′′

xy sin(2ϕ).

Put A2 = (f ′′
xx − f ′′

yy)
2 + 4(f ′′

xy)
2 and define an angle α by cos α =

(f ′′
xx−f ′′

yy)/A and sin α = −2f ′′
xy/A. Since cos(2ϕ+α) = cos α cos(2ϕ)−

sin α sin(2ϕ), one infers that

2D2
uf = (f ′′

xx + f ′′
yy) + A cos(2ϕ + α) = (f ′′

xx + f ′′
yy) + A cos φ,

where φ = 2ϕ + α takes values in [0, 2π] for all û. Define λ1 and λ2 by
the relations

λ1 + λ2 = f ′′
xx + f ′′

yy , λ1λ2 = f ′′
xxf

′′
yy − (f ′′

xy)
2.

Note that if r = r0, then λ1 and λ2 are roots of the characteristic
polynomial P2(λ) = 0 as they satisfy the conditions λ1 +λ2 = a+b and
λ1λ2 = ab− c2. By the continuity of the second derivatives, λ1 and λ2

are continuous as well. Hence, if the roots of P2(λ) do not vanish, then
λ1 and λ2 do not vanish in some neighborhood Nδ. Then it follows that
(λ1− λ2)2 = (λ1 + λ2)2− 4λ1λ2 = A2 or A = |λ1− λ2|, and the second
derivative becomes

D2
uf =

λ1 + λ2

2
+
|λ1 − λ2|

2
cos φ

=

{
λ1 cos2(φ/2) + λ2 sin2(φ/2), λ1 ≥ λ2,

λ1 sin2(φ/2) + λ2 cos2(φ/2), λ1 < λ2,

where (1 + cos φ) = 2 cos2 φ and (1− cos φ) = 2 sin2 φ have been used.
Suppose that λ1,2 > 0 at the critical point r0. Then, by the continuity
of the second derivatives, λ1,2 > 0 in some neighborhood Nδ of r0.
Thus, in this case, D2

uf > 0 in Nδ and f has a local minimum at r0.
Similarly, if the roots are strictly negative, then D2

uf < 0 in Nδ and f
has a local maximum at r0. If λ1,2 �= 0 but have different signs, then
D2

uf changes its sign in Nδ. Since the sign of D2
u does not change when

û → −û, on any straight line through r0 and parallel to û, f has a
fixed concavity along each line, which means that f has a saddle point
at r0.

The inconclusiveness of the second-derivative test when at least one
of the roots vanishes is easily established by specific examples.

Consider the function f(x, y) = x2 + sy4, where s is a number.
It has a critical point (0, 0) because f ′

x(0, 0) = f ′
y(0, 0) = 0 and a =

f ′′
xx(0, 0) = 2, b = f ′′

yy(0, 0) = 0, and c = f ′′
xy(0, 0) = 0. Therefore,
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P2(λ) = −(2 − λ)λ has the roots λ1 = 2 and λ2 = 0. If s > 0, then
f(x, y) ≤ 0 for all (x, y) and f has a minimum at (0, 0). If s < 0,
the function f has a minimum along the line x = t, y = 0 (F (t) = t2),
while it has a maximum along the line x = 0, y = t (F (t) = st4, s < 0);
that is, (0, 0) is a saddle point. The function f(x, y) = −(x2 + sy4)
has a maximum at (0, 0) if s > 0, and if s < 0, the critical point
(0, 0) is a saddle point. So, if one of the roots vanishes, then f may
have a local maximum or a local minimum, or a saddle. The same
conclusion is reached when λ1 = λ2 = 0 by studying the functions
f(x, y) = ±(x4 + sy4) along the similar lines of arguments.

Furthermore, consider the function f(x, y) = xy2. It also has a
critical point at the origin, and all its second derivatives vanish at (0, 0),
that is, P2(λ) = λ2 and λ1 = λ2 = 0. The values of f along any line
through the origin x = u1t, y = u2t are F (t) = st3, where s = u1u

2
2.

For any s �= 0, F (t) has an inflection point at t = 0. Therefore, f
cannot have a maximum or minimum or saddle at (0, 0) because in
any of these situations f should have either a minimum or a maximum
along any straight line. A critical point may be a general inflection
point if one the of roots does not vanish. An example is provided by
f(x, y) = x2 +y3, which has a critical point (0, 0) and a = 2, b = 0, and
c = 0, that is λ1 = 2 and λ2 = 0. There are lines through the origin
along which f has either a minimum or an inflection at t = 0. For
example, along the line x = 0, y = t, the function f has an inflection
point (F (t) = t3) at t = 0, whereas, along the line x = t, y = 0, it has
a minimum (F (t) = t2). The very existence of lines along which f has
an inflection precludes us from concluding that f can have a maximum
or a minimum or a saddle at (0, 0).

This concludes the proof of the second-derivative test in the case of
two-variable functions. �

Example 13.28. Suppose that λ1 = 0 and λ2 < 0 for f(x, y) at its
critical point. Find the directions at which D2

uf vanishes at the critical
point.

Solution: Put û = (cos ϕ, sin ϕ). Then D2
uf = λ2 sin2(θ + α/2) = 0

or θ = −α/2 and θ = −α/2 + π, where α = − sin−1(2c/A), A =√
(a− b)2 + 4c2 = |λ1 − λ2| = |λ2| (see the proof of the second-

derivative test). Therefore, the directions are û = ±(cos(α/2),−
sin(α/2)). �

Example 13.29. Find all critical points of the function f(x, y) =
1
3x

3 + xy2 − x2 − y2 and determine whether f has a local maximum,
minimum, or saddle at them.
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Solution: Critical points. The function is a polynomial, and therefore
it has partial derivatives everywhere. So its critical points are solutions
of the system of equations{

f ′
x = x2 + y2 − 2x = 0

f ′
y = 2xy − 2y = 0

It is important not to lose solutions when transforming the system of
equations ∇f(r) = 0 for the critical points. It follows from the sec-
ond equation that y = 0 or x = 2. Therefore, the original system of
equations is equivalent to two systems of equations:{

f ′
x = x2 + y2 − 2x = 0
x = 1 or

{
f ′

x = x2 + y2 − 2x = 0
y = 0 .

Solutions of the first system are (1, 1) and (1,−1). Solutions of the
second system are (0, 0) and (2, 0). Thus, the function has four critical
points. It is advisable to check if all points found do satisfy the original
system because, when transforming a system of nonlinear equations,
one might get points that do not satisfy the original system or one
might simply make an error.
Second-derivative test. The second derivatives are

f ′′
xx = 2x− 2 , f ′′

yy = 2x− 2 , f ′′
xy = 2y.

For the points (1,±1), a = b = 0 and c = ±2. The characteristic
polynomial is P2(λ) = λ2 − 4. Its roots λ = ±2 do not vanish and
have opposite signs. Therefore, the function has a saddle at the points
(1,±1). For the point (0, 0), a = b = −2 and c = 0. The characteristic
polynomial is P2(λ) = (−2−λ)2. It has one root of multiplicity 2, that
is, λ1 = λ2 = −2 < 0, and f has a local maximum at (0, 0). Finally, for
the point (2, 0), a = b = 2 and c = 0. The characteristic polynomial
P2(λ) = (2− λ)2 has one root of multiplicity 2, λ1 = λ2 = 2 > 0; that
is, the function has a local minimum at (2, 0). �

94.3. Study Problems.

Problem 13.10. Define f(0, 0) = 0 and

f(x, y) = x2 + y2 − 2x2y − 4x6y2

(x4 + y2)2

if (x, y) �= (0, 0). Show that, for all (x, y), the following inequality
holds: 4x4y2 ≤ (x4 + y2)2. Use it and the squeeze principle to conclude
that f is continuous. Next, consider a line through (0, 0) and parallel
to û = (cos ϕ, sin ϕ) and the values of f on it:

Fϕ(t) = f(t cos ϕ, t sin ϕ).
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Show that Fϕ(0) = 0, F ′
ϕ(0) = 0, and F ′′

ϕ(0) = 2 for all 0 ≤ ϕ ≤ 2π.
Thus, f has a minimum at (0, 0) along any straight line through (0, 0).
Show that nevertheless f has no minimum at (0, 0) by studying its value
along the parabolic curve (x, y) = (t, t2).

Solution: One has 0 ≥ (a−b)2 = a2−2ab+b2 and hence 2ab ≤ a2+b2

for any numbers a and b. Therefore, 4ab = 2ab+2ab ≤ 2ab+ a2 + b2 =
(a+b)2. By setting a = x4 and b = y2, the said inequality is established.
The continuity of the last term in f at (0, 0) has to be verified. By the
found inequality,

4x6y2

(x4 + y2)2 ≤
4x6y2

4x4y2 = x2 → 0 as (x, y)→ (0, 0).

Thus, f(x, y) → f(0, 0) = 0 as (x, y) → (0, 0), and f is continu-
ous everywhere. If ϕ = ±π/2, that is, the line coincides with the x
axis, (x, y) = (t, 0), one has Fϕ(t) = t2, from which it follows that
Fϕ(0) = F ′

ϕ(0) = 0 and F ′′
ϕ(0) = 2. When ϕ �= ±π/2 so that sin ϕ �= 0,

one has

Fϕ(t) = t2 + at3 +
bt4

(1 + ct2)2 ,

a = −2 cos2 ϕ sin ϕ, b = −4 cos6 ϕ

sin2 ϕ
, c =

cos4 ϕ

sin2 ϕ
.

A straightforward differentiation shows that Fϕ(0) = F ′
ϕ(0) = 0 and

F ′′
ϕ(0) = 2 as stated, and Fϕ(t) has an absolute minimum at t = 0, or f

attains an absolute minimum at (0, 0) along any straight line through
(0, 0). Nevertheless, the latter does not imply that f has a minimum
at (0, 0)! Indeed, along the parabola (x, y) = (t, t2), the function f
behaves as

f(t, t2) = −t4,

which attains an absolute maximum at t = 0. Thus, along the parabola,
f has a maximum value at the origin and hence cannot have a local
minimum there. The problem illustrates the remark given earlier in
this section. �

95. Maximum and Minimum Values (Continued)

95.1. Second-Derivative Test for Multivariable Functions. In the proof of
the second-derivative test, it has been established that

(13.17) Df
u = f ′′

xxu
2
1 + 2f ′′

xyu1u2 + f ′′
yyu

2
2 = λ1v

2
1 + λ2v

2
2,
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where û = (u1, u2) = (cos ϕ, sin ϕ) and v̂ = (v1, v2) = (cos β, sin β) are
unit vectors such that β = φ/2 = ϕ + α/2. This fact has a remarkable
geometrical interpretation. Note that D2

uf is a quadratic function in
components of û. When discussing the shapes of quadric surfaces, in
particular, quadric cylinders, it has been shown that, by a suitable
rotation of the coordinate axes, the “mixed” term 2f ′′

xyu1u2 can be
eliminated. When the coordinate system is rotated, the angle ϕ is
simply shifted by the rotation angle. So the vector v̂ is obtained from
the vector û by rotating the latter through the angle α/2, which is
determined by the second-order partial derivatives of f . In doing so, the
quadratic function D2

uf is brought into the standard form in which the
coefficients are determined by the roots of the characteristic polynomial.
This result holds for any number of variables.

First, note that Du(Duf) = u1Duf ′
x1

+ u2Duf ′
x2

+ · · ·+ umDuf ′
xm

.
Put Dij = f ′′

xixj
= Dji (by Clairaut’s theorem). Then

D2
uf =

m∑
i=1

m∑
j=1

Dijuiuj,

which is a quadratic function. The numbers Dij can be arranged into
a square m×m matrix. The polynomial of degree m,

Pm(λ) = det

⎛
⎜⎜⎜⎜⎝

D11 − λ D12 D13 · · · D1m

D21 D22 − λ D23 · · · D2m

D31 D32 D33 − λ · · · D3m
...

...
... . . . ...

Dm1 Dm2 Dm3 · · · Dmm − λ

⎞
⎟⎟⎟⎟⎠,

is called the characteristic polynomial of the matrix of second deriva-
tives. For any symmetric real matrix (Dij = Dji), the roots of its char-
acteristic polynomial are proved to be real. It can further be proved
that there exists a rotation of the coordinate system under which û
goes into v̂ such that

(13.18) D2
uf =

m∑
i=1

m∑
j=1

Dijuiuj = λ1v
2
1 + λ2v

2
2 + · · ·+ λmv2

m,

where λi are roots of Pm. This equation shows that the second-derivative
test formulated in the preceding section holds for any number of vari-
ables.

Theorem 13.18. (Second-Derivative Test for m Variables).
Let r0 be a critical point of f and suppose that f has continuous second-
order partial derivatives Dij in some open ball centered at r0. Then the
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characteristic polynomial Pm(λ) of the matrix Dij(r0) has real roots λi,
i = 1, 2, ..., m, and

• If all the roots are strictly positive, λi > 0, then f has a local
minimum.
• If all the roots are strictly negative, λi < 0, then f has a local

maximum.
• If all the roots do not vanish but have different signs, then f

has an m-dimensional saddle point.,
• If some of the roots vanish, then f may have a local maximum,

a local minimum, a saddle, or none of the above (the test is
inconclusive).

In the two-variable case, the proof uses special properties of the
roots of quadratic polynomials. In the general case, the goal is achieved
by means of linear algebra methods.

Remark. If at least one of the roots of the characteristic polyno-
mials vanishes, the second-derivative test is inconclusive. How can
the local behavior of a function be analyzed near its critical point?
If the function in question is differentiable sufficiently many times
near a critical point, then the Taylor polynomial approximation at
the critical point provides a useful technique for answering this ques-
tion because it is easier to study a polynomial rather than a general
function.

Example 13.30. Investigate the local behavior of the function de-
fined by f(0, y) = f(x, 0) = 1 and f(x, y) = sin(xy)/(xy) if x �= 0 and
y �= 0.

Solution: Since u = xy is small near the origin, sin u can be ap-
proximated by its Taylor polynomial T3(u) = u − u3/6. Hence, the
corresponding Taylor polynomial T f

n (x, y) for the function f at (0, 0)
reads:

T f
n (x, y) =

T3(u)
u

= 1− u2

6
= 1− x2y2

6
.

So the function attains a local maximum at (0, 0) because x2y2 ≥ 0
for all (x, y). It is worth noting that the first nonconstant polynomial
has degree n = 4 and therefore T f

2 = 1, which means that all the
first and second derivatives of f vanish at (0, 0); that is, the charac-
teristic polynomial for the matrix of second derivatives is P2(λ) = λ2

has root λ = 0 of multiplicity 2. The second-derivative test would be
inconclusive. �



95. MAXIMUM AND MINIMUM VALUES (CONTINUED) 189

95.2. Absolute Maximal and Minimal Values. For a function f of one
variable, the extreme value theorem says that if f is continuous on a
closed interval [a, b], then f has an absolute minimum value and an ab-
solute maximum value. For example, the function f(x) = x2 on [−1, 2]
attains an absolute minimum value at x = 0 and an absolute maximum
value at x = 2. Note that f is defined for all x, and therefore its critical
points are determined by f ′(x) = 0. So the absolute minimum value
occurs at the critical point x = 0 inside the interval, while the absolute
maximum value occurs on the boundary of the interval that is not a
critical point of f . Thus, to find the absolute maximum and minimum
values of a function f in a closed interval in the domain of f , the values
of f must be evaluated not only at the critical points but also at the
boundaries of the interval.

The situation for multivariable functions is similar.

Definition 13.26. (Closed Set).
A set D in a Euclidean space is said to be closed if it contains all its
limit points.

Recall that any neighborhood of a limit point of D contains points
of D. If a limit point of D is not an interior point of D, then it lies on a
boundary of D. So a closed set contains its boundaries. All points of an
open interval (a, b) are its limit points, but, in addition, the boundaries
a and b are also its limit points, so when they are added, a closed set
[a, b] is obtained. Similarly, the set in the plane D{(x, y)|x2 + y2 <
1} has limit points on the circle x2 + y2 = 1 (the boundary of D),
which is not in D. By adding these points, a closed set is obtained,
x2 + y2 ≤ 1.

Definition 13.27. (Bounded Set).
A set D in a Euclidean space is said to be bounded if it is contained in
some ball.

In other words, for any two points in a bounded set, the distance
between them cannot exceed some value (the diameter of the ball that
contains the set).

Theorem 13.19. (Extreme Value Theorem).
If f is continuous on a closed, bounded set D in a Euclidean space, then
f attains an absolute maximum value f(r1) and an absolute minimum
value f(r2) at some points r1 ∈ D and r2 ∈ D.

By this theorem, it follows that the points r1 and r2 are either crit-
ical points of f (because a local maximum or minimum always occurs
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at a critical point) or lie on the boundary of D. So, to find the absolute
minimum and maximum values of a continuous function f on a closed,
bounded set D, one has to

(1) Find the values of f at the critical points of f in D.
(2) Find the extreme values of f on the boundary of D.
(3) The largest of the values obtained in Steps 1 and 2 is the

absolute maximum value, and the smallest of these values is
the absolute minimum value.

Example 13.31. Find the absolute maximum and minimum values
of f(x, y) = x2 + y2 + xy on the disk x2 + y2 ≤ 4 and the points at
which they occur.

Solution: The function f is a polynomial. It is continuous and dif-
ferentiable on the whole plane.

Step 1. Critical points of f satisfy the system of equations f ′
x = 2x+y =

0 and f ′
y = 2y + x = 0; that is, (0, 0) is the only critical point of f

and it happens to be in the disk. The value of f at the critical point
is f(0, 0) = 0.
Step 2. The boundary of the disk is the circle x2 + y2 = 4. To
find the extreme values of f on it, take the parametric equations of
the circle x(t) = 2 cos t, y(t) = 2 sin t, where t ∈ [0, 2π]. One has
F (t) = f(x(t), y(t)) = 4 + 4 cos t sin t = 4 + 2 sin(2t). The function
F (t) attains its maximal value 6 on [0, 2π] when sin(2t) = 1 or t = π/4
and t = π/4 + π. These values of t correspond to the points (

√
2,
√

2)
and (−√2,−√2). Similarly, F (t) attains its minimal value 2 on [0, 2π]
when sin(2t) = −1 or t = 3π/4 and t = 3π/4 + π. These values of t
correspond to the points (−√2,

√
2) and (

√
2,−√2).

Step 3. The largest number of 0, 2, and 6 is 6. So the absolute mini-
mum value of f is 6; it occurs at the points (

√
2,
√

2) and (−√2,−√2).
The smallest number of 0, 2, and 6 is 0. So the absolute minimum
value of f is 0; it occurs at the point (0, 0). �

Example 13.32. Find the absolute maximum and minimum values
of f(x, y, z) = x2+y2−z2+2z on the closed set D = {(x, y, z) |x2+y2 ≤
z ≤ 4}.

Solution: The set D is the solid bounded from below by the parabo-
loid z = x2 + y2 and from the top by the plane z = 4. It is a bounded
set, and f is continuous on it as any polynomial function.
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Step 1. Since f is differentiable everywhere, its critical points satisfy
the equations f ′

x = 2x = 0, f ′
y = 2y = 0, and f ′

z = −2z + 2 = 0. There
is only one critical point (0, 0, 1), and it happens to be in D. The value
of f at it is f(0, 0, 1) = 1.
Step 2. The boundary consists of two surfaces, the disk S1 = {(x, y, z) |
z = 4, x2 + y2 ≤ 4} in the plane z = 4 and the portion of the
paraboloid S2 = {(x, y, z) | z = x2 + y2, x2 + y2 ≤ 4}. The val-
ues of f on S1 are F1(x, y) = f(x, y, 4), where the points (x, y) lie
in the disk of radius 2, x2 + y2 ≤ 4. The problem now is to find
the maximal and minimal values of a two-variable function F1 on
the disk. In principle, at this point, Steps 1, 2, and 3 have to be
applied to F1. These technicalities can be avoided in this partic-
ular case by noting that F1(x, y) = x2 + y2 − 8 = r2 − 8, where
r2 = x2 + y2 ≤ 4. Therefore, the maximal value of F1 is reached
when r2 = 4, and its minimal value is reached when r2 = 0. So the
maximal and minimal values of f on S1 are −4 and −8. The values
of f on S2 are F2(x, y) = f(x, y, x2 + y2) = 3r2 − r4 = g(r), where
r2 = x2 + y2 ≤ 4 or r ∈ [0, 2]. The critical points of g(r) satisfy the
equation g′(r) = 6r − 4r3 = 0 whose solutions are r = 0, r = ±√3/2.
Therefore, the maximal value of f on S2 is 9/4, which is the largest of
g(0) = 0, g(

√
3/2) = 9/4, and g(2) = −4, and the minimal value is −4

as the smallest of these numbers.
Step 3. The absolute maximum value of f on D is max{1,−8,−4, 9/4} =
9/4, and the absolute minimum value of f on D is min{1,−8,−4, 9/4} =
−8. Both values occur on the boundary of D: f(0, 0, 4) = −8 and the
absolute maximal value is attained along the circle of intersection of
the plane z = 3/2 with the paraboloid z = x2 + y2. �

96. Lagrange Multipliers

Let f(x, y) be the height of a hill as a function of position. A hiker
walks along a path r(t) = (x(t), y(t)). What are the local maxima and
minima along the path? What are the maximum and minimum heights
along the path? These questions are easy to answer if the parametric
equations of the path are explicitly known. Indeed, the height along the
path is the single-variable function F (t) = f(r(t)) and the problem is
reduced to the standard extreme value problem for F (t) on an interval
t ∈ [a, b].

Example 13.33. The height as a function of position is f(x, y) =
xy. Find the local maxima and minima of the height along the circular
path x2 + y2 = 4.
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Solution: The parametric equation of the circle can be taken in the
form r(t) = (2 cos t, 2 sin t), where t ∈ [0, 2π]. The height a long the
path is F (t) = 4 cos t sin t = 2 sin(2t). On the interval [0, 2π], the
function sin(2t) attains its absolute maximum value at t = π/4 and t =
π/4+π and its absolute minimum value at t = 3π/4 and t = 3π/4+π.
So, along the path, the function f attains the absolute maximum value
2 at (

√
2,
√

2) and (−√2,−√2) and the absolute minimum value −2
at (−√2,

√
2) and (

√
2,−√2). �

However, in many similar questions, an explicit form of r(t) is not
known or not easy to find. An algebraic condition g(x, y) = 0 is a more
general way to describe a curve. It simply says that only the points
(x, y) that satisfy this condition are permitted in the argument of f ;
that is, the variables x and y are no longer independent. The condition
g(x, y) = 0 is called a constraint.

Problems of this type occur for functions of more than two vari-
ables. For example, let f(x, y, z) be the temperature as a function of
position. A reasonable question to ask is: What are the maximum
and minimum temperatures on a surface? A surface may be described
by imposing one constraint g(x, y, z) = 0 on the variables x, y, and
z. Nothing precludes us from asking about the maximum and min-
imum temperatures along a curve defined as an intersection of two
surfaces g1(x, y, z) = 0 and g2(x, y, z) = 0. So the variables x, y,
and z are now subject to two constraints. In general, what are the
extreme values of a multivariable function f(r) whose arguments are
subject to several constraints ga(r) = 0, a = 1, 2, ..., M? Naturally, the
number of independent constraints should not exceed the number of
variables.

Definition 13.28. (Local Maxima and Minima Subject to
Constraints). A function f(r) has a local maximum (or minimum) at
r0 on the set defined by the constraints ga(r) = 0 if f(r) ≤ f(r0) (or
f(r) ≥ f(r0)) for all r in some neighborhood of r0 that satisfy the
constraints, that is, ga(r) = 0.

Note that a function f may not have local maxima or minima in its
domain. However, when its arguments become subject to constraints,
it may well have local maxima and minima on the set defined by the
constraints. In the example considered, f(x, y) = xy has no local
maxima or minima, but, when it is restricted on the circle by imposing
the constraint g(x, y) = x2 + y2 − 4 = 0, it happens to have two local
minima and maxima.
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96.1. Critical Points of a Function Subject to a Constraint. The extreme
value problem with constraints amounts to finding the critical points
of a function whose arguments are subject to constraints. The example
discussed above shows that the equation ∇f = 0 no longer determines
the critical points for differentiable functions if its arguments are con-
strained.

Consider first the case of a single constraint for two variables r =
(x, y). Suppose the function f and the function g that define the con-
straint are differentiable. Let r0 be a point at which f(r) has a local
maximum or minimum on the set S defined by the constraint g(r) = 0,
which is a curve in the two-variable case. Let r(t) be parametric equa-
tions of this curve in a neighborhood of r0, that is, for some t = t0,
r(t0) = r0. Assuming that r(t) is differentiable, it is concluded that
F ′(t0) = 0, where F (t) = f(r(t)) are values of f along the curve. The
chain rule yields

F ′(t0) = f ′
x(r0)x′(t0) + f ′

y(r0)y′(t0) = ∇f(r0) · r′(t0) = 0 =⇒
∇f(r0)⊥ r′(t0) .

The gradient ∇f(r0) is orthogonal to a tangent vector to the curve
at the point where f has a local maximum or minimum on the curve.
On the other hand, the gradient ∇g(r) at any point is normal to the
level curve g(r) = 0, that is, ∇g(r(t))⊥r′(t) for any t. Therefore, the
gradients ∇f(r0) and ∇g(r0) must be parallel at r0. This geometrical
statement can be translated into an algebraic one: there should exist
a number λ such that ∇f(r0) = λ∇g(r0). This proves the following
theorem.

Theorem 13.20. (Critical Points Subject to a Constraint).
Suppose that f and g are differentiable at r0 and f has a local maximum
or minimum at r0 in the set defined by the constraint g(r) = 0. Then
there exists a number λ such that

∇f(r0) = λ∇g(r0).

The theorem holds for three-variable functions as well. Indeed, if
r(t) is a curve through r0 in the level surface g(x, y, z) = 0. Then the
derivative F ′(t) = (d/dt)f(r(t)) = f ′

xx
′ + f ′

yy
′ + f ′

zz
′ = ∇f · r′ must

vanish at t0, that is, F ′(t0) = ∇f(r0) · r′(t0) = 0. Therefore, ∇f(r0) is
orthogonal to a tangent vector of any curve in the surface S at r0, and
hence ∇f(r0) is normal to the tangent plane to S through r0. On the
other hand, the gradient ∇g is normal to the tangent plane to a level
surface of g at any point (see the properties of the gradient). Therefore,
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at the point r0, the gradients of f and g must be parallel. A similar
line of reasoning proves the theorem for any number of variables.

This theorem provides a powerful method to find the critical points
of f subject to a constraint g = 0 if f and g are differentiable. It is
called the method of Lagrange multipliers. To find the critical points
of f , the following system of equations must be solved:

(13.19) ∇f(r) = λ∇g(r) , g(r) = 0.

If r = (x, y), this is a system of three equations, f ′
x = λg′

x, f ′
y = λg′

y,
and g = 0 for three variables (x, y, λ). For each solution (x0, y0, λ0),
the corresponding critical point of f is (x0, y0). The numerical value
of λ is not relevant; only its existence must be established by solving
the system. In the three-variable case, the system contains four equa-
tions for four variables (x, y, z, λ). For each solution (x0, y0, z0, λ0), the
corresponding critical point of f is (x0, y0, z0).

Example 13.34. Use the method of Lagrange multipliers to solve
the problem in Example 13.33.

Solution: Put g(x, y) = x2 + y2 − 4. Then⎧⎨
⎩

f ′
x = λg′

x

f ′
y = λg′

y

g = 0
=⇒

⎧⎨
⎩

y = 2λx
x = 2λy

x2 + y2 = 4
.

The substitution of the first equation into the second one gives x =
4λ2x. This means that either x = 0 or λ = ±1/2. If x = 0, then y = 0
by the first equation, which contradicts the constraint. For λ = 1/2,
x = y and the constraint gives 2x2 = 4 or x = ±√2. The critical points
corresponding to λ = 1/2 are (

√
2,
√

2) and (−√2,−√2). If λ = −1/2,
x = −y and the constraint gives 2x2 = 4 or x = ±√2. The critical
points corresponding to λ = −1/2 are (

√
2,−√2) and (−√2,

√
2). So

f(±√2,±√2) = 2 is the maximal value and f(∓√2,±√2) = −2 is
the minimal one. �

Example 13.35. A rectangular box without a lid is to be made from
cardboard. Find the dimensions of the box of a given volume V such
that the cost of material is minimal.

Solution: Let the dimensions be x, y, and z, where z is the height.
The amount of cardboard needed is determined by the surface area
f(x, y, z) = xy + 2xz + 2yz. The question is to find the minimal value
of f subject to constraint g(x, y, z) = xyz − V = 0. The Lagrange
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multiplier method gives⎧⎪⎪⎨
⎪⎪⎩

f ′
x = λg′

x

f ′
y = λg′

y

f ′
z = λg′

z

g = 0

=⇒

⎧⎪⎪⎨
⎪⎪⎩

y + 2z = λyz
x + 2z = λxz

2x + 2y = λxy
xyz = V

=⇒

⎧⎪⎪⎨
⎪⎪⎩

xy + 2xz = λV
xy + 2zy = λV

2xz + 2yz = λV
xyz = V

,

where the last system has been obtained by multiplying the first equa-
tion by x, the second one by y, and the third one by z with the sub-
sequent use of the constraint. Combining the first two equations, one
infers 2z(y − x) = 0. Since z �= 0 (V �= 0), one has y = x. Combining
the first and third equations, one infers y(x−2z) = 0 and hence x = 2z.
The substitution y = x = 2z into the constraint yields 4z3 = V . Hence,
the optimal dimensions are x = y = (2V )1/3 and z = (2V )1/3/2. The
amount of cardboard minimizing the cost is 3(2V )2/3 (the value of f at
the critical point). From the geometry of the problem, it is clear that
f attains its minimum value at the only critical point. �

96.2. The Case of Two or More Constraints. Let f be a function of three
variables subject to two constraints g1(r) = 0 and g2(r) = 0. Each
constraint defines a surface in the domain of f (level surfaces of g1 and
g2). So the set defined by the constraints is the curve of intersection of
the level surfaces g1 = 0 and g2 = 0. Let r0 be a point of the curve at
which f has a local maximum or minimum. Let v be a tangent vector
to the curve at r0. Since the curve lies in the level surface g1 = 0, by
the earlier arguments, ∇f(r0)⊥v and ∇g1(r0)⊥v. On the other hand,
the curve also lies in the level surface g2 = 0 and hence ∇g2(r0)⊥v. It
follows that the gradients ∇f , ∇g1, and ∇g2 become coplanar at the
point r0 as they lie in the plane normal to v. Therefore, there exist
numbers λ1 and λ2 such that

∇f(r) = λ1∇g1(r) + λ2∇g2(r) , g1(r) = g2(r) = 0

when r = r0 (see Study Problem 11.6). This is a system of five equa-
tions for five variables (x, y, z, λ1, λ2). For any solution (x0, y0, z0, λ10,
λ20), the point (x0, y0, z0) is a critical point of f on the set defined by
the constraints. In general, the following result can be proved by a
similar line of reasoning.

Theorem 13.21. (Critical Points Subject to Constraints).
Suppose that f and ga, a = 1, 2, ..., M , are functions of m variables,
m > M , which are differentiable at r0, and f has a local maximum or
minimum at r0 in the set defined by the constraints ga(r) = 0. Then
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there exist numbers λa such that

∇f(r0) = λ1∇g1(r0) + λ2∇g2(r0) + · · ·+ λM∇gM(r0).

Let f(r) be a function subject to a constraint g(r). Define the
function

F (r, λ) = f(r)− λg(r),

where λ is viewed as an additional independent variable. Then crit-
ical points of F are determined by (13.19). Indeed, the condition
∂F/∂λ = 0 yields the constraint g(r) = 0, while the differentiation
with respect to the variables r gives ∇F = ∇f − λ∇g = 0, which co-
incides with the first equation in (13.19). Similarly, if there are several
constraints, critical points of the function with additional variables λa,
a = 1, 2, ..., M ,

(13.20) F (r, λ1, λ2, ..., λn) = f(r)−λ1g1(r)−λ2g2(r)−· · ·−λMgM(r)

coincide with the critical points of f subject to the constraints ga = 0
as stated in Theorem 13.21. The functions F and f have the same
values on the set defined by the constraints ga = 0 because they differ
by a linear combination of constraint functions with the coefficients
being the Lagrange multipliers.

96.3. Finding Local Maxima and Minima. In the simplest case of a two-
variable function f subject to a constraint, the nature of critical points
(local maximum or minimum) can be solved by geometrical means.
Suppose that the level curve g(x, y) = 0 is closed. Then, by the extreme
value theorem, f attains its maximum and minimum values on it at
some of the critical points. Suppose f attains its absolute maximum
at a critical point r1. Then f should have either a local minimum
or an inflection at the neighboring critical point r2 along the curve.
Let r3 be the critical point next to r2 along the curve. Then f has a
local minimum at r2 if f(r2) < f(r3) and an inflection if f(r2) > f(r3).
This procedure may be continued until all critical points are exhausted.
Compare this pattern of critical points with the behavior of a height
along a closed hiking path.

Remark. If the constraints can be solved, then an explicit form of
f on the set defined by the constraints can be found, and the stan-
dard second-derivative test applies! For instance, in Example 13.35,
the constraint can be solved z = V/(xy). The values of the func-
tion f on the constraint surface are F (x, y) = f(x, y, V/(xy)) = xy+
2V (x + y)/(xy). The equations F ′

x = 0 and F ′
y = 0 determine the
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critical point x = y = (2V )1/3 (and z = V/(xy) = (2V )1/3/2). So
the second-derivative test can be applied to the function F (x, y) at the
critical point x = y = (2V )1/3 to show that indeed F has a minimum
and hence f has a minimum on the constraint surface.

There is an analog of the second-derivative test for critical points of
functions subject to constraints. Its general formulation is not simple.
So the discussion is limited to the simplest case of a function of two
variables subject to a constraint.

Suppose that ∇g(r0) �= 0. Then g′
x and g′

y cannot simultaneously
vanish at the critical point. Without loss of generality, assume that
g′

y �= 0 at r0 = (x0, y0). By the implicit function theorem (The-
orem 13.11), there is a neighborhood of r0 in which the equation
g(x, y) = 0 has a unique solution y = h(x). The values of f on the
level curve g = 0 near the critical point are F (x) = f(x, h(x)). By the
chain rule, one infers that F ′ = f ′

x + f ′
yh

′ and

(13.21) F ′′ = (d/dx)(f ′
x + f ′

yh
′) = f ′′

xx + 2f ′′
xyh

′ + f ′′
yy(h

′)2 + f ′
yh

′′.

So, in order to find F ′′(x0), one has to calculate h′(x0) and h′′(x0). This
task is accomplished by the implicit differentiation. By the definition
of h(x), G(x) = g(x, h(x)) = 0 for all x in an open interval containing
x0. Therefore, G′(x) = 0, which defines h′ because G′ = g′

x + g′
yh

′ = 0
and h′ = −g′

x/g
′
y. Similarly, G′′(x) = 0 yields

(13.22) G′′ = g′′
xx + 2g′′

xyh
′ + g′′

yy(h
′)2 + g′

yh
′′ = 0,

which can be solved for h′′, where h′ = −g′
x/g

′
y. The substitution of

h′(x0), h′′(x0), and all the values of all the partial derivatives of f at the
critical point (x0, y0) into (13.21) gives the value F ′′(x0). If F ′′(x0) > 0
(or F ′′(x0) < 0), then f has a local minimum (or maximum) at (x0, y0)
along the curve g = 0. Note also that F ′(x0) = 0 as required owing to
the conditions f ′

x = λg′
x and f ′

y = λg′
y satisfied at the critical point.

If g′
y(r0) = 0, then g′

x(r0) �= 0, and there is a function x = h(y) that
solves the equation g(x, y) = 0. So, by swapping x and y in the above
arguments, the same conclusion is proved to hold.

Example 13.36. Show that the point r0 = (0, 0) is a critical point of
the function f(x, y) = x2y+y+x subject to the constraint exy = x+y+1
and determine whether f has a local minimum or maximum at it.

Solution:
Critical point. Put g(x, y) = exy − x− y − 1. Then g(0, 0) = 0; that is,
the point (0, 0) satisfies the constraint. The first partial derivatives of
f and g are f ′

x = 2xy +1, f ′
y = x2 +1, g′

x = yexy−1, and g′
y = xexy−1.
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Therefore, both equations f ′
x(0, 0) = λg′

x(0, 0) and f ′
y(0, 0) = λg′

y(0, 0)
are satisfied at λ = −1. Thus, the point (0, 0) is a critical point of f
subject to the constraint g = 0.
Second-derivative test. Since g′

y(0, 0) = −1 �= 0, there is a function
y = h(x) near x = 0 such that G(x) = g(x, h(x)) = 0. By the implicit
differentiation,

h′(0) = −g′
x(0, 0)/g′

y(0, 0) = −1 .

The second partial derivatives of g are

g′′
xx = y2exy , g′′

yy = x2exy , g′′
xy = exy + xyexy .

The derivative h′′(0) is found from (13.22), where g′′
xx(0, 0) = g′′

yy(0, 0) =
0, g′′

xy(0, 0) = 1, h′(0) = −1, and g′
y(0, 0) = −1:

h′′(0) = −[g′′
xx(0, 0) + 2g′′

xy(0, 0)h′(0) + g′′
yy(0, 0)(h′(0))2]/g′

y(0, 0) = −2.

The second partial derivatives of f are

f ′′
xx = 2y , f ′′

yy = 0 , f ′′
xy = 2x.

The substitution of f ′′
xx(0, 0) = f ′′

yy(0, 0) = f ′′
xy(0, 0) = 0, h′(0) = −1,

f ′
y(0, 0) = 1, and h′′(0) = −2 into (13.21) gives F ′′(0) = −2 < 0.

Therefore, f attains a local maximum at (0, 0) along the curve g =
0. Note also that F ′(0) = f ′

x(0, 0) + f ′
y(0, 0)h′(0) = 1 − 1 = 0 as

required. �
The implicit differentiation and the implicit function theorem can

be used to establish the second-derivative test for the multivariable
case with constraints (see another example in Study Problem 13.11).

96.4. Study Problems.

Problem 13.11. Let f be a twice continuously differentiable function
of r = (x, y, z) subject to a constraint g(r) = 0. Assume that g is a twice
continuously differentiable function. Use the implicit differentiation to
establish the second-derivative test for critical points of f on the surface
g = 0.

Solution: Suppose that ∇g(r0) �= 0 at a critical point r0. With-
out loss of generality, one can assume that g′

z(r0) �= 0. By the im-
plicit function theorem, there exists a function z = h(x, y) such that
G(x, y) = g(x, y, h(x, y)) = 0 in some neighborhood of the critical
point. Then the equations G′

x(x, y) = 0 and G′
y(x, y) = 0 determine

the first partial derivatives of h:

g′
x + g′

zh
′
x = 0 =⇒ h′

x = −g′
x/g

′
z ; g′

y + g′
zh

′
y = 0 =⇒ h′

y = −g′
y/g

′
z .
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The second partial derivatives of h are found from the equations

G′′
xx = 0 =⇒ g′′

xx + 2g′′
xzh

′
x + g′′

zz(h
′
x)

2 + g′
zh

′′
xx = 0,

G′′
yy = 0 =⇒ g′′

yy + 2g′′
yzh

′
y + g′′

zz(h
′
y)

2 + g′
zh

′′
yy = 0,

G′′
xy = 0 =⇒ g′′

xy + g′′
xzh

′
x + g′′

yzh
′
y + g′′

zzh
′
xh

′
y + g′

zh
′′
xy = 0.

The values of the function f(x, y, z) of the level surface g(x, y, z) = 0
near the critical points are F (x, y) = f(x, y, h(x, y)). To apply the
second-derivative test to the function F , its second partial derivatives
have to be computed at the critical point. The implicit differentiation
gives

F ′′
xx = (f ′

x + f ′
zh

′
x)

′
x = f ′′

xx + 2f ′′
xzh

′
x + f ′′

zz(h
′
x)

2 + f ′
zh

′′
xx,

F ′′
yy = (f ′

y + f ′
zh

′
y)

′
y = f ′′

yy + 2f ′′
yzh

′
y + f ′′

zz(h
′
y)

2 + f ′
zh

′′
yy,

F ′′
xy = (f ′

x + f ′
zh

′
x)

′
y = f ′′

xy + f ′′
xzh

′
x + f ′′

yzh
′
y + f ′′

zzh
′
xh

′
y + f ′

zh
′′
xy,

where the partial derivatives of h are determined by the partial deriva-
tives of the constraint function g as specified. If (x0, y0, z0) is the critical
point found by the Lagrange multiplier method, then a = F ′′

xx(x0, y0),
b = F ′′

yy(x0, y0), and c = F ′′
xy(x0, y0) in the second-derivative test for

the two-variable function F . �





CHAPTER 14

Multiple Integrals

97. Double Integrals

97.1. The Volume Problem. Suppose one needs to determine the vol-
ume of a hill whose height f(r) as a function of position r = (x, y) is
known. For example, the hill must be leveled to construct a highway.
Its volume is required to estimate the number of truck loads needed to
move the soil away. The following procedure can be used to estimate
the volume. The base D of the hill is first partitioned into small pieces
Dp of area ∆Ap, where p = 1, 2, ..., N enumerates the pieces; that is,
the union of all the pieces Dp is the region D. The partition elements
should be small enough so that the height f(r) has no significant vari-
ation when r is in Dp. The volume of the portion of the hill above each
partition element Dp is approximately ∆Vp ≈ f(rp) ∆Ap, where rp is a
point in Dp. The approximation becomes better for smaller Dp. The
volume of the hill can therefore be estimated as

V ≈
N∑

p=1

f(rp) ∆Ap.

For practical purposes, the values f(rp) can be found, for example,
from a detailed contour map of f .

The approximation is expected to become better and better as the
size of the partition elements gets smaller (naturally, their number N
has to increase). If Rp is the smallest radius of a disk that contains Dp,
then put RN = maxp Rp, which determines the size of the largest par-
tition element. When a larger number N of partition elements is taken
to improve the accuracy of the approximation, one has to reduce RN

at the same time to make variations of f within each partition element
smaller. Note that the reduction of the maximal area maxp ∆Ap versus
the maximal size RN may not be good enough to improve the accuracy
of the estimate. If Dp looks like a narrow strip, its area is small, but
the variation of the height f along the strip may be significant and
the accuracy of the approximation ∆Vp ≈ f(rp) ∆Ap is poor. One can

201
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therefore expect that the exact value of the volume is obtained in the
limit

(14.1) V = lim
N→∞

(RN→0)

N∑
p=1

f(rp) ∆Ap .

The volume V may be viewed as the volume of a solid bounded from
above by the surface z = f(x, y), which is the graph of f , and by the
portion D of the xy plane. Naturally, it is not expected to depend on
the way the region D is partitioned, neither should it depend on the
choice of sample points rp in each partition element.

The limit (14.1) resembles the limit of a Riemann sum for a single-
variable function f(x) on an interval [a, b] used to determine the area
under the graph of f . Indeed, if xk, k = 0, 1, ..., N , x0 = a < x1 <
· · · < xN−1 < xN = b is the partition of [a, b], then ∆Ap is the analog
of ∆xk = xk − xk−1, k = 1, 2, ..., N , the number RN is the analog of
∆N = maxk ∆xk, and the values f(rp) are analogous to f(x∗

k), where
x∗

k ∈ [xk−1, xk]. The area under graph is then

A = lim
N→∞

(∆N→0)

N∑
k=1

f(x∗
k) ∆xk =

∫ b

a

f(x) dx .

So, the limit (14.1) seems to define an integral over a two-dimensional
region D (i.e., with respect to both variables x and y used to label
points in D). This observation leads to the concept of a double inte-
gral. However, the qualitative construction used to analyze the volume
problem still lacks the level of rigor used to define the single-variable
integration. For example, how does one choose the “shape” of the par-
tition elements Dp, or how does one calculate their areas? These kinds
of questions were not even present in the single-variable case and have
to be addressed.

97.2. The Double Integral. Let D be a closed, bounded region. The
boundaries of D are assumed to be piecewise-smooth curves. Let f(r)
be a bounded function on D, that is, m ≤ f(r) ≤M for some numbers
M and m and all r ∈ D. The numbers m and M are called lower and
upper bounds of f on D. Evidently, upper and lower bounds are not
unique because any number smaller than m is also a lower bound, and,
similarly, any number greater than M is an upper bound. However,
the smallest upper bound and the largest lower bound are unique.

Definition 14.1. (Supremum and Infimum).
Let f be bounded on D. The smallest upper bound of f on D is called
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the supremum of f on D and denoted by supD f . The largest lower
bound of f on D is called the infimum of f on D and denoted by
infD f .

As a bounded region, D can always be embedded in a rectan-
gle RD = {(x, y) |x ∈ [a, b], y ∈ [c, d]} (i.e., D is a subset of RD).
The function f is then extended to the rectangle RD by setting its
values to 0 for all points outside D, that is, f(r) = 0 if r ∈ RD

and r /∈ D. Consider a partition xk, k = 0, 1, ..., N1, of the inter-
val [a, b], where xk = a + k ∆x, ∆x = (b − a)/N1, and a partition
yj, j = 0, 1, ..., N2, of the interval [c, d], where yj = c + j ∆y and
∆y = (d − c)/N2. These partitions induce a partition of the rectan-
gle RD by rectangles Rkj = {(x, y) |x ∈ [xk−1, xk], y ∈ [yj−1, yj]},
where k = 1, 2, ..., N1 and j = 1, 2, ..., N2. The area of each partition
rectangle Rkj is ∆A = ∆x ∆y. This partition is called a rectangular
partition of RD. For every partition rectangle Rkj, there are numbers
Mjk = sup f(r) and mjk = inf f(r), the supremum and infimum of f
on Rkj.

Definition 14.2. (Upper and Lower sums).
Let f be a bounded function on a closed bounded region D. Let RD be a
rectangle that contains D and let the function f be defined to have zero
value for all points of RD that do not belong to D. Given a rectangular
partition Rkj of RD, let Mjk = sup f and mjk = inf f be the supremum
and infimum of f on Rjk. The sums

U(f, N1, N2) =
N1∑
j=1

N2∑
k=1

Mkj ∆A , L(f, N1, N2) =
N1∑
j=1

N2∑
k=1

mkj ∆A

are called the upper and lower sums.

The sequences of upper and lower sums have the following impor-
tant property.

Corollary 14.1. (Property of Upper and Lower Sums).
The sequence of upper sums is decreasing, while the sequence of lower
sums is increasing, that is, U(f, N1, N2) ≥ U(f, N ′

1, N
′
2) and L(f, N1,

N2) ≤ L(f, N ′
1, N

′
2) if N ′

1 ≥ N1 and N ′
2 ≥ N2.

Proof. Consider any partition rectangle R (the indices jk are omit-
ted) of area ∆A. Put M = supR f and m = infR f . When the partition
is refined, R becomes a union of several rectangles Rp of area ∆Ap, p =
1, 2, ..., q, so that ∆A =

∑
p ∆Ap. Put Mp = supRp

f and mp = infRp f .
Since Rp is contained in R, one has Mp ≤M and mp ≥ m. Therefore,
if the partition is refined, the term M ∆A in the upper sum is replaced



204 14. MULTIPLE INTEGRALS

by
∑

p Mp ∆Ap ≤ M
∑

p ∆Ap = M ∆A, and the term m ∆A in the
lower sum is replaced by

∑
p mp ∆Ap ≥ m

∑
p ∆Ap = m ∆A; that is,

the upper sum either decreases or does not change, while the lower sum
either increases or does not change. �

Continuing the analogy with the volume problem, the upper and
lower sums represent upper and lower estimates of the volume. They
should become closer and closer to the volume as the partition becomes
finer and finer. This leads to the following natural definition of the
double integral.

Definition 14.3. (Double Integral).
If the limits of the upper and lower sums exist as N1,2 → ∞ (or
(∆x, ∆y) → (0, 0)) and coincide, then f is said to be Riemann in-
tegrable on D, and the limit of the upper and lower sums∫ ∫

D

f(x, y) dA = lim
N1,2→∞

U(f, N1, N2) = lim
N1,2→∞

L(f, N1, N2)

is called the double integral of f over the region D.

It should be emphasized that the double integral is defined as the
two-variable limit (∆x, ∆y) → (0, 0). The upper and lower sums are
functions of ∆x and ∆y because N1 = (b−a)/∆x and N2 = (d−c)/∆y.
The existence of the limit and its value must be established accordingly.

Let us discuss this definition from the point of view of the volume
problem. First, note that a specific partition of D by rectangles has
been used. In this way, the area ∆Ap of the partition element has
been given a precise meaning as the area of a rectangle. Later, it will
be shown that if the double integral exists in the sense of the above
definition, then it exists if the rectangular partition is replaced by any
partition of D by elements Dp of an arbitrary shape subject to certain
conditions that allow for a precise evaluation of their area. Second, the
volume (14.1) is indeed given by the double integral of f , and its value
is independent of the choice of sample points rp. This is an extremely
useful property that allows one to approximate the double integral with
any desired accuracy by evaluating a suitable Riemann sum.

Definition 14.4. (Riemann Sum).
Let f be a function on D that is contained in a rectangle RD. Let f
be defined by zero values outside of D in RD. Let r∗

jk be a point in a
partition rectangle Rjk, where Rjk form a partition of RD. The sum

R(f, N1, N2) =
N1∑
j=1

N2∑
k=1

f(r∗
jk) ∆A

is called a Riemann sum.
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Theorem 14.1. (Convergence of Riemann Sums).
If a function f is integrable on D, then its Riemann sums for any
choice of sample points r∗

jk converge to the double integral:

lim
N1,2→∞

R(f, N1, N2) =
∫ ∫

D

f dA.

Proof. For any partition rectangle Rjk and any sample point r∗
jk in it,

mjk ≤ f(r∗
jk) ≤Mjk. It follows from this inequality that L(f, N1, N2) ≤

R(f, N1, N2) ≤ U(f, N1, N2). Since f is integrable, the limits of the
upper and lower sums exist and coincide. The conclusion of the theorem
follows from the squeeze principle for limits. �

Approximation of Double Integrals. If f is integrable, its dou-
ble integral can be approximated by a suitable Riemann sum. A com-
monly used choice of sample points is to take r∗

jk to be the intersection
of the diagonals of partition rectangles Rjk, that is, r∗

jk = (x̄j, ȳk), where
x̄j and ȳk are the midpoints of the intervals [xj−1, xj] and [yk−1, yk], re-
spectively. This rule is called the midpoint rule. The accuracy of the
midpoint rule approximation can be assessed by finding the upper and
lower sums; their difference gives the upper bound on the absolute
error of the approximation. Alternatively, if the integral is to be eval-
uated up to some significant decimals, the partition in the Riemann
sum has to be refined until its value does not change in the significant
digits. The integrability of f guarantees the convergence of Riemann
sums and the independence of the limit from the choice of sample
points.

97.3. Continuity and Integrability.
An Example of a Nonintegrable Function. Not every bounded

function is integrable. Suppose f is defined on the square x ∈ [0, 1] and
y ∈ [0, 1] so that f(x, y) = 1 if both x and y are rational, f(x, y) = 2 if
both x and y are irrational, and f(x, y) = 0 otherwise. This function
is not integrable. Recall that any interval [a, b] contains both rational
and irrational numbers. Therefore, any partition rectangle Rjk contains
points whose coordinates are both rational, or both irrational, pairs of
rational and irrational numbers. Hence, Mjk = 2 and mjk = 0. The
lower sum vanishes for any partition and therefore its limit is 0, whereas
the upper sum is 2

∑
jk ∆A = 2A = 2 for any partition, where A is

the area of the square. The limits of the upper and lower sums do
not coincide, 2 �= 0, and the double integral of f does not exist. The
Riemann sum for this function can converge to any number between 2
and 0, depending on the choice of sample points. For example, if the



206 14. MULTIPLE INTEGRALS

sample points have rational coordinates, then the Riemann sum equals
1. If the sample points have irrational coordinates, then the Riemann
sum equals 2. If the sample points are such that one coordinate is
rational while the other is irrational, then the Riemann sum vanishes.

The following theorem describes a class of integrable functions that
is sufficient in many practical applications.

Theorem 14.2. (Integrability of Continuous Functions).
Let D be a closed, bounded region whose boundaries are piecewise-
smooth curves. If a function f is continuous on D, then it is integrable
on D.

Note that the converse is not true; that is, the class of integrable
functions is wider than the class of all continuous functions. This is
a rather natural conclusion in view of the analogy between the double
integral and the volume. The volume of a solid below a graph z =
f(x, y) ≥ 0 of a continuous function on D should exist. On the other
hand, let f(x, y) be defined on D = {(x, y)|x ∈ [0, 2], y ∈ [0, 1]} so
that f(x, y) = m if x ≤ 1 and f(x, y) = M if x > 1. The function is
piecewise constant and has a jump discontinuity along the line x = 1 in
D. The volume below the graph z = f(x, y) and above D is easy to find;
it is the sum of volumes of two rectangular boxes with the same base
area A1 = A2 = 1 and different heights M and m, V = MA1 + mA2 =
M +m. The double integral of f exists and also equals M +m. Indeed,
for any rectangular partition, the numbers Mjk and mjk differs only for
partition rectangles intersected by the discontinuity line x = 1, that is,
Mjk −mjk = M −m for all such rectangles. Therefore, the difference
between the upper and lower sums is l ∆x(M −m), where l = 1 is the
length of the discontinuity curve. In the limit ∆x → 0, the difference
vanishes. As noted earlier, the upper and lower sums are the upper and
lower estimates of the volume and should therefore converge to it as
their limits coincide. Using a similar line of arguments, one can prove
the following.

Corollary 14.2. If f is bounded on D and discontinuous only on
a finite number of smooth curves, then it is integrable on D.

98. Properties of the Double Integral

The properties of the double integral are similar to those of an
ordinary integral and can be established directly from the definition.
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Linearity. Let f and g be functions integrable on D and let c be a
number. Then∫ ∫

D

(f + g) dA =
∫ ∫

D

f dA +
∫ ∫

D

g dA ,∫ ∫
D

cf dA = c

∫ ∫
D

f dA .

Area. The function χ is called the characteristic function of the region
D if χ(r) = 1 if r ∈ D and χ(r) = 0 otherwise. Since χ is constant on
D, it is also continuous on D and hence integrable. If follows that

(14.2)
∫ ∫

D

χ dA =
∫ ∫

D

dA = A(D),

where A(D) is called the area of D. The region D can always be covered
by the union of adjacent rectangles of area ∆A = ∆x ∆y. In the limit
(∆x, ∆y) → (0, 0), the total area of these rectangles converges to the
area of D.
Additivity. Suppose that D is the union of D1 and D2 such that the
area of their intersection is 0; that is, D1 and D2 may only have common
points at their boundaries or no common points at all. If f is integrable
on D, then ∫ ∫

D

f dA =
∫ ∫

D1

f dA +
∫ ∫

D2

f dA .

This property is the most difficult to prove directly from the definition.
However, it appears rather natural when making the analogy of the
double integral and the volume. If the region D is cut into two pieces
D1 and D2, then the solid above D is also cut into two solids, one above
D1 and the other above D2. Naturally, the volume is additive.

Suppose that f is nonnegative on D1 and nonpositive on D2. The
double integral over D1 is the volume of the solid above D1 and below
the graph of f . Since −f ≥ 0 on D2, the double integral over D2 is
the negative volume of the solid below D2 and above the graph of f .
When f becomes negative, its graph goes below the plane z = 0 (the xy
plane). So, in general, the double integral may vanish or take negative
values, depending on which volume (above or below the xy plane is
larger). This property is analogous to the familiar relation between the
ordinary integral and the area under the graph.

Positivity. If f(r) ≥ 0 for all r ∈ D, then∫ ∫
D

f dA ≥ 0,
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and, as a consequence of the linearity,∫ ∫
D

f dA ≥
∫ ∫

D

g dA

if f(r) ≥ g(r) for all r ∈ D.
Upper and Lower Bounds. Let m = infD f and M = supD f . Then
m ≤ f(r) ≤ M for all r ∈ D. From the positivity of the double
integral, it follows that

mA(D) ≤
∫ ∫

D

f dA ≤MA(D) .

This inequality is easy to visualize. If f is positive, then the double
integral is the volume of the solid below the graph of f . The solid lies
in the cylinder with the cross section D. The graph of f lies between
the planes z = m and z = M . Therefore, the volume of the cylinder
of height m cannot exceed the volume of the solid, whereas the latter
cannot exceed the volume of the cylinder of height M .

Theorem 14.3. (Integral Mean Value Theorem).
If f is continuous on D, then there exists a point r0 ∈ D such that∫ ∫

D

f dA = f(r0)A(D) .

Proof. Let h be a number. Put g(h) =
∫∫

D
(f − h) dA =

∫∫
D

f dA−
hA(D). From the upper and lower bounds for the double integral, it
follows that g(M) ≤ 0 and g(m) ≥ 0. Since g(h) is linear in h, there
exists h = h0 ∈ [m, M ] such that g(h0) = 0. On the other hand, a
continuous function on a closed, bounded region D takes its maximal
and minimal values as well as all the values between them. Therefore,
for any m ≤ h0 ≤M , there is r0 ∈ D such that f(r0) = h0. �

A geometrical interpretation of the integral mean value theorem is
rather simple. Imagine that the solid below the graph of f is made of
clay. The shape of a piece of clay may be deformed while the volume
is preserved under deformation. The nonflat top of the solid can be
deformed so that it becomes flat, turning the solid into a cylinder of
height h0, which, by volume preservation, should be between the small-
est and the largest heights of the original solid. The integral mean value
theorem merely states the existence of such an average height at which
the volume of the cylinder coincides with the volume of the solid with
a nonflat top. The continuity of the function is sufficient (but not nec-
essary) to establish that there is a point at which the average height
coincides with the value of the function.
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Integrability of the Absolute Value. Suppose that f is integrable
on a bounded, closed region D. Then its absolute value |f | is also
integrable and ∣∣∣∫ ∫

D

f dA
∣∣∣ ≤ ∫ ∫

D

|f | dA.

A proof of the integrability of |f | is rather technical. Once the inte-
grability of |f | is established, the inequality is a simple consequence of
|a + b| ≤ |a|+ |b| applied to a Riemann sum of f . Making the analogy
between the double integral and the volume, suppose that f ≥ 0 on D1

and f ≤ 0 on D2, where D1,2 are two portions of D. If V1 and V2 stand
for the volumes of the solids bounded by the graph of f and D1 and
D2, respectively, then the double integral of f over D is V1 − V2, while
the double integral of |f | is V1 + V2. Naturally, |V1 − V2| ≤ V1 + V2 for
positive V1,2.
Independence of Partition. It has been argued that the volume of
a solid under the graph of f and above a region D can be computed
by (14.1) in which the Riemann sum is defined for an arbitrary (non-
rectangular) partition of D. Can the double integral of f over D be
computed in the same way? The answer is affirmative. However, the
proof goes beyond the scope of this course. If f is continuous, then
the assertion is not so difficult to establish. Let D be partitioned by
piecewise smooth curves into partition elements Dp, p = 1, 2, ..., N , so
that the union of Dp is D and A(D) =

∑N
p=1 ∆Ap, where ∆Ap is the

area of Dp defined by (14.2). If Rp is the smallest radius of a disk that
contains Dp, put RN = max Rp; that is, Rp characterizes the size of
the partition element Dp and RN is the size of the largest partition
element. Recall that the largest partition element does not necessarily
have the largest area. The partition is said to be refined if RN < RN ′

for N < N ′; that is, the size of the largest partition element decreases.
Then, if f is continuous on D, there are points rp ∈ Dp such that∫ ∫

D

f dA =
N∑

p=1

∫ ∫
Dp

f dA =
N∑

p=1

f(rp) ∆Ap .

The first equality follows from the additivity of the double integral, and
the second one holds by the integral mean value theorem. Consider the
Riemann sum

R(f, N) =
N∑

p=1

f(r∗
p) ∆Ap,

where r∗
p ∈ Dp are sample points. If r∗

p �= rp, then the Riemann sum
does not coincide with the double integral. However, its limit as N →
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∞ equals the double integral. Indeed, put cp = |f(r∗
p) − f(rp)| and

cN = max cp, p = 1, 2, ..., N . Since f is continuous, cN → 0 as N →
∞ because any partition element Dp is contained in a disk of radius
Rp ≤ RN → 0 as N → ∞. Therefore, the deviation of the Riemann
sum from the double integral converges to 0:∣∣∣∫ ∫ f dA−R(f, N)

∣∣∣=∣∣∣ N∑
p=1

(f(rp)− f(r∗
p)) ∆Ap

∣∣∣
≤

N∑
p=1

|f(rp)− f(r∗
p)|∆Ap

=
N∑

p=1

cp ∆Ap ≤ cN

N∑
p=1

∆Ap = cNA(D)→ 0

as N → ∞. So the double integral can be approximated by Riemann
sums for arbitrary partitions subject to the conditions specified above,
that is,

(14.3)
∫ ∫

D

f dA = lim
N→∞

(RN→0)

N∑
p=1

f(r∗
p) ∆Ap

for any choice of sample points r∗
p. Note that the region D is no longer

required to be embedded in a rectangle and f does not have to be
extended outside of D. This property is useful for evaluating double
integrals by means of change of variables discussed later in this chapter.
It is also useful to simplify calculations of Riemann sums.

Example 14.1. Find the double integral of f(x, y) = x2 + y2 over
the disk D x2 + y2 ≤ 1 using the partition of D by concentric circles
and rays from the origin.

Solution: Consider circles x2 +y2 = r2
p, where rp = p ∆r, ∆r = 1/N ,

and p = 0, 1, 2, ..., N . If θ is the polar angle in the plane, then points
with a fixed value of θ form a ray from the origin. Let the disk D be
partitioned by circles of radii rp and rays θ = θk = k ∆θ, ∆θ = 2π/n,
k = 1, 2, ..., n. Each partition element lies in the sector of angle ∆θ
and is bounded by two circles whose radii differ by ∆r. The area of a
sector of radius rp is r2

p ∆θ/2. Therefore, the area of a partition element
between circles of radii rp and rp+1 is ∆Ap = r2

p+1 ∆θ/2 − r2
p ∆θ/2 =

(r2
p+1 − r2

p) ∆/2θ = (rp+1 + rp) ∆r ∆θ/2. In the Riemann sum, use the
midpoint rule; that is, the sample points are intersections of the circles
of radius r̄p = (rp+1+rp)/2 and the rays with angles θ̄k = (θk+1+θk)/2.
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The values of f at the sample points are f(r∗
p) = r̄2

p, the area elements
are ∆Ap = r̄p ∆r ∆θ, and the corresponding Riemann sum reads

R(f, N, n) =
n∑

k=1

N∑
p=1

r̄3
p ∆r ∆θ = 2π

N∑
p=1

r̄3
p ∆r

because
∑n

k=1 ∆θ = 2π, the total range of θ in the disk D. The sum
over p is the Riemann sum for the single-variable function g(r) = r3

on the interval r ∈ [0, 1]. In the limit N → ∞, this sum converges to
the integral of g over the interval [0, 1], that is,

∫ ∫
D

(x2 + y2) dA = 2π lim
N→∞

N∑
p=1

r̄3
p ∆r = 2π

∫ 1

0
r3 dr = π/2 .

So, by choosing the partition according to the shape of D, the double
Riemann sum has been reduced to a Riemann sum for a single-variable
function. �

The numerical value of the double integral in this example is the
volume of the solid that lies between the paraboloid z = x2 + y2 and
the disk D of unit radius. It can also be represented as the volume
of the cylinder with height h = 1/2, V = hA(D) = πh = π/2. This
observation illustrates the integral mean value theorem. The function
f takes the value h = 1/2 on the circle x2 + y2 = 1/2 of radius 1/

√
2

in D.

99. Iterated Integrals

Here a practical method for evaluating double integrals will be de-
veloped. To simplify the technicalities, the derivation of the method is
given for continuous functions. However, the method is also valid for
bounded functions that are discontinuous on a finite number of smooth
curves, which is sufficient for many practical applications.

99.1. Rectangular Domains. Let a function f be continuous on D. Sup-
pose first that D is a rectangle x ∈ [a, b] and y ∈ [c, d]. Let Rjk be a
rectangular partition of D as defined earlier. For any choice of sample
points r∗

jk = (x∗
j , y

∗
k), where x∗

j ∈ [xj−1, xj] and y∗
k ∈ [yk−1, yk], the Rie-

mann sum converges to the double integral of f over D. Since the dou-
ble limit of the Riemann sum (as (∆x, ∆y) → (0, 0)) exists, it should
not depend on the order in which the limits N1 →∞ (or ∆x→ 0) and
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N2 → ∞ (or ∆y → 0) are computed. This is the key observation for
what follows. Suppose the limit ∆y → 0 is to be evaluated first:∫ ∫

D

f dA = lim
N1,2→∞

R(f, N1, N2)

= lim
N1→∞

N1∑
j=1

(
lim

N2→∞

N2∑
k=1

f(x∗
j , y

∗
k) ∆y

)
∆x .

The expression in parenthese is nothing but the Riemann sum for the
single-variable function gj(y) = f(x∗

j , y) on the interval y ∈ [c, d]. So,
if the functions gj(y) are integrable on [c, d], then the limit of their
Riemann sums is the integral of gj over the interval. If f is continuous
on D, then it must also be continuous along the lines x = x∗

j in D; that
is, gj(y) = f(x∗

j , y) is continuous and hence integrable on [c, d]. Thus,

(14.4) lim
N2→∞

N2∑
k=1

f(x∗
j , y

∗
k) ∆y =

∫ d

c

f(x∗
j , y) dy .

Define a function A(x) by

(14.5) A(x) =
∫ d

c

f(x, y) dy .

The value of A at x is given by the integral of f with respect to y;
the integration with respect to y is carried out as if x were a fixed
number. For example, put f(x, y) = x2y + exy and [c, d] = [0, 1].
Then an antiderivative F (x, y) of f(x, y) with respect to y is F (x, y) =
x2y2/2 + exy/x, which means that F ′

y(x, y) = f(x, y). Therefore,

A(x) =
∫ 1

0
(x2y + exy) dy = x2y2/2 + exy/x

∣∣∣1
0

= x2/2 + ex/x− 1/x .

A geometrical interpretation of A(x) is simple. If f ≥ 0, then A(x∗
j) is

the area of the cross section of the solid below the graph z = f(x, y) by
the plane x = x∗

j , and A(x∗
j) ∆x is the volume of the slice of the solid

of width ∆x.
The second sum in the Riemann sum for the double integral in the

Riemann sum of A(x) on the interval [a, b]:∫ ∫
D

f dA = lim
N1→∞

N1∑
j=1

A(x∗
j) ∆x =

∫ b

a

A(x) dx

=
∫ b

a

(∫ d

c

f(x, y) dy

)
dx,
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where the integral exists by the continuity of A. The integral on the
right side of this equality is called the iterated integral. In what follows,
the parenthese in the iterated integral will be omitted. The order
in which the integrals are evaluated is specified by the order of the
differentials in it; for example, dy dx means that the integration with
respect to y is to be carried out first. In a similar fashion, by computing
the limit ∆x → 0 first, the double integral can be expressed as an
iterated integral in which the integration is carried out with respect
to x and then with respect to y. So the following result has been
established.

Theorem 14.4. (Fubini’s Theorem).
If f is continuous on the rectangle D = {(x, y) |x ∈ [a, b], y ∈ [c, d]},
then∫ ∫

D

f(x, y) dA =
∫ d

c

∫ b

a

f(x, y) dx dy =
∫ b

a

∫ d

c

f(x, y) dy dx.

More generally, this is true for any bounded f on D that is discontin-
uous on a finite number of smooth curves.

Think of a loaf of bread with a rectangular base and with a top
having the shape of the graph z = f(x, y). It can be sliced along either
of the two directions parallel to adjacent sides of its base. Fubini’s
theorem says that the volume of the loaf is the sum of the volumes of
the slices and is independent of how the slicing is done.

Example 14.2. Find the volume of the solid bounded from above
by the portion of the paraboloid z = 4 − x2 − 2y2 and from below by
the portion of the paraboloid z = −4 + x2 + 2y2, where x ∈ [0, 1] and
y ∈ [0, 1].

Solution: If the height of the solid at any (x, y) ∈ D is h(x, y) =
ztop(x, y)−zbot(x, y), where the graphs z = ztop(x, y) and z = zbot(x, y)
are the top and bottom boundaries of the solid, then the volume is

V =
∫ ∫

D

h(x, y) dA =
∫ ∫

D

[ztop(x, y)− zbot(x, y)] dA

=
∫ ∫

D

(8− 2x2 − 4y2) dA =
∫ 1

0

∫ 1

0
(8− 2x2 − 4y2) dy dx

=
∫ 1

0
[(8− 2x2)y − 4y3/3]

∣∣∣1
0
dx =

∫ 1

0
(8− 2x2 − 4/3) dx = 6.

�
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Corollary 14.3. (Factorization of Iterated Integrals).
Let D be a rectangle {(x, y) |x ∈ [a, b], y ∈ [c, d]}. Suppose f(x, y) =
g(x)h(y), where the functions g and h are integrable on [a, b] and [c, d],
respectively. Then∫ ∫

D

f(x, y) dA =
∫ b

a

g(x) dx

∫ d

c

h(y) dy .

This simple consequence of Fubini’s theorem is quite useful.

Example 14.3. Evaluate the double integral of f(x, y) = sin(x+y)
over the rectangle x ∈ [0, π] and y ∈ [−π/2, π/2].

Solution: One has sin(x + y) = sin x cos y + cos x sin y. The integral
of sin y over [−π/2, π/2] vanishes by symmetry. So, by the factorization
property of the iterated integral, only the first term contributes to the
double integral:∫ ∫

D

sin(x + y) dA =
∫ π

0
sin x dx

∫ π/2

−π/2
cos y dy = 4 .

�
The following example illustrates the use of the additivity of a dou-

ble integral.

Example 14.4. Evaluate the double integral of f(x, y) = 15x4y2

over the region D, which is the rectangle [−2, 2]× [−2, 2] with the rect-
angular hole [−1, 1]× [−1, 1].

Solution: Let D1 = [−2, 2] × [−2, 2] and let D2 = [−1, 1] × [−1, 1].
The rectangle D1 is the union of D and D2 such that their intersection
has no area. Hence,∫∫

D2

f dA =
∫∫

D

f dA +
∫∫

D1

f dA ⇒
∫∫

D

f dA

=
∫∫

D2

f dA−
∫∫

D1

f dA.

By evaluating the double integrals over D1,2,∫∫
D1

15x4y2 dA = 15
∫ 2

−2
x4 dx

∫ 2

−2
y2 dy = 210,

∫∫
D2

15x4y2 dA = 15
∫ 1

−1
x4 dx

∫ 1

−1
y2 dy = 4.

the double integral over D is obtained, 1024− 4 = 1020. �
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99.2. Study Problems.

Problem 14.1. Suppose a function f has continuous second deriva-
tives on the rectangle R = [0, 1]× [0, 1]. Find

∫∫
R

f ′′
xy dA if f(0, 0) = 1,

f(0, 1) = 2, f(1, 0) = 3, and f(1, 1) = 5.

Solution: By Fubini’s theorem,∫ ∫
R

f ′′
xy dA =

∫ 1

0

∫ 1

0

∂

∂x
f ′

y(x, y) dx dy =
∫ 1

0
f ′

y(x, y)
∣∣∣1
0
dy

=
∫ 1

0
[f ′

y(1, y)− f ′
y(0, y)] dy =

∫ 1

0

d

dy
[f(1, y)− f(0, y)] dy

=[f(1, y)− f(0, y)]
∣∣∣1
0

= [f(1, 1)− f(0, 1)]− [f(1, 0)− f(0, 0)] = 1.

By Clairaut’s theorem f ′′
xy = f ′′

yx and the value of the integral is inde-
pendent of the order of integration. �

100. Double Integrals Over General Regions

The concept of the iterated integral can be extended to general
regions subject to the following conditions.

100.1. Simple Regions.

Definition 14.5. (Simple and Convex Regions).
A region D is said to be simple in the direction u if any line parallel
to the vector u intersects D along at most one straight line segment. A
region D is called convex if it is simple in any direction.

Suppose D is simple in the direction of the y axis. It will be referred
to as y simple or vertically simple. Since D is bounded, there is an
interval [a, b] such that vertical lines x = x0 intersect D if x0 ∈ [a, b].
In other words, the region D lies within the vertical strip a ≤ x ≤ b.
Take a vertical line x = x0 ∈ [a, b] and consider all points of D that also
belong to the line, that is, pairs (x0, y) ∈ D, where the first coordinate
is fixed. Since the line intersects D along a segment, the variable
y ranges over an interval. The endpoints of this interval depend on
the line or the value of x0; that is, for every x0 ∈ [a, b], ybot ≤ y ≤
ytop, where the numbers ybot and ytop depend on x0. In other words,
vertically simple regions admit the following algebraic description.
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Algebraic Description of Vertically Simple Regions. If D is ver-
tically simple, then it lies in the vertical strip a ≤ x ≤ b and is bounded
from below by the graph y = ybot(x) and from above by the graph
y = ytop(x):

(14.6) D = {(x, y) | ybot(x) ≤ y ≤ ytop(x) , x ∈ [a, b]}.
The numbers a and b are, respectively, the smallest and the largest
values of the x coordinate of points of D. For example, the half-disk
x2 + y2 ≤ 1, y ≥ 0, is a vertically simple region. The x coordinate of
any point in the disk lies in the interval [a, b] = [−1, 1]. For every x
in this interval, the y coordinate lies in the interval 0 ≤ y ≤ √1− x2;
that is, in the vertical direction, the top boundary of the disk is the
graph y =

√
1− x2 = ytop(x) and the bottom boundary is the graph

y = 0 = ybot(x).
Suppose D is simple in the direction of the x axis. It will be referred

to as x simple or horizontally simple. Since D is bounded, there is an
interval [c, d] such that horizontal lines y = y0 intersect D if y0 ∈ [c, d].
In other words, the region D lies within the horizontal strip c ≤ y ≤
d. Take a horizontal line y = y0 ∈ [c, d] and consider all points of
D that also belong to the line, that is, pairs (x, y0) ∈ D, where the
second coordinate is fixed. Since the line intersects D along a segment,
the variable x ranges over an interval. The endpoints of this interval
depend on the line or the value of y0; that is, for every y0 ∈ [c, d],
xbot ≤ x ≤ xtop, where the numbers xbot and xtop depend on y0. In
other words, horizontally simple regions admit the following algebraic
description.
Algebraic Description of Horizontally Simple Regions. If D is horizon-
tally simple, then it lies in a horizontal strip c ≤ y ≤ b and is bounded
from below by the graph x = xbot(y) and from above by the graph
x = xtop(y):

(14.7) D = {(x, y) |xbot(y) ≤ x ≤ xtop(y) , y ∈ [c, d]}.
The numbers c and d are, respectively, the smallest and the largest
values of the y coordinate of points of D. The terms “below” and
“above” are now defined relative to the line of sight in the direction
of the x axis. For example, the half-disk x2 + y2 ≤ 1, y ≥ 0, is also
a horizontally simple region. The y coordinate of any point in the
disk lies in the interval [c, d] = [0, 1]. For every y in this interval,
the x coordinate lies in the interval −√1− y2 ≤ x ≤ √1− y2; that
is, in the horizontal direction, the top boundary of the disk is the
graph x =

√
1− y2 = xtop(y) and the bottom boundary is the graph

x = −√1− y2 = xbot(y).
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100.2. Iterated Integrals for Simple Regions. Suppose D is vertically
simple. Then it should have an algebraic description according to
(14.6). For the embedding rectangle RD, one can take [a, b] × [c, d],
where c ≤ ybot(x) ≤ ytop(x) ≤ d for all x ∈ [a, b]. The function
f is continuous in D and defined by zero values outside D; that is,
f(x, y) = 0 if c ≤ y < ybot(x) and ytop(x) < y ≤ d, where x ∈ [a, b].
Consider a Riemann sum for a rectangular partition of RD with sam-
ple points (x∗

j , y
∗
k) just like in the case of rectangular domains discussed

earlier. Since f is integrable, the double integral exists, and the double
limit of the Riemann sum should not depend on the order in which the
limits ∆x → 0 and ∆y → 0 are taken. For a vertically simple D, the
limit ∆y → 0 is taken first. Similarly to (14.4), one infers that

lim
N2→∞

N2∑
k=1

f(x∗
j , y

∗
k) ∆y =

∫ d

c

f(x∗
j , y) dy =

∫ ytop(x∗
j )

ybot(x∗
j )

f(x∗
j , y) dy

because the function f vanishes outside the interval ybot(x) ≤ y ≤
ytop(x) for any x ∈ [a, b]. The area of the slice of the solid below the
graph z = f(x, y) is also given by (14.5):

A(x) =
∫ d

c

f(x, y) dy =
∫ ytop(x)

ybot(x)
f(x, y) dy .

Note that the last equality is only possible for a vertically simple base D
of the solid. If D were not vertically simple, then such a slice would not
have been a single slice but rather a few disjoint slices, depending on
how many disjoint intervals are in the intersection of a vertical line with
D. In this case, the integration with respect to y would have yielded
a sum of integrals over all such intervals. The reason the integration
with respect to y is to be carried out first only for vertically simple
regions is exactly to avoid the necessity to integrate over a union of
disjoint intervals. Finally, the value of the double integral is given by
the integral of A(x) over the interval [a, b].
Iterated Integral for Vertically Simple regions. Let D be a vertically
simple region; that is, it admits the algebraic description (14.6). The
double integral of f over D is then given by the iterated integral

(14.8)
∫∫

D

f(x, y) dA =
∫ b

a

∫ ytop(x)

ybot(x)
f(x, y) dy dx.

Iterated Integral for Horizontally Simple Regions. Naturally, for
horizontally simple regions, the integration with respect to x should be
carried out first; that is, in the Riemann sum, the limit ∆x → 0 is
taken first. Let D be a horizontally simple region; that is, it admits
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the algebraic description (14.7). The double integral of f over D is
then given by the iterated integral

(14.9)
∫∫

D

f(x, y) dA =
∫ d

c

∫ xtop(y)

xbot(y)
f(x, y) dx dy.

Iterated Integrals for Nonsimple Regions. If the integration re-
gion D is not simple, how can one evaluate the double integral? Any
nonsimple region can be cut into simple regions Dp, p = 1, 2, ..., n. The
double integral over simple regions can then be evaluated. The double
integral over D is then the sum of the double integrals over Dp by the
additivity property (see Example 14.4).

Example 14.5. Evaluate the double integral of f(x, y) = 6yx2 over
the region D bounded by the line y = 1 and the parabola y = x2.

Solution: The region D is both horizontally and vertically simple. It
is therefore possible to use either (14.8) or (14.9). To find an algebraic
description of D as a vertically simple region, one has to first specify
the maximal range of the x coordinate in D. It is determined by
the intersection of the line y = 1 and the parabola y = x2, that is,
1 = x2, and hence x ∈ [a, b] = [−1, 1] for all points of D. For any
x ∈ [−1, 1], the y coordinate of points of D attains the smallest value
on the parabola (i.e., ybot(x) = x2), and the largest value on the line
(i.e., ytop(x) = 1). One has∫∫

D

6yx2 dA = 6
∫ 1

−1
x2
∫ 1

x2
y dy dx = 3

∫ 1

−1
x2(1− x4) dx = 8/7 .

It is also instructive to obtain this result using the reverse order of
integration. To find an algebraic description of D as a horizontally
simple region, one has to first specify the maximal range of the y co-
ordinate in D. The smallest value of y is 0 and the largest value is 1;
that is, y ∈ [c, d] = [0, 1] for all points of D. For any fixed y ∈ [0, 1],
the x coordinate of points of D attains the smallest and largest values
when y = x2 or x = ±√y, that is, xbot(y) = −√y and xtop(y) =

√
y.

One has∫∫
D

6yx2 dA = 6
∫ 1

0
y

∫ √
y

−√
y

x2 dx dy = 2
∫ 1

0
y(2y3/2) dy

= 4
∫ 1

0
y5/2 dy = 8/7 .

�
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100.3. Reversing the Order of Integration. By reversing the order of in-
tegration, a simplification of technicalities involved in evaluating double
integrals can be achieved, but not always, though.

Example 14.6. Evaluate the double integral of f(x, y) = 2x over
the region D bounded by the line x = 2y+2 and the parabola x = y2−1.

Solution: The region D is both vertically and horizontally simple.
However, the iterated integral based on the algebraic description of D
as a vertically simple region is more involved. Indeed, the largest value
of the x coordinate in D occurs at one of the points of intersection of
the line and the parabola, 2y + 2 = y2 − 1 or (y − 1)2 = 4, and hence,
y = −1, 3. The largest value of x in D is x = 32− 1 = 8. The smallest
value of x occurs at the point of intersection of the parabola with the
x axis, x = −1. So [a, b] = [−1, 8]. However, the algebraic expression
for the top boundary ytop(x) is not the same for all x ∈ [−1, 8]. For
any fixed x ∈ [−1, 0], the range of the y coordinate is determined by
the parabola, −√x + 1 ≤ y ≤ √x + 1, while for any fixed x ∈ [0, 8],
the top and bottom boundaries of the range of y are determined by
the line and parabola, respectively, −√x + 1 ≤ y ≤ (x − 2)/2. This
dictates the necessity to split the region D into two regions D1 and D2

such that x ∈ [−1, 0] for all points in D1 and x ∈ [0, 8] for all points
in D2. The corresponding iterated integral reads∫∫

D

2x dA =
∫∫

D1

2x dA +
∫∫

D2

2x dA

= 2

0∫
−1

x

√
x+1∫

−√
x+1

dy dx + 2

8∫
0

x

x/2+1∫
−√

x+1

dy dx.

On the other hand, if the iterated integral corresponding to the alge-
braic description of D as a horizontally simple region is used, the tech-
nicalities are greatly simplified. The smallest and largest values of y in
D occur at the points of intersection of the line and the parabola found
above, y = −1, 3, that is, [c, d] = [−1, 3]. For any fixed y ∈ [−1, 3],
the x coordinate ranges from its value on the parabola to its value on
the line, xbot(y) = y2 − 1 ≤ x ≤ 2y + 2 = xbot(y). The corresponding
iterated integral reads∫∫

D

2x dA = 2
∫ 3

−1

∫ 2y+2

y2−1
x dx dy =

∫ 3

−1
(−y4+6y2+8y+3) dy = 256/5,

which is simpler to evaluate than the previous one. �
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Sometimes the iterated integration cannot even be carried out in
one order, but it can still be done in the other order.

Example 14.7. Evaluate the double integral of f(x, y) = sin(y2)
over the region D, which is the rectangle bounded by x = 0, y = x, and
y =
√

π.

Solution: Suppose the iterated integral for vertically simple regions
is used. The range of the x coordinate is x ∈ [0,

√
π] = [a, b], and, for

every fixed x ∈ [0,
√

π], the range of the y coordinate is ybot(x) = x ≤
y ≤ √π = ytop(x) in D. The iterated integral reads∫∫

D

sin(y2) dA =
∫ √

π

0

∫ √
π

x

sin(y2) dy dx .

However, the antiderivative of sin(y2) cannot be expressed in elemen-
tary functions! Let us reverse the order of integration. The maximal
range of the y coordinate in D is [0,

√
π] = [c, d]. For every fixed y ∈

[0,
√

π], the range of the x coordinate is xbot(y) = 0 ≤ x ≤ y = xtop(y)
in D. Therefore, the iterated integral reads

∫∫
D

sin(y2) dA =

√
π∫

0

sin(y2)

y∫
0

dx dy

=

√
π∫

0

sin(y2)y dy = −1
2

cos(y2)
∣∣∣√π

0
= 1 .

�

100.4. The Use of Symmetry. The symmetry property has been estab-
lished in single-variable integration:

f(−x) = −f(x) ⇒
∫ a

−a

f(x) dx = 0,

which has proved to be quite useful. For example, the integral of
sin(x2011) over any symmetric interval [−a, a] vanishes because sin(x2011)
is an antisymmetric function. A similar property can be established
for double integrals. Consider a transformation that maps each point
(x, y) of the plane to another point (xs, ys). A region D is said to
be symmetric under a transformation (x, y) → (xs, ys) if the image
Ds of D coincides with D (i.e., Ds = D). For example, let D be
bounded by an ellipse x2/a2 + y2/b2 = 1. Then D is symmetric under
reflections about the x axis, the y axis, or their combination, that is,
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(x, y) → (xs, ys) = (−x, y), (x, y) → (xs, ys) = (x,−y), or (x, y) →
(xs, ys) = (−x,−y). A transformation of the plane (x, y) → (xs, ys)
is said to be area preserving if the image Ds of any region D under
this transformation has the same area, that is, A(D) = A(Ds). For
example, translations, rotations, reflections about lines, and their com-
binations are area-preserving transformations.

Theorem 14.5. (Symmetry Property).
Let a region D be symmetric under an area-preserving transformation
(x, y)→ (xs, ys) such that f(xs, ys) = −f(x, y). Then the integral of f
over D vanishes: ∫∫

D

f(x, y) dA = 0 .

A general proof is postponed until the change of variables in double
integrals is discussed. Here the simplest case of a reflection about a
line is considered. If D is symmetric under this reflection, then the
line cuts D into two equal-area regions D1 and D2 so that Ds

1 = D2

and Ds
2 = D1. The double integral is independent of the choice of

partition (see (14.3)). Consider a partition of D1 by elements D1p,
p = 1, 2, ..., N . By symmetry, the images Ds

1p of the partition elements
D1p form a partition of D2 such that ∆Ap = A(D1p) = A(Ds

1p) by area
preservation. Choose elements D1p and Ds

1p to partition the region D.
Now recall that the double integral is also independent of the choice
of sample points. Suppose (xp, yp) are sample points in D1p. Choose
sample points in Ds

1p to be the images (xps, xps) of (xp, yp) under the
reflection. With these choices of the partition of D and sample points,
the Riemann sum (14.3) vanishes:∫ ∫

D

f dA = lim
N→∞

N∑
p=1

(
f(xp, yp) ∆Ap + f(xps, yps) ∆Ap

)
= 0 ,

where the two terms in the sum correspond to partitions of D1 and
D2 in D; by the hypothesis, the function f is antisymmetric under
the reflection and therefore f(xps, yps) = −f(xp, yp) for all p. From a
geometrical point of view, the portion of the solid bounded by the graph
z = f(x, y) that lies above the xy plane has exactly the same shape as
that below the xy plane, and therefore their volumes contribute with
opposite signs to the double integral and cancel each other.

Example 14.8. Evaluate the double integral of sin[(x − y)3] over
the portion D of the disk x2 + y2 ≤ 1 that lies in the first quadrant
(x, y ≥ 0).
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Solution: The region D is symmetric under the reflection about the
line y = x, that is, (x, y) → (xs, ys) = (y, x), whereas the function is
anti-symmetric, f(xs, ys) = f(y, x) = sin[(y − x)3] = sin[−(x − y)3] =
− sin[(x − y)3] = −f(x, y). By the symmetry property, the double
integral vanishes. �

Example 14.9. Evaluate the double integral of f(x, y) = x2y3 over
the region D, which is obtained from the elliptic region x2/4+y2/9 ≤ 1
by removing the square [0, 1]× [0, 1].

Solution: Let D1 and D2 be the elliptic and square regions, respec-
tively. The elliptic region D1 is large enough to include the square
D2. Therefore, the additivity of the double integral can be used (com-
pare Example 14.4) to transform the double integral over a non-simple
region D into two double integrals over simple regions:∫∫

D

x2y3 dA =
∫∫

D1

x2y3 dA−
∫∫

D2

x2y3 dA

= −
∫∫

D2

x2y3 dA = −
∫ 1

0
x2 dx

∫ 1

0
y3 dy = −1/12 ;

the integral over D1 vanishes because the elliptic region D1 is symmetric
under the reflection (x, y)→ (xs, ys) = (x,−y), whereas the integrand
is anti-symmetric, f(x,−y) = x2(−y)3 = −x2y3 = −f(x, y). �

101. Double Integrals in Polar Coordinates

The polar coordinates are defined by the following relations:

x = r cos θ , y = r sin θ , or r =
√

x2 + y2 , θ = tan−1(y/x) ,

where r is the distance from the origin to the point (x, y) and θ is the
angle between the positive x axis and the ray from the origin through
the point (x, y) counted counterclockwise. The value of tan−1 must
be taken according to the geometrical definition of θ. If (x, y) lies
in the first quadrant, then the value of tan−1 must be in the interval
[0, π/2) and tan−1(∞) = π/2 and similarly for the other quadrants.
These equations define a one-to-one correspondence between all points
(x, y) of the plane and points of the strip (r, θ) ∈ (0,∞) × [0, 2π).
Alternatively, one can also set the range of θ to be the interval [−π, π).
The ordered pair (r, θ) can be viewed as a point of an auxiliary plane
or polar plane. In what follows, the r axis in this plane is set to be
vertical, and the θ axis is set to be horizontal. For any region D, there
is an image D′ of D in the polar plane defined by the transformation
of an ordered pair (x, y) ∈ D to the ordered pair (r, θ) ∈ D′. Note
that the boundaries of D′ are mapped onto the boundaries of D by
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x = r cos θ and y = r sin θ. For example, let D be the portion of the
disk x2 + y2 ≤ 1 in the first quadrant. Then the shape of D′ can be
found from the images of boundaries of D in the polar plane:

boundaries of D ↔ boundaries of D′

x2 + y2 = 1 ↔ r = 1
y = 0, x ≥ 0 ↔ θ = 0
x = 0, y ≥ 0 ↔ θ = π/2

Since r ≥ 0, the region D′ is the rectangle (r, θ) ∈ [0, 1]× [0, π/2] = D′.
Let D′ be the image of D on the polar plane and let R′

D be a rec-
tangle containing D′ so that the image of R′

D contains D. As before, a
function f on D is extended outside D by setting its values to 0. Con-
sider a rectangular partition of D′ such that each partition rectangle
D′

jk is bounded by the coordinate lines r = rj, r = rj+1 = rj + ∆r,
θ = θk, and θ = θk+1 = θk + ∆θ. Each partition rectangle has the
area ∆A′ = ∆r ∆θ. The image of the coordinate line r = rk in the xy
plane is the circle of radius rk centered at the origin. The image of the
coordinate line θ = θk on the xy plane is the ray from the origin that
makes the angle θk with the positive x axis counted counterclockwise.
The rays and circles are called coordinate curves of the polar coordi-
nate system, that is, the curves along which either the coordinate r or
the coordinate θ remains constant (circles and rays, respectively). A
rectangular partition of D′ induces a partition of D by the coordinate
curves. Each partition element Djk is the image of the rectangle D′

jk

and is bounded by two circles and two rays.
Let f(x, y) be an integrable function on D. The double integral of

f over D can be computed as the limit of the Riemann sum. According
to (14.3), the limit does not depend on either the choice of partition or
the sample points. Let ∆Ajk be the area of Djk. The area of the sector
of the disk of radius rj that has the angle ∆θ is r2

j∆θ/2. Therefore,

∆Ajk =
1
2
(r2

j+1 − r2
j ) ∆θ =

1
2
(rj+1 + rj) ∆r ∆θ =

1
2
(rj+1 + rj) ∆A′ .

In (14.3), put ∆Ap = ∆Ajk, rp ∈ Djk being the image of a sample
point (r∗

j , θ
∗
k) ∈ D′

jk so that f(rp) = f(r∗
j cos θ∗

k, r
∗
j sin θ∗

k). The limit in
(14.3) is understood as the double limit (∆r, ∆θ) → (0, 0). Owing to
the independence of the limit of the choice of sample points, put r∗

j =
(rj+1 + rj)/2 (the midpoint rule). With this choice, (rj+1 + rj) ∆r/2 =
r∗
j ∆r. By taking the limit of the Riemann sum (14.3)

lim
N→∞

(RN→0)

N∑
p=1

f(r∗
p) ∆Ap = lim

N1,2→∞
(∆r,∆θ)→(0,0)

N1∑
j=1

N2∑
k=1

f(r∗
j cos θ∗

k, r
∗
j sin θ∗

k)r
∗
j ∆A′,



224 14. MULTIPLE INTEGRALS

one obtains the double integral of the function f(r cos θ, r sin θ)J(r)
over the region D′ (the image of D), where J(r) = r is called the Ja-
cobian of the polar coordinates. The Jacobian defines the area element
transformation

dA = J dA′ = r dA′.

Definition 14.6. (Double Integral in Polar Coordinates).
Let D′ be the image of D in the polar plane spanned by ordered pairs
(r, θ) of polar coordinates. The double integral of f over D in polar
coordinates is∫∫

D

f(x, y) dA =
∫∫

D′

f(r cos θ, r sin θ) J(r) dA′ , J(r) = r .

A similarity between the double integral in rectangular and polar
coordinates is that they both use partitions by corresponding coor-
dinate curves. Note that horizontal and vertical lines are coordinate
curves of the rectangular coordinates. So the very term “a double in-
tegral in polar coordinates” refers to a specific partitioning D in the
Riemann sum, namely, by coordinate curves of polar coordinates (by
circles and rays). The double integral over D′ can be evaluated by the
standard means, that is, by converting it to a suitable iterated integral
with respect to r and θ.

Example 14.10. Use polar coordinates to evaluate the double inte-
gral of f(x, y) = xy2

√
x2 + y2 over D, which is the portion of the disk

x2 + y2 ≤ 1 that lies in the first quadrant.

Solution: First, the image D′ of D has to be found. Using the
boundary transformation, as explained at the beginning of this section,
D′ is the rectangle r ∈ [0, 1] and θ ∈ [0, π/2]. Second, the function has
to be written in polar coordinates, f(r cos θ, r sin θ) = r4 cos θ sin2 θ.
Third, the double integral of this function, multiplied by the Jacobian r,
has to be evaluated over D′. As D′ is a rectangle, by Fubini’s theorem,
the order of integration in the iterated integral is irrelevant:∫∫

D

f dA =
∫ π/2

0
sin2 θ cos θ dθ

∫ 1

0
r5dr =

1
3

sin3 θ
∣∣∣π/2

0
· 1
6

r6
∣∣∣1
0

=
1
18

.

�
This example shows that the technicalities involved in evaluating

the double integral have been substantially simplified by passing to
polar coordinates. The simplification is twofold. First, the domain of
integration has been simplified; the new domain is a rectangle, which
is much simpler to handle in the iterated integral than a portion of a
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disk. Second, the evaluation of ordinary integrals with respect to r and
θ appears to be simpler than the integration of f with respect to either
x or y needed in the iterated integral. However, these simplifications
cannot always be achieved by converting the double integral to polar
coordinates. The region D and the integrand f should have some
particular properties that guarantee the observed simplifications and
thereby justify the use of polar coordinates. Here are some guiding
principles to decide whether the conversion of a double integral to polar
coordinates could be helpful:

• The domain D is bounded by circles, lines through the origin,
and polar graphs.
• The function f(x, y) depends on either the combination x2 +

y2 = r2 or y/x = tan θ.
Indeed, if D is bounded only by circles centered at the origin and
lines through the origin, then the image D′ is a rectangle because the
boundaries of D are coordinate curves of polar coordinates. If the
boundaries of D contain circles not centered at the origin or, generally,
polar graphs, that is, curves defined by the relations r = g(θ), then
an algebraic description of the boundaries of D′ is simpler than that
of the boundaries of D. If f(x, y) = h(u), where u = x2 + y2 = r2 or
u = y/x = tan θ, then in the iterated integral one of the integrations,
either with respect to θ or r, becomes trivial.

Example 14.11. Evaluate the double integral of f(x, y) = xy over
the region D that lies in the first quadrant and is bounded by the circles
x2 + y2 = 4 and x2 + y2 = 2x.

Solution: First, the image D′ of D must be found. Using the principle
that the boundaries of D are mapped onto the boundaries of D′, one
finds the equations of the boundaries of D′ by converting the equations
for the boundaries of D into polar coordinates. The boundary of the
region D consists of three curves:

x2 + y2 = 4→ r = 2 ,

x2 + y2 = 2x→ r = 2 cos θ ,

x = 0, y ≥ 0→ θ = π/2.

So, in the polar plane, the region D′ is bounded by the horizontal
line r = 2, the graph r = 2 cos θ, and the vertical line θ = π/2. In
particular, it is convenient to use an algebraic description of D′ as
a vertically simple region; that is, (r, θ) ∈ D′ if rbot(θ) = 2 cos θ ≤
r ≤ 2 = rtop(θ) and θ ∈ [0, π/2] = [a, b] (because rtop(0) = rbot(0)).
Second, the function is written in polar coordinates, f(r cos θ, r sin θ) =
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r2 sin θ cos θ. Multiplying it by the Jacobian J = r, the integrand is
obtained. One has∫∫

D

xy dA =
∫∫

D′
r3 sin θ cos θ dA′ =

∫ b

a

sin θ cos θ

∫ rtop(θ)

rbot(θ)
r3 dr dθ

=
∫ π/2

0
sin θ cos θ

∫ 2

2 cos θ

r3 dr dθ

= 4
∫ π/2

0
(1− cos θ)4 cos θ sin θ dθ

= 4
∫ 1

0
(1− u)4u du = 4

∫ 1

0
v4(1− v) dv =

4
15

,

where two changes of variables have been used to simplify the calcula-
tions, u = cos θ and v = 1− u. �

Example 14.12. Find the area of the region D that is bounded
by two spirals r = θ and r = 2θ, where θ ∈ [0, 2π], and the positive
x axis.

Before solving the problem, let us make a few comments about the
shape of D. The boundaries r = θ and r = 2θ are examples of polar
graphs, r = g(θ), where g(θ) = θ and g(θ) = 2θ. They can be visualized
by means of a simple geometrical procedure. Take a ray corresponding
to a fixed value of the polar angle θ. On this ray, mark the point that
is a distance r = g(θ) from the origin. All such points obtained for all
values of θ form a curve, called the polar graph. When g(θ) = θ, the
distance r = θ increases as the ray rotates about the origin, and the
polar graph is a spiral winding about the origin. The region D lies be-
tween two spirals; it is not simple in any direction. Any smooth curve
in the xy plane can always be defined by an equation h(x, y) = 0. In
this case, by converting the polar graph equation into the rectangular
coordinates, one has

√
x2 + y2 = tan−1(y/x) or y = x tan(

√
x2 + y2).

There is no way to find an analytic solution of this equation to express
y as a function of x or vice versa. Therefore, had one tried to evalu-
ate the double integral in the rectangular coordinates, one would have
faced an unsolvable problem of finding the equations for the boundaries
of D in the form y = ytop(x) and y = ybot(x)!

Solution: The region D is bounded by three curves, two spirals (polar
graphs), and the line y = 0, x ≥ 0. Their images on the polar plane
are the lines r = θ, r = 2θ, and the vertical line θ = 2π. They form the
boundaries of D′. An algebraic description of D′ as a vertically simple
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region is convenient to use, (r, θ) ∈ D′ if rbot(θ) = θ ≤ r ≤ 2θ = rtop(θ)
and θ ∈ [0, 2π] = [a, b]. Hence,

A(D) =
∫∫

D

dA =
∫∫

D′
r dA′ =

∫ 2π

0

∫ 2θ

θ

r dr dθ =
3
2

∫ 2π

0
θ2 dθ = 4π3.

�
Example 14.13. Find the volume of the portion of the solid bounded

by the cone z = 2
√

x2 + y2 and the paraboloid z = 2− x2− y2 that lies
in the first octant.

Solution: The intersection of the cone and paraboloid is a circle of
unit radius. Indeed, put r =

√
x2 + y2. Then the points of intersection

satisfy the condition 2r = 2− r2 or r = 1. So the projection D of the
solid onto the xy plane is the portion of the disk r ≤ 1 in the first
quadrant. For any (x, y) ∈ D, the height is h = 2 − r2 − 2r (i.e.,
independent of the polar angle θ). The image D′ of D in the polar
plane is the rectangle (r, θ) ∈ [0, 1]× [0, π/2]. The volume is∫∫

D

h(x, y) dA =
∫∫

D′
(2− r2 − 2r)r dA′

=
∫ π/2

0
dθ

∫ 1

0
(2r − r3 − 2r2) dr =

π

24
.

�

102. Change of Variables in Double Integrals

With an example of polar coordinates, it is quite clear that a smart
choice of integration variables can significantly simplify the technical-
ities involved when evaluating double integrals. The simplification is
twofold: simplifying the shape of the integration region (a rectangular
shape is most desirable) and finding antiderivatives when calculating
the iterated integral. It is therefore of interest to develop a technique
for a general change of variable in the double integral so that one would
be able to design new variables specific to the double integral in ques-
tion in which the sought-for simplification is achieved.

102.1. Change of Variables. Let the functions x(u, v) and y(u, v) be
defined on an open region D′. Then, for every pair (u, v) ∈ D′, one
can find a pair (x, y), where x = x(u, v) and y = y(u, v). All such
pairs form a region in the xy plane that is denoted D. In other words,
the functions x(u, v) and y(u, v) define a transformation of a region
D′ in the uv plane onto a region D in the xy plane. If no two points
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in D′ have the same image point in D, then the transformation is
called one-to-one. For a one-to-one transformation, one can define the
inverse transformation, that is, the functions u(x, y) and v(x, y) that
assign a pair (u, v) ∈ D′ to a pair (x, y) ∈ D, where u = u(x, y)
and v = v(x, y). Owing to this one-to-one correspondence between
rectangular coordinates (x, y) and pairs (u, v), one can describe points
in a plane by new coordinates (u, v). For example, if polar coordinates
are introduced by the relations x = x(r, θ) = r cos θ and y = y(r, θ) =
r sin θ for any open set D′ of pairs (r, θ) that lie within the half-strip
[0,∞)× [0, 2π), then there is a one-to-one correspondence between the
pairs (x, y) ∈ D and (r, θ) ∈ D′. In particular, the inverse functions
are r(x, y) =

√
x2 + y2 and θ(x, y) = tan−1(y/x).

Definition 14.7. (Change of Variables in a Plane).
A one-to-one transformation of an open region D′ defined by x =
x(u, v) and y = y(u, v) is called a change of variables if the func-
tions x(u, v) and y(u, v) have continuous first-order partial derivatives
on D′.

The pairs (u, v) are often called curvilinear coordinates. Recall that
a point of a plane can be described as an intersection point of two
coordinate lines of a rectangular coordinate system x = xp and y = yp.
The point (xp, yp) ∈ D is a unique image of a point (up, vp) ∈ D′.
Consider the inverse transformation u = u(x, y) and v = v(x, y). Since
u(xp, yp) = up and v(xp, yp) = vp, the point (xp, yp) ∈ D can be viewed
as the point of intersection of two curves u(x, y) = up and v(x, y) =
vp. The curves u(x, y) = up and v(x, y) = vp are called coordinate
curves of the new coordinates u and v; that is, the coordinate u has a
fixed value along its coordinate curve u(x, y) = up, and, similarly, the
coordinate v has a fixed value along its coordinate curve v(x, y) = vp.
The coordinate curves are images of the straight lines u = up and
v = vp in D′ under the inverse transformation. If the coordinate curves
are not straight lines (as in a rectangular coordinate system), then
such coordinates are naturally curvilinear. For example, the coordinate
curves of polar coordinates are concentric circles (a fixed value of r)
and rays from the origin (a fixed value of θ), and every point in a plane
can be viewed as an intersection of one such ray and one such circle.

102.2. Change of Variables in a Double Integral. Consider a double in-
tegral of a function f(x, y) over a region D. Let x = x(u, v) and
y = y(u, v) define a transformation of a region D′ to D, where D′ is
bounded by piecewise-smooth curves in the uv plane. Suppose that
the transformation is a change of variables on an open region that
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includes D′. Then there is an inverse transformation, that is, a trans-
formation of D to D′, which is defined by the functions u = u(x, y)
and v = v(x, y). According to (14.3), the double integral of f over D is
the limit of a Riemann sum. The limit depends neither on a partition
of D by area elements nor on sample points in the partition elements.
Following the analogy with polar coordinates, consider a partition of
D by coordinate curves u(x, y) = ui, i = 1, 2, ..., N1, and v(x, y) = vj,
j = 1, 2, ..., N2, such that ui+1 − ui = ∆u and vj+1 − vj = ∆v. This
partition of D is induced by a rectangular partition of D′ by horizontal
lines v = vj and vertical lines u = ui in the uv plane. Each partition
element D′

ij of D′ has the area ∆A′ = ∆u ∆v. Its image is a partition
element Dij of D. If (u∗

i , v
∗
j ) ∈ D′

ij is a sample point, then the corre-
sponding sample point in Dij is r∗

ij = (x(u∗
i , v

∗
j ), y(u∗

i , v
∗
j )), and (14.3)

becomes ∫∫
D

f dA = lim
N1,N2→∞

N1∑
i=1

N2∑
j=1

f(r∗
ij) ∆Aij,

where ∆Aij is the area of the partition element Dij. The limit N1, N2 →
∞ is understood in the sense of a double limit (∆u, ∆v) → (0, 0). As
before, the values of f(x(u, v), y(u, v)) outside D′ are set to 0 when
calculating the value of f in a partition rectangle that intersects the
boundary of D′.

As in the case of polar coordinates, the aim is to convert this limit
into a double integral of f(x(u, v), y(u, v)) over the region D′. This
can be accomplished by finding a relation between ∆Aij and ∆A′,
that is, the rule of the area element transformation under a change
of variables. To simplify the notation, let the index p label partition
elements Dij, that is, Dp = Dij, (up, vp) = (ui, vj), etc. Now take a
point (up, vp) and fix the numbers ∆u, ∆v. Consider a rectangle D′

p in
the uv plane bounded by the lines u = up, u = up + ∆u, v = vp, and
v = vp + ∆v. Let A′ be the vertex (up, vp), B′ be (up + ∆u, vp), and
C ′ be (up, vp + ∆v). The image Dp of D′

p in the xy plane is a region
bounded by the coordinate curves of the variables u and v. The images
A and B of the points A′ and B′ lie on the coordinate curve v = vp,
while A and C (the image of C ′) are on the coordinate curve u = up.
The numbers ∆u and ∆v can be viewed as infinitesimal variations of
u and v or their differentials. So, when calculating the area ∆A of Dp,
it is sufficient to keep only terms linear in ∆v and ∆u; their higher
powers are to be neglected (by definition of the differential), that is,

∆A = J ∆u ∆v = J ∆A′,
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where the coefficient J is to be found. Recall that J = r for polar
coordinates.

Since ∆u and ∆v are infinitesimally small, the area of Dp can be
approximated by the area of a parallelogram with adjacent sides �AB =
b and �AC = c. The coordinates of A are (x(up, vp), y(up, vp)), while
the coordinates of B are (x(up + ∆u, vp), y(up + ∆u, vp)) because they
are images of A′ and B′, respectively, under the inverse transformation
x = x(u, v) and y = y(u, v). Therefore,

b =
(
x(up + ∆u, vp)− x(up, vp), y(up + ∆u, vp)− y(up, vp), 0

)
=
(
x′

u(up, vp) ∆u, y′
u(up, vp) ∆u, 0

)
= ∆u

(
x′

u(up, vp), y′
u(up, vp), 0

)
,

where x(up + ∆u, vp) = x(up, vp) + x′
u(up, vp) ∆u has been linearized,

that is, higher powers of ∆u are neglected, and similarly for y(up +
∆u, vp); the third component of b is set to 0 as the vector is planar.
An analogous calculation for the components of c yields

c = ∆v
(
x′

v(up, vp), y′
v(up, vp), 0

)
.

The area of the parallelogram reads

(14.10) ∆A = ‖b× c‖ =
∣∣∣∣det

(
x′

u x′
v

y′
u y′

v

)∣∣∣∣∆u ∆v = J ∆u ∆v .

Note that the vectors b and c are in the xy plane. Therefore, their
cross product has only one nonzero component (the z component)
given by the determinant. The absolute value of the determinant is
needed because the z component of the cross product may be negative,
‖(0, 0, z)‖ =

√
z2 = |z|.

Definition 14.8. (Jacobian of a Transformation).
The Jacobian of a transformation defined by x = x(u, v) and y = y(u, v)
is

∂(x, y)
∂(u, v)

= det
(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= x′

uy
′
v − x′

vy
′
u .

The Jacobian coincides with the determinant in (14.10). In this
definition, a convenient notation has been introduced. The matrix
whose determinant is evaluated has the first row composed of the par-
tial derivatives of the first variable the numerator with respect to all
variables in the denominator, and similarly for the second row. This
rule is easy to remember.
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Furthermore, the coefficient J in (14.10) is the absolute value of
the Jacobian. The Jacobian of a change of variables in the double
integral should not vanish on D′ because ∆A �= 0. Since the partial
derivatives of x and y with respect to u and v are continuous, J is
continuous, too. Therefore, for any partition element Dij, the difference
(∆Aij − J(u∗

i , v
∗
j )∆A′)/∆A′ vanishes in the limit (∆u, ∆v) → (0, 0).

So, in this limit, one can put ∆Aij = J(u∗
i , v

∗
j ) ∆u ∆v in the Riemann

sum. The limit of the Riemann sum defines the double integral of the
function f(x(u, v), y(u, v))J(u, v) over the region D′. The foregoing
arguments suggest that the following theorem is true (a full proof is
given in advanced calculus courses).

Theorem 14.6. (Change of Variables in a Double Integral).
Suppose a transformation x = x(u, v), y = y(u, v) has continuous first-
order partial derivatives and maps a region D′ bounded by piecewise-
smooth curves onto a region D. Suppose that this transformation is
one-to-one and has a nonvanishing Jacobian, except perhaps on the
boundary of D′. Then∫∫

D

f(x, y) dA =
∫∫

D′
f(x(u, v), y(u, v))J(u, v) dA′ ,

J(u, v) =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ .

Note that in the case of polar coordinates, the boundary of D′ may
contain the line r = 0 on which the Jacobian J = r vanishes. This
entire line collapses into a single point, the origin (x, y) = (0, 0) in the
xy plane, upon the transformation x = r cos θ and y = r sin θ; that
is, this transformation is not one-to-one on this line. A full proof of
the theorem requires an analysis of such subtleties in a general change
of variables, which was excluded in the above derivation by assuming
that the transformation is a genuine change of variables on a region
that contains D′.

The change of variables in a double integral entails the following
steps:

1. Finding the image D′ of D under the inverse transformation
u = u(x, y), v = v(x, y). A useful rule to remember here is:

boundaries of D ←→ boundaries of D′;

that is, if equations of boundaries of D are given, then equa-
tions of the corresponding boundaries of D′ can be obtained by
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expressing the former in the new variables by the substitution
x = x(u, v) and y = y(u, v).

2. Transformation of the function to new variables

f(x, y) = f(x(u, v), y(u, v)).

3. Calculation of the Jacobian that defines the area element trans-
formation:

dA =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv = J dA′ , J =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ .

4. Evaluation of the double integral of fJ over D′ by converting
it to a suitable iterated integral. The choice of new variables
should be motivated by simplifying the shape D′ (a rectangular
shape is the most desirable).

When calculating the Jacobian, the following statement, given without
a proof, might be useful.

Corollary 14.4. If u = u(x, y) and v = v(x, y) is the inverse of
the transformation x = x(u, v) and y = y(u, v), then its Jacobian is

(14.11)
∂(x, y)
∂(u, v)

=
1

∂(u,v)
∂(x,y)

=
1

det
(

u′
x u′

y

v′
x v′

y

) .

Equation (14.11) defines the Jacobian as a function of (x, y). Some-
times it is technically simpler to express the product f(x, y)J(x, y) in
the new variables rather than doing so for f and J separately. This is
illustrated by the following example.

Example 14.14. Use a suitable change of variables to evaluate the
double integral of f(x, y) = xy3 over the region D that lies in the first
quadrant and is bounded by the lines y = x and y = 3x and by the
hyperbolas yx = 1 and yx = 2.

Solution: The line equations can be written in the form y/x = 1 and
y/x = 3 because y, x > 0 in D. Note that the equations of boundaries
of D depend on just two particular combinations y/x and yx that
take constant values on the boundaries of D. So, if the new variables
defined by the relations u = u(x, y) = y/x and v = v(x, y), then the
image region D′ in the uv plane is a rectangle u ∈ [1, 3] and v ∈ [1, 2].
Indeed, the boundaries y/x = 1 and y/x = 3 are mapped onto the
vertical lines u = 1 and u = 3, while the hyperbolas yx = 1 and yx = 2
are mapped onto the horizontal lines v = 1 and v = 2. Let us put aside
for a moment the problem of expressing x and y as functions of new
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variables, which is needed to express f and J as functions of u and v,
and find first the Jacobian as a function of x and y by means of (14.11):

J =
∣∣∣∣det

(
u′

x u′
y

v′
x v′

y

)∣∣∣∣
−1

=
∣∣∣∣det

(−y/x2 1/x
y x

)∣∣∣∣
−1

= | − 2y/x|−1 =
x

2y
.

Note that x and y are strictly positive in D. The integrand becomes
fJ = x2y2/2 = v2/2. So finding the functions x = x(u, x) and y =
y(u, v) happens to be unnecessary in this example! Hence,∫∫

D

xy3 dA =
1
2

∫∫
D′

v2 dA′ =
1
2

∫ 3

1
du

∫ 2

1
v2 dv = 7/3.

The reader is advised to evaluate the double integral in the original
rectangular coordinates to compare the amount of work needed with
this solution. �

The following example illustrates how a change of variables can be
used to simplify the integrand of a double integral.

Example 14.15. Evaluate the double integral of the function f(x, y)
= cos[(y − x)/(y + x)] over the trapezoidal region with vertices (1, 0),
(2, 0), (0, 1), and (0, 2).

Solution: An iterated integral in the rectangular coordinates would
contain the integral of the cosine function of a rational argument (either
with respect to x or y), which is difficult to evaluate. So a change of
variables should be used to simplify the argument of the cosine function.
The region D is bounded by the lines x + y = 1, x + y = 2, x = 0, and
y = 0. Put u = x + y and v = y − x so that the function in the new
variables becomes f = cos(v/u). The lines x+ y = 1 and x+ y = 2 are
mapped onto the vertical lines u = 1 and u = 2. Since y = (u + v)/2
and x = (u − v)/2, the line x = 0 is mapped onto the line v = u,
while the line y = 0 is mapped onto the line v = −u. Thus, the region
D′ = {(u, v)| − u ≤ v ≤ u, u ∈ [1, 2]}. The Jacobian of the change of
variables is J = 1/2. Hence,∫∫

D

cos
(y − x

y + x

)
dA =

1
2

∫∫
D′

cos
(v

u

)
dA′ =

1
2

∫ 2

1

∫ u

−u

cos
(v

u

)
dv du

=
1
2

∫ 2

1
u sin

(v

u

)∣∣∣u
−u

du

= sin(1)
∫ 2

1
udu = 3 sin(1)/2.

�
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Example 14.16. (Area of an Ellipse).
Find the area of the region D bounded by the ellipse x2/a2 + y2/b2 = 1.

Solution: Under the change of variables u = x/a, v = y/b, the
ellipse is transformed into the circle u2 + v2 = 1 of unit radius. Since
the Jacobian of the transformation is J = ab,

A(D) =
∫∫

D

dA =
∫∫

D′
J dA′ = ab

∫∫
D′

dA′ = abA(D′) = πab .

�
When a = b, the ellipse becomes a circle of radius R = a = b, and the
area of the ellipse becomes the area of the disk, A = πR2.

102.3. Symmetries and a Change of Variables. As noted earlier, the
symmetry properties of double integrals are quite helpful for their eval-
uation. A transformation x = x(u, v), y = y(u, v) that maps D′ onto
D is said to be area preserving if the absolute value of its Jacobian is
1, that is, dA = dA′, from which it immediately follows that the areas
of D and D′ coincide, A(D) = A(D′). For example, rotations, trans-
lations, and reflections are area-preserving transformations for obvious
geometrical reasons. The following theorem holds.

Theorem 14.7. Suppose that an area-preserving transformation
x = x(u, v), y = y(u, v) maps a region D onto itself. Suppose that
a function f is skew-symmetric under this transformation, that is,
f(x(u, v), y(u, v)) = −f(u, v). Then the double integral of f over D
vanishes.

Proof. Since D′ = D and dA = dA′ (i.e., dx dy = du dv), the change
of variables yields

I =
∫∫

D

f(x, y) dA =
∫∫

D

f(x(u, v), y(u, v)) dA′

= −
∫∫

D

f(u, v) dA′ = −I,

that is, I = −I, or I = 0. �

103. Triple Integrals

Suppose a solid region E is filled with an inhomogeneous material.
The latter means that, if a small volume ∆V of the material is taken
at two distinct points of E, then the masses of these two pieces are
different, despite the equality of their volumes. The inhomogeneity of
the material can be characterized by the mass density as a function of
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position. Let ∆m(r) be the mass of a small piece of material of volume
∆V cut out around a point r. Then the mass density is defined by

σ(r) = lim
∆V →0

∆m(r)
∆V

.

The limit is understood in the following sense. If R is the radius of
the smallest ball that contains the region of volume ∆V , then the
limit means that R → 0 (i.e., roughly speaking, all the dimensions of
the piece decrease simultaneously in the limit). The mass density is
measured in units of mass per unit volume. For example, the value
σ(r) = 5 g/cm3 means that a piece of material of volume 1 cm3 cut
out around the point r has a mass of 5 gr.

Suppose that the mass density of the material in a region E is
known. The question is: What is the total mass of the material in E?
A practical answer to this question is to partition the region E so that
each partition element Ep, p = 1, 2, ..., N , has a mass ∆mp. The total
mass is M =

∑
p ∆mp. If a partition element Ep has a volume ∆Vp,

then ∆mp ≈ σ(rp) ∆Vp for some rp ∈ Ep. If Rp is the radius of the
smallest ball that contains Ep, put RN = max Rp. Then, by increasing
the number N of partition elements so that Rp ≤ RN → 0 as N →∞,
the approximation ∆mp ≈ σ(rp) ∆Vp becomes more and more accurate
by the definition of the mass density because ∆Vp → 0 for all p. So the
total mass is

(14.12) M = lim
N→∞

(RN→0)

N∑
p=1

σ(rp) ∆Vp ,

which is to be compared with (14.1). In contrast to (14.1), the summa-
tion over the partition should include a triple sum, one sum per each
direction in space. This gives an intuitive idea of a triple integral. Its
abstract mathematical construction follows exactly the footsteps of the
double-integral construction.

103.1. Definition of a Triple Integral.
Rectangular Partition. A region E in space is assumed to be bounded;
that is, it is contained in a ball of some (finite) radius. The bound-
aries of E are assumed to be piecewise-smooth surfaces. A smooth
surface can be viewed as a level surface of a differentiable function
of three variables. The region E is then embedded in a rectangle
RE = [a, b]× [c, d]× [s, q], that is, x ∈ [a, b], y ∈ [c, d], and z ∈ [s, q]. If
f(r) is a bounded function on E, then it is extended to RE by setting
its values to 0 outside E. The rectangle RE is partitioned by the coor-
dinate planes x = xi = a+i ∆x, i = 0, 1, ..., N1, where ∆x = (b−a)/N1;
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y = yj = c + j ∆y, i = 0, 1, ..., N2, where ∆y = (d − c)/N2; and z =
zi = s + k ∆z, k = 0, 1, ..., N3, where ∆z = (q − s)/N3. The volume of
each partition element is a rectangle Rijk of volume ∆V = ∆x ∆y ∆z.
The total number of rectangles is N = N1N2N3.

Upper and Lower Sums. By analogy with Definition 14.2, the
lower and upper sums are defined. Put Mijk = sup f(r), and mijk =
inf f(r) where the supremum and infimum are taken over the partition
rectangle Rijk. Then the upper and lower sums are

U(f,N) =
N1∑
i=1

N2∑
j=1

N3∑
k=1

Mijk ∆V , L(f,N) =
N1∑
i=1

N2∑
j=1

N3∑
k=1

mijk ∆V,

where N = (N1, N2, N3).

Definition 14.9. (Triple Integral).
If the limits of the upper and lower sums exist as N1,2,3 → ∞ (or
(∆x, ∆y, ∆z) → (0, 0, 0)) and coincide, then f is said to be Riemann
integrable on E, and the limit of the upper and lower sums∫∫∫

E

f(x, y, z) dV = lim
N→∞

U(f,N) = lim
N→∞

L(f,N)

is called the triple integral of f over the region E.

The limit is understood as a three-variable limit (∆x, ∆y, ∆z) →
(0, 0, 0).

103.2. Properties of Triple Integrals. The properties of triple integrals
are the same as those of the double integral discussed in Section 98;
that is, the linearity, additivity, positivity, integrability of the absolute
value |f |, and upper and lower bounds holds for triple integrals.

Continuity and Integrability. The relation between continuity
and integrability is pretty much the same as in the case of double
integrals.

Theorem 14.8. (Integrability of Continuous Functions).
Let E be a closed, bounded spatial region whose boundaries are piecewise-
smooth surfaces. If a function f is continuous on E, then it is integrable
on E. Furthermore, if f has bounded discontinuities only on a finite
number of smooth surfaces in E, then it is also integrable on E.

In particular, a constant function is integrable, and the volume of
a region E is given by the triple integral

V (E) =
∫∫∫

E

dV.
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The Integral Mean-Value Theorem. The integral mean value
theorem (Theorem 14.3) is extended to triple integrals, where the dou-
ble integral is replaced by the triple integral and A(D) by the volume
V (E). Its proof follows the same lines as in the case of double integrals.

Riemann Sums. If a function f is integrable, then its triple inte-
gral is the limit of a Riemann sum, and its value is independent of the
partition of E and a choice of sample points in the partition elements,
that is, (14.12) holds:

(14.13)
∫∫∫

E

f(r) dV = lim
N→∞

(RN→0)

N∑
p=1

f(rp) ∆Vp .

This equation can be used for approximations of triple integrals, when
evaluating the latter numerically just like in the case of double integrals.

Symmetry. If a transformation in space preserves the volume of
any region, then it is called volume preserving. Obviously, rotations,
reflections, and translations in space are volume-preserving transfor-
mations. Suppose that, under a volume-preserving transformation, a
region E is mapped onto itself; that is, E is symmetric relative to this
transformation. If rs ∈ E is the image of r ∈ E under this transfor-
mation and the integrand is skew-symmetric, f(rs) = −f(r), then the
triple integral of f over E vanishes.

Example 14.17. Evaluate the triple integral of f(x, y, z) = x2

sin(y4z) + 2 over a ball centered at the origin of radius R.

Solution: Put g(x, y, z) = x2 sin(y4z) so that f = g + h, where
h = 2 is a constant function. By the linearity property, the triple
integral of f is the sum of triple integrals of g and h over the ball. The
ball is symmetric relative to the reflection transformation (x, y, z) →
(x, y,−z), whereas the function g is skew-symmetric, g(x, y,−z) =
−g(x, y, z). Therefore, its triple integral vanishes, and∫∫∫

E

f dV =
∫∫∫

E

g dV +
∫∫∫

E

h dV

= 0 + 2
∫∫∫

E

dV = 2V (E) = 8πR3/3.

�
One can think of the numerical value of a triple integral of f over E

as the total amount of a quantity distributed in the region E with the
density f (the amount of the quantity per unit volume). For example, f
can be viewed as the density of electric charge distributed in a dielectric
occupying a region E. The total electric charge stored in the region E is
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then given by triple integral of the density over E. The electric charge
can be positive and negative. So, if the total positive charge in E is
exactly the same as the negative charge, the triple integral vanishes.

103.3. Iterated Triple Integrals. Similar to a double integral, a triple
integral can be converted to a triple iterated integral, which can then
be evaluated by means of ordinary single-variable integration.

Definition 14.10. (Simple Region).
A spatial region E is said to be simple in the direction of a vector v if
any straight line parallel to v intersects E along at most one straight
line segment.

A triple integral can be converted to an iterated integral if E is
simple in a particular direction. If there is no such direction, then E
should be split into a union of simple regions with the consequent use
of the additivity property of triple integrals. Suppose that v = e3; that
is, E is simple along the z axis. Then the region E admits the following
description:

E = {(x, y, z)|zbot(x, y) ≤ z ≤ ztop(x, y), (x, y) ∈ Dxy} .

Indeed, consider all lines parallel to the z axis that intersect E. These
lines also intersect the xy plane. The region Dxy in the xy plane is
the set of all such points of intersection. One might think of Dxy as
a shadow made by the solid E when it is illuminated by rays of light
parallel to the z axis. Take any line through (x, y) ∈ Dxy parallel to the
z axis. By the simplicity of E, any such line intersects E along a single
segment. If zbot and ztop are the minimal and maximal values of the z
coordinate along the intersection segment, then, for any (x, y, z) ∈ E,
zbot ≤ z ≤ ztop and any (x, y) ∈ Dxy. Naturally, the values zbot and
ztop may depend on (x, y) ∈ Dxy. Thus, the region E is bounded from
the top by the graph z = ztop(x, y) and from the bottom by the graph
z = zbot(x, y). If E is simple along the y or x axis, then E admits
similar descriptions:

E = {(x, y, z)| ybot(x, z) ≤ y ≤ ytop(x, z), (x, z) ∈ Dxz} ,(14.14)
E = {(x, y, z)|xbot(y, z) ≤ x ≤ xtop(y, z), (y, z) ∈ Dyz} ,(14.15)

where Dxz and Dyz are projections of E into the xz and yz planes,
respectively; they are defined analogously to Dxy.

According to (14.13), the limit of the Riemann sum is independent
of partitioning E and choosing sample points. Let Dp, p = 1, 2, ..., N ,
partition the region Dxy. Consider a portion Ep of E that is projected
on the partition element Dp; Ep is a column with Dp its cross section
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by a horizontal plane. Since E is bounded, there are numbers s and
q such that s ≤ zbot(x, y) ≤ ztop(x, y) ≤ q for all (x, y) ∈ Dxy; that
is, E always lies between two horizontal planes z = s and z = q.
Consider slicing the solid E by equispaced horizontal planes z = s +
k ∆z, k = 0, 1, ..., N3, ∆z = (q − s)/N3. Then each column Ep is
partitioned by these planes into small regions Epk. The union of all
Epk forms a partition of E, which will be used in the Riemann sum
(14.13). The volume of Epk is ∆Vpk = ∆z ∆Ap, where ∆Ap is the area
of Dp. Assuming, as usual, that f is defined by zero values outside
E, sample points may be selected so that, if (xp, yp, 0) ∈ Dp, then
(xp, yp, z

∗
k) ∈ Epk, that is, zk−1 ≤ z∗

k ≤ zk for k = 1, 2, ..., N3. The three-
variable limit (14.13) exists and hence can be taken in any particular
order. Take first the limit N3 → ∞ or ∆z → 0. The double limit of
the sum over the partition of Dxy is understood as before; that is, as
N → 0, the radii Rp of smallest disks containing Dp go to 0 uniformly,
Rp ≤ RN → 0. Therefore,∫∫∫

E

f dV = lim
N→∞

(RN→0)

N∑
p=1

(
lim

N3→∞

N3∑
k=1

f(xp, yp, z
∗
k) ∆z

)
∆Ap

= lim
N→∞

(RN→0)

N∑
p=1

(∫ ztop(xp,yp)

zbot(xp,yp)
f(xp, yp, z) dz

)
∆Ap

because, for every (xp, yp) ∈ Dxy, the function f vanishes outside the
interval z ∈ [zbot(xp, yp), ztop(xp, yp)]. The integration of f with respect
to z over the interval [zbot(x, y), ztop(x, y)] defines a function F (x, y)
whose values F (xp, yp) at sample points in the partition elements Dp

appear in the parenthese. A comparison of the resulting expression
with (14.3) leads to the conclusion that, after taking the second limit,
one obtains the double integral of F (x, y) over Dxy.

Theorem 14.9. (Iterated Triple Integral).
Let f be integrable on a solid region E. Suppose that E is simple in
the z direction so that it is bounded by the graphs z = zbot(x, y) and
z = ztop(x, y) for (x, y) ∈ Dxy. Then∫∫∫

E

f(x, y, z) dV =
∫∫

Dxy

∫ ztop(x,y)

zbot(x,y)
f(x, y, z) dz dA

=
∫∫

Dxy

F (x, y) dA.

103.3.1. Evaluation of Triple Integrals. In practical terms, an evaluation
of a triple integral over a region E is carried out by the following steps:
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Step 1. Determine the direction along which E is simple. If no such
direction exists, split E into a union of simple regions and use the
additivity property. For definitiveness, suppose that E happens to be
z simple.
Step 2. Find the projection Dxy of E into the xy plane.
Step 3. Find the bottom and top boundaries of E as the graphs of
some functions z = zbot(x, y) and z = ztop(x, y).
Step 4. Evaluate the integral of f with respect to z to obtain F (x, y).
Step 5. Evaluate the double integral of F (x, y) over Dxy by converting
it to a suitable iterated integral.

Similar iterated integrals can be written when E is simple in the y
or x direction. According to (14.14) (or (14.15)), the first integration is
carried out with respect to y (or x), and the double integral is evaluated
over Dxz (or Dyz). If E is simple in any direction, then any of the
iterated integrals can be used. In particular, just like in the case of
double integrals, the choice of an iterated integral for a simple region
E should be motivated by the simplicity of an algebraic description of
the top and bottom boundaries or by the simplicity of the integrations
involved. Technical difficulties may strongly depend on the order in
which the iterated integral is evaluated.

Fubini’s theorem can be extended to triple integrals.

Theorem 14.10. (Fubini’s Theorem).
Let f be integrable on a rectangular region E = [a, b] × [c, d] × [s, q].
Then ∫∫∫

E

f dV =
∫ b

a

∫ d

c

∫ q

s

f(x, y, z) dz dy dx

and the iterated integral can be evaluated in any order.

Here Dxy = [a, b]×[c, d], and the top and bottom boundaries are the
planes z = q and z = s. Alternatively, one can take Dyz = [c, d]× [s, q],
xbot(y, z) = a, and xtop(y, z) = b to obtain an iterated integral in a
different order (where the x integration is carried out first).

Example 14.18. Evaluate the triple integral of f(x, y, z) = xy2z3

over the rectangle E = [0, 2]× [1, 2]× [0, 3].

Solution: By Fubini’s theorem,∫∫∫
E

xy2z3 dV =
∫ 2

0
x dx

∫ 2

1
y2 dy

∫ 3

0
z3 dz = 2 · (7/3) · 9 = 52.

This example shows that the factorization property also holds for triple
integrals (see Corollary 14.3). �
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Example 14.19. Evaluate the triple integral of f(x, y, z) = (x2 +
y2)z over the portion of the solid bounded by the cone z =

√
x2 + y2

and paraboloid z = 2− x2 − y2 in the first octant.

Solution: Following the step-by-step procedure outlined above, the
integration region is z simple. The top boundary is the graph of
ztop(x, y) = 2 − x2 − y2, and the graph of zbot(x, y) =

√
x2 + y2 is

the bottom boundary. To determine the region Dxy, note that it has
to be bounded by the projection of the curve of the intersection of the
cone and paraboloid onto the xy plane. The intersection curve is de-
fined by zbot = ztop or r = 2−r2, where r =

√
x2 + y2, and hence r = 1,

which is the circle of unit radius. Since E is in the first octant, Dxy is
the quarter of the disk of unit radius in the first quadrant. One has∫∫∫

E

(x2 + y2)z dV =
∫∫

Dxy

(x2 + y2)
∫ 2−x2−y2

√
x2+y2

z dz dA

=
1
2

∫∫
Dxy

(x2 + y2)[(2− x2 − y2)2 − (x2 + y2)] dA

=
1
2

∫ π/2

0
dθ

∫ 1

0
r2[(2− r2)2 − r2]r dr

=
π

8

∫ 1

0
u[(2− u)2 − u] du =

7π
96

,

where the double integral has be transformed into polar coordinates
because Dxy becomes the rectangle D′

xy = [0, 1]× [0, π/2] in the polar
plane. The integration with respect to r is carried out by the change
of variable u = r2. �

Example 14.20. Evaluate the triple integral of f(x, y, z) =√
y2 + z2 over the region E bounded by the paraboloid x = y2 + z2

and the plane x = 4.

Solution: It is convenient to choose an iterated integral for E de-
scribed as an x simple region (see (14.15)). There are two reasons
for doing so. First, the integrand f is independent of x, and hence
the first integration with respect to x is trivial. Second, the bound-
aries of E are already given in the form required by (14.15), that is,
xbot(y, z) = y2 + z2 and xtop(y, z) = 4. The region Dyz is determined
by the curve of intersection of the boundaries of E, xtop = xbot or
y2 + z2 = 4. Therefore, Dyz is the disk or radius 2. One has∫∫∫

E

√
y2 + z2dV =

∫∫
Dyz

√
y2 + z2

∫ 4

y2+z2
dx dA
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=
∫∫

Dyz

√
y2 + z2 [4− (y2 + z2)] dA

=
∫ 2π

0
dθ

∫ 2

0
r[4− r2]r dr =

128π
15

,

where the double integral over Dyz has been converted to polar coor-
dinates in the yz plane. �

103.4. Study Problems.

Problem 14.2. Evaluate the triple integral of f(x, y, z) = z over the
region E bounded by the cylinder y2 + z2 = 1 and the planes z = 0,
y = 1, and y = x in the first octant.

Solution: The region is z simple and bounded by the xy plane from
the bottom (i.e., zbot(x, y) = 0), and by the cylinder from the top (i.e.,
ztop(x, y) =

√
1− y2) (by taking the positive solution of y2 + z2 = 1).

The region Dxy is bounded by the lines of intersection of the planes
x = 0 and y = x and the cylinder y2 + z2 = 1 with the xy plane (or the
plane z = 0). The cylinder intersects this plane along the line y = 1
in the first quadrant. Thus, Dxy is the triangle bounded by the lines
x = 0, y = 0, and y = x. One has∫∫∫

E

z dV =
∫∫

Dxy

∫ √1−y2

0
z dz dA

=
1
2

∫∫
Dxy

(1− y2) dA =
1
2

∫ 1

0
(1− y2)

∫ y

0
dx dy =

1
8
,

where the double integral has been evaluated by using the description
of Dxy as a horizontally simple region, xbot = 0 ≤ x ≤ y = xtop for all
y ∈ [0, 1] = [c, d]. �

Problem 14.3. Evaluate the triple integral of the function f(x, y, z) =
xy2z3 over the region E that is a ball of radius 3 centered at the origin
with a cubic cavity [0, 1]× [0, 1]× [0, 1].

Solution: The region E is not simple in any direction. The additivity
property must be used. Let E1 be the ball and let E2 be the cavity.
By the additivity property,∫∫∫

E

xy2z3 dV =
∫∫∫

E1

xy2z3 dV −
∫∫∫

E2

xy2z3 dV

= 0−
∫ 1

0
x dx

∫ 1

0
y2 dy

∫ 1

0
z3 dz = − 1

12
.
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The triple integral over E1 vanishes by the symmetry argument (the
ball is symmetric under the reflection (−x, y, z) → (−x, y, z) whereas
f(−x, y, z) = −f(x, y, z)). The second integral is evaluated by Fubini’s
theorem. �

104. Triple Integrals in Cylindrical and Spherical Coordinates

A change of variables has been proved to be quite useful in sim-
plifying the technicalities involved in evaluating double integrals. An
essential advantage is a simplification of the integration region. The
concept of changing variables can be extended to triple integrals.

104.1. Cylindrical Coordinates. One of the simplest examples of curvi-
linear coordinates in space is cylindrical coordinates. They are de-
fined by

(14.16) x = r cos θ , y = r cos θ , z = z .

In any plane parallel to the xy plane, the points are labeled by po-
lar coordinates, while the z coordinate is not transformed. Equations
(14.16) define a transformation of an ordered triple of numbers (r, θ, z)
to another ordered triple (x, y, z). A set of triples (r, θ, z) can be viewed
as a set of points E ′ in a Euclidean space in which the coordinate axes
are spanned by r, θ, and z. Then, under the transformation (14.16),
the region E ′ is mapped onto an image region E. From the study of po-
lar coordinates, the transformation (14.16) is one-to-one if r ∈ (0,∞),
θ ∈ [0, 2π), and z ∈ (−∞,∞). The inverse transformation is given by

r =
√

x2 + y2 , θ = tan−1(y/x) , z = z ,

where the value of tan−1 is taken according to the quadrant in which
the pair (x, y) belong (see the discussion of polar coordinates). It maps
any region E in the Euclidean space spanned by (x, y, z) onto the image
region E ′. To find the shape of E ′ as well as its algebraic description,
the same strategy as in the two-variable case should be used:

boundaries of E ←→ boundaries of E ′

under the transformation (14.16) and its inverse. A particularly im-
portant question is how to investigate the shape of coordinate surfaces
of cylindrical coordinates, that is, surfaces on which each of the cylin-
drical coordinates has a constant value. If E is bounded by coordinate
surfaces only, then its image E ′ is a rectangle, which is the simplest,
most desirable, shape when evaluating a multiple integral.

The coordinate surfaces of r are cylinders, r =
√

x2 + y2 = r0 or
x2+y2 = r2

0. In the xy plane, the equation θ = θ0 defines a ray from the
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origin at the angle θ0 to the positive x axis counted counterclockwise.
Since θ depends only on x and y, the coordinate surface of θ is the
half-plane bounded by the z axis that makes an angle θ0 with the xz
plane (it is swept by the ray when the latter is moved parallel up and
down along the z axis). Since the z coordinate is not changed, neither
changes its coordinate surfaces; they are planes parallel to the xy plane.
So the coordinate surfaces of cylindrical coordinates are

r = r0 ↔ x2 + y2 = r2
0 (cylinder),

θ = θ0 ↔ y cos θ0 = x sin θ0 (half-plane),
z = z0 ↔ z = z0 (plane).

A point in space corresponding to an ordered triple (r0, θ0, z0) is an
intersection point of a cylinder, half-plane bounded by the cylinder
axis, and a plane perpendicular to the cylinder axis.

Example 14.21. Find the image E ′ of the solid region E that is
bounded by the paraboloid z = x2 +y2 and the planes z = 4, y = x, and
y = 0 in the first octant.

Solution: In cylindrical coordinates, the equations of boundaries be-
come, respectively, z = r2, z = 4, θ = π/4, and θ = 0. Since E lies
below the plane z = 4 and above the paraboloid z = r2, the range
of r is determined by their intersection 4 = r2 or r = 2 as r ≥ 0.
Thus,

E ′ =
{

(r, θ, z) | r2 ≤ z ≤ 4 , (r, θ) ∈ [0, 2]× [0, π/4]
}

.

�

104.1.1. Triple Integrals in Cylindrical Coordinates. To change variables
in a triple integral to cylindrical coordinates, one has to consider a
partition of the integration region E by coordinate surfaces, that is, by
cylinders, half-planes, and horizontal planes, which corresponds to a
rectangular partition of E ′ (the image of E under the transformation
from rectangular to cylindrical coordinates). Then the limit of the
corresponding Riemann sum (14.13) has to be evaluated. In the case
of cylindrical coordinates, this task can be accomplished by simpler
means.

Suppose E is z simple so that by Theorem 14.9 the triple integral
can be written as an iterated integral consisting of a double integral
over Dxy and an ordinary integral with respect to z. The transforma-
tion (14.16) merely defines polar coordinates in the region Dxy. So,
if D′

xy is the image of Dxy in the polar plane spanned by pairs (r, θ),
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then, by converting the double integral to polar coordinate,s one infers
that∫∫∫

E

f(x, y, z) dV =
∫∫

D′
xy

∫ ztop(r,θ)

zbot(r,θ)
f(r cos θ, r sin θ, z)r dz dA′

=
∫∫∫

E′
f(r cos θ, r sin θ, z)r dV ′,(14.17)

where the region E ′ is the image of E under the transformation from
rectangular to cylindrical coordinates,

E ′ = {(r, θ, z) | zbot(r, θ) ≤ z ≤ ztop(r, θ) , (r, θ) ∈ D′
xy},

and z = zbot(r, θ), z = ztop(r, θ) are equations of the bottom and top
boundaries of E written in polar coordinates by substituting (14.16)
into the equations for boundaries written in rectangular coordinates.
Note that dV ′ = dz dr dθ = dz dA′ is the volume of an infinitesimal
rectangle in the space spanned by the triples (r, θ, z). Its image in the
space spanned by (x, y, z) lies between two cylinders whose radii differ
by dr, between two half-planes with the angle dθ between them, and
between two horizontal planes separated by the distance dz. So its
volume is the product of the area dA of the base and the height dz,
dV = dz dA = r dz dA′ according to the area transformation law for
polar coordinates, dA = rdA′. So the volume transformation law for
cylindrical coordinates reads

dV = J dV ′ , J = r,

where J = r is the Jacobian of transformation to cylindrical coordi-
nates.

Cylindrical coordinates are advantageous when the boundaries of E
contain cylinders, half-planes, horizontal planes, or any surfaces with
axial symmetry. A set in space is said to be axially symmetric if there
is an axis such that any rotation about it maps the set onto itself. For
example, circular cones, circular paraboloids, and spheres are axially
symmetric. Note also that the axis of cylindrical coordinates may be
chosen to be the x or y axis, which would correspond to polar coordi-
nates in the yz or xz plane.

Example 14.22. Evaluate the triple integral of f(x, y, z) = x2z
over the region E bounded by the cylinder x2 + y2 = 1, the paraboloid
z = x2 + y2, and the plane z = 0.

Solution:The solid E is axially symmetric because it is bounded from
the bottom by the plane z = 0, by the circular paraboloid from the
top, and the side boundary is the cylinder. Hence, Dxy is a disk of



246 14. MULTIPLE INTEGRALS

unit radius, and D′
xy is a rectangle, (r, θ) ∈ [0, 1] × [0, 2π]. The top

and bottom boundaries are z = ztop(r, θ) = r2 and z = zbot(r, θ) = 0.
Hence, ∫∫∫

E

x2z dV =
∫ 2π

0

∫ 1

0

∫ r2

0
r2 cos2 θ z rd zd rdθ

=
1
2

∫ 2π

0
cos2 θ dθ

∫ 1

0
r7dr =

π

16
,

where the double-angle formula, cos2 θ = (1+cos(2θ))/2, has been used
to evaluate the integral. �

104.2. Spherical Coordinates. Spherical coordinates are introduced by
the following geometrical procedure. Let (x, y, z) be a point in space.
Consider a ray from the origin through this point. Any such ray lies
in the half-plane corresponding to a fixed value of the polar angle θ.
Therefore, the ray is uniquely determined by the polar angle θ and the
angle φ between the ray and the positive z axis. If ρ is the distance
from the origin to the point (x, y, z), then the ordered triple of numbers
(ρ, φ, θ) defines uniquely any point in space. The triples (ρ, φ, θ) are
called spherical coordinates in space.

To find the transformation law from spherical to rectangular coordi-
nates, consider the plane that contains the z axis and the ray from the
origin through (x, y, z) and the rectangle with vertices (0, 0, 0), (0, 0, z),
(x, y, 0), and (x, y, z) in this plane. The diagonal of this rectangle has
length ρ (the distance between (0, 0, 0) and (x, y, z)). Therefore, its
vertical side has length z = ρ cos φ because the angle between this side
and the diagonal is φ. Its horizontal side has length ρ sin φ. On the
other hand, it is also the distance between (0, 0, 0) and (x, y, 0), that
is, r = ρ sin φ, where r =

√
x2 + y2. Since x = r cos θ and y = r sin θ,

it is concluded that

(14.18) x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ .

The inverse transformation follows from the geometrical interpretation
of the spherical coordinates:

(14.19) ρ =
√

x2 + y2 + z2 , cot φ =
z

r
=

z√
x2 + y2

, tan θ =
y

x
.

If (x, y, z) span the entire space, the maximal range of the variable ρ is
the half-axis ρ ∈ [0,∞). The variable θ ranges over the interval [0, 2π)
as it coincides with the polar angle. To determine the range of the
azimuthal angle φ, note that an angle between the positive z axis and
any ray from the origin must be in the interval [0, π]. If φ = 0, the ray
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coincides with the positive z axis. If φ = π, the ray is the negative z
axis. Any ray with φ = π/2 lies in the xy plane.

104.2.1. Coordinate Surfaces of Spherical Coordinates. All points that
have the same value of ρ = ρ0 form a sphere of radius ρ0 centered at
the origin because they are at the same distance ρ0 from the origin.
Naturally, the coordinate surfaces of θ are the half-planes described
earlier when discussing cylindrical coordinates. Consider a ray from
the origin that has the angle φ = φ0 with the positive z axis. By
rotating this ray about the z axis, all rays with the fixed value of φ
are obtained. Therefore, the coordinate surface φ = φ0 is a circular
cone whose axis is the z axis. For small values of φ, the cone is a
narrow cone about the positive z axis. The cone becomes wider as φ
increases so that it coincides with the xy plane when φ = π/2. For
φ > π/2, the cone lies below the xy plane, and it eventually collapses
into the negative z axis as soon as φ reaches the value π. The algebraic
equations of the coordinate surfaces follow from (14.19):

ρ = ρ0 ↔ x2 + y2 + z2 = ρ2
0 (sphere),

φ = φ0 ↔ z = cot(φ0)
√

x2 + y2 (cone),
θ = θ0 ↔ y cos θ0 = x sin θ0 (half-plane).

So any point in space can be viewed as the point of intersection of
three coordinate surfaces: the sphere, cone, and half-plane. Under the
transformation (14.19), any region E is mapped onto a region E ′ in
the space spanned by the ordered triples (ρ, φ, θ). If E is bounded by
spheres, cones, and half-planes only, then its image E ′ is a rectangle.
Thus, a change of variables in a triple integral to spherical coordinates
is advantageous when E is bounded by spheres, cones, and half-planes.

Example 14.23. Let E be the portion of the solid bounded by the
sphere x2 + y2 + z2 = 4 and the cone z2 = 3(x2 + y2) that lies in
the first octant. Find its image E ′ under transformation to spherical
coordinates.

Solution: The region E has four boundaries: the sphere, the cone
z =

√
3
√

x2 + y2, the xz plane (x ≥ 0), and the yz plane (y ≥ 0).
These boundaries are mapped onto, respectively, ρ = 2, cot φ =

√
3

or φ = π/3, θ = 0, and θ = π/2. So E ′ is the rectangle [0, 2] ×
[0, π/3]× [0, π/2]. The region E is intersected by all spheres with radii
0 ≤ ρ ≤ 2, all cones with angles 0 ≤ φ ≤ π/3, and all half-planes with
angles 0 ≤ θ ≤ π/2. �
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104.2.2. Volume Transformation Law. Let E ′ be the image of a region
E under the transformation to spherical coordinates (14.19). Consider
a rectangular partition of E ′ by equispaced planes ρ = ρi, φ = φj, and
θ = θk such that ρi+1− ρi = ∆ρ, φj+1− φj = ∆φ, and θk+1− θk = ∆θ,
where ∆ρ, ∆φ, and ∆θ are small numbers that can be regarded as
differentials (or infinitesimal variations) of the spherical coordinates.
Each partition rectangle has volume ∆V ′ = ∆ρ ∆φ ∆θ. The rectan-
gular partition of E ′ induces a partition of E by spheres, cones, and
half-planes. Each partition element is bounded by two spheres whose
radii differ by ∆ρ, by two cones whose angles differ by ∆φ, and by two
half-planes the angle between which is ∆θ. The volume of any such
partition element can be written as

∆V = J ∆V ′

because only terms linear in the variations ∆ρ = dρ, ∆φ = dφ, and
∆θ = dθ have to be retained. The value of J depends on a parti-
tion element (e.g., partition elements closer to the origin should have
smaller volumes by the geometry of the partition). The function J is
the Jacobian for spherical coordinates.

By means of (14.18), an integrable function f(x, y, z) can be writ-
ten in spherical coordinates. According to (14.13), in the three-variable
limit (∆ρ, ∆φ, ∆θ)→ (0, 0, 0), the Riemann sum for f for the partition
constructed converges to a triple integral of fJ expressed in the vari-
ables (ρ, φ, θ) over the region E ′ and thereby defines the triple integral
of f over E in spherical coordinates.

To find J , consider the image of the rectangle ρ ∈ [ρ0, ρ0 + ∆ρ],
φ ∈ [φ0, φ0 + ∆φ], θ ∈ [θ0, θ0 + ∆θ] under the transformation (14.18).
Since it lies between two spheres of radii ρ0 and ρ0 + ∆ρ, its volume
can be written as ∆V = ∆ρ ∆A, where ∆A is the area of the portion
of the sphere of radius ρ0 that lies between two cones and two half-
planes. Any half-plane θ = θ0 intersects the sphere ρ = ρ0 along a
half-circle of radius ρ0. The arc length of the portion of this circle
that lies between the two cones φ = φ0 and φ = φ0 + ∆φ is therefore
∆a = ρ0 ∆φ. The cone φ = φ0 intersects the sphere ρ = ρ0 along a
circle of radius r0 = ρ0 sin φ0 (see the text above (14.18)). Hence, the
arc length of the portion of this circle of intersection that lies between
the half-planes θ = θ0 and θ = θ0 + ∆θ is ∆b = r0 ∆θ = ρ0 sin φ ∆θ.
The area ∆A can be approximated by the area of a rectangle with
adjacent sides ∆a and ∆b. Since only terms linear in ∆φ and ∆θ are
to be retained, one can write ∆A = ∆a ∆b = ρ2

0 sin φ0 ∆φ ∆θ. Thus,
the volume transformation law reads

dV = J dV ′ , J = ρ2 sin φ .
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By the continuity of the Jacobian, the difference of the values of
J at any two sample points in a partition rectangle in E ′ vanishes in
the limit (∆ρ, ∆φ, ∆θ)→ (0, 0, 0); that is, the value of the Jacobian in
∆V = J ∆V ′ can be taken at any point within the partition element
when evaluating the limit. Therefore, for any choice of sample points,
the limit of the Riemann sum (14.13) for the constructed partition is∫∫∫

E

f(x, y, z) dV =∫∫∫
E′

f
(
ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ

)
ρ2 sin φ dV ′.

This relation defines the triple integral of f over E in spherical coor-
dinates. The triple integral over E ′ has to be evaluated by converting
it to a suitable iterated integral.

Example 14.24. Find the volume of the solid E bounded by the
sphere x2 + y2 + z2 = 2z and the cone z =

√
x2 + y2.

Solution: By completing the squares, the equation x2 + y2 + z2 = 2z
is written in the standard form x2 + y2 + (z− 1)2 = 1, which describes
a sphere of unit radius centered at (0, 0, 1). So E is bounded from the
top by this sphere, while the bottom boundary of E is the cone, and E
has no other boundaries. In spherical coordinates, the top boundary
becomes ρ2 = 2ρ cos φ or ρ = 2 cos φ. The bottom boundary is φ = π/4.
The boundaries of E impose no restriction on θ, which can therefore
be taken over its full range. Hence, the image E ′ admits the following
algebraic description:

E ′ =
{

(ρ, φ, θ) | 0 ≤ ρ ≤ 2 cos φ , (φ, θ) ∈ [0, π/4]× [0, 2π]
}

.

Since the range of ρ depends on the other variables, the integration with
respect to it must be carried out first when converting the triple integral
over E ′ into an iterated integral (E ′ is ρ simple, and the projection of
E ′ onto the φθ plane is the rectangle [0, π/4] × [0, 2π]). The order in
which the integration with respect to θ and φ is carried out is irrelevant
because the angular variables range over a rectangle. One has

V (E) =
∫∫∫

E

dV =
∫∫∫

E′
ρ2 sin φ dV ′

=
∫ 2π

0

∫ π/4

0
sin φ

∫ 2 cos φ

0
ρ2 dρ dφ dθ

=
8
3

∫ 2π

0
dθ

∫ π/4

0
cos3 φ sin φ dφ =

16π
3

∫ 1

1/
√

2
u3 du = π,

where the change of variables u = cos φ has been carried out in the last
integral. �
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105. Change of Variables in Triple Integrals

Consider the transformation of an open region E ′ in space into
an open region E defined by x = x(u, v, w), y = y(u, v, z), and z =
z(u, v, w); that is, for every point (u, v, w) ∈ E ′, these functions define
an image point (x, y, z) ∈ E. If no two points in E ′ have the same
image point, the transformation is one-to-one, and there is a one-to-one
correspondence between points of E and E ′. The inverse transformation
exists and is defined by the functions u = u(x, y, z), v = v(x, y, z), and
w = w(x, y, z). A point (x0, y0, z0) = r0 is the intersection point of
three coordinate planes x = x0, y = y0, and z = z0. Alternatively,
it can also be viewed as the point of intersection of three coordinate
surfaces, u(x, y, z) = u0, v(x, y, z) = v0, and w(x, y, z) = w0, where the
image of (u0, v0, w0) under the one-to-one transformation is r0.

Definition 14.11. (Jacobian of a Mapping).
Suppose that a one-to-one mapping of an open set E ′ onto E has con-
tinuous first-order partial derivatives. The quantity

∂(x, y, z)
∂(u, v, w)

= det

⎛
⎝x′

u y′
u z′

u

x′
v y′

v z′
v

x′
w y′

w z′
w

⎞
⎠

is called the Jacobian of the mapping.

Definition 14.12. (Change of Variables).
A continuously differentiable one-to-one mapping of an open set E ′

onto E is called a change of variables (or a change of coordinates) if
the Jacobian of the mapping does not vanish in E ′.

As in the case of double integrals, a change of variables in space
can be used to simplify the evaluation of triple integrals. For exam-
ple, if there is a change of variables whose coordinate surfaces form a
boundary of the integration region E, then the new integration region
E ′ is a rectangle, and the limits in the corresponding iterated integral
are greatly simplified in accordance with Fubini’s theorem.

105.1. The Volume Transformation Law. It is convenient to introduce
the following notations: (u, v, w) = r′ and (x, y, z) = r; that is, under
the change of variables,

(14.20) r =
(
x(r′), y(r′), z(r′)

)
or r′ =

(
u(r), v(r), w(r)

)
.

Let E ′
0 be an infinitesimal rectangle in E ′, u ∈ [u0, u0 + ∆u], v ∈

[v0, v0 + ∆v], and w ∈ [w0, w0 + ∆w], where ∆u, ∆v, and ∆w are
infinitesimal variations that can be viewed as differentials of the new



105. CHANGE OF VARIABLES IN TRIPLE INTEGRALS 251

variables. This means that all algebraic expressions involving ∆u, ∆v,
and ∆w are to be linearized with respect to them, and their higher
powers neglected. If E0 is the image of E ′

0, the volumes of E0 and E ′
0

are proportional:

∆V = J ∆V ′ , ∆V ′ = ∆u ∆v ∆w .

The objective is to calculate J . By the examples of cylindrical and
spherical coordinates, J is a function of the point (u0, v0, w0) at which
the rectangle E ′

0 is taken. The derivation of J is fully analogous to the
two-variable case.

Let O′, A′, B′, and C ′ have the coordinates, respectively,

r′
0 = (u0, v0, w0) ,

r′
a = (u0 + ∆u, v0, w0) = r′

0 + ê1 ∆u,

r′
b = (u0, v0 + ∆v, w0) = r′

0 + ê2 ∆v,

r′
c = (u0, v0, w0 + ∆w) = r′

0 + ê3 ∆w,

where ê1,2,3 are unit vectors along the first, second, and third coordi-
nate axes. In other words, the segments O′A′, O′B′, and O′C ′ are the
adjacent sides of the rectangle E ′

0. Let O, A, B, and C be the images
of O′, A′, B′, and C ′ in the region E. The volume ∆V of E0 can be
approximated by the volume of the parallelepiped with adjacent sides
a = �OA, b = �OB, and c = �OC. Then

a =
(
x(r′

a)− x(r′
0), y(r′

a)− y(r′
0), z(r′

a)− z(r′
0)
)

= (x′
u, y′

u, z′
u) ∆u,

b =
(
x(r′

b)− x(r′
0), y(r′

b)− y(r′
0), z(r′

b)− z(r′
0)
)

= (x′
v, y′

v, z′
v) ∆v,

c =
(
x(r′

c)− x(r′
0), y(r′

c)− y(r′
0), z(r′

c)− z(r′
0)
)

= (x′
w, y′

w, z′
w) ∆w,

where all the differences have been linearized, for instance, x(r′
a) −

x(r′
0) = x(r′

0 + ê1 ∆u) − x(r′
0) = x′

u(r
′
0) ∆u, by the definition of the

partial derivative of x(u, v, w) with respect to the first variable u. The
volume of the parallelepiped is given by the absolute value of the triple
product:
(14.21)

∆V = |a · (b× c)| =
∣∣∣∣∣∣det

⎛
⎝x′

u y′
u z′

u

x′
v y′

v z′
v

x′
w y′

w z′
w

⎞
⎠
∣∣∣∣∣∣∆u ∆v ∆w = J ∆V ′,

where the derivatives are evaluated at (u0, v0, w0). The function J in
(14.21) is the absolute value of the Jacobian. The first-order partial
derivatives are continuous for a change of variables and so are the
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Jacobian and its absolute value. Similarly to the two-dimensional case,
it can also be proved that

(14.22) J =
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ = 1∣∣∣∂(u,v,w)
∂(x,y,z)

∣∣∣ =

∣∣∣∣∣∣det

⎛
⎝u′

x u′
y u′

z

v′
x v′

y v′
z

w′
x w′

y w′
z

⎞
⎠
∣∣∣∣∣∣
−1

.

This expression defines J as a function of the old variables (x, y, z).

105.2. Triple Integral in Curvilinear Coordinates. Consider a partition of
E ′ by equispaced planes u = ui, v = vj, and w = wk ui+1 − ui = ∆u,
vj+1 − vj = ∆v, and wk+1 − wk = ∆w. The indices (i, j, k) enumerate
planes that intersect E ′. This rectangular partition of E ′ corresponds
to a partition of E by the coordinate surfaces u(r) = ui, v(r) = vj,
and w(r) = wk. If E ′

ijk is the rectangle u ∈ [ui, ui+1], vj ∈ [vj, vj+1],
and w ∈ [wk, wk+1], then its image, being the corresponding partition
element of E, is denoted by Eijk. A Riemann sum can be constructed
for this partition of E (assuming as before that f is defined by zeros
outside E). The triple integral of f over E is the limit (14.13) which is
understood as the three-variable limit (∆u, ∆v, ∆w) → (0, 0, 0). The
volume ∆Vijk of Eijk is related to the volume of the rectangle E ′

ijk by
(14.21). By continuity of J , its value in (14.21) can be taken at any
sample point in E ′

ijk. According to the definition of the triple integral,
the limit of the Riemann sum is the triple integral of fJ over the
region E ′.

Theorem 14.11. (Change of Variables in a Triple Integral).
Let a continuously differentiable mapping E ′ → E have a non-vanishing
Jacobian, except perhaps on the boundary of E ′. Suppose that f is
continuous on E and E is bounded by piecewise-smooth surfaces. Then∫∫∫

E

f(r) dV =
∫∫∫

E′
f(x(r′), y(r′), z(r′))J(r′) dV ′ ,

J(r′) =
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ .

Evaluation of a triple integral in curvilinear coordinates follows the
same steps as for a double integral in curvilinear coordinates.

Example 14.25. (Volume of an Ellipsoid).
Find the volume of a solid region E bounded by an ellipsoid x2/a2 +
y2/b2 + z2/c2 = 1.

Solution: The integration domain can be simplified by a scaling
transformation x = au, y = bv, and z = cw under which the ellipsoid
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is mapped onto a sphere of unit radius u2 + v2 + w2 = 1. The image
E ′ of E is a ball of unit radius. The Jacobian of this transformation is

J =

∣∣∣∣∣∣det

⎛
⎝a 0 0

0 b 0
0 0 c

⎞
⎠
∣∣∣∣∣∣ = abc.

Therefore,

V (E) =
∫∫∫

E

dV =
∫∫∫

E′
J dV ′ = abc

∫∫∫
E′

dV ′

= abcV (E ′) =
4π
3

abc.

�
When a = b = c = R, the ellipsoid becomes a ball of radius R, and a
familiar expression for the volume is recovered: V = (4π/3)R3.

105.3. Study Problems.

Problem 14.4. (Volume of a Tetrahedron).
A tetrahedron is a solid with four vertices and four triangular faces.
Let the vectors a, b, and c be three adjacent sides of the tetrahedron.
Find its volume.

Solution: Consider first a tetrahedron whose adjacent sides are along
the coordinate axes and have the same length q. From the geometry, it
is clear that six such tetrahedrons form a cube of volume q3. Therefore,
the volume of each tetrahedron is q3/6 (if so desired this can also be
established by evaluating the corresponding triple integral; this is left
to the reader). The idea is to make a change of variables such that a
generic tetrahedron is mapped onto a tetrahedron whose adjacent faces
lie in the three coordinate planes. The adjacent faces are portions of
the planes through the origin. The face containing vectors a and b is
perpendicular to vector n = a× b so the equation of this boundary is
n · r = 0. The other adjacent faces are similar:

n · r = 0 or n1x + n2y + n3z = 0 , n = a× b,

l · r = 0 or l1x + l2y + l3z = 0 , l = c× a,

m · r = 0 or m1x + m2y + m3z = 0 , m = b× c,

where r = (x, y, z). So, by putting u = m · r, v = l · r, and w = n · r,
the images of these planes become the coordinate planes, w = 0, v = 0,
and u = 0. A linear equation in the old variables becomes a linear
equation in the new variables under a linear transformation. Therefore,
an image of a plane is a plane. So the fourth boundary of E ′ is a plane
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through the points a′, b′, and c′, which are the images of r = a, r = b,
and r = c, respectively. One has a′ = (u(a), v(a), w(a)) = (q, 0, 0),
where q = a ·m = a · (b × c) because a · n = 0 and a · l = 0 by the
geometrical properties of the cross product. Similarly, b′ = (0, q, 0)
and c′ = (0, 0, q). Thus, the volume of the image region E ′ is V (E ′) =
|q|3/6 (the absolute value is needed because the triple product can be
negative). To find the volume V (E), the Jacobian of the transformation
has to be found. It is convenient to use the representation (14.22):

J =

∣∣∣∣∣∣det

⎛
⎝m1 m2 m3

l1 l2 l3
n1 n2 n3

⎞
⎠
∣∣∣∣∣∣
−1

=
1

|m · (n× l)| .

Therefore,

V (E) =
∫∫∫

E

dV =
∫∫∫

E′
J dV ′ = J

∫∫∫
E′

dV ′ = JV (E ′) =
|q|3J

6
.

The volume V (E) is independent of the orientation of the coordinate
axes. It is convenient to direct the x axis along the vector a. The y axis
is directed so that b is in the xy plane. With this choice, a = (a1, 0, 0),
b = (b1, b2, 0), and c = (c1, c2, c3). A straight forward calculation shows
that q = a1b2c3 and J = (a2

1b
2
2c

2
3)

−1. Hence, V (E) = |a1b2c3|/6. Finally,
note that |c3| = h is the height of the tetrahedron, that is, the distance
from a vertex c to the opposite face (to the xy plane). The area of that
face is A = ‖a× b‖/2 = |a1b2|/2. Thus,

V (E) =
1
3
hA;

that is, the volume of a tetrahedron is one-third the distance from a
vertex to the opposite face, times the area of that face. �

106. Improper Multiple Integrals

In the case of one-variable integration, improper integrals occur
when the integrand is not defined at a boundary point of the integration
interval or the integration interval is not bounded. For example,

(14.23)
∫ 1

0

dx

xν
= lim

a→0

∫ 1

a

dx

xν
= lim

a→0

1− a1−ν

1− ν
=

1
1− ν

, ν < 1,

or ∫ ∞

0

1
1 + x2 dx = lim

a→∞

∫ a

0

1
1 + x2 dx = lim

a→∞
tan−1 a =

π

2
.

Improper multiple integrals are quite common in many practical appli-
cations.
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106.1. Multiple Integrals of Unbounded Functions. Suppose a function
f(r) is not defined at a point r0 that is a limit point of the domain of
f (any neighborhood of r0 contains points of the domain of f). Here
r = (x, y, z) ∈ E or r = (x, y) ∈ D. If in any small ball (or disk) Bε of
radius ε centered at r0 the values of |f(r)| are not bounded, then the
function f is said to be singular at r0. In this case, the upper and lower
sums cannot be defined because for some partition rectangles sup f or
inf f or both do not exist, and neither is defined a multiple integral of
f . If a region E (or D) contains such a point, define the region Eε (or
Dε) by removing all points of E (or D) that also lie in the ball (disk)
Bε. Suppose that f is integrable on Eε (or Dε) for any ε > 0 (e.g., it is
continuous). Then, by analogy with the one-variable case, a multiple
integral of f over E (or D) is defined as the limit
(14.24)∫∫∫

E

f dV = lim
ε→0

∫∫∫
Eε

f dV or
∫∫

D

f dA = lim
ε→0

∫∫
Dε

f dA,

provided, of course, the limit exists. If f is singular in a point set S,
then one can construct a set Sε that is the union of balls of radius ε
centered at each point of S. Then Dε (or Eε) is obtained by removing
Sε from D (or E).

Although this definition seems a rather natural generalization of the
one-variable case, there are subtleties that are specific to multivariable
integrals. This is illustrated by the following example. Suppose that

(14.25) f(x, y) =
y2 − x2

(x2 + y2)2

is to be integrated over the sector 0 ≤ θ ≤ θ0 of a disk x2 + y2 ≤ 1,
where θ is the polar angle. If the definition (14.24) is applied, then Dε

is the portion of the ring ε2 ≤ x2 +y2 ≤ 1 corresponding to 0 ≤ θ ≤ θ0.
Then, by evaluating the integral in polar coordinates, one finds that∫∫

Dε

y2 − x2

(x2 + y2)2dA = −
∫ θ0

0
cos(2θ) dθ

∫ 1

ε

dr

r
=

1
2

sin(2θ0) ln ε .

The limit ε→ 0 does not exist for all θ0 such that sin(2θ0) �= 0, whereas
the integral vanishes if θ0 = kπ/2, k = 1, 2, 3, 4, for any ε > 0. Let
θ0 = π/2. The integral vanishes because of symmetry, (x, y) → (y, x),
f(y, x) = −f(x, y), while the integration region is invariant under this
transformation. The integrand is positive in the part of the domain
where x2 < y2 and negative if y2 > x2, and there is a mutual cancel-
lation of contributions from these regions. If the improper integral of
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the absolute value |f(x, y)| is considered, then no such cancellation can
occur, and the improper integral always diverges.

Definition 14.13. (Conditional Convergence).
The improper integral is said to converge conditionally if the limit
(14.24) exists.

Definition 14.14. (Absolute Convergence and Integrability).
The improper integral of a function f is said to converge absolutely if
the improper integral of the absolute value |f | converges, and in this
case, the function f is said to be absolutely integrable.

Consider a Riemann sum for an improper integral over a bounded
region where no sample points coincide with r0. The absolute inte-
grability of f guarantees that all Riemann sums remain bounded, and
hence they cannot diverge. Indeed,

|R(f, N)| =
∣∣∣∣∣
∑

p

f(rp) ∆Vp

∣∣∣∣∣ ≤
∑

p

|f(rp)|∆Vp <∞,

and the sum on the right side converges in the limit N → ∞ by the
convergence of the integral of |f |. This conclusion holds independently
of the choice of a partition of the integration region and the choice of
sample points (with the aforementioned restriction).

If a function is not absolutely integrable, its iterated integrals may
still be well defined. However, the value of the iterated integral depends
on the order of integration (e.g., Fubini’s theorem may not hold). For
example, consider the function (14.25) over the rectangle D = [0, 1]×
[0, 1]. It is not absolutely integrable on D as the improper integral
of |f | diverges as argued. On the other hand, consider a rectangular
partition of D where each partition rectangle has the area ∆x ∆y and
the sample point in the partition rectangle [0, ∆x] × [0, ∆y] does not
coincide with the origin (where f is not defined). The limit of the
Riemann sum is the two-variable limit (∆x, ∆y) → (0, 0). By taking
first ∆y → 0 and then ∆x → 0, one obtains an iterated integral in
which the integration with respect to y is carried out first:

lim
a→0

∫ 1

a

lim
b→0

∫ 1

b

x2 − y2

(x2 + y2)2dy dx = lim
a→0

∫ 1

a

lim
b→0

∫ 1

b

∂

∂y

y

x2 + y2dy dx

= lim
a→0

∫ 1

a

lim
b→0

( 1
1 + x2 −

b

x2 + b2

)
dx

= lim
a→0

∫ 1

a

dx

1 + x2 =
∫ 1

0

dx

1 + x2 =
π

4
.
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Here (a, b) = (∆x, ∆y). Alternatively, the limit ∆x → 0 can be taken
first and then ∆y → 0, which results in the iterated integral in the
reverse order:

lim
b→0

∫ 1

b

lim
a→0

∫ 1

a

x2 − y2

(x2 + y2)2dx dy = − lim
b→0

∫ 1

b

lim
a→0

∫ 1

a

∂

∂x

x

x2 + y2dy dx

= − lim
b→0

∫ 1

b

lim
a→0

( 1
1 + y2 −

a

y2 + a2

)
dy

= − lim
b→0

∫ 1

b

dy

1 + y2

= −
∫ 1

0

dy

1 + y2 = −π

4
.

This shows that the limit of the Riemann sum as a function of two
variables ∆x and ∆y does not exist because it depends on a path along
which the limit point is approached.

Thus, when dealing with an improper integral, the absolute con-
vergence (absolute integrability) must be established first. Then the im-
proper integral can be evaluated by means of the limit procedure (14.24).
An analogy can be made with the conditionally and absolutely conver-
gent series studied in Calculus II. If a series converges absolutely, then
the sum does not depend on the order of summation or rearrangement
of the series terms. If a series converges conditionally, but not ab-
solutely, then, by rearranging the terms, the sum can take any value
or even diverge. Riemann sums of conditionally convergent integrals
behave pretty much as conditionally convergent series. The following
theorem is useful to assess the integrability.

Theorem 14.12. (Absolute Integrability Test).
If |f(r)| ≤ g(r) for all r in D and g(r) is integrable on D, then f is
absolutely integrable on D.

Example 14.26. Evaluate the triple integral of f(x, y, z) = (x2 +
y2 + z2)−1 over a ball of radius R centered at the origin if it exists.

Solution: The function is singular only at the origin. So the re-
stricted region Eε lies between two spheres: ε2 ≤ x2 + y2 + z2 ≤ R2.
Since |f | = f > 0 in D, the convergence of the integral over Eε also
implies the absolute integrability of f . By making use of the spherical
coordinates, one obtains.∫∫∫

Eε

dV

x2 + y2 + z2 =
∫ 2π

0

∫ π

0

∫ R

ε

ρ2 sin θ

ρ2 dρ dφ dθ = 4π(R−ε)→ 4πR

as ε→ 0. So the improper integral exists and equals 4πR. �
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Example 14.27. Investigate the absolute integrability of f(x, y) =
x/(x2 + y2)ν/2, ν > 0, on a bounded region D. Find the integral, if it
exists, over D, the part of the disk of unit radius in the first quadrant.

Solution: The function is singular at the origin. Since f is continuous
everywhere except the origin, it is sufficient to investigate the integra-
bility on a disk centered at the origin. Put r =

√
x2 + y2 (the polar

radial coordinate). Then |x| ≤ r and hence |f | ≤ r/rν = r1−ν = g. In
the polar coordiantes, the improper integral (14.24) of g over a disk of
unit radius is∫ 2π

0
dθ

∫ 1

ε

g(r)r dr = 2π
∫ 1

ε

r2−ν dr = 2π
{− ln ε, ν = 3

1− ε3−ν

3−ν
, ν �= 3 .

The limit ε → 0 is finite if ν < 3. By the integrability test (Theo-
rem 14.12), the function f is absolutely integrable if ν < 3. For ν < 3
and D, the part of the unit disk in the first quadrant, one infers that

lim
ε→0

∫ ∫
Dε

f dA = lim
ε→0

π/2∫
0

1∫
ε

r cos θ

rν
r dr dθ = lim

ε→0

1∫
ε

r2−ν dr = 1.

�
The two examples studied exhibit a common feature of how the function
should change with the distance from the point of singularity in order
to be integrable.

Theorem 14.13. Let a function f be continuous on a bounded re-
gion D of a Euclidean space and let f be singular at a limit point r0

of D. Suppose that |f(r)| ≤ M‖r − r0‖−ν for all r in D such that
‖r − r0‖ < R for some R > 0 and M > 0. Then f is absolutely
integrable on D if ν < n, where n is the dimension of the space.

Proof. One can always set the origin of the coordinate system at r0

by the shift transformation r→ r−r0. Evidently, its Jacobian is 1. So,
without loss of generality, assume that f is singular at the origin. Let
BR be the ball ‖r‖ < R and let BD

R be the intersection of BR and D.
For n = 1, the integrability follows from (14.23). In the two-variable
case, the use of the polar coordinates yields dA = r dr dθ, ‖r‖ = r, and∫∫

BD
R

|f | dA ≤M

∫∫
BD

R

dA

‖r‖ν ≤M

∫∫
BR

dA

‖r‖ν = 2πM

∫ R

0

dr

rν−1 ,

which is finite if ν < 2; the second inequality follows from that the
part BD

R is contained in BR and the integrand is positive. In the three-
variable case, the volume element in the spherical coordinates is dV =
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ρ2 sin φ dρ dφ dθ where ‖r‖ = ρ. So a similar estimate of the improper
triple integral of f over BD

R yields an upper bound 4πM
∫ R

0 ρ2−ν dρ,
which is finite if ν < 3. �

106.2. Multiple Integrals Over Unbounded Regions. Suppose f(r) is a
continuous function on an unbounded planar (or spatial) region D (or
E). Let DR be the intersection of D with a disk of radius R centered
at the origin and let ER be the intersection of E with a ball of radius
R centered at the origin. The integral of f over D (or E) is defined by∫∫

D

f(r) dA = lim
R→∞

∫∫
DR

f(r) dA or∫∫∫
E

f(r) dV = lim
R→∞

∫∫∫
ER

f(r) dV.

The improper integral is said to converge absolutely if the limit of
integrals of the absolute value |f | exists as R → ∞ and the function
f is called absolutely integrable on D. The improper integral is called
conditionally convergent if the limit of integrals of f exists, while f
is not absolutely integrable. Since f ≤ |f |, the absolute integrability
implies the existence of the improper integral.

Example 14.28. Evaluate the double integral of f(x, y) = exp(−x2

−y2) over the entire plane.

Solution: The function is positive and |f | = f . So it is sufficient to
investigate the convergence of the integral over DR, which is the disk
of radius R as R→ 0. By making use of the polar coordinates,∫∫

D

e−x2−y2
dA = lim

R→∞

∫ 2π

0

∫ R

0
e−r2

r dr dθ = π lim
R→∞

∫ R2

0
e−u du

= π lim
R→∞

(1− e−R2
) = π,

where the substitution u = r2 has been made. �
It is interesting to observe the following. Since the double integral

exists, it can also be represented as an iterated integral in rectangular
coordinates, which is the product of two improper ordinary integrals:∫∫

D

e−x2−y2
dA =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy = I2 ,

I =
∫ ∞

−∞
e−x2

dx =
√

π
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because I2 = π by the value of the double integral. A direct evaluation
of I by means of the fundamental theorem of calculus is problematic as
an antiderivative of e−x2 cannot be expressed in elementary function.

The integrability test (Theorem 14.12) holds for the case of un-
bounded regions. The asymptotic behavior of a function sufficient for
integrability on an unbounded region is stated in the following theorem,
which is an analog of Theorem 14.13.

Theorem 14.14. Suppose f is a continuous function on an un-
bounded region D of a Euclidean space such that |f(r)| ≤ M‖r‖−ν for
all ‖r‖ ≥ R in D and some R > 0 and M ≥ 0. Then f is absolutely
integrable on D if ν > n, where n is the dimension of the space.

Proof. Let R > 0. Consider the following one-dimensional improper
integral:∫ ∞

R

dx

xν
= lim

a→∞

∫ a

R

dx

xν
= lim

a→∞
x1−ν

1− ν

∣∣∣∣∣
a

R

= −R1−ν

1− ν
+ lim

a→∞
a1−ν

1− ν

if ν �= 1. The limit is finite if ν > 1. When ν = 1, the integral diverges
as ln a. Let D′

R be the part of D that lies outside the ball BR of radius R
and let B′

B be the part of the space outside BR. Note that B′
R includes

D′
R. In the two-variable case, the use of the polar coordinates gives∫∫

D′
R

|f |dA ≤
∫∫

B′
R

|f |dA ≤
∫∫

B′
R

MdA

‖r‖ν = M

2π∫
0

dθ

∞∫
R

r dr

rν

= 2πM

∞∫
R

dr

rν−1 ,

which is finite, provided ν−1 > −1 or ν > 2. The case of triple integrals
is proved similarly by means of the spherical coordinates. The volume
element is dV = ρ2 sin φ dρ dφ dθ. The integration over the spherical
angles yields the factor 4π as 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π for the region
B′

R so that∫∫∫
D′

R

|f |dV ≤
∫∫∫

B′
R

|f |dV ≤
∫∫∫

B′
R

M dV

‖r‖ν = 4πM

∞∫
R

ρ2 dρ

ρν

= 4πM

∞∫
R

dρ

ρν−2 ,

which converges if ν > 3. �
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106.3. Study Problems.

Problem 14.5. Evaluate the triple integral of f(x, y, z) = (x2 +
y2)−1/2(x2 + y2 + z2)−1/2 over E, which is bounded by the cone z =√

x2 + y2 and the sphere x2 + y2 + z2 = 1 if it exists.

Solution: The function is singular at all points on the z axis. Con-
sider Eε obtained from E by eliminating from the latter a cone φ ≤ ε
and a ball ρ ≤ ε, where ρ and φ are spherical coordinates. To inves-
tigate the integrability, consider |f |dV = f dV in the spherical coordi-
nates: f dV = (ρ2 sin φ)−1ρ2 sin φ dρ dφ dθ = dρ dφ dθ which is regular.
So the function f is integrable as the image E ′ of E in the spherical
coordinate is a rectangle (i.e., it is bounded). Hence,

lim
ε→0

∫∫∫
Eε

f dV = lim
ε→0

∫∫∫
E′

ε

dρ dφ dθ =
∫ 2π

0
dθ

∫ π/4

0
dφ

∫ 1

0
dρ =

π2

2
.

So the Jacobian cancels out all the singularities of the function. �

107. Line Integrals

Consider a wire made of a nonhomogeneous material. The inhomo-
geneity means that, if one takes a small piece of the wire of length ∆s
at a point r, then its mass ∆m depends on the point r. It can therefore
be characterized by a linear mass density (the mass per unit length at
a point r):

σ(r) = lim
∆s→0

∆m(r)
∆s

.

Suppose that the linear mass density is known as a function of r. What
is the total mass of the wire that occupies a space curve C? If the curve
C has a length L, then it can be partitioned into N small segments of
length ∆s = L/N . If r∗

p is a sample point in the pth segment, then the
total mass reads

M = lim
N→∞

N∑
p=1

σ(r∗
p) ∆s,

where the mass of the pth segment is approximated by ∆mp ≈ σ(r∗
p) ∆s

and the limit is required because this approximation becomes exact
only in the limit ∆s→ 0. The expression for M resembles the limit of
a Riemann sum and leads to the concept of a line integral of σ along a
curve C.
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107.1. Line Integral of a Function. Let f be a bounded function in E
and let C be a smooth (or piecewise-smooth) curve in E. Suppose C
has a finite arc length. Consider a partition of C by its N pieces Cp

of length ∆sp, p = 1, 2, ..., N , which is the arc length of Cp (it exists
for a smooth curve!). Put mp = infCp f and Mp = supCP

f ; that is,
mp is the largest lower bound of values of f for all r ∈ Cp, and Mp

is the smallest upper bound on the values of f for all r ∈ Cp. The
upper and lower sums are defined by U(f, N) =

∑N
p=1 Mp ∆sp and

L(f, N) =
∑N

p=1 mp ∆sp.

Definition 14.15. (Line Integral of a Function).
The line integral of a function f along a piecewise-smooth curve C is∫

C

f(r) ds = lim
N→∞

U(f, N) = lim
N→∞

L(f, N),

provided the limits of the upper and lower sums exist and coincide.
The limit is understood in the sense that max ∆sp → 0 as N → ∞
(the partition element of the maximal length becomes smaller as N
increases).

The line integral can also be represented by the limit of a Riemann
sum: ∫

C

f(r) ds = lim
N→∞

N∑
p=1

f(r∗
p) ∆sp = lim

N→∞
R(f, N).

If the line integral exists, it follows from the inequality mp ≤ f(r) ≤Mp

for all r ∈ Cp that L(f, N) ≤ R(f, N) ≤ U(f, N), and the limit of the
Riemann sum is independent of the choice of sample points r∗

p.
It is also interesting to establish a relation of the line integral with

a triple (or double) integral. Suppose that f is integrable on a region
E that looks like a wire of the shape C with a cross section of a small
area ∆A at any point; that is, E is a “cylinder” whose axis is the curve
C. Then, in the limit ∆A → 0 (in the sense that the diameter of the
area element goes to 0),

(14.26)
1

∆A

∫∫∫
E

f(r) dV →
∫

C

f(r) ds.

In other words, line integrals can be viewed as the limiting case of triple
(or double) integrals when two (or one) dimensions of the integration
region become infinitesimally small. This follows immediately from
considering a partition of E by volume elements ∆Vp = ∆ A∆sp in
(14.13). In particular, it can be concluded that the line integral exists
for any f that is continuous or has only a finite number of bounded
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jump discontinuities along C. Also, the line integral inherits all the
properties of multiple integrals.

The evaluation of a line integral is based on the following theorem.

Theorem 14.15. (Evaluation of a Line Integral).
Suppose that f is continuous in a region that contains a smooth curve
C. Let a vector function r(t), t ∈ [a, b], trace out the curve C just once.
Then

(14.27)
∫

C

f(r) ds =
∫ b

a

f(r(t))‖r′(t)‖ dt.

Proof. Consider a partition of [a, b], tp = a + p ∆t, p = 0, 1, 2, ..., N ,
where ∆t = (b − a)/N . It induces a partition of C by pieces Cp so
that r(t) traces out Cp when t ∈ [tp−1, tp], p = 1, 2, ..., N . The arc
length of Cp is

∫ tp
tp−1
‖r′(t)‖ dt = ∆sp. Since C is smooth, the tangent

vector r′(t) is a continuous function and so is its length ‖r′(t)‖. By the
integral mean value theorem, there is t∗p ∈ [tp−1, tp] such that ∆sp =
‖r′(t∗p)‖∆t. Since f is integrable along C, the limit of its Riemann
sum is independent of the choice of sample points and a partition of
C. Choose the sample points to be r∗

p = r(t∗p). Therefore,

∫
C

f ds = lim
N→∞

N∑
p=1

f(r(t∗p))‖r′(t∗p)‖∆t =
∫ b

a

f(r)‖r′(t)‖dt.

Note that the Riemann sum for the line integral becomes a Riemann
sum of the function F (t) = f(r(t))‖r′(t)‖ over an interval t ∈ [a, b].
Its limit exists by the continuity of F and equals the integral of F
over [a, b]. �

The conclusion of the theorem still holds if f has a finite number of
bounded jump discontinuities and C is piecewise smooth. The latter
implies that the tangent vector may only have a finite number of dis-
continuities and so does ‖r′‖. Therefore, F (t) has only a finite number
of bounded jump discontinuities and hence is integrable.

107.2. Evaluation of a Line Integral.
Step 1. Find the parametric equation of a curve C, r(t) = (x(t),
y(t), z(t)).
Step 2. Restrict the range of the parameter t to an interval [a, b] so
that r(t) traces out C only once when t ∈ [a, b].
Step 3. Calculate the derivative r′(t) and its norm ‖r′(t)‖.
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Step 4. Substitute x = x(t), y = y(t), and z = z(t) into f(x, y, z) and
evaluate the integral (14.27).

Remark. A curve C may be traced out by different vector functions.
The value of the line integral is independent of the choice of paramet-
ric equations because its definition is given only in parameterization-
invariant terms (the arc length and values of the function on the curve).
The integrals (14.27) written for two different parameterizations of C
are related by a change of the integration variable (recall the concept
of reparameterization of a spatial curve).

Example 14.29. Evaluate the line integral of f(x, y) = x2y over a
circle of radius R centered at the point (0, a).

Solution: The equation of a circle of radius R centered at the origin
is x2 + y2 = R2. It has familiar parametric equations x = R cos t
and y = R sin t, where t is the angle between r(t) and the positive x
axis counted counterclockwise. The equation of the circle in question is
x2+(y−a)2 = R2. So, by analogy, one can put. x = R cos t and y−a =
R sin t (by shifting the origin to the point (0, a)). Parametric equation
of the circle can be taken in the form r(t) = (R cos t, a + R sin t).
The range of t must be restricted to the interval t ∈ [0, 2π] so that
r(t) traces the circle only once. Then r′(t) = (−R sin t, R cos t) and
‖r′(t)‖ =

√
R2 sin2 t + R2 cos2 t = R. Therefore,∫

C

x2y ds =
∫ 2π

0
(R cos t)2(a+R sin t)R dt = R2a

∫ 2π

0
cos2 t dt = πR2a,

where the integral of cos2 t sin t over [0, 2π] vanishes by the periodicity
of the cosine function. The last integral is evaluated with the help of
the double-angle formula cos2 t = (1 + cos(2t))/2. �

Example 14.30. Evaluate the line integral of f(x, y, z) =√
3x2 + 3y2 − z2 over the curve of intersection of the cylinder x2+y2 =

1 and the plane x + y + z = 1.

Solution: Since the curve lies on the cylinder, one can always put
x = cos t, y = sin t, and z = z(t), where z(t), is to be found from the
condition that the curve also lies in the plane: x(t) + y(t) + z(t) = 0
or z(t) = − cos t− sin t. The interval of t is [0, 2π] as the curve winds
about the cylinder. Therefore, r′(t) = (− sin t, cos t, sin t − cos t) and
‖r′(t)‖ =

√
2− 2 sin t cos t =

√
2− sin(2t). The values of the function

along the curve are f =
√

3− (cos t + sin t)2 =
√

2− sin(2t). Note
that the function is defined only in the region 3(x2 + y2) ≥ z2 (outside
the double cone). It happens that the curve C lies in the domain of f
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because its values along C are well defined as 2 > sin(2t) for any t.
Hence,∫

C

f ds =
∫ 2π

0

√
2− sin(2t)

√
2− sin(2t)dt =

∫ 2π

0
(2− sin(2t)) dt = 4π

�

108. Surface Integrals

108.1. Surface Area. Let S be a surface in space. Suppose that it
admits an algebraic description as a graph of a function of two variables,
z = f(x, y), where (x, y) ∈ D, or, at least, it can be viewed as a union
of a few graphs. For example, a sphere x2 + y2 + z2 = 1 is the union of
two graphs, z =

√
1− x2 − y2 and z = −√1− x2 − y2, where (x, y)

are in the disk D of unit radius, x2 + y2 ≤ 1. What is the area of the
surface?

The question can be answered by the standard trick of integral
calculus. Consider a rectangular partition of D. Let ∆Sij be the area
of the part of the graph that lies above the rectangle (x, y) ∈ [xi, xi +
∆x]× [yj, yj +∆y] = Rij. The total surface area is the sum of all ∆Sij.
If the graph is a smooth surface (i.e., the function f is differentiable on
D) then ∆Sij can be approximated by the area of the parallelogram
that lies above Rij in the tangent plane to the graph through the point
(x∗

i , y
∗
j , z

∗
ij), where z∗

ij = f(x∗
i , y

∗
j ) and (x∗

i , y
∗
j ) ∈ Rij is any sample

point. Recall that the differentiability of f means that the linearization
of f (or the tangent plane approximation) becomes more and more
accurate as (∆x, ∆y) → (0, 0). Therefore, in this limit, ∆x and ∆y
can be viewed as the differentials dx and dy, and the areas ∆Sij and
∆A = ∆x ∆y must be proportional:

∆Sij = Jij ∆A.

The coefficient Jji is found by comparing the area of the parallelogram
in the tangent plane above Rij with the area ∆A of Rij. Think of the
roof of a building of shape z = f(x, y) covered by shingles of area ∆Sij.
The equation of the tangent plane is

z = z∗
ij + f ′

x(x
∗
i , y

∗
j )(x− x∗

i ) + f ′
y(x

∗
i , y

∗
j )(y − y∗

j ) = L(x, y).

Let O′, A′, and B′ be, respectively, the vertices (xi, yj, 0), (xi+∆x, yj, 0),
and (xi, yj +∆y, 0) of the rectangle Rij; that is, the segments O′A′ and
O′B′ are the adjacent sides of Rij. If O, A, and B are the points in
the tangent plane above O′, A′, and B′, respectively, then the adjacent
sides of the parallelogram in question are a = �OA and b = �OB and
∆Sij = ‖a× b‖.
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By substituting O′ into the tangent plane equation, the coordinates
of the point O are found, (xi, yj, L(xi, yj)). By substituting A′ into
the tangent plane equation, the coordinates of the point A are found,
(xi +∆x, yj, L(xi +∆x, yj)). By the linearity of the function L, L(xi +
∆x, yj) − L(xi, yj) = f ′

x(x
∗
i , y

∗
j ) ∆x and a = (∆x, 0, f ′

x ∆x). Similarly,
b = (0, ∆y, f ′

y ∆y). Hence,

a× b = (−f ′
x, −f ′

y, 1) ∆x ∆y ,

∆Sij = ‖a× b‖ =
√

1 + (f ′
x)2 + (f ′

y)2 ∆A = J(x∗
i , y

∗
j ) ∆A,

where J(x, y) =
√

1 + (f ′
x)2 + (f ′

y)2. Thus, the surface area is given by

A(S) = lim
(∆x,∆y)→(0,0)

∑
ij

J(x∗
i , y

∗
j ) ∆A.

Since the derivatives of f are continuous, the function J(x, y) is con-
tinuous on D, and the Riemann sum converges to the double integral
of J over D.

Theorem 14.16. (Surface Area).
Suppose that f(x, y) has continuous first-order partial derivatives on
D. Then the surface area of the graph z = f(x, y) is given by

A(S) =
∫∫

D

√
1 + (f ′

x)2 + (f ′
y)2 dA.

If z = const, then f ′
x = f ′

y = 0 and A(S) = A(D) as required
because S is D moved parallel into the plane z = const.

Example 14.31. Prove that the surface area of a sphere of radius
R is 4πR2.

Solution: The hemisphere is the graph z = f(x, y) =
√

R2 − x2 − y2

on the disk x2 + y2 ≤ R2 of radius R. The area of the sphere is twice
the area of this graph. One has f ′

x = −x/f and f ′
y = −y/f . Therefore,

J = (1 + x2/f2 + y2/f2)1/2 = (f 2 − x2 − y2)1/2/f = R/f . Hence,

A(S) = 2R
∫∫

D

dA√
R2 − x2 − y2

= 2R
∫ 2π

0
dθ

∫ R

0

r dr√
R2 − r2

= 4πR

∫ R

0

r dr√
R2 − r2

= 2πR

∫ R2

0

du√
u

= 4πR2,

where the double integral has been converted to polar coordinates
and the substitution u = R2 − r2 has been used to evaluate the last
integral. �
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Example 14.32. Find the area of the part of the paraboloid z =
x2 + y2 in the first octant and below the plane z = 4.

Solution: The surface in question is the graph z = f(x, y) = x2 + y2.
Next, the region D must be specified (it determines the part of the
graph whose area is to be found). One can view D as the vertical
projection of the surface onto the xy plane. The plane z = 4 intersects
the paraboloid along the circle 4 = x2+y2 of radius 2. Since the surface
also lies in the first octant, D is the part of the disk x2 + y2 ≤ 4 in the
first quadrant. Then f ′

x = 2x, f ′
y = 2y, and J = (1 + 4x2 + 4y2)1/2.

The surface area is

A(S) =
∫∫

D

√
1 + 4x2 + 4y2 dA =

∫ π/2

0
dθ

∫ 2

0

√
1 + 4r2 r dr

=
π

2

∫ 2

0

√
1 + 4r2 r dr =

π

16

∫ 17

1

√
u du =

π

24
(173/2 − 1),

where the double integral has been converted to polar coordinates
and the substitution u = 1 + 4r2 has been used to evaluate the last
integral. �

108.2. Surface Integral of a Function. An intuitive idea of the concept
of the surface integral of a function can be understood from the follow-
ing example. Suppose one wants to find the total human population
on the globe. The data about the population is usually supplied as
the population density (i.e., the number of people per unit area). The
population density is not a constant function on the globe. It is high
in cities and low in deserts and jungles. Therefore, the surface of the
globe must be partitioned by surface elements of area ∆Sp. If σ(r) is
the population density as a function of position r on the globe, then
the population on each partition element is approximately σ(r∗

p) ∆Sp,
where r∗

p is a sample point in the partition element. The approxima-
tion neglects variations of σ within each partition element. The total
population is approximately the Riemann sum

∑
p σ(r∗

p) ∆Sp. To get
an exact value, the partition has to be refined so that the size of each
partition element becomes smaller. The limit is the surface integral
of σ over the surface of the globe, which is the total population. In
general, one can think of some quantity distributed over a surface with
some density (the amount of this quantity per unit area as a function
of position on the surface). The total amount is the surface integral of
the density over the surface.

Let f be a bounded function in E and let S be a surface in E that
has a finite surface area. Consider a partition of S by N pieces Sp,
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p = 1, 2, ..., N , which have surface area ∆Sp. Put mp = infSp f and
Mp = supSP

f ; that is, mp is the largest lower bound of values of f
for all r ∈ Sp and Mp is the smallest upper bound on the values of f
for all r ∈ Sp. The upper and lower sums are defined by U(f, N) =∑N

p=1 Mp ∆Sp and L(f, N) =
∑N

p=1 mp ∆Sp. Let Rp be the radius of
the smallest ball that contains Sp and maxp Rp = RN . A partition
of S is said to be refined if RN ′ < RN for N ′ > N . In other words,
under the refinement, the sizes Rp of each partition element become
uniformly smaller.

Definition 14.16. (Surface Integral of a Function).
The surface integral of a function f over a surface S is∫∫

S

f(r) dS = lim
N→∞

U(f, N) = lim
N→∞

L(f, N),

provided the limits of the upper and lower sums exist and coincide. The
limit is understood in the sense RN → 0 as N →∞.

The surface integral can also be represented by the limit of a Rie-
mann sum:

(14.28)
∫∫

S

f(r) dS = lim
N→∞

N∑
p=1

f(r∗
p) ∆Sp = lim

N→∞
R(f, N).

If the surface integral exists, it follows from the inequality mp ≤ f(r) ≤
Mp for all r ∈ Sp that L(f, N) ≤ R(f, N) ≤ U(f, N), and the limit
of the Riemann sum is independent of the choice of sample points r∗

p.
Riemann sums can be used in numerical approximations of the surface
integral.

Similar to line integrals, surface integrals are related to triple inte-
grals. Suppose that f is integrable on a region E that looks like a shell
of the shape S with a constant small thickness ∆h. Then, in the limit
∆h→ 0,

(14.29)
1

∆h

∫∫∫
E

f(r) dV →
∫∫

S

f(r) dS.

This follows immediately by considering a partition of E by volume
elements ∆Vp = ∆h ∆Sp in (14.13). Hence, the surface integral exists
for any f that is continuous or has bounded jump discontinuities along
a finite number of smooth curves on S, and it inherits all the properties
of multiple integrals.
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108.3. Evaluation of a Surface Integral.

Theorem 14.17. (Evaluation of a Surface Integral).
Suppose that f is continuous in a region that contains a surface S
defined by the graph z = g(x, y) on D. Suppose that g has continuous
first-order partial derivatives on D. Then
(14.30)∫∫

S

f(x, y, z) dS =
∫∫

D

f(x, y, g(x, y))
√

1 + (g′
x)2 + (g′

y)2 dA.

Consider a partition of D by elements Dp of area ∆Ap, p = 1, 2, ...,

N . Let J(x, y) =
√

1 + (g′
x)2 + (g′

y)2. By the continuity of g′
x and g′

y,
J is continuous on D. By the integral mean value theorem, the area of
the part of the graph z = g(x, y) over Dp is given by

∆Sp =
∫∫

Dp

J(x, y) dA = J(x∗
p, y

∗
p) ∆Ap

for some (x∗
p, y

∗
p) ∈ Dp. In the Riemann sum for the surface integral

(14.28), take the sample points to be r∗
p = (x∗

p, y
∗
p, g(x∗

p, y
∗
p)) ∈ Sp.

The Riemann sum becomes the Riemann sum (14.3) of the function
F (x, y) = f(x, y, g(x, y))J(x, y) on D. By the continuity of F , it con-
verges to the double integral of F over D. The argument given here is
based on a tacit assumption that the surface integral exists according
to Definition 14.16, and hence the limit of the Riemann sum exists and
is independent of the choice of sample points. It can be proved that
under the hypothesis of the theorem the surface integral exists.

The evaluation of the surface integral involves the following steps:

Step 1. Represent S as a graph z = g(x, y) (i.e., find the function g
using a geometrical description of S).
Step 2. Find the region D that defines the part of the graph that
coincides with S (if S is not the entire graph).
Step 3. Calculate the derivatives g′

x and g′
y and the area transforma-

tion function J , dS = J dA.
Step 4. Evaluate the double integral (14.30).

Example 14.33. Evaluate the integral of f(x, y, z) = z over the
part of the saddle surface z = xy that lies inside the cylinder x2+y2 = 1
in the first octant.

Solution: The surface is a part of the graph z = g(x, y) = xy. Since
it lies within the cylinder, its projection onto the xy plane is bounded
by the circle of unit radius, x2 + y2 = 1. Thus, D is the quarter of the
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disk x2 + y2 ≤ 1 in the first quadrant. One has g′
x = y, g′

y = x, and
J(x, y) = (1 + x2 + y2)1/2. The surface integral is∫∫

S

z dS =
∫∫

D

xy
√

1 + x2 + y2 dA

=
∫ π/2

0
cos θ sin θ dθ

∫ 1

0
r2
√

1 + r2 r dr

=
sin2 θ

2

∣∣∣π/2

0

1
2

∫ 2

1
(u− 1)

√
u du

=
1
2

(u5/2

5
− u3/2

3

)∣∣∣2
1
=

2(4
√

2 + 1)
15

,

where the double integral has been converted to polar coordinates and
the last integral is evaluated by the substitution u = 1 + r2. �

108.4. Parametric Equations of a Surface. The graph z = g(x, y), where
(x, y) ∈ D defines a surface S in space. Consider the vectors r(u, v) =
(u, v, g(u, v)) where the pair of parameters (u, v) spans the region D.
The vector function r(u, v) of two variables defines a one-to-one map-
ping of the region D into space so that the image of D is the surface S.
Consider now a region D spanned by the ordered pairs (u, v). Three
functions x(u, v), y(u, v), and z(u, v) on D define a mapping of D into
space r(u, v) = (x(u, v), y(u, v), z(u, v)). The range of this mapping is
called a surface in space, and the equations x = x(u, v), y = y(u, v),
and z = z(u, v) are called parametric equations of this surface.

For example, the equations

(14.31) x = R cos v sin u , y = R sin v sin u , z = R cos u

are parametric equations of a sphere of radius R. Indeed, by comparing
these equations with the spherical coordinates, one finds that (ρ, φ, θ) =
(R, u, v); that is, when (u, v) range over the rectangle [0, π] × [0, 2π],
the vector (x, y, z) = r(u, v) traces out the sphere ρ = R. An apparent
advantage of using parametric equations of a surface is that the surface
no longer needs be represented as a graph. Here a sphere is described
by one vector-valued function of two variables.

Definition 14.17. Let r(u, v) be a vector function on an open re-
gion D that has continuous partial derivatives r′

u and r′
v on D. The

range S of the vector function is called a smooth surface if S is covered
just once as (u, v) ranges throughout D and the vector r′

u × r′
v is not

zero.
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An analogy can be made with parametric equations of a curve in
space. A curve in space is a mapping of an interval [a, b] into space
defined by a vector function of one variable r(t). If r′(t) is continuous
and r′(t) �= 0, then the curve has a continuous tangent vector and
the curve is smooth. Similarly, the condition r′

u × r′
v �= 0 ensures

that the surface has a continuous normal vector just like a graph of
a continuously differentiable function of two variables. This will be
explained shortly after the discussion of a few examples.

Example 14.34. Find the parametric equations of the double cone
z2 = x2 + y2.

Solution: Suppose z �= 0. Then (x/z)2 + (y/z)2 = 1. The solution
of this equation is x/z = cos u and y/z = sin u, where u ∈ [0, 2π).
Therefore, the parametric equations are

x = v cos u , y = v sin u , z = v,

where (u, v) ∈ [0, 2π)× (−∞,∞) for the whole double cone. Of course,
there are many different parameterizations of the same surface. They
are related by a change of variables (u, v) ∈ D ↔ (s, t) ∈ D′, where
s = s(u, v) and t = t(u, v). �

Example 14.35. A torus is a surface obtained by rotating a circle
about an axis outside the circle and parallel to its diameter. Find the
parametric equations of a torus.

Solution: Let the rotation axis be the z axis. Let R be the distance
from the z axis to the center of the rotated circle and let a be the radius
of the latter, a ≤ R. In the xz plane, the rotated circle is z2+(x−a)2 =
R2. Let (x0, 0, z0) be a solution to this equation. The point (x0, 0, z0)
traces out the circle of radius x0 upon the rotation about the z axis. All
such points are (x0 cos v, x0 sin v, z0), where v ∈ [0, 2π). All that is left
is to parameterize all solutions (x0, 0, z0), which is simply z0 = R sin u
and x0 − a = R cos u. Thus, the parametric equations of a torus are
(14.32)

x = (R + a cos u) cos v , y = (R + a cos u) sin v , z = R sin u ,

where (u, v) ∈ [0, 2π)× [0, 2π) �
The parametric equations of a surface are convenient for evaluating

the surface integrals. If the region D spanned by the parameters (u, v)
is partitioned by rectangles of area ∆A = ∆u ∆v, then the mapping
r(u, v) defines a partition of the surface. So the surface integral can
be converted into a double integral over D if one establishes the area
transformation law ∆S = J ∆A. Consider a rectangle (u, v) ∈ [u0, u0+
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∆u] × [v0, v0 + ∆v] = R0. Let its vertices O′, A′, and B′ have the
coordinates (u0, v0), (u0 +∆u, v0), and (u0, v0 +∆v), respectively. The
segments O′A′ and O′B′ are the adjacent sides of the rectangle R0. Let
O, A, and B be the images of these points in the surface. Their position
vectors are r0 = r(u0, v0), ra = r(u0 +∆u, v0), and ra = r(u0, v0 +∆v),
respectively. The area ∆S of the image of the rectangle R0 can be
approximated by the area of the parallelogram with adjacent sides:

a = �OA = ra − r0 = r(u0 + ∆u, v0)− r(u0, v0) = r′
u(u0, v0) ∆u,

b = �OB = rb − r0 = r(u0, v0 + ∆v)− r(u0, v0) = r′
v(u0, v0) ∆v,

which hold in the limit (∆u, ∆v) → (0, 0) (when du = ∆u and dv =
∆v) under the assumption that the components of r(u, v) are contin-
uously differentiable. Note that if the surface is a graph z = g(x, y),
then r(u, v) = (u, v, g(u, v)), and the vectors a and b are given by the
familiar expressions a = (1, 0, g′

u) ∆u and b = (0, 1, g′
v) ∆v. The vec-

tor r(u, v0) (one argument is fixed, v = v0) traces out a curve in the
surface. The derivative r′

u(u, v0) is tangent to the curve and hence to
the surface. A similar argument applies to r′

v. Thus, the derivatives r′
u

and r′
v are tangent to the surface and, hence, their cross product must

be normal to it.

Corollary 14.5. (Normal to a Parametric Surface).
Let a smooth surface be described by the parametric equations r =
r(u, v). Then the vector n = r′

u × r′
v is normal to the surface.

The area transformation law is now easy to find: ∆S = ‖a× b‖ =
‖r′

u×r′
v‖∆A. The surface integral can be written as the double integral∫∫

S

f(r) dS =
∫∫

D

f(r(u, v))‖r′
u × r′

v‖ dA

and, in particular,

A(S) =
∫∫

D

‖r′
u × r′

v‖ dA.

Example 14.36. Find the surface area of the torus (14.32).

Solution: To simplify the notation, put w = R + a cos u. One has

r′
u = (−a sin u cos v, −a sin u sin v, R cos u),

r′
v = (−(R + a cos u) sin v, (R + a cos u) cos v, 0)

= w(− sin v, cos v, 0),
n = r′

u × r′
v = w(−a cos v cos u, −a cos v cos u, −a sin u),

J = ‖r′
u × r′

v‖ = aw = a(R + a cos u).
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The surface area is

A(S) =
∫∫

D

J(u, v) dA =
∫ 2π

0

∫ 2π

0
a(R + a cos u) dv du = 4π2Ra

�

Example 14.37. Evaluate the surface integral of f(x, y, z) =
z2(x2 +y2) over a sphere of radius R centered at the origin.

Solution: Using the parametric equations (14.31), one finds

r′
u = (R cos v cos u, R sin v cos u, −R sin u),

r′
v = (−R sin v sin u, R cos v sin u, 0)

= R sin u(− sin v, cos v, 0),
n = r′

u × r′
v = R sin u(R sin u cos v, R sin u sin v, R cos u)

= R sin u r(u, v),
J = ‖r′

u × r′
v‖ = R2 sin u,

f(r(u, v)) = (R cos u)2R2 sin2 u = R4 cos2 u(1− cos2 u).

Note that sin u ≥ 0 because u ∈ [0, π] (u = φ and v = θ). Therefore,
the normal vector n is outward (parallel to the position vector; the
inward normal would be opposite to the position vector.) The surface
integral is ∫∫

S

f dS=
∫∫

D

f(r(u, v))J(u, v) dA

= R6
∫ 2π

0
dv

∫ π

0
cos2 u(1− cos2 u) sin u du

= 2πR6
∫ 1

−1
w2(1− w2) dw =

8π
15

R6,

where the substitution w = cos u has been made to evaluate the last
integral. �

109. Moments of Inertia and Center of Mass

An important application of multiple integrals is finding the center
of mass and moments of inertia of an extended object. The laws of
mechanics say that the center of mass of an extended object on which
no external force acts moves along a straight line with a constant speed.
In other words, the center of mass is a particular point of an extended
object that defines the trajectory of the object as a whole. The motion
of an extended object can be viewed as a combination of the motion of
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its center of mass and rotation about its center of mass. The kinetic
energy of the object is

K =
Mv2

2
+ Krot,

where M is the total mass of the object, v is the speed of its center of
mass, and Krot is the kinetic energy of rotation of the object about its
center of mass; the latter quantity is determined by moments of inertia.
For example, when docking a spacecraft to a space station, one needs
to know exactly how long the engine should be fired to achieve the
required position of its center of mass and the orientation of the craft
relative to it, that is, how exactly its kinetic energy has to be changed
by firing the engines. So its center of mass and moments of inertia
must be known to accomplish the task.

109.1. Center of Mass. Consider a point mass m fixed at an endpoint
of a rod that can rotate about its other end. If the rod has length L
and the gravitational force is normal to the rod, then the quantity gmL
is called the rotational moment of the gravitational force mg, where g
is the free acceleration. If the rotation is clockwise (the mass is at
the right endpoint), the moment is assumed to be positive, and it is
negative, −gmL, for a counterclockwise rotation (the mass is at the left
endpoint). More generally, if the mass has a position x on the x axis,
then its rotation moment about a point xc is M = (x−xc)m (omitting
the constant g). It is negative if x < xc and positive when x > xc.
The center of mass is understood through the concept of rotational
moments.

The simplest extended object consists of two point masses m1 and
m2 connected by a massless rod. Suppose that one point of the rod
is fixed so that it can only rotate about that point. The center of
mass is the point on the rod such that the object would not rotate
about it under a uniform gravitational force applied along the direction
perpendicular to the rod. Evidently, the position of the center of mass
is determined by the condition that the total rotational moment about
it vanishes. Suppose that the rod lies on the x axis so that the masses
have the coordinates x1 and x2. The total rotational moment of the
object about the point xc is M = M1+M2 = (x1−xc)m1+(x2−xc)m2.
If xc is such that M = 0, then

m1(x1 − xc) + m2(x2 − xc) = 0 =⇒ xc =
m1x1 + m2x2

m1 + m2
.
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The center of mass (xc, yc) of point masses mi, i = 1, 2, ..., N , positioned
on a plane at (xi, yi) can be understood as follows. Think of the plane
as a plate on which the masses are positioned. The gravitational force
is normal to the plane. If a rod is put underneath the plane, then
due an even distribution of masses the plane can rotate about the
rod. When the rod is aligned along either the line x = xc or the line
y = yc, the plane with distributed masses on it does not rotate under
the gravitational pull. In other words, the rotational moments about
the lines x = xc and y = yc vanish. The rotational moment about the
line x = xc or y = yc is determined by the distances of the masses from
this line:

N∑
i=1

(xi − xc)mi = 0 =⇒ xc =
1
m

N∑
i=1

mixi =
My

m
, m =

N∑
i=1

mi,

N∑
i=1

(yi − yc)mi = 0 =⇒ yc =
1
m

N∑
i=1

miyi =
Mx

m
, m =

N∑
i=1

mi,

where m is the total mass. The quantity My is the moment about the
y axis (the line x = 0), whereas Mx is the moment about the x axis
(the line y = 0).

The center of mass of a general extended object is defined similarly
by demanding that the total moments about either of the planes x = xc,
or y = yc, or z = zc vanish. Thus, if rc is the position vector of the
center of mass, it satisfies the condition:∑

i

mi(ri − rc) = 0,

where the vectors ri − rc are position vectors of masses relative to the
center of mass.

Definition 14.18. (Center of Mass).
Suppose that an extended object consists of N point masses mi, i =
1, 2, ..., N , whose position vectors are ri. Then its center of mass is a
point with the position vector

(14.33) rc =
1
m

N∑
i=1

miri , m =
N∑

i=1

mi,

where m is the total mass of the object.

If an extended object contains continuously distributed masses,
then the object can be partitioned into N small pieces. Let Bi be
the smallest ball of radius Ri within which the ith partition piece lies.
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Although all the partition pieces are small, they still have finite sizes
Ri, and the definition (14.33) cannot be used because the point ri could
be any point in Bi. By making the usual trick of integral calculus, this
uncertainty can be eliminated by taking the limit N →∞ in the sense
that all the partition sizes tend to 0 uniformly, Ri ≤ maxi Ri = RN → 0
as N → ∞. In this limit, the position of each partition piece can be
described by any sample point r∗

i ∈ Bi. The limit of the Riemann sum
is given by the integral over the region E in space occupied by the ob-
ject. If σ(r) is the mass density of the object, then ∆mi = σ(r∗

i ) ∆Vi,
where ∆Vi is the volume of the ith partition element and

rc =
1
m

lim
N→∞

N∑
i=1

r∗
i ∆mi =

1
m

∫∫∫
E

rσ(r) dV , m =
∫∫∫

E

σ(r) dV.

In practical applications, one often encounters extended objects whose
one or two dimensions are small relative to the other (e.g., shell-like
objects or wirelike objects). In this case, the triple integral is simplified
to either a surface (or double) integral for shell-like E, according to
(14.29), or to a line integral, according to (14.26). For two- and one-
dimensional extended objects, the center of mass can be written as,
respectively,

rc =
1
m

∫∫
S

rσ(r) dS , m =
∫∫

S

σ(r) dS,

rc =
1
m

∫
C

rσ(r) ds , m =
∫

C

σ(r) ds,

where, accordingly, σ is the surface mass density or the line mass den-
sity for two- or one-dimensional objects. In particular, when S is a
planar, flat surface, the surface integral turns into a double integral.

The concept of rotational moments is also useful for finding the
center of mass using the symmetries of the mass distribution of an
extended object. For example, the center of mass of a disk with a
uniform mass distribution apparently coincides with the disk center
(the disk would not rotate about its diameter under the gravitational
pull).

Example 14.38. Find the center of mass of the half-disk x2 + y2 ≤
R2, y ≥ 0, if the mass density at any point is proportional to the
distance of that point from the x axis.

Solution: The mass is distributed evenly to the left and right from
the y axis because the mass density is independent of x, σ(x, y) = ky
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(k is a constant). So, the rotational moment about the y axis vanishes;
My = 0 by symmetry and hence xc = My/m = 0. The total mass is

m =
∫∫

D

σ dA = k

∫∫
D

y dA = k

∫ π

0

∫ R

0
r sin θ r dr dθ

= 2k
∫ R

0
r2 dr =

2kR3

3
,

where the integral has been converted to polar coordinates. The mo-
ment about the x axis (about the line y = 0) is

Mx =
∫∫

D

yσ dA =
∫ π

0

∫ R

0
k(r sin θ)2r dr dθ =

πk

2

∫ R

0
r3 dr =

πkR4

8
.

So yc = Mx/m = 3πR/16. �

Example 14.39. Find the center of mass of the solid that lies be-
tween spheres of radii a < b centered at the origin and is bounded by
the cone z =

√
x2 + y2/

√
3 if the mass density is constant.

Solution: The mass is evenly distributed about the xz and yz planes.
So the moments Mxz and Myz about them vanish, and hence yc =
Mxz/m = 0 and xc = Myz/m = 0. The center of mass lies on the
z axis. Put σ = k = const. The total mass is

m =
∫∫∫

E

σ dV = k

∫ 2π

0

∫ π/3

0

∫ b

a

ρ2 sin φ dρ dφ dθ =
πk

3
(b3 − a3),

where the triple integral has been converted to spherical coordinates.
The boundaries of E are the spheres ρ = a and ρ = b and the cone
defined by the condition cot φ = 1/

√
3 or φ = π/3. Therefore, the

image E ′ of E under the transformation to spherical coordinates is the
rectangle (ρ, φ, θ) ∈ E ′ = [a, b] × [0, π/3] × [0, 2π]. The full range is
taken for the polar angle θ as the equations of the boundaries impose
no condition on it. The moment about the xy plane is

Mxy =
∫∫∫

E

zσ dV = k

∫ 2π

0

∫ π/3

0

∫ b

a

ρ cos φ ρ2 sin φ dρ dφ dθ

=
3πk

16
(b4 − a4).

So zc = Mxy/m = (9/16)(a + b)(a2 + b2)/(a2 + ab + b2). �

109.2. Moments of Inertia. Consider a point mass m rotating about an
axis γ at a constant rate of ω rad/s (called the angular velocity). If
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the radius of the circular trajectory is R, then the linear velocity of the
object is v = ωR. The object has the kinetic energy

Krot =
mv2

2
=

mR2ω2

2
=

Iγω
2

2
.

The constant Iγ is called the moment of inertia of the point mass m
about the axis γ. Similarly, consider an extended object consisting of
N point masses. The relative positions of the masses do not change
when the object moves. So, if the object rotates about an axis γ at
a constant rate ω, then each point mass rotates at the same rate and
hence has kinetic energy miR

2
i ω

2/2, where Ri is the distance from the
mass mi to the axis γ. The total kinetic energy is Krot = Iγω

2/2, where
the constant

Iγ =
N∑

i=1

miR
2
i

is called the moment of inertia of the object about the axis γ. It is
independent of the motion itself and determined solely by the mass
distribution and distances of the masses from the rotation axis.

Suppose that the mass is continuously distributed in a region E with
the mass density σ(r). Let Rγ(r) be the distance from a point r ∈ E
to an axis (line) γ. Consider a partition of E by small elements Ei of
volume ∆Vi. The mass of each partition element is ∆mi = σ(r∗

i ) ∆V
for some sample point r∗

i ∈ Ei in the limit when all the sizes of partition
elements tend to 0 uniformly. The moment of inertia about the axis γ is

Iγ = lim
N→∞

N∑
i=1

R2
γ(ri)σ(r∗

i ) ∆Vi =
∫∫∫

E

R2
γ(r)σ(r) dV

in accordance with the Riemann sum for triple integrals (14.13). In
particular, the distance of a point (x, y, z) from the x-, y-, and z axes
is, respectively, Rx =

√
y2 + z2, Ry =

√
x2 + z2, and Rz =

√
x2 + y2.

So the moments of inertia about the coordinate axes are

Ix =
∫∫∫

E

(y2 + z2)σ dV , Iy =
∫∫∫

E

(x2 + z2)σ dV ,

Iz =
∫∫∫

E

(x2 + y2)σ dV.

In general, if the axis γ goes through the origin parallel to a unit vector
û, then by the distance formula between a point r and the line,
(14.34)
R2

γ(r) = ‖û× r‖2 = (û× r) · (û× r) = û · (r× (û× r)) = r2 − (û · r)2,
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where the bac − cab rule (see Study Problem 11.16) has been used to
transform the double cross product.

If one or two dimensions of the object are small relative to the
other, the triple integral is reduced to either a surface integral or a
line integral, respectively, in accordance with (14.29) or (14.26); that
is, for two- or one-dimensional objects, the moment of inertia becomes,
respectively,

Iγ =
∫∫

S

R2
γ(r)σ(r) dS , Iγ =

∫
C

R2
γ(r)σ(r) ds,

where σ is either the surface or linear mass density.

Example 14.40. A rocket tip is made of thin plates with a constant
surface mass density σ = k. It has a circular conic shape with base
diameter 2a and distance h from the tip to the base. Find the moment
of inertia of the tip about its axis of symmetry.

Solution: Set up the coordinate system so that the tip is at the
origin and the base lies in the plane z = h; that is the symmetry
axis coincides with the z axis. If φ is the angle between the z axis
and the surface of the cone, then cot φ = h/a and the equation of the
cone is z = cot φ

√
x2 + y2. Thus, the object in question is the surface

(graph) z = g(x, y) = (h/a)
√

x2 + y2 over the region D: x2 + y2 ≤ a2.
To evaluate the needed surface integral, the area transformation law
dS = J dA should be established. One has g′

x = (hx/a)(x2 + y2)−1/2

and g′
x = (hy/a)(x2 + y2)−1/2 so that

J =
√

1 + (g′
x)2 + (g′

y)2 =
√

1 + (h/a)2 =
√

h2 + a2

a
.

The moment of inertia about the z axis is

Iz =
∫∫

S

(x2 + y2)σ dS = k

∫∫
D

(x2 + y2)J dA

= kJ

∫ 2π

0
dθ

∫ a

0
r3 dr =

πk

2
a3
√

h2 + a2

�

Example 14.41. Find the moment of inertia of a homogeneous ball
of radius a and mass m about its diameter.

Solution: Set up the coordinate system so that the origin is at the
center of the ball. Then the moment of inertia about the z axis has
to be evaluated. Since the ball is homogeneous, its mass density is
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constant, σ = m/V , where V = 4πa3/3 is the volume of the ball. One
has

Iz =
∫∫∫

E

(x2 + y2)σ dV =
3m
4πa3

∫ 2π

0

∫ π

0

∫ a

0
(ρ sin φ)2ρ2 sin φ dρ dφ dθ

=
3
10

ma2
∫ π

0
sin3 φ dφ =

3
10

ma2
∫ 1

−1
(1− u2) du =

2
5
ma2,

where the substitution u = cos φ has been made to evaluate the inte-
gral. It is noteworthy that the problem admits a smarter solution by
noting that Iz = Ix = Iy owing to the rotational symmetry of the mass
distribution. By the identity Iz = (Ix + Iy + Iz)/3, the triple integral
can be simplified:

Iz =
1
3
σ

∫∫∫
E

2(x2 + y2 + z2) dV =
1
3
σ8π

∫ a

0
ρ4 dρ =

2
5
ma2

�

109.3. Study Problems.

Problem 14.6. Find the center of mass of the shell described in Ex-
ample 14.40.

Solution: By the symmetry of the mass distribution about the axis
of the conic shell, the center of mass must be on that axis. Using the
algebraic description of a shell given in Example 14.41, the total mass
of the shell is

m =
∫∫

S

σ dS = k

∫∫
S

dS = kJ

∫∫
D

dA = kJA(D) = πka
√

h2 + a2.

The moment about the xy plane is

Mxy =
∫∫

S

zσ dS = k

∫∫
D

(h/a)
√

x2 + y2J dA =
kJh

a

∫∫
D

√
x2 + y2dA

=
kJh

a

∫ 2π

0

∫ a

0
r2 dr dθ =

2πkha

3

√
h2 + a2.

Thus, the center of mass is at the distance zc = Mxy/m = 2h/3 from
the tip of the cone. �

Problem 14.7. (Parallel Axis Theorem).
Let Iγ be the moment of inertia of an extended object about an axis γ
and let γc be a parallel axis through the center of mass of the object.
Prove that

Iγ = Iγc + mR2
c ,
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where Rc is the distance between the axis γ and the center of mass, and
m is the total mass.

Solution: Choose the coordinate system so that the axis γ goes
through the origin. Let it be parallel to a unit vector û. The dif-
ference Iγ − Iγc is to be investigated. If rc is the position vector of the
center of mass, then the axis γc is obtained from γ by parallel trans-
port of the latter along the vector rc. Therefore, the distance R2

γc
(r) is

obtained from R2
γ(r) (see (14.34)) by changing the position vector r in

the latter to the position vector relative to the center of mass, r − rc.
In particular, R2

γ(rc) = R2
c by the definition of Rγ. Hence,

R2
γ(r)−R2

γc
(r) = R2

γ(r)−R2
γ(r− rc)

= 2rc · r− r2
c − (û · rc)(2û · r− û · rc)

= r2
c − (û · rc)2 + 2rc · (r− rc)− 2(û · rc)û · (r− rc)

= R2
c − 2a · (r− rc),

where a = rc − (û · rc)û. Therefore,

Iγ − Iγc =
∫∫∫

E

(
R2

γ(r)−R2
γc

(r)
)
σ(r) dV

= R2
c

∫∫∫
E

σ(r) dV − 2a ·
∫∫∫

E

(r− rc)σ(r) dV = R2
cm,

where the second integral vanishes by the definition of the center of
mass. �

Problem 14.8. Find the moment of inertia of a homogeneous ball of
radius a and mass m about an axis that is at a distance R from the ball
center.

Solution: The center of mass of the ball coincides with its center
because the mass distribution is invariant under rotations about the
center. The moment of inertia of the ball about its diameter is Iγc =
(2/5)ma2 by Example 14.41. By the parallel axis theorem, for any
axis γ at a distance R from the center of mass, Iγ = Iγc + mR2 =
m(R2 + 2a2/5). �





CHAPTER 15

Vector Calculus

110. Line Integrals of a Vector Field

110.1. Vector Fields. Consider an air flow in the atmosphere. The air
velocity varies from point to point. In order to describe the motion of
the air, the air velocity must be defined as a function of position, which
means that a velocity vector has to be assigned to every point in space.
In other words, in contrast to ordinary functions, the air velocity is a
vector-valued function of the position vector in space.

Definition 15.1. (Vector Field).
Let E be a subset in space. A vector field on E is a function F that
assigns to each point r = (x, y, z) a vector F(r) = (F1(r), F2(r), F3(r)).
The functions F1, F2, and F3 are called the components of the vector
field F.

A vector field is continuous if its components are continuous. A
vector field is differentiable if its components are differentiable.

A simple example of a vector field is the gradient of a function,
F(r) = ∇f(r). The components of this vector field are the first-order
partial derivatives:

F(r) = ∇f(r) ⇐⇒ F1(r) = f ′
x(r), F2(r) = f ′

y(r), F3(r) = f ′
z(r).

Many physical quantities are described by vector fields. Electric and
magnetic fields are vector fields. Light waves, radio waves, TV waves,
and waves used in cell phone communications are all electromagnetic
waves that are alternating electromagnetic fields. The propagation of
electromagnetic waves in space is described by differential equations
that relate electromagnetic fields at each point in space and each mo-
ment of time to a distribution of electric charges and currents (e.g.,
antennas). The gravitational force looks constant near the surface of
the Earth, but on the scale of the solar system this is not so. The
gravitational force exerted by a planet of mass M on a spacecraft of
mass m depends on the position of the spacecraft relative to the planet
center according to Newton’s law of gravity:

F(r) = −GMm

r3 r =
(
−GMm

x

r3 , −GMm
y

r3 , −GMm
z

r3

)
,

283
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where G is Newton’s gravitational constant, r is the position vector
relative to the planet center, and r = ‖r‖ is its length (the distance
between the planet center and the spacecraft). The force is propor-
tional to the position vector and hence parallel to it for each point in
space. The minus sign indicates that F is directed opposite to r, that
is, the force is attractive; the gravitational force pulls toward its source
(the planet). The magnitude ‖F‖ = GMmr−2 decreases with increas-
ing distance r. So the gravitational vector field can be visualized by
plotting vectors of length ‖F‖ at each point in space pointing toward
the origin. The magnitudes of these vectors become smaller for points
farther away from the origin. This observation leads to the concept of
flow lines of a vector field.

110.2. Flow Lines of a Vector Field.

Definition 15.2. (Flow Lines of a Vector Field).
The flow line of a vector field F is a curve in space such that, at any
point r, the vector field F(r) is tangent to it.

The direction of F defines the orientation of flow lines; that is,
the direction of a tangent vector F is shown by arrows on the flow
lines. For example, the flow lines of the planet’s gravitational field are
straight lines oriented toward the center of the planet. Flow lines of
a gradient vector field F = ∇f are normal to level surfaces of f and
oriented in the direction in which f increases (most rapidly). They are
the curves of steepest ascent of the function f . Flow lines of the air
velocity vector field are often shown in weather forecasts to indicate
the wind direction over large areas. For example, flow lines of the air
velocity of a hurricane would look like closed loops around the eye of
the hurricane.

The qualitative behavior of flow lines may be understood by plotting
vectors F at several points ri and sketching curves through them so
that the vectors Fi = F(ri) are tangent to the curves. Finding the
exact shape of the flow lines requires solving differential equations. If
r = r(t) is a parametric equation of a flow line, then r′(t) is parallel
to F(r(t)). So the derivative r′(t) must be proportional to F(r(t)),
which defines a system of differential equations for the components of
the vector function r(t), for example, r′(t) = F(r(t)).

Example 15.1. Analyze flow lines of the planar vector field F =
(−y, x, 0).

Solution: By noting that F · r = 0, it is concluded that at any
point F is perpendicular to the position vector r = (x, y, 0) in the
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plane. So flow lines are curves whose tangent vector is perpendicular
to the position vector. If r = r(t) is a parametric equation of such a
curve, then r(t) · r′(t) = 0 or (d/dt)r2(t) = 0 and hence r2(t) = const,
which is a circle centered at the origin. So flow lines are concentric
circles. At the point (1, 0, 0), the vector field is directed along the y
axis: F(1, 0, 0) = (0, 1, 0) = ê2. Therefore, the flow lines are oriented
counterclockwise. The magnitude ‖F‖ =

√
x2 + y2 remains constant

on each circle and increases with increasing circle radius. �

110.3. Line Integral of a Vector Field. The work done by a constant
force F in moving an object along a straight line is given by

W = F · d,

where d is the displacement vector. Suppose that the force varies in
space and the displacement trajectory is no longer a straight line. What
is the work done by the force? This question leads to the concept of
the line integral of a vector field.

Let C be a smooth curve that goes from a point ra to a point
rb and has a length L. Consider a partition of C by segments Ci,
i = 1, 2, ..., N , of length ∆s = L/N . Since the curve is smooth, each
segment can be approximated by a straight line segment of length ∆s
oriented along the unit tangent vector T̂(r∗

i ) at a sample point r∗
i ∈

Ci. The work along the segment Ci can therefore be approximated by
∆Wi = F(r∗

i )·T̂(r∗
i ) ∆s so that the total work is approximately the sum

W = ∆W1+∆W2+ · · ·+∆WN . The actual work should not depend on
the choice of sample points. This problem is resolved by the usual trick
of integral calculus, that is, by refining a partition, finding the low and
upper sums, and taking their limits. If these limits exist and coincide,
the limiting value is the sought-for work. The technicalities involved
may be spared by noting that ∆Wi = f(r∗

i ) ∆s, where f(r) = F(r)·T̂(r)
and T̂(r) denotes the unit tangent vector at a point r ∈ C. The
approximate total work appears to be a Riemann sum for the line
integral of f along C. So the work is the line integral with respect to
the arc length of the tangential component F · T̂ of the force.

Definition 15.3. (Line Integral of a Vector Field).
The line integral of a vector field F along a smooth curve C is∫

C

F · dr =
∫

C

F · T̂ ds,

where T̂ is the unit tangent vector to C, provided the tangential com-
ponent F · T̂ of the vector field is integrable on C.
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The integrability of F · T̂ is defined in the sense of line integrals for
ordinary functions (see Definition 14.15)

110.4. Evaluation of Line Integrals of Vector Fields. The line integral of
a vector field is evaluated in much the same way as the line integral of
a function.

Theorem 15.1. (Evaluation of Line Integrals).
Let F = (F1, F2, F3) be a continuous vector field on E and let C be a
smooth curve C in E that originates from a point ra and terminates at
a point rb. Suppose that r(t) = (x(t), y(t), z(t)), t ∈ [a, b], is a vector
function that traces out the curve C so that r(a) = ra and r(b) = rb.
Then∫

C

F(r) · dr =
∫

C

F · T̂ ds =
∫ b

a

F(r(t)) · r′(t) dt

=
∫ b

a

(
F1(r(t))x′(t) + F2(r(t))y′(t) + F3(r(t))z′(t)

)
dt.(15.35)

Proof. The unit tangent vector reads T̂ = r′/‖r′‖ and ds = ‖r′‖ dt.
Therefore, T̂ ds = r′(t) dt. The function f(t) = F(r(t)) · r′(t) is contin-
uous on [a, b], and the conclusion of the theorem follows from Theorem
14.15. �

Equation (15.35) also holds if C is piecewise smooth and F has a
finite number of bounded jump discontinuities along C much like in
the case of the line integral of ordinary functions.

In contrast to the line integral of ordinary functions, the line integral
of a vector field depends on the orientation of C. The orientation of C
is fixed by the conditions r(a) = ra and r(b) = rb for a vector function
r(t), where a ≤ t ≤ b, provided the vector function traces out the curve
only once. If r(t) traces out C from rb to ra, then the orientation is
reversed, and such a curve is denoted by −C. The line integral changes
its sign when the orientation of the curve is reversed:

(15.36)
∫

−C

F · dr = −
∫

C

F · dr

because the direction of the derivative r′(t) is reversed for all t.
The evaluation of a line integral includes the following steps:

Step 1. If the curve C is defined as a point set in space by some
geometrical means, then find its parametric equations r = r(t) that
agree with the orientation of C. Here it is useful to remember that, if
r(t) corresponds to the opposite orientation, then it can still be used
according to (15.36).
Step 2. Restrict the range of t to an interval [a, b] so that C is traced
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out only once by r(t).
Step 3. Substitute r = r(t) into the arguments of F to obtain the
values of F on C and calculate the derivative r′(t) and the dot product
F(r(t)) · r′(t).
Step 4. Evaluate the (ordinary) integral (15.35).

Remark. If C is piecewise smooth (e.g., the union of smooth curves
C1 and C2), then the additivity of the integral should be used:∫

C

F · dr =
∫

C1

F · dr +
∫

C2

F · dr.

Remark. If a curve is defined as a vector function on [a, b] (see Sec-
tion 79.3), then r(t) may trace its range (as a point set in space) or
some parts of it several times as t changes from a to b. If two vector
functions r1(t) and r2(t) on [a, b] have the same range but r1(t) �= r2(t)
for some values of t ∈ [a, b], they are considered different curves. For
example, r1 = (cos t, sin t, 0) and r1(t) = (cos(2t), sin(2t), 0) have the
same range on [0, 2π], which is the circle of unit radius, but r2(t) traces
out the circle twice. Note that these curves have different lengths,
L1 = 2π and L2 = 4π. So the line integral (15.35) may be different for
two curves defined as two vector functions, even though the ranges of
these functions coincide as point sets in space. The curve defined by a
vector is much like the trajectory of a particle that can pass through
the same points multiple times.

Example 15.2. Evaluate the line integral of F = (−y, x, z2) along a
closed contour C that consists of one turn of a helix of radius R, which
begins at the point ra = (R, 0, 0) and ends at the point rb = (R, 0, 2πh),
and a straight line segment from rb to ra.

Solution: Let C1 be one turn of the helix and let C2 be the straight
line segment. Two line integrals have to be evaluated. The para-
metric equations of the helix are r(t) = (R cos t, R sin t, ht) so that
r(0) = (R, 0, 0) and r(2π) = (R, 0, h) as required by the orienta-
tion of C1. The range of t has to be restricted to [0, 2π]. Then
r′(t) = (−R sin t, R cos t, h). Therefore,

F(r(t)) · r′(t) = (−R sin t, R cos t, h2t2) · (−R sin t, R cos t, h)
= R2 + h3t2,∫

C1

F · dr =
∫ 2π

0
F(r(t)) · r′(t) dt =

∫ 2π

0
(R2 + h3t2) dt

= 2πR2 +
(2πh)3

3
.
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The parametric equations of the line through two points ra and rb are
r(t) = ra + vt, where v = rb − ra is the vector parallel to the line,
or in the components r = (R, 0, 0) + t(0, 0, 2πh) = (R, 0, 2πht). Then
r(0) = ra and r(1) = rb so that the orientation is reversed if t ∈ [0, 1].
The found parametric equations describe the curve −C2. One has
r′(t) = (0, 0, 2πh) and hence

F(r(t)) · r′(t) = (0, R, (2πh)2t2) · (0, 0, 2πh) = (2πh)3t2,∫
C2

F · dr = −
∫

−C2

F · dr = −(2πh)3
∫ 1

0
t2 dt = −(2πh)3

3
.

The line integral along C is the sum of these integrals, which is equal
to 2πR2. �

111. Fundamental Theorem for Line Integrals

Recall the fundamental theorem of calculus, which asserts that, if
the derivative f ′(x) is continuous on an interval [a, b], then∫ b

a

f ′(x) dx = f(b)− f(a).

It appears that there is an analog of this theorem for line integrals.

111.1. Conservative Vector Fields.

Definition 15.4. (Conservative Vector Field and Its Potential).
A vector field F in a region E is said to be conservative if there is a
function f , called a potential of F, such that F = ∇f in E.

Conservative vector fields play a significant role in many practical
applications. It has been proved earlier (see Study Problem 13.9) that if
a particle moves along a trajectory r = r(t) under the force F = −∇U ,
then its energy E = mv2/2+U(r), where v = r′ is the velocity, is con-
served along the trajectory, dE/dt = 0. In particular, Newton’s gravi-
tational force is conservative, F = −∇U , where U(r) = −GMm‖r‖−1.
A static electric field (the Coulomb field) created by a distribution of
static electric charges is also conservative. Conservative vector fields
have a remarkable property.

Theorem 15.2. (Fundamental Theorem for Line Integrals).
Let C be a smooth curve in a region E with initial and terminal points
ra and rb, respectively. Let f be a function on E whose gradient ∇f is
continuous on C. Then

(15.37)
∫

C

∇f · dr = f(rb)− f(ra).
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Proof. Let r = r(t), t ∈ [a, b], be the parametric equations of C such
that r(a) = ra and r(b) = rb. Then, by (15.35) and the chain rule,∫

C

∇f ·dr =
∫ b

a

(f ′
xx

′+f ′
yy

′+f ′
zz

′) dt =
∫ b

a

d

dt
f(r(t)) dt = f(rb)−f(ra).

The latter equality holds by the fundamental theorem of calculus and
the continuity of the first-order derivatives of f and r′(t) for a smooth
curve. �

111.2. Path Independence of Line Integrals.

Definition 15.5. (Path Independence of Line Integrals).
A continuous vector field F has path-independent line integrals if∫

C1

F · dr =
∫

C2

F · dr

for any two simple, piecewise-smooth curves in the domain of F with
the same endpoints.

Recall that a curve is simple if it does not intersect itself (see Sec-
tion 79.3). An important consequence of the fundamental theorem for
line integrals is that the work done by a conservative force, F = ∇f ,
is path-independent. So a criterion for a vector field to be conservative
would be advantageous for evaluating line integrals because for a con-
servative vector field a curve may be deformed at convenience without
changing the value of the integral.

Theorem 15.3. (Path-Independent Property).
Let F be a continuous vector field on an open region E. Then F has
path-independent line integrals if and only if its line integral vanishes
along every piecewise-smooth, simple, closed curve C in E. In that
case, there exists a function f such that F = ∇f :

F = ∇f ⇐⇒
∮

C

F · dr = 0.

The symbol
∮

C
is often used to denote line integrals along a closed

path.
Proof. Pick a point r0 in E and consider any smooth curve C from
r0 to a point r = (x, y, z) ∈ E. The idea is to prove that the function

(15.38) f(r) =
∫

C

F · dr
is a potential of F, that is, to prove that ∇f = F under the condition
that the line integral of F vanishes for every closed curve in E. This
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“guess” for f is motivated by the fundamental theorem for line integrals
(15.37), where rb is replaced by a generic point r ∈ E. The potential
is defined up to an additive constant (∇(f + const) = ∇f) so the
choice of a fixed point r0 is irrelevant. First, note that the value of f
is independent of the choice of C. Consider two such curves C1 and
C2. Then the union of C1 and −C2 (the curve C2 whose orientation
is reversed) is a closed curve, and the line integral along it vanishes
by the hypothesis. On the other hand, this line integral is the sum
of line integrals along C1 and −C2. By the property (15.36), the line
integrals along C1 and C2 coincide. To calculate the derivative f ′

x(r) =
limh→0(f(r + hê1) − f(r))/h, where ê1 = (1, 0, 0), let us express the
difference f(r + hê1) − f(r) via a line integral. Note that E is open,
which means that a ball of sufficiently small radius centered at any
point in E is contained in E (i.e., r + hê1 ∈ E for a sufficiently small
h). Since the value of f is path-independent, for the point r + hê1,
the curve can be chosen so that it goes from r0 to r and then from r
to r + hê1 along the straight line segment. Denote the latter by ∆C.
Therefore,

f(r + hê1)− f(r) =
∫

∆C

F · dr
because the line integral of F from r0 to r is path-independent. A
vector function that traces out ∆C is r(t) = (t, y, z) if x ≤ t ≤ x + h.
Therefore, r′(t) = ê1 and F(r(t)) · r′(t) = F1(t, y, z). Thus,

f ′
x(r) = lim

h→0

1
h

∫ x+h

x

F1(t, y, z) dt = lim
h→0

1
h

(∫ x+h

a

−
∫ x

a

)
F1(t, y, z) dt

=
∂

∂x

∫ x

a

F1(t, y, z) dt = F1(x, y, z) = F1(r)

by the continuity of F1. The equalities f ′
y = F2 and f ′

z = F3 are
established similarly. The details are omitted. �

Although the path independence property does provide a neces-
sary and sufficient condition for a vector field to be conservative, it is
rather impractical to verify (one cannot evaluate line integrals along
every closed curve!). A more feasible and practical criterion is needed,
which is established next. It is worth noting that (15.38) gives a prac-
tical method of finding a potential if the vector field is found to be
conservative (see the study problems at the end of this section).

111.3. The Curl of a Vector Field. According to the rules of vector alge-
bra, the product of a vector a = (a1, a2, a3) and a number s is defined
by sa = (sa1, sa2, sa3). By analogy, the gradient ∇f can be viewed as
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the product of the vector ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and a scalar f :

∇f =
( ∂

∂x
,

∂

∂y
,

∂

∂z

)
f =

(∂f

∂x
,

∂f

∂y
,

∂f

∂z

)
.

The components of ∇ are not ordinary numbers, but rather they are
operators (i.e., symbols standing for a specified operation that has to
be carried out). For example, (∂/∂x)f means that the operator ∂/∂x
is applied to a function f and the result of its action on f is the partial
derivative of f with respect to x. The directional derivative Duf can
be viewed as the result of the action of the operator Du = û · ∇ =
u1(∂/∂x) + u2(∂/∂y) + u3(∂/∂z) on a function f . In what follows, the
formal vector ∇ is viewed as an operator whose action obeys the rules
of vector algebra.

Definition 15.6. (Curl of a Vector Field).
The curl of a differentiable vector field F is

curlF = ∇× F.

The curl of a vector field is also a vector field whose components
can be computed according to the definition of the cross product:

∇× F = det

⎛
⎝ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

⎞
⎠

=
(∂F3

∂y
− ∂F2

∂z

)
ê1 +

(∂F1

∂z
− ∂F3

∂x

)
ê2 +

(∂F2

∂x
− ∂F1

∂y

)
ê3.

When calculating the components of the curl, the product of a com-
ponent of ∇ and a component of F means that the component of ∇
operates on the component of F, producing the corresponding partial
derivative. Of course, it is assumed that partial derivatives of compo-
nents of F exist in order for the curl to exist.

Example 15.3. Find the curl of the vector field F = (yz, xyz, x2).

Solution:

∇× F = det

⎛
⎝ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

yz xyz x2

⎞
⎠

=
(
(x2)′

y − (xyz)′
z, −(x2)′

x + (yz)′
z, (xyz)′

x − (yz)′
y

)
= (−xy, y − 2x, yz − z).

�
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The geometrical significance of the curl of a vector field will be discussed
later. Here the curl is used to formulate sufficient conditions for a vector
field to be conservative.

111.4. On the Use of the Operator ∇. The rules of vector algebra are
useful to simplify algebraic operations involving the operator ∇. For
example,

curl∇f = ∇× (∇f) = (∇×∇)f = 0

because the cross product of a vector with itself vanishes. However,
this formal algebraic manipulation should be adopted with precaution
because it contains a tacit assumption that the action of the compo-
nents of ∇ × ∇ on f vanishes. The latter imposes conditions on the
class of functions for which such formal algebraic manipulations are
justified. Indeed, according to the definition,

∇×∇f = det

⎛
⎝ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

f ′
x f ′

y f ′
z

⎞
⎠ = (f ′′

zy − f ′′
yz, f ′′

zx − f ′′
xz, f ′′

xy − f ′′
yx).

This vector vanishes, provided the order of differentiation does not
matter (i.e., Clairaut’s theorem holds for f). Thus, the rules of vector
algebra can be used to simplify the action of an operator involving ∇
if the partial derivatives of a function on which this operator acts are
continuous up to the order determined by that action.

111.5. Test for a Vector Field to Be Conservative. A conservative, con-
tinuously differentiable vector field in an region E has been shown to
have the vanishing curl:

F = ∇f =⇒ curlF = 0.

Unfortunately, the converse is not true in general. In other words, the
vanishing of the curl of a vector field does not guarantee that the vector
field is conservative. The converse is true only if the region in which
the curl vanishes belongs to a special class. A region E is said to be
connected if any two points in it can be connected by a path that lies
in E. In other words, a connected region cannot be represented as the
union of two or more non-intersecting (disjoint) regions.

Definition 15.7. (Simply Connected Region).
A connected region E is simply connected if every simple closed curve
in E can be continuously shrunk to a point in E while remaining in E
throughout the deformation.
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Naturally, the entire Euclidean space is simply connected. A ball in
space is also simply connected. If E is the region outside a ball, then it
is also simply connected. However, if E is obtained by removing a line
(or a cylinder) from the entire space, then E is not simply connected.
Indeed, take a circle such that the line pierces through the disk bounded
by the circle. There is no way this circle can be continuously contracted
to a point of E without crossing the line. A solid torus is not simply
connected. (Explain why!) A simply connected region D in a plane
cannot have “holes” in it.

Theorem 15.4. (Test for a Vector Field to Be Conservative).
Suppose that a vector field F is continuously differentiable on a simply
connected open region E. Then F is conservative in E if and only if
its curl vanishes for all points of E:

curlF = 0 on simply connected E ⇐⇒ F = ∇f on E.

This theorem follows from Stokes’ theorem discussed later and has
two useful consequences. First, the test for the path independence of
line integrals:

curlF = 0 on simply connected E ⇐⇒
∫

C1

F · dr =
∫

C2

F · dr

for any two paths C1 and C2 in E originating from a point ra ∈ E and
terminating at another point rb ∈ E. Second, the test for vanishing
line integrals along closed paths:

curlF = 0 on simply connected E ⇐⇒
∮

C

F · dr = 0,

where C is a closed curve in E. The condition that E is simply con-
nected is crucial here. Even if curlF = 0, but E is not simply con-
nected, the line integral of F may still depend on the path and the line
integral along a closed path may not vanish! An example is given in
one of the study problems at the end of this section.

Newton’s gravitational force can be written as the gradient F =
−∇U , where U(r) = −GMm‖r‖−1 everywhere except the origin. There-
fore, its curl vanishes in E that is the entire space with one point
removed; it is simply connected. Hence, the work done by the grav-
itational force is independent of the path traveled by the object and
determined by the difference of values of its potential U at the initial
and terminal points of the path.

Example 15.4. Evaluate the line integral of the vector field F =
(F1, F2, F3) = (yz, xz+z+2y, xy+y+2z) along the path C that consists
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of straight line segments AB1, B1B2, and B2D, where the initial point
is A = (0, 0, 0), B1 = (2010, 2011, 2012), B2 = (102, 1102, 2102), and
the terminal point is D = (1, 1, 1).

Solution: The path looks complicated enough to check whether F
is conservative before evaluating the line integral using the parametric
equations of C. First, note that the components of F are polynomials
and hence continuously differentiable in the entire space. Therefore, if
its curl vanishes, then F is conservative in the entire space as the entire
space is simply connected:

∇× F = det

⎛
⎝ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

⎞
⎠= det

⎛
⎝ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

yz xz + z + 2y xy + y + 2z

⎞
⎠

=
(
(F3)′

y − (F2)′
z, −(F3)′

x + (F1)′
z, (F2)′

x − (F1)′
y

)
= (x + 1− (x + 1), −y + y, z − z) = (0, 0, 0).

Thus, F is conservative. Now there are two options to finish the prob-
lem.
Option 1. One can use the path independence of the line integral,
which means that one can pick any other path C1 connecting the ini-
tial point A and the terminal point D to evaluate the line integral in
question. For example, a straight line segment connecting A and D is
a simple enough to evaluate the line integral. Its parametric equations
are r = r(t) = (t, t, t), where t ∈ [0, 1]. Therefore,

F(r(t)) · r′(t) = (t2, t2 + 3t, t2 + 3t) · (1, 1, 1) = 3t2 + 6t

and hence ∫
C

F · dr =
∫

C1

F · dr =
∫ 1

0
(3t2 + 6t) dt = 4.

Option 2. The procedure of Section 89.1 may be used to find a po-
tential f of F (see also the study problems at the end of this section
for an alternative procedure). The line integral is then found by the
fundamental theorem for line integrals. Put ∇f = F. Then the prob-
lem is reduced to finding f from its first-order partial derivatives (the
existence of f has already been established). Following the procedure
of Section 89.1,

f ′
x = F1 = yz =⇒ f(x, y, z) = xyz + g(y, z),
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where g(y, z) is arbitrary. The substitution of f into the second equa-
tion f ′

y = F2 yields

xz + g′
y(y, z) = xz + z + 2y =⇒ g(y, z) = y2 + zy + h(z),

where h(z) is arbitrary. The substitution of f = xyz + y2 + zy + h(z)
into the third equation f ′

z = F3 yields

xy + y + h′(z) = xy + y + 2z =⇒ h(z) = z2 + c,

where c is a constant. Thus, f(x, y, z) = xyz + yz + z2 + y2 + c and∫
C

F · dr = f(1, 1, 1)− f(0, 0, 0) = 4

by the fundamental theorem for line integrals. �

111.6. Study Problems.

Problem 15.1. Verify that

F = ∇f =
(
− y

x2 + y2 ,
x

x2 + y2 , 2z
)

, f(x, y, z) = tan−1(y/x) + z2

and curlF = 0 in the domain of F. Evaluate the line integral of F
along the circular path C: x2 + y2 = R2 in the plane z = a. The
path is oriented counterclockwise as viewed from the top of the z axis.
Does the result contradict to the fundamental theorem for line integrals?
Explain.

Solution: A straightforward differentiation of f shows that indeed
∇f = F and therefore curlF = 0 everywhere except the line x =
y = 0 where F is not defined. The path C is traced out by r(t) =
(R cos t, R sin t, a), where t ∈ [0, 2π]. Then F(r(t)) = (−R−1 sin t,
R−1 cos t, 2a) and r′(t) = (−R sin t, R cos t, 0). Therefore, F(r(t)) ·
r′(t) = 1 and ∮

C

F · dr =
∫ 2π

0
dt = 2π.

So the integral over the closed contour does not vanish despite the
fact that F = ∇f , which seems to be in conflict with the fundamental
theorem for line integrals as by the latter the integral should have
vanished.

Consider the values of f along the circle. By construction, f(x, y, a)
= θ(x, y)+a2, where θ(x, y) is the polar angle in any plane z = a. It is 0
on the positive x axis and increases as the point moves about the origin.
As the point arrives back to the positive x axis, the angle reaches the
value 2π; that is, f is not really a function on the closed contour because
it takes two values, 0 and 2π, at the same point on the positive x axis.
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The only way to make f a function is to remove the half-plane θ = 0
from the domain of f . Think of a cut in space along the half-plane.
But in this case, any closed path that intersects the half-plane becomes
nonclosed as it has two distinct endpoints on the opposite edges of the
cut. If the fundamental theorem for line integrals is applied to such a
path, then no contradiction arises because the values of f on the edges
of the cut differ exactly by 2π in full accordance with the conclusion of
the theorem.

Alternatively, the issue can be analyzed by studying whether F is
conservative in its domain E. The vector field is defined everywhere in
space except the line x = y = 0 (the z axis). So E is not simply con-
nected. Therefore, the condition curlF = 0 is not sufficient to claim
that the vector field is conservative on its domain. Indeed, the evalu-
ated line integral along the closed path (which cannot be continuously
contracted, staying within E, to a point in E) shows that the vector
field cannot be conservative on E. If the half-plane θ = 0 is removed
from E, then F is conservative on this “reduced” region because the
latter is simply connected. Naturally, the line integral along any closed
path that does not cross the half-plane θ = 0 (i.e., it lies within the
reduced domain) vanishes. �

Problem 15.2. Prove that if F = (F1, F2, F3) is conservative, then
its potential is

f(x, y, z) =
∫ x

x0

F1(t, y0, z0) dt +
∫ y

y0

F2(x, t, z0) dt +
∫ z

z0

F3(x, y, t) dt,

where (x0, y0, z0) is any point in the domain of F. Use this equation to
find a potential of F from Example 15.4.

Solution: In (15.38), take C that consists of three straight line seg-
ments, (x0, y0, z0)→ (x, y0, z0)→ (x, y, z0)→ (x, y, z). The parametric
equation of the first line C1 is r(t) = (t, y0, z0), where x0 ≤ t ≤ x.
Therefore, r′(t) = (1, 0, 0) and F(r(t)) · r′(t) = F1(t, y0, z0). So the line
integral of F along C1 gives the first term in the above expression for f .
Similarly, the second term is the line integral of F along the second line
r(t) = (x, t, z0), where y0 ≤ t ≤ y, so that r′(t) = (0, 1, 0). The third
term is the line integral of F along the third line r(t) = (x, y, t), where
z0 ≤ t ≤ z. In Example 15.4, it was established that F = (F1, F2, F3) =
(yz, xz + z + 2y, xy + y + 2z) is conservative. For simplicity, choose
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(x0, y0, z0) = (0, 0, 0). Then

f(x, y, z) =
∫ x

0
F1(t, 0, 0) dt +

∫ y

0
F2(x, t, 0) dt +

∫ z

0
F3(x, y, t) dt

= 0 + y2 + (xyz + yz + z2) = xyz + yz + z2 + y2,

which naturally coincides with f found by a different (longer)
method. �

112. Green’s Theorem

Green’s theorem should be regarded as the counterpart of the fun-
damental theorem of calculus for the double integral.

Definition 15.8. (Orientation of Planar Closed Curves). A simple
closed curve C in a plane whose single traversal is counterclockwise
(clockwise) is said to be positively (negatively) oriented.

A simple closed curve divides the plane into two connected regions.
If a planar region D is bounded by a simple closed curve, then the
positively oriented boundary of D is denoted by the symbol ∂D.

Recall that a simple closed curve can be regarded as a continuous
vector function r(t) = (x(t), y(t)) on [a, b] such that r(a) = r(b) and,
for any t1 �= t2 in the open interval (a, b), r(t1) �= r(t2); that is, r(t)
traces out C only once without self-intersection. A positive orientation
means that r(t) traces out its range counterclockwise. For example,
the vector functions r(t) = (cos t, sin t) and r(t) = (cos t,− sin t) on the
interval [0, 2π] define the positively and negatively oriented circles of
unit radius, respectively.

Theorem 15.5. (Green’s Theorem).
Let C be a positively oriented, piecewise-smooth, simple, closed curve in
the plane and let D be the region bounded by C = ∂D. If the functions
F1 and F2 have continuous partial derivatives on an open region that
contains D, then∫∫

D

(∂F2

∂x
− ∂F1

∂y

)
dA =

∮
∂D

F1 dx + F2 dy.

Just like the fundamental theorem of calculus, Green’s theorem re-
lates the derivatives of F1 and F2 in the integrand to the values of F1

and F2 on the boundary of the integration region. A proof of Green’s
theorem is rather involved. Here it is limited to the case when the
region D is simple.
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Proof (for simple regions). A simple region D admits two equiv-
alent algebraic descriptions:

D = {(x, y) | ybot(x) ≤ y ≤ ytop(x) , x ∈ [a, b]},(15.39)
D = {(x, y) |xbot(y) ≤ x ≤ xtop(y) , y ∈ [c, d]}.(15.40)

The idea of the proof is to establish the equalities

(15.41)
∮

∂D

F1 dx = −
∫∫

D

∂F1

∂y
dA ,

∮
∂D

F2 dy =
∫∫

D

∂F2

∂x
dA

using, respectively, (15.39) and (15.40). The conclusion of the theorem
is then obtained by adding these equations.

The line integral is transformed into an ordinary integral first. The
boundary ∂D contains four curves, denoted C1, C2, C3, and C4. The
curve C1 is the graph y = ybot(x) whose parametric equations are
r = (t, ybot(t)), where t ∈ [a, b]. So C1 is traced out from left to
right as required by the positive orientation of ∂D. The curve C3 is
the top boundary y = ytop(x), and, similarly, its parametric equations
r(t) = (t, ytop(t)), where t ∈ [a, b]. Since C3 is traced out from left
to right, the orientation of C3 must be reversed; that is, ∂D contains
the curve −C3. The boundary curves C2 and C4 (the sides of D)
are segments of the vertical lines x = b (oriented upward) and x = a
(oriented downward), which may collapse to a single point if the graphs
y = ybot(x) and y = ytop(x) intersect at x = a or x = b or both. The
line integrals along C2 and C4 do not contribute to the line integral
with respect to x along ∂D because dx = 0 along C2 and C4. By
construction, x = t and dx = dt for the curves C1 and C2. Hence,∮

∂D

F1 dx =
∫

C1

F1 dx +
∫

−C2

F1 dx

=
∫ b

a

(
F (x, ybot(x))− F (x, ytop(x))

)
dx,

where the property (15.36) has been used. Next, the double integral
is transformed into an ordinary integral by converting it to an iterated
integral: ∫∫

D

∂F1

∂y
dA =

∫ b

a

∫ ytop(x)

ybot(x)

∂F1

∂y
dy dx

=
∫ b

a

(
F (x, ytop(x))− F (x, ybot(x))

)
dx,

where the latter equality follows from the fundamental theorem of
calculus and the continuity of F1 on an open interval that contains
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[ybot(x), ytop(x)] for any x ∈ [a, b] (the hypothesis of Green’s theorem).
Comparing the expression of the line and double integrals via ordinary
integrals, the validity of the first relation in (15.41) is established. The
second equality in (15.41) is proved analogously by using (15.40). The
details are omitted. �
Remark. Suppose that a smooth, oriented curve C divides a region
D into two simple regions D1 and D2. If the boundary ∂D1 contains
C (i.e., the orientation of C coincides with the positive orientation of
∂D1), then ∂D2 must contain the curve −C and vice versa. Using the
conventional notation F1 dx + F2 dy = F · dr, where F = (F1, F2), one
infers that∮

∂D

F · dr =
∮

∂D1

F · dr +
∮

∂D2

F · dr

=
∫∫

D1

(∂F2

∂x
− ∂F1

∂y

)
dA +

∫∫
D2

(∂F2

∂x
− ∂F1

∂y

)
dA

=
∫∫

D

(∂F2

∂x
− ∂F1

∂y

)
dA.

The first equality holds because of the cancellation of the line inte-
grals along C and −C according to (15.36). The validity of the second
equality follows from the proof of Green’s theorem for simple regions.
Finally, the equality is established by the additivity property of dou-
ble integrals. By making use of similar arguments, the proof can be
extended to a region D that can be represented as the union of a finite
number of simple regions.

Remark. Let the regions D1 and D2 be bounded by simple, piecewise-
smooth, closed curves and let D2 lie in the interior of D1. Consider the
region D that was obtained from D1 by removing D2 (the region D has
a hole of the shape D2). Making use of Green’s theorem, one finds∫∫

D

(∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D1

(∂F2

∂x
− ∂F1

∂y

)
dA−

∫∫
D2

(∂F2

∂x
− ∂F1

∂y

)
dA

=
∮

∂D1

F · dr−
∮

∂D2

F · dr =
∮

∂D1

F · dr +
∮

−∂D2

F · dr

=
∮

∂D

F · dr.(15.42)

This establishes the validity of Green’s theorem for not simply con-
nected regions. The boundary ∂D consists of ∂D1 and −∂D2; that is,
the outer boundary has a positive orientation, while the inner boundary
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is negatively oriented. A similar line of reasoning leads to the conclu-
sion that this holds for any number of holes in D: all inner boundaries
of D must be negatively oriented. Such orientation of the boundaries
can also be understood as follows. Let a curve C connects a point of
the outer boundary with a point of the inner boundary. Let us make
a cut of the region D along C. Then the region D becomes simply
connected and ∂D consists of a continuous curve (the inner and outer
boundaries, and the curves C and −C). The boundary ∂D can always
be positively oriented. The latter requires that the outer boundary
be traced counterclockwise, while the inner boundary is traced clock-
wise (the orientation of C and −C is chosen accordingly). By applying
Green’s theorem to ∂D, one can see that the line integrals over C and
−C are cancelled and (15.42) follows from the additivity of the dou-
ble integral. Evidently, the same argument can be used to establish
Green’s theorem for a region with multiple holes (all inner boundaries
must be oriented clockwise).

112.1. Evaluating Line Integrals via Double Integrals. Green’s theorem
provides a technically convenient tool to evaluate line integrals along
planar closed curves. It is especially beneficial when the curve consists
of several smooth pieces that are defined by different vector functions;
that is, the line integral must be split into a sum of line integrals to be
converted into ordinary integrals. Sometimes, the line integral turns
out to be much more difficult to evaluate than the double integral.

Example 15.5. Evaluate the line integral of F = (y2 +ecos x, 3xy−
sin(y4)) along the curve C that is the boundary of the half of the ring:
1 ≤ x2 + y2 ≤ 4 and y ≥ 0; C is oriented clockwise.

The curve C consists of four smooth pieces, the half-circles of radii
1 and 2 and two straight line segments of the x axis, [−2,−1] and [1, 2].
Each curve can be easily parameterized and the line integral in question
can be transformed into the sum of four ordinary integrals which are
then evaluated. The reader is advised to pursue this avenue of actions
to appreciate the following alternative way based on Green’s theorem
(this is not impossible to accomplish if one figures out how to handle
the integration of the functions ecos x and sin(y4) whose anti-derivatives
are not expressible in elementary functions).
Solution: The curve C is a simple, piecewise-smooth, closed curve
and the vector field F is continuously differentiable. Thus, Green’s
theorem applies if ∂D = −C (because the orientation of C is negative)
and D is the half-ring. One has ∂F1/∂y = 2y and ∂F2/∂x = 3y. By
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Green’s theorem,∮
C

F · dr = −
∮

∂D

F · dr = −
∫∫

D

(∂F2

∂x
− ∂F1

∂y

)
dA = −

∫∫
D

y dA

= −
∫ π

0

∫ 2

1
r sin θ r dr dθ = −

∫ π

0
sin θ dθ

∫ 2

1
r2dr = −14

3
,

where the double integral has been transformed into polar
coordinates. �

112.2. Area of a Planar Region as a Line Integral. Put F2 = x and F1 =
0. Then ∫∫

D

(∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

dA = A(D).

The area A(D) can also be obtained if F = (−y, 0) or F = (−y/2, x/2).
By Green’s theorem, the area of D can be expressed by line integrals:

(15.43) A(D) =
∮

∂D

x dy = −
∮

∂D

y dx =
1
2

∮
∂D

x dy − y dx,

assuming, of course, that the boundary of D is a simple, piecewise-
smooth, closed curve (or several such curves if D has holes). The reason
the values of these line integrals coincide is simple. The difference of
any two vector fields involved is a conservative vector field whose line
integral along a closed curve vanishes. For example, for F = (0, x) and
G(−y, 0), the difference is F −G = (y, x) = ∇f , where f(x, y) = xy,
so that∮

∂D

F · dr−
∮

∂D

G · dr =
∮

∂D

(F−G) · dr =
∮

∂D

∇f · dr = 0.

The representation (15.43) of the area of a planar region as the line
integral along its boundary is quite useful when the shape of D is too
complicated to be computed using a double integral (e.g., when D is not
simple and/or a representation of boundaries of D by graphs becomes
technically difficult).

Example 15.6. Consider an arbitrary polygon whose vertices in
counterclockwise order are (x1, y1), (x2, y2), ..., (xn, yn). Find its area.

Solution: Evidently, a generic polygon is not a simple region (e.g., it
may have a starlike shape). So the double integral is not at all suitable
for finding the area. In contrast, the line integral approach seems far
more feasible as the boundary of the polygon consists of n straight
line segments connecting neighboring vertices. If Ci is such a segment
oriented from (xi, yi) to (xi+1, yi+1) for i = 1, 2, ..., n− 1, then Cn goes
from (xn, yn) to (x1, y1). A vector function that traces out a straight
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line segment from a point ra to a point rb is r(t) = ra+(rb−ra)t, where
0 ≤ t ≤ 1. For the segment Ci, take ra = (xi, yi) and rb = (xi+1, yi+1).
Hence, x(t) = xi−(xi+1−xi)t = xi+∆xi t and y(t) = yi+(yi+1−yi)t =
yi + ∆yi t. For the vector field F = (−y, x) on Ci, one has

F(r(t)) · r′(t) = (−y(t), x(t)) · (∆xi, ∆yi) = xi ∆yi − yi ∆xi

= xiyi+1 − yixi+1;

that is, the t dependence cancels out. Therefore, taking into account
that Cn goes from (xn, yn) to (x1, y1), the area is

A =
1
2

∮
∂D

x dy − y dx =
1
2

n∑
i=1

∫
Ci

x dy − y dx

=
1
2

n−1∑
i=1

∫ 1

0
(xiyi+1 − yixi+1) dt +

1
2

∫ 1

0
(xny1 − ynx1) dt

=
1
2

( n−1∑
i=1

(xiyi+1 − yixi+1) + (xny1 − ynx1)
)
.

�
So Green’s theorem offers an elegant way to find the area of a gen-
eral polygon if the coordinates of its vertices are known. A simple,
piecewise-smooth, closed curve C in a plane can always be approxi-
mated by a polygon. The area of the region enclosed by C can therefore
be approximated by the area of a polygon with a large enough number
of vertices, which is often used in many practical applications.

112.3. The Test for Planar Vector Fields to Be Conservative. Green’s the-
orem can be used to prove Theorem 15.4 for planar vector fields. Con-
sider a planar vector field F = (F1(x, y), F2(x, y), 0). Its curl has only
one component:

∇× F = det

⎛
⎝ ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

F1(x, y) F2(x, y) 0

⎞
⎠ = ê3

(∂F2

∂x
− ∂F1

∂y

)
.

Suppose that the curl of F vanishes throughout a simply connected
open region D, ∇ × F = 0. By definition, any simple closed curve C
in a simply connected region D can be shrunk to a point of D while
remaining in D throughout the deformation (i.e., any such C bounds
a subregion Ds of D). By Green’s theorem, where C = ∂Ds,∮

C

F · dr =
∫∫

Ds

(∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
Ds

0 dA = 0
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for any closed simple curve C in D. By the path-independence property,
the vector field F is conservative in D.

112.4. Study Problems.

Problem 15.3. Evaluate the line integral of F = (y+ex2
, 3x−sin(y2))

along the counterclockwise-oriented boundary of D that is enclosed by
the parabolas y = x2 and x = y2.

Solution: One has ∂F1/∂y = 1 and ∂F2/∂x = 3. By Green’s
theorem,∮

∂D

F · dr =
∫∫

D

2 dA = 2
∫ 1

0

∫ √
x

x2
dy dx = 2

∫ 1

0
(
√

x− x2) dx =
1
3
�

Problem 15.4. Prove that the line integral of the planar vector field

F =
(
− y

x2 + y2 ,
x

x2 + y2

)
along any positively oriented, simple, smooth, closed curve C that en-
circles the origin is 2π and that it vanishes for any such curve that does
not encircle the origin.

Solution: It has been established (see Study Problem 15.1) that
the curl of this vector field vanishes in the domain that is the entire
plane with the origin removed. If C does not encircle the origin, then
∂F2/∂x − ∂F1/∂y = 0 throughout the region encircled by C, and the
line integral along C vanishes by Green’s theorem. Given a closed curve
C that encircles the origin, but does not go through it, one can always
find a disk of a small enough radius a such that the curve C does not
intersect it. Let Da be the region bounded by the circle Ca of radius
a and the curve C. Then ∂F2/∂x − ∂F1/∂y = 0 throughout Da. Let
C be oriented counterclockwise, while Ca is oriented clockwise. Then
∂Da is the union of C and Ca. By Green’s theorem,∮

∂D

F · dr = 0 ⇒
∮

C

F · dr = −
∮

Ca

F · dr =
∮

−Ca

F · dr = 2π

because −Ca is the circle oriented counterclockwise and for such a circle
the line integral has been found to be 2π (see Study Problem 15.1). �

113. Flux of a Vector Field

The idea of a flux of a vector field stems from an engineering prob-
lem of mass transfer across a surface. Suppose there is a flow of a fluid
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or gas with a constant velocity v and a constant mass density σ (mass
per unit volume). Let ∆A be a planar area element placed into the
flow. At what rate is the fluid or gas carried by the flow across the area
∆A? In other words, what is the mass of fluid transferred across ∆A
per unit time? This quantity is called a flux of the mass flow across
the area ∆A.

Suppose first that the mass flow is normal to the area element.
Consider the cylinder with an axis parallel to v with cross section area
∆A and height h = v ∆t, where v = ‖v‖ is the flow speed and ∆t is a
time interval. The volume of the cylinder is ∆V = h ∆A = v ∆t ∆A.
In time ∆t, all the mass stored in this cylinder is transferred by the
flow across ∆A. This mass is ∆m = σ ∆V = σv ∆t ∆A, and the flux
is

∆Φ =
∆m

∆t
= σv ∆A.

The flux depends on the orientation of an area element relative to
the flow. If the flow is parallel to the area element, then no mass is
transferred across it. The velocity vector can be viewed as the sum of
a vector normal to the area element and a vector tangential to it. Only
the normal component of the flow contributes to the flux. If n̂ is the
unit normal vector to the area element and θ is the angle between v
and n̂, then the normal component of the velocity is vn = v cos θ = v ·n̂
and

(15.44) ∆Φ = σvn ∆A = σv · n̂∆A = F · n̂∆A = Fn ∆A,

where the vector F = σv characterizes the mass flow (“how much”
(σ) and “how fast” (v)) and Fn is its component normal to the area
element.

If now the mass flow is not constant (i.e., F becomes a vector field),
then its flux across a surface S can be defined by partitioning S into
small surface area elements Si, i = 1, 2, ..., N , whose surface areas are
∆Si. Let r∗

i be a sample point in Si and let n̂i be the unit vector normal
to Si at r∗

i . If the size (the radius of the smallest ball containing Si) is
small, then, by neglecting variations in F and the normal n̂ within Si,
the flux across Si can be approximated by (15.44), ∆Φi ≈ F(r∗

i )·n̂i ∆Si.
The approximation becomes better when N → ∞ so that the sizes of
Si decrease to 0 uniformly and hence the total flux is

Φ = lim
N→∞

N∑
i=1

∆Φi = lim
N→∞

N∑
i=1

F(r∗
i ) · n̂i ∆Si = lim

N→∞

N∑
i=1

Fn(r∗
i ) ∆Si.

The sum in this equation is nothing but the Riemann sum of the func-
tion Fn(r) over a partition of the surface S. Naturally, its limit is the
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surface integral of Fn(r) over S. Thus, the flux of a vector field across
a surface is the surface integral of the normal component of the vector
field.

113.1. Orientable Surfaces. The above definition of the flux sounds
rather plausible. However, it contains a tacit assumption that the
normal component of a vector field can always be uniquely defined as
a continuous function on a smooth surface. It appears that there are
smooth surfaces for which this cannot be done!

The normal n̂ = n̂(r) depends on the point of a surface. So it is a
vector field on S. In order for the normal component Fn to be uniquely
defined, the rule n̂ = n̂(r) should assign just one n̂ for every point of S.
Furthermore, n̂(r) should be continuous on S and hence along every
closed curve C in a smooth surface S. In other words, if n̂ is transported
along a closed curve C in S, the initial n̂ must coincide with the final
n̂. Since, at every point of S, there are only two possibilities to direct
the unit normal vector, by continuity the direction of n̂(r) defines one
side of S, while the direction of −n̂(r) defines the other side. Thus,
the normal component of a vector field is well defined for two-sided
surfaces. For example, the outward normal of a sphere is continuous
along any closed curve on the sphere (it remains outward along any
closed curve) and hence defines the outer side of the sphere. If the
normal on the sphere is chosen to be inward, then it is also continuous
and defines the inner side of the sphere.

Are there one-sided surfaces? If such a surface exists, it should have
quite remarkable properties. Take a point on it. In a neighborhood of
this point, one always thinks about two sides (a surface is smooth).
One side is defined by a normal n̂ (face-up patch), while the other has
the same shape but its normal is −n̂ (face-down patch). For a one-
sided surface, the face-up and face-down patches must be on the same
side of the surface. This implies that there should exist a curve on the
surface that starts at a point on one side and can reach the very same
point but from the other side without crossing the surface boundaries
(if any) or piercing the surface. By moving the face-up patch along such
a curve, it becomes the face-down patch. Thus, the normal cannot be
uniquely defined on a one-sided S.

113.1.1. Examples of One-Sided Surfaces. One-sided surfaces do exist.
To construct an example, take a rectangular piece of paper. Put upward
arrows on its vertical sides and glue these sides so that the arrows
remain parallel. In doing so, a cylinder is obtained, which is a two-
sided surface (there is no curve that traverses from one side to the
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other without crossing the boundary circles formed by the horizontal
sides of the rectangle). The gluing can be done differently. Before
gluing the vertical sides, twist the rectangle so that the arrows on
them become opposite and then glue them. The resulting surface is the
famous Möbius strip (named after the German mathematician August
Möbius). It is one-sided. All curves winding about it traverse both sides
of the glued rectangle without crossing its boundaries (the horizontal
edges).

There are one-sided surfaces without boundaries (like a sphere).
The most famous one is a Klein bottle. Take a bottle. Drill a hole on
the side surface and in the bottom of the bottle. Suppose the neck
of the bottle is flexible (a “rubber” bottle). Bend its neck and pull it
through the hole on the bottle’s side surface (so that neck fits tightly
into the hole). Finally, attach the edge of the bottle’s neck to the
edge of the hole in the bottle bottom. The result is a surface without
boundaries and it is one-sided. A bug can crawl along this surface and
get in and out of the bottle.

113.1.2. Flux and One-Sided Surfaces. The flux makes sense only for
two-sided surfaces. Indeed, the flux means that something is being
transferred from one side to the other side of the surface (i.e., across
it) at a certain rate. If the surface is one-sided, then one can get “across
it” by merely sliding along it! For example, a mass flow tangential to
a one-sided surface can transfer mass across the surface.

Definition 15.9. (Orientable Surface).
A smooth surface is called orientable if there is no closed curve in it
such that the normal vector is reversed when moved around this curve.

So orientable surfaces are two-sided surfaces. The flux of a vector
field can only be defined across an orientable surface.

113.2. Flux as a Surface Integral.

Definition 15.10. (Flux of a Vector Field).
Let S be an orientable smooth surface and let n̂ be the unit normal
vector on S. The flux of a vector field F across S is the surface integral

Φ =
∫∫

S

F · n̂ dS,

provided the normal component F · n̂ of the vector field is integrable
on S.
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The integrability of the normal component Fn(r) = F · n̂ is defined
in the sense of surface integrals of ordinary functions (see Definition
14.16).

113.3. Evaluation of the Flux of a Vector Field. Suppose that a surface
S is a graph z = g(x, y) over a region (x, y) ∈ D. There are two
possible orientations of S. The normal vector to the tangent plane at
a point of S is n = (−g′

x,−g′
y, 1) (see Section 91.1). Its z component

is positive. For this reason, the graph is said to be oriented upward.
Alternatively, one can take the normal vector in the opposite direction,
n = (g′

x, g
′
y,−1). In this case, the graph is said to be oriented downward.

Accordingly, the upward (downward) flux, denoted Φ↑ (Φ↓), of a vector
field is associated with the upward (downward) orientation of the graph.
When the orientation of a surface is reversed, the flux changes its sign:

Φ↑ = −Φ↓.

Consider the upward-oriented graph z = g(x, y). The unit normal
vector reads

n̂ =
1
‖n‖ n =

1
J

(−g′
x, g′

y, 1) , J =
√

1 + (g′
x)2 + (g′

y)2.

Recall that the area transformation law for a graph is dS = J dA.
Therefore, in the infinitesimal flux across the surface area, dS can be
written in the form

F · n̂ dS = F · n 1
J

J dA = F · n dA,

where the vector field must be evaluated on S, that is, F = F(x, y,
g(x, y)) (the variable z is replaced by g(x, y) because z = g(x, y) for
any point (x, y, z) ∈ S). If the dot product F · n is an integrable
function on D, the flux exists and is given by the double integral over
D. The following theorem has been proved.

Theorem 15.6. (Evaluation of the Flux Across a Graph).
Suppose that S is a graph z = g(x, y) of a function g whose first-order
partial derivatives are continuous on D. Let S be oriented upward by
the normal vector n = (−g′

x,−g′
y, 1) and let F be a continuous vector

field on S. Then

Φ↑ =
∫∫

S

F · n̂ dS =
∫∫

D

Fn(x, y) dA,

Fn(x, y) = F · n
∣∣∣
z=g(x,y)

= −g′
xF1(x, y, g)− g′

yF2(x, y, g) + F3(x, y, g).
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The evaluation of the surface integral involves the following
steps:

Step 1. Represent S as a graph z = g(x, y) (i.e. find the function g
using a geometrical description of S). If S cannot be represented as
graph of a single function, then it has to be split into pieces so that
each piece can be described as a graph. By the additivity property, the
surface integral over S is the sum of integrals over each piece.
Step 2. Find the region D that defines the part of the graph that
coincides with S (if S is not the graph on the whole domain of g).
Step 3. Determine the orientation of S (upward or downward) from
the problem description. The sign of the flux is determined by the ori-
entation. Calculate the normal component Fn(x, y) of the vector field
as a function on D.
Step 4. Evaluate the double integral of Fn over D.

Example 15.7. Evaluate the downward flux of the vector field F =
(xz, yz, z) across the part of the paraboloid z = 1− x2 − y2 in the first
octant.

Solution: The surface is the part of the graph z = g(x, y) = 1−x2−y2

in the first octant. The paraboloid intersects the xy plane (z = 0) along
the circle x2 + y2 = 1. Therefore, the region D is the quarter of the
disk bounded by this circle in the first quadrant (x, y ≥ 0). Since S is
oriented downward, n = (g′

x, g
′
y,−1) = (−2x,−2y,−1) and the normal

component of F is

Fn(x, y) = (xg, yg, g) · (−2x,−2y,−1) = −(1−x2− y2)(1 + 2x2 + 2y2).

Converting the double integral of Fn to polar coordinates,

Φ↓ =
∫∫

D

Fn(x, y) dA = −
∫ π/2

0

∫ 1

0
(1 + r2)(1 + 2r2) r dr dθ = −19π

24
.

The negative value of the downward flux means that the actual transfer
of a quantity (like a mass), whose flow is described by the vector field
F, occurs in the upward direction across S. �

113.4. Parametric Surfaces. If the surface S in the flux integral is de-
fined by the parametric equations r = r(u, v), where (u, v) ∈ D, then,
by Corollary 14.5, the normal vector to S is n = r′

u×r′
v (or −n; the sign

is chosen according to the geometrical description of the orientation of
S). Since ‖n‖ = J , where J determines the area transformation law
dS = J dA (dA = du dv), the flux of a vector field F across the surface
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area dS reads:

F(r(u, v)) · n̂ dS = F(r(u, v)) · n dA = F(r(u, v)) · (r′
u × r′

v) dA

= Fn(u, v) dA

and the flux is given by the double integral

Φ =
∫∫

F

F · n̂ dS =
∫∫

D

F(r(u, v)) · (r′
u × r′

v) dA =
∫∫

D

Fn(u, v) dA.

Naturally, a graph z = g(x, y) is described by the parametric equations
r(u, v) = (u, v, g(u, v)), which is a particular case of the above expres-
sion; it coincides with that given in Theorem 15.6 (x = u and y = v).
A description of surfaces by parametric equations is especially conve-
nient for closed surfaces (i.e., when the surface cannot be represented
as a graph of a single function).

Example 15.8. Evaluate the outward flux of the vector field F =
(z2x, z2y, z3) across the sphere of unit radius centered at the origin.

Solution: The parametric equations of the sphere of radius R = 1 are
given in (14.31), and the normal vector is computed in Example 14.38:
n = sin(u)r(u, v), where r(u, v) = (cos v sin u, sin v sin u, cos u) and
(u, v) ∈ D = [0, π]× [0, 2π]; it is an outward normal because sinu ≥ 0.
It is convenient to represent F = z2r so that

Fn(u, v) = F(r(u, v)) · n = cos2 u sin u r(u, v) · r(u, v)
= cos2 u sin u ‖r(u, v)‖2 = cos2 u sin u

because ‖r(u, v)‖2 = R2 = 1. The outward flux reads

Φ =
∫∫

S

F · n̂ dS =
∫∫

D

cos2 u sin u dA

=
∫ 2π

0
dv

∫ π

0
cos2 u sin u du =

4π
3

.

�

Nonorientable Surfaces. Nonorientable surfaces can be described by
the parametric equations r = r(u, v) or by an algebraic equation
F (x, y, z) = 0 (as a level surface of a function). For example, a Möbius
strip of width 2h with midcircle of radius R and height z = 0 is defined
by the parametric equations
(15.45)
r(u, v) =

(
[R + u cos(v/2)] cos v, [R + u cos(v/2)] sin v, u sin(v/2)

)
,
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where (u, v) ∈ D = [−h, h] × [0, 2π]. It also follows from these para-
metric equations that the Möbius strip is defined by a cubic surface:

−R2y + x2y + y3 − 2Rxz − 2x2z − 2y2z + yz3 = 0.

This is verified by substituting the parametric equations into this alge-
braic equation and showing that the left side vanishes for all (u, v) ∈ D.

Let us prove that the surface defined by the parametric equations
(15.45) is not orientable. To do so, one should analyze the behavior of
a normal vector when the latter is moved around a closed curve in the
surface. Consider the circle in the xy plane defined by the condition
u = 0: r(0, v) = (R cos v, R sin v, 0). It is easy to show that

r′
u(0, v) = (cos(v/2) cos v, cos(v/2) sin v, sin(v/2)),

r′
v(0, v) = (−R sin v, R cos v, 0).

P When r(0, v) returns to the initial point, that is, r(0, v+2π) = r(0, v),
the normal vector is reversed. Indeed, r′

u(0, v + 2π) = −r′
u(0, v) and

r′
v(0, v + 2π) = r′

v(0, v). Hence,

n(0, v + 2π) = r′
u(0, v + 2π)× r′

v(0, v + 2π) = −r′
u(0, v)× r′

v(0, v)
= −n(0, v);

that is, the surface defined by these parametric equations is not ori-
entable because the normal vector is reversed when moved around a
closed curve.

So, if a surface S is defined by parametric or algebraic equations,
one still has to verify that it is orientable (i.e., it is two-sided!), when
evaluating the flux across it; otherwise, the flux makes no sense.

114. Stokes’ Theorem

114.1. Vector Form of Green’s Theorem. It was shown in Section 112.3
that the curl of a planar vector field F(x, y) = (F1(x, y), F2(x, y), 0) is
parallel to the z axis, ∇× F = (∂F2/∂ − ∂F1/∂x)ê3. This observation
allows us to reformulate Green’s theorem in the following vector form:∮

∂D

F · dr =
∫∫

D

(curlF) · ê3 dA.

Thus, the line integral of a vector field along a closed simple curve is
determined by the flux of the curl of the vector field across the surface
bounded by this curve. It turns out that this statement holds not only
in a plane, but also in space. It is known as Stokes’ theorem.

114.2. Stokes’ Theorem.
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114.2.1. Positive (Induced) Orientation of a Closed Curve. Suppose S is
a smooth surface oriented by its normal vector n and bounded by a
closed simple curve C. Consider a tangent plane at a point r0 of S.
Any circle in the tangent plane centered at r0 can always be oriented
counterclockwise as viewed from the top of the normal vector n = n0 at
r0. This circle is said to be positively oriented relative to the orientation
of S. Since the surface is smooth, a circle of a sufficiently small radius
can always be projected onto a closed simple curve in S by moving each
point of the circle parallel to n0. This curve is also positively oriented
relative to n0. It can then be continuously (i.e., without breaking)
deformed along S so that its part lies on the boundary C after the
deformation. The orientation is preserved throughout the deformation,
and hence it induces a positive orientation of the boundary C. The
positively oriented boundary of S is denoted by ∂S.

In other words, the positive (or induced) orientation of C means
that if one walks in the positive direction along C with one’s head
pointing in the direction of n, then the surface will always be on one’s
left. Let S be a graph z = g(x, y) over D oriented upward. Then ∂S
is obtained from ∂D (a positively oriented boundary of D) by lifting
points of ∂D to S parallel to the z axis.

Theorem 15.7. (Stokes’ Theorem).
Let S be an oriented, piecewise-smooth surface that is bounded by a
simple, closed, piecewise-smooth curve C with positive orientation C =
∂S. Let F be a continuously differentiable vector field on an open spatial
region that contains S. Then

∮
∂S

F · dr =
∫∫

S

curlF · n̂ dS,

where n̂ is the unit normal vector on S.

Stokes’ theorem is difficult to prove in general. Here it is proved
for a particular case when S is a graph of a function.
Proof (for S being a graph). Let S be the upward-oriented graph
z = g(x, y), (x, y) ∈ D, where g is twice continuously differentiable on
D and D is a simple planar region whose boundary ∂D corresponds
to the boundary ∂S. In this case, the normal vector n = (−g′

x,−g′
y, 1)

and the upward flux of curlF across S can be evaluated according to
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Theorem 15.6, where F is replaced by ∇× F:∫∫
S

curlF · n̂ dS =
∫∫

D

(curlF)n dA,

(curlF)n = −
(∂F3

∂y
− ∂F2

∂z

)∂z

∂x
−
(∂F1

∂z
− ∂F3

∂z

)∂z

∂y
+

+
(∂F2

∂x
− ∂F1

∂y

)
,

where ∂z/∂x = g′
x and ∂z/∂y = g′

y. Let x = x(t) and y = y(t),
t ∈ [a, b], be parametric equations of ∂D so that x(a) = x(b) and
y(a) = y(b) (∂D is a closed curve). Then the vector function

r(t) = (x(t), y(t), g(x(t), y(t)) , t ∈ [a, b],

traces out the boundary ∂S, r(a) = r(b). Making use of Theorem 15.1,
the line integral of F along ∂S can be evaluated. One has r′ =
(x′ , y′ , g′

xx
′ + g′

yy
′). Therefore, F · r′ = (F1 + F3g

′
x)x

′ + (F2 + F3g
′
y)y

′

and hence∮
∂S

F · dr =
∫ b

a

[(F1 + F3g
′
x)x

′ + (F2 + F3g
′
y)y

′] dt

=
∮

∂D

(
F1 + F3

∂z

∂x

)
dx +

(
F2 + F3

∂z

∂y

)
dy

because x′ dt = dx and y′ dt = dy along ∂D, where z = g(x, y) in all
components of F. The latter line integral can be transformed into the
double integral over D by Green’s theorem:∮

∂S

F · dr =
∫∫

D

[ ∂

∂x

(
F2 + F3

∂z

∂y

)
− ∂

∂y

(
F1 + F3

∂z

∂x

)]
dA

=
∫∫

D

(curlF)n dA =
∫∫

S

curlF · n̂ dS,

where the middle equality is verified by the direct evaluation of the
partial derivatives using the chain rule. For example, (∂/∂x)F2(x, y,
g(x, y)) = ∂F2/∂x+(∂F2/∂z)(∂z/∂x). The terms containing the mixed
derivatives ∂2z/∂x ∂y = g′′

xy = g′′
yx are cancelled out by Clairaut’s the-

orem, while the other terms can be arranged to coincide with the ex-
pression for the normal component (curlF)n found above. The last
equality holds by Theorem 14.17 (dS = J dA and n = Jn̂). �

114.3. Use of Stokes’ Theorem. Stokes’ theorem is very helpful for eval-
uating line integrals along closed curves of complicated shapes when a
direct use of Theorem 15.1 is technically too involved. The procedure
includes a few basic steps.
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Step 1. Given a closed simple curve C, choose any smooth orientable
surface S whose boundary is C. Note that, according to Stokes’ the-
orem, the value of the line integral is independent of the choice of S.
This freedom should be used to make S as simple as possible.
Step 2. Find the orientation of S (the direction of the normal vector)
so that the orientation of C is positive relative to the normal of S, that
is, C = ∂S.
Step 3. Evaluate B = curlF and calculate the flux of B across S.

Example 15.9. Evaluate the line integral of F = (xy, yz, xz) along
the curve of intersection of the cylinder x2 + y2 = 1 and the plane
x + y + z = 1. The curve is oriented clockwise as viewed from above.

Solution: The curve C lies in the plane x + y + z = 1. Therefore,
the simplest choice of S is the portion of this plane that lies within the
cylinder: z = g(x, y) = 1 − x − y, where (x, y) ∈ D and D is the disk
x2 + y2 ≤ 1. Since C is oriented clockwise as viewed from above, the
orientation of S must be downward to make the orientation positive
relative to the normal on S, that is, n = (g′

x, g
′
y,−1) = (−1,−1,−1).

Next,

B = ∇× F = det

⎛
⎝ ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

xy yz xz

⎞
⎠ = (−y,−z,−x).

Therefore, Bn(x, y) = B · n = (−y,−g,−x) · (−1,−1,−1) = g(x, y) +
y + x = 1, and hence∫

C

F · dr =
∫

∂S

F · dr =
∫∫

S

B · n̂ dS =
∫∫

D

Bn(x, y) dA

=
∫∫

D

dA = A(D) = π

�

Example 15.10. Evaluate the line integral of F = (z2y ,−z2x , z)
along the curve C that is the boundary of the part of the paraboloid z =
1−x2−y2 in the first octant. The curve C is oriented counterclockwise
as viewed from above.

Solution: Choose S to be the specified part of the paraboloid z =
g(x, y) = 1 − x2 − y2, where (x, y) ∈ D and D is the part of the disk
x2 + y2 ≤ 1 in the first quadrant. The paraboloid must be oriented
upward so that the given orientation of C is positive relative to the
normal on S. Therefore, the normal vector is n = (−g′

x,−g′
y, 1) =
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(2x, 2y, 1). Next,

B = ∇× F = det

⎛
⎝ ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

z2y −z2x z

⎞
⎠ = (2zx, 2zy,−2z2)

so that Bn(x, y) = B ·n = (2gx, 2gy,−2g2) · (2x, 2y, 1) = 4g(x2 + y2)−
2g2 = 4g(1− g)− 2g2 = 4g − 6g2. Thus,∫

C

F · dr =
∫∫

S

B · n̂ dS =
∫∫

D

Bn(x, y) dA

=
∫ π/2

0

∫ 1

0
[4(1− r2)− 6(1− r2)2]r dr dθ =

7π
15

,

where the double integral has been converted to polar coordinates,
g(x, y) = 1− r2. �

114.4. Geometrical Significance of the Curl. Stokes’ theorem reveals the
geometrical significance of the curl of a vector field. The line integral of
a vector field along a closed curve C is often called the circulation of a
vector field along C. Let B = curlF and let B0 = B(r0) at some point
r0. Consider a plane through r0 normal to a unit vector n̂. Let Ca

be a positively oriented simple, closed, smooth curve in the plane that
encircles a region Sa of the plane and r0 ∈ Sa. Let a be the radius of the
smallest disk centered at r0 that contains Sa. Consider the circulation
of a vector field per unit area at a point r0 defined by

lim
a→0

1
∆S

∮
Ca

F · dr = lim
a→0

1
∆S

∫∫
Sa

B · n̂ dS = B0 · n̂ = (curlF)0 · n̂.

This follows from the integral mean value theorem. Since the function
f(r) = B · n̂ is continuous on Sa, there is a point ra ∈ Sa such that
the surface integral of f equals ∆S f(ra). As a → 0, ra → r0 and,
by the continuity of f , f(ra) → f(r0). This relation has the following
mechanical interpretation. Let F describe a fluid flow F = v, where
v is the fluid velocity vector field. Imagine a tiny paddle wheel in the
fluid at a point r0 whose axis is directed along n. The fluid exerts
pressure on the paddles, causing the paddle wheel to rotate. The more
work done by the pressure force along the loop Ca, the faster the wheel
rotates. The wheel rotates fastest (maximal work) when its axis n is
parallel to curlv because, in this case, the normal component of the
curl curlv · n̂ = ‖curlv‖ is maximal. For this reason, the curl is often
called the rotation of a vector field.
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Definition 15.11. (Rotational Vector Field).
A vector field F that can be represented as the curl of another vector
field A, that is, F = ∇×A, is called a rotational vector field.

The following theorem holds (the proof is omitted).

Theorem 15.8. (Helmholtz’s Theorem).
Let F be a vector field on a bounded domain E, which is twice con-
tinuously differentiable. Then F can be decomposed into the sum of
conservative and rotational vector field; that is, there is a function f
and a vector field A such that

F = ∇f +∇×A.

For example, electromagnetic waves are rotational components of
electromagnetic fields, while the Coulomb field created by static charges
is conservative.

114.5. Test for a Vector Field to Be Conservative. The test for a vector
field to be conservative (Theorem 15.4) follows from Stokes’ theorem.
Indeed, in a simply connected region E, any simple, closed curve can
be shrunk to a point while remaining in E through the deformation.
Therefore, for any such curve C, one can always find a surface S in E
such that ∂S = C (e.g., C can be shrunk to a point along such S). If
curlF = 0 throughout E, then, by Stokes’ theorem,∮

C

F · dr =
∫∫

S

curlF · n̂ dS = 0

for any simple closed curve C in E. By the path independence property,
F is conservative. The assumption that E is simply connected is crucial.
For example, if E is the entire space with the z axis removed (see Study
Problem 15.1), then the z axis always pierces through any surface S
bounded by a closed simple curve encircling the z axis, and one cannot
claim that the curl vanishes everywhere on S.

115. Gauss-Ostrogradsky (Divergence) Theorem

115.1. Divergence of a Vector Field.

Definition 15.12. (Divergence of a Vector Field).
Suppose that a vector field F = (F1, F2, F3) is differentiable. Then the
scalar function

div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

is called the divergence of a vector field.
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Example 15.11. Find the divergence of the vector field F = (x3 +
cos(yz), y + sin(x2z), xyz).

Solution: One has

div F = (x3 + cos(yz))′
x + (y + sin(x2z))′

y + (xyz)′
z = 3x2 + 1 + yx.

�

Corollary 15.1. A continuously differentiable rotational vector
field is divergence free, div curlA = 0.

Proof. By definition, a rotational vector field has the form F =
curlA = ∇×A, where A is twice continuously differentiable because,
by the hypothesis, F is continuously differentiable. Therefore,

div F = div curlA = ∇ · curlA = ∇ · (∇×A) = 0

by the rules of vector algebra (the triple product vanishes if any two vec-
tors in it coincide). These rules are applicable because A is twice con-
tinuously differentiable (Clairaut’s theorem holds for its components;
see Section 111.4). �

115.2. Another Vector Form of Green’s Theorem. Green’s theorem re-
lates a line integral along a closed curve of the tangential component of
a planar vector field to the flux of the curl across the region bounded
by the curve. Let us investigate the line integral of the normal com-
ponent. If the vector function r(t) = (x(t), y(t)), a ≤ t ≤ b, traces out
the boundary C of D in the positive (counterclockwise) direction, then

T̂(t) =
1

‖r′(t)‖
(
x′(t), y′(t)

)
, n̂(t) =

1
‖r′(t)‖

(
y′(t), −x′(t)

)
,

T̂ · n̂ = 0

are the unit tangent vector and the outward unit normal vector to the
curve C, respectively. Consider the line integral

∮
C

F·n̂ ds of the normal
component of a planar vector field along C. One has ds = ‖r′(t)‖dt,
and hence

F · n̂ ds = F1y
′ dt− F2x

′ dt = F1 dy − F2 dx = G · dr,
where G = (−F2, F1). By Green’s theorem applied to the line integral
of the vector field G,∮

C

F·n̂ ds =
∮

C

G·dr =
∫∫

D

(∂G2

∂x
−∂G1

∂y

)
dA =

∫∫
D

(∂F1

∂x
+

∂F2

∂y

)
dA.
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The integrand in the double integral is the divergence of F. Thus,
another vector form of Green’s theorem has been obtained:∮

∂D

F · n̂ ds =
∫∫

D

div F dA.

For a planar vector field (think of a mass flow on a plane), the line
integral on the left side can be viewed as the outward flux of F across
the boundary of a region D. An extension of this form of Green’s
theorem to three-dimensional vector fields is known as the divergence
or Gauss-Ostrogradsky theorem.

115.3. The Divergence Theorem. Let a solid region E be bounded by a
closed surface S. If the surface is oriented outward (the normal vector
points outside of E), then it is denoted S = ∂E.

Theorem 15.9. (Gauss-Ostrogradsky (Divergence) Theorem).
Suppose E is a bounded, closed region in space that has a piecewise-
smooth boundary S = ∂E oriented outward. If F is a continuously
differentiable vector field on an open region that contains E, then∫∫

∂E

F · n̂ dS =
∫∫∫

E

div F dV.

The divergence theorem states that the outward flux of a vector
field across a closed surface S is given by the triple integral of the
divergence of the vector field over the solid region bounded by S. It
provides a convenient technical tool to evaluate the flux of a vector
field across a closed surface.

Remark. It should be noted that the boundary ∂E may contain
several disjoint pieces. For example, let E be a solid region with a
cavity. Then ∂E consists of two pieces, the outer boundary and the
cavity boundary. Both pieces are oriented outward in the divergence
theorem.

Example 15.12. Evaluate the flux of the vector field F = (4xy2z +
ez , 4yx2z , z4 +sin(xy)) across the closed surface oriented outward that
is the boundary of the part of the ball x2 + y2 + z2 ≤ R2 in the first
octant (x, y, z ≥ 0).

Solution: The divergence of the vector field is

div F = (4xy2z + ez)′
x + (4yx2z)′

y + (z4 + sin(xy))′
z = 4z(x2 + y2 + z2).
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By the divergence theorem,∫∫
S

F · n̂ dS =
∫∫∫

E

4z(x2 + y2 + z2) dV

=
∫ π/2

0

∫ π/2

0

∫ R

0
4ρ3 cos φ ρ2 sin φ dρ dφ dθ =

πR6

24
,

where the triple integral has been converted to spherical coordinates.
The reader is advised to evaluate the flux without using the divergence
theorem to appreciate the power of the latter! �
The divergence theorem can be used to change (simplify) the surface
in the flux integral.

Corollary 15.2. Let the boundary ∂E of a solid region E be the
union of two surfaces S1 and S2. Suppose that all the hypotheses of the
divergence theorem hold. Then∫∫

S2

F · n̂ dS =
∫∫∫

E

div F dV −
∫∫

S1

F · n̂ dS.

This establishes a relation between the flux across S1 and the flux
across S2 with a common boundary curve. Indeed, since ∂E is the
union of two disjoint pieces S1 and S2, the surface integral over ∂E
is the sum of the integrals over S1 and S2. On the other hand, the
integral over ∂E can be expressed as a triple integral by the divergence
theorem, which establishes the stated relation between the fluxes across
S1 and S2.

Example 15.13. Evaluate the upward flux of the vector field F =
(z2 tan−1(y2 + 1), z4 ln(x2 + 1), z) across the part of the paraboloid
z = 2− x2 − y2 that lies above the plane z = 1.

Solution: Consider a solid E bounded by the paraboloid and the
plane z = 1. Let S2 be the part of the paraboloid that bounds E
and let S1 be the part of the plane z = 1 that bounds E. If S2 is
oriented upward and S1 is oriented downward, then the boundary of
E is oriented outward, and Corollary 15.2 applies. The surface S1 is
the part of the plane z = 1 bounded by the intersection curve of the
paraboloid and the plane: 1 = 2 − x2 − y2 or x2 + y2 = 1. So S2 is
the graph z = g(x, y) = 1 over D, which is the disk x2 + y2 ≤ 1. The
downward normal vector to S1 is n = (g′

x, g
′
y,−1) = (0, 0,−1), and

hence Fn = F · n = −F3(x, y, g) = −1 on S1 and∫∫
S1

F · n̂ dS =
∫∫

D

Fn(x, y) dA = −
∫∫

D

dA = −A(D) = −π.
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Next, the divergence of F is

div F = (z2 tan−1(y2 + 1))′
x + (z4 ln(x2 + 1))′

y + (z)′
z = 0 + 0 + 1 = 1.

Hence, ∫∫∫
E

div F dV =
∫∫∫

E

dV =
∫ 2π

0

∫ 1

0

∫ 2−r2

1
r dz dr dθ

= 2π
∫ 1

0
(1− r2)r dr =

π

2
,

where the triple integral has been transformed into cylindrical coordi-
nates for E = {(x, y, z)|zbot = 1 ≤ z ≤ 2− x2 − y2 = ztop , (x, y) ∈ D}.
The upward flux of F across the paraboloid is now easy to find by
Corollary 15.2:∫∫

S2

F · n̂ dS =
∫∫∫

E

div F dV −
∫∫

S1

F · n̂ dS =
π

2
+ π =

3π
2

.

�
The reader is again advised to try to evaluate this directly to appreciate
the power of the divergence theorem!

Corollary 15.3. The flux of a continuously differentiable rota-
tional vector field across an orientable, closed, piecewise-smooth surface
S vanishes: ∫∫

S

curlA · n̂ dS = 0.

Proof. The hypotheses of the divergence theorem are satisfied. There-
fore, ∫∫

S

curlA · n̂ dS =
∫∫∫

E

div curlA dV = 0

by Corollary 15.1. �
By Helmholtz’s theorem, a vector field can always be decomposed

into the sum of conservative and rotational vector fields. It follows then
that only the conservative component of the vector field contributes to
the flux across a closed surface. This observation is further elucidated
with the help of the concept of vector field sources.

115.4. Sources of a Vector Field. Consider a simple region Ea of volume
∆V . Let a be the radius of the smallest ball that contains Ea and is
centered at a point r0. Let us calculate the outward flux per unit volume
of a continuously differentiable vector field F across the boundary ∂Ea,
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which is defined by

lim
a→0

1
∆V

∫∫
∂Ea

F · n̂ dS = lim
a→0

1
∆V

∫∫∫
Ea

div F dV = div F(r0).

The latter equality follows from the integral mean value theorem. By
the continuity of div F, and the integral mean value theorem, there is a
point ra ∈ Ea such that the triple integral equals ∆V div F(ra). In the
limit a→ 0, ra → r0. Thus, if the divergence is positive div F(r0) > 0,
the flux of the vector field across any small surface around r0 is positive.
This, in turn, means that the flow lines of F are outgoing from r0 as if
there is a source creating a flow at r0. Following the analogy with water
flow, such a source is called a faucet. If div F(r0) < 0, the flow lines
disappear at r0 (the inward flow is positive). Such a source is called a
sink. Thus, the divergence of a vector field determines the density of
the sources of a vector field. For example, flow lines of a static electric
field originate from positive electric charges and end on negative electric
charges. So the divergence of the electric field determines the electric
charge density in space.

The divergence theorem states that the outward flux of a vector
field across a closed surface is determined by the total source of the
vector field in the region bounded by the surface.


