Howard University - Spring 2020

MATH 158, Section 1

Exam 1 - practice

[12] 1. Find the point P of intersection between the straight line $x=t, y=-t$, $z=t$ and the plane $3 x-2 y+z=1$. Then write the equation of the straight line passing through P and perpendicular to the plane.
[15] 2. Find the parametric equation of the line tangent to the curve $\vec{r}(t)=2 t e^{t} \vec{i}+(t+1)^{2} \vec{j}-8 \sin (2 t) \vec{k}$ at $t=0$.
[15] 3. Name the following quadrics and find the lengths of the semiaxes of the conics you get by cutting the quadrics with the plane $z=1$:
a) $\frac{x^{2}}{2}+\frac{y^{2}}{12}-z^{2}=1$, b) $x^{2}-\frac{y^{2}}{10}=1$, c) $2 x^{2}-\frac{y^{2}}{4}-z^{2}=0$.
[15] 4. Evaluate $f_{x x}, f_{x y}, f_{y x}$ and $f_{y y}$ for the function $f(x, y)=e^{2 x^{2}-3 y^{2}}$.
[20] 5. Consider the curve $\vec{r}(t)=(\sqrt{2} \cos t, \sin t, \sin t)$. Find a reparametrization $\vec{\sigma}(s)$ of the curve in terms of its arc-length parameter and use it to evaluate the unit tangent vector $\vec{T}(s)$ and the curvature $k(s)$. Finally, find the coordinated of the points on the curve with $s=\pi / 2$ and $s=\pi$ and their reciprocal distance on the curve.
[20] 6. A point moves in cilindrical coordinates with parametric equations

$$
r=5, \theta=3 t, z=2 t .
$$

Find the corresponding parametric equations in cartesian coordinates and identify the curve.
[20] 7. The values of the first partial derivatives at $(0,1)$ of the function $z=$ $f(x, y)$ are $f_{x}(0,1)=3$ and $f_{y}(0,1)=-1$. Find the polar coordinates $\left(r_{0}, \theta_{0}\right)$ of $(0,1)$ and use the chain rule to find the value of the first derivatives of $g(r, \theta)=f(x(r, \theta), y(r, \theta))$ at $\left(r_{0}, \theta_{0}\right)$.

Extra Credit
[10] 8. Write the equation of the plane $x=y$ in spherical coordinates.

