Howard University – Spring 2020 MATH 158, Section 1 Exam 1 – practice

- [12] 1. Find the point P of intersection between the straight line x = t, y = -t, z = t and the plane 3x 2y + z = 1. Then write the equation of the straight line passing through P and perpendicular to the plane.
- [15] 2. Find the parametric equation of the line tangent to the curve $\overrightarrow{r}(t) = 2te^t \overrightarrow{i} + (t+1)^2 \overrightarrow{j} 8\sin(2t) \overrightarrow{k}$ at t = 0.
- [15] 3. Name the following quadrics and find the lengths of the semiaxes of the conics you get by cutting the quadrics with the plane z = 1:
 a) x²/2 + y²/12 z² = 1, b) x² y²/10 = 1, c) 2x² y²/4 z² = 0.
- [15] 4. Evaluate f_{xx} , f_{xy} , f_{yx} and f_{yy} for the function $f(x, y) = e^{2x^2 3y^2}$.
- [20] 5. Consider the curve $\overrightarrow{r}(t) = (\sqrt{2}\cos t, \sin t, \sin t)$. Find a reparametrization $\overrightarrow{\sigma}(s)$ of the curve in terms of its arc-length parameter and use it to evaluate the unit tangent vector $\overrightarrow{T}(s)$ and the curvature k(s). Finally, find the coordinated of the points on the curve with $s = \pi/2$ and $s = \pi$ and their reciprocal distance on the curve.
- [20] 6. A point moves in cilindrical coordinates with parametric equations

$$r = 5, \theta = 3t, z = 2t.$$

Find the corresponding parametric equations in cartesian coordinates and identify the curve.

[20] 7. The values of the first partial derivatives at (0,1) of the function z = f(x,y) are $f_x(0,1) = 3$ and $f_y(0,1) = -1$. Find the polar coordinates (r_0,θ_0) of (0,1) and use the chain rule to find the value of the first derivatives of $g(r,\theta) = f(x(r,\theta), y(r,\theta))$ at (r_0,θ_0) .

Extra Credit

[10] 8. Write the equation of the plane x = y in spherical coordinates.