Howard University - Spring 2020

MATH 158, Section 1

Exam 1 - practice

[12] 1. Find the point P of intersection between the straight line $x=t, y=-t$, $z=t$ and the plane $3 x-2 y+z=1$, then write the equation of the straight line passing through P and perpendicular to the plane.

Solution: By plugging the parametric equations into the plane equation, we get $3 t+2 t+t=1$, namely $t=1 / 6$. The intersection pt therefore is $P=(1 / 6,-1 / 6,1 / 6)$. A vector perpendicular to the plane is the one of the coefficient of the plane equation, namely $\vec{\ell}=\langle 3,-2,1\rangle$, so the line perpendicular to the plane passing through P is

$$
\left\{\begin{array}{l}
x=1 / 6+3 t \\
y=-1 / 6+2 t \\
z=1 / 6+t
\end{array}\right.
$$

[15] 2. Find the parametric equation of the line tangent to the curve

$$
\vec{r}(t)=2 t e^{t} \vec{i}+(t+1)^{2} \vec{j}-8 \sin (2 t) \vec{k} \text { at } t=0
$$

Solution: All you need is $\vec{r}(0)$ and $\vec{v}(0)=d \vec{r} /\left.d t\right|_{t=0}$, since the equation of the tangent will be $\vec{\ell}(t)=\vec{r}(0)+t \vec{v}(0)$. Since $\vec{r}(0)=(0,1,0)$ and $\vec{v}(t)=\left\langle 2\left(e^{t}+t e^{t}\right), 2(t+1),-16 \cos (2 t)\right\rangle$, so that $\vec{v}(0)=\langle 2,2,-16\rangle$, the line is $x=2 t, y=1+2 t, z=-16 t$.
[15] 3. Name the following quadrics and find the lengths of the semiaxes of the conics you get by cutting the quadrics with the plane $z=1$:
a) $\frac{x^{2}}{2}+\frac{y^{2}}{12}-z^{2}=1$, b) $x^{2}-\frac{y^{2}}{10}=1$, c) $2 x^{2}-\frac{y^{2}}{4}-z^{2}=0$.

Solution: (a) is a 1 -sheeted hyperboloid. Its intersection with the $z=1$ plane is the conic (not quadric!) $\frac{x^{2}}{2}+\frac{y^{2}}{12}=2$, namely the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{24}=1$. Its semiaxes are 2 on the x axis and $2 \sqrt{6}$ on the y axis.
(b) is a cilinder over a hyperbola. Its intersection with the $z=1$ plane are the hyperbola $x^{2}-\frac{y^{2}}{10}=1$ (remark: the equation looks the deceivingly same: the first is an equation in the $x, y, z 3 \mathrm{D}$ space, so it represents a surface, while the second is an equation in the $x, y 2 \mathrm{D}$ plane, so it represents a curve!). Its semiaxes are respectively 1 and $\sqrt{10}$ (strictly speaking, a hyperbola has
only one semiaxis, the one corresponding to the variable with the positive sign in front).
(c) is a cone. Its intersection with the $z=1$ plane is the hyperbola $2 x^{2}-\frac{y^{2}}{4}=1$, with semiaxes $1 / \sqrt{2}$ and $1 / 2$.
[15] 4. Evaluate $f_{x x}, f_{x y}, f_{y x}$ and $f_{y y}$ for the function $f(x, y)=e^{2 x^{2}-3 y^{2}}$.
Solution: First we need to evaluate f_{x} and f_{y} :

$$
f_{x}(x, y)=4 x e^{2 x^{2}-3 y^{2}}, f_{y}=-6 y e^{2 x^{2}-3 y^{2}}
$$

Hence

$$
\begin{gathered}
f_{x x}(x, y)=4 e^{2 x^{2}-3 y^{2}}+16 x^{2} e^{2 x^{2}-3 y^{2}}=4\left(1+4 x^{2}\right) e^{2 x^{2}-3 y^{2}} \\
f_{x y}(x, y)=-4 x 3 y e^{2 x^{2}-3 y^{2}}=-12 x y e^{2 x^{2}-3 y^{2}} \\
f_{y x}(x, y)=-6 y 4 x e^{2 x^{2}-3 y^{2}}=-12 x y e^{2 x^{2}-3 y^{2}}=f_{x y}(x, y) \\
f_{y y}(x, y)=-6 e^{2 x^{2}-3 y^{2}}+36 y^{2} e^{2 x^{2}-3 y^{2}} .=-6(1-6 y) e^{2 x^{2}-3 y^{2}} .
\end{gathered}
$$

[20] 5. Consider the curve $\vec{r}(t)=(\sqrt{2} \cos t, \sin t, \sin t)$. Find a reparametrization $\vec{\sigma}(s)$ of the curve in terms of its arc-length parameter and use it to evaluate the unit tangent vector $\vec{T}(s)$ and the curvature $k(s)$. Finally, find the coordinates of the points on the curve with $s=\pi / \sqrt{2}$ and $s=\sqrt{2} \pi$ and their reciprocal distance on the curve.
Solution: the relation between t and the arclength parameter is given by

$$
s(t)=\int_{0}^{t}\|\vec{v}(t)\| d t
$$

Since

$$
\vec{v}(t)=\langle-\sqrt{2} \sin t, \cos t, \cos t\rangle
$$

then

$$
s(t)=\int_{0}^{t} \sqrt{2 \sin ^{2} t+\cos ^{2} t+\cos ^{2} t} d t=\int_{0}^{t} \sqrt{2} d t=\sqrt{2} t .
$$

Hence $t=s / \sqrt{2}$ and the curve, as function of s, writes

$$
\vec{\sigma}(s)=\left(\sqrt{2} \cos \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}, \sin \frac{s}{\sqrt{2}}\right) .
$$

Then

$$
\vec{T}(s)=\frac{d}{d s} \vec{\sigma}(s)=\left(-\cos \frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sin \frac{s}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sin \frac{s}{\sqrt{2}}\right)
$$

and

$$
k(s)=\left\|\frac{d}{d s} \vec{T}(s)\right\|=\left\|\left(-\frac{1}{\sqrt{2}} \sin \frac{s}{\sqrt{2}}, \frac{1}{2} \cos \frac{s}{\sqrt{2}}, \frac{1}{2} \cos \frac{s}{\sqrt{2}}\right)\right\|=\frac{1}{\sqrt{2}} .
$$

Finally, $\vec{\sigma}(\pi / \sqrt{2})=(0,1,1)$ and $\vec{\sigma}(\sqrt{2} \pi)=(-\sqrt{2}, 0,0)$. The distance of these two points on the curve is exactly $\sqrt{2} \pi-\pi / \sqrt{2}$ since s is the arclegth parameter.
[20] 6. A point moves in cilindrical coordinates with parametric equations

$$
r=5, \theta=3 t, z=2 t .
$$

Find the corresponding parametric equations in cartesian coordinates and identify the curve.
Solution: In cartesian coordinates, the curve writes as

$$
\vec{r}(t)=\langle r \cos \theta=5 \cos (3 t), y=r \sin \theta=5 \sin (3 t), z=2 t\rangle,
$$

which is the parametric equation of a helix.
[20] 7. The values of the first partial derivatives at $(0,1)$ of the function $z=$ $f(x, y)$ are $f_{x}(0,1)=3$ and $f_{y}(0,1)=-1$. Find the polar coordinates $\left(r_{0}, \theta_{0}\right)$ of $(0,1)$ and use the chain rule to find the value of the first derivatives of $g(r, \theta)=f(x(r, \theta), y(r, \theta))$ at $\left(r_{0}, \theta_{0}\right)$.
Solution: in order to solve this problem you need to know two things: 1 . the multi-variable chain rule for a function $G(t)=F(x(t), y(t))$, namely

$$
\frac{d}{d t} F(t)=\dot{x}(t) F_{x}(x(t), y(t))+\dot{y}(t) F_{y}(x(t), y(t))
$$

and the formula for polar coordinates, namely

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

Hence,

$$
\frac{\partial}{\partial r} g(r, \theta)=\frac{\partial x}{\partial r} f_{x}(x(r, \theta), y(r, \theta))+\frac{\partial y}{\partial r} f_{y}(x(r, \theta), y(r, \theta))
$$

and

$$
\frac{\partial}{\partial \theta} g(r, \theta)=\frac{\partial x}{\partial \theta} f_{x}(x(r, \theta), y(r, \theta))+\frac{\partial y}{\partial \theta} f_{y}(x(r, \theta), y(r, \theta))
$$

BTW notice that this is actually the "full" notation. Using the "shortcut" notation I use on the blackboard, the two relations above write

$$
g_{r}(r, \theta)=x_{r}(r, \theta) f_{x}(x(r, \theta), y(r, \theta))+y_{r}(r, \theta) f_{y}(x(r, \theta), y(r, \theta))
$$

and

$$
g_{\theta}(r, \theta)=x_{\theta}(r, \theta) f_{x}(x(r, \theta), y(r, \theta))+y_{\theta}(r, \theta) f_{y}(x(r, \theta), y(r, \theta)) .
$$

An even more compact notation would be

$$
g_{r}=x_{r} f_{x}+y_{r} f_{y}
$$

and

$$
g_{\theta}=x_{\theta} f_{x}+y_{\theta} f_{y},
$$

which one can write matricially as

$$
\binom{g_{r}}{g_{\theta}}=\left(\begin{array}{ll}
x_{r} & y_{r} \\
x_{\theta} & y_{\theta}
\end{array}\right)\binom{f_{x}}{f_{y}},
$$

but in this form you have to remember that the derivatives of x and y must be evaluated at (r, θ) while those of f at $(x(r, \theta), y(r, \theta))$.

Ok, going back to solving the problem,
$g_{r}\left(r_{0}, \theta_{0}\right)=x_{r}\left(r_{0}, \theta_{0}\right) f_{x}\left(x\left(r_{0}, \theta_{0}\right), y\left(r_{0}, \theta_{0}\right)\right)+y_{r}\left(r_{0}, \theta_{0}\right) f_{y}\left(x\left(r_{0}, \theta_{0}\right), y\left(r_{0}, \theta_{0}\right)\right)$ and similarly for θ.

The problem says that $\left(r_{0}, \theta_{0}\right)$ are the polar coordinates of $(0,1)$. If you don't see at once the solution, you must solve the system

$$
\left\{\begin{array}{l}
0=r_{0} \cos \theta_{0} \\
1=r_{0} \sin \theta_{0}
\end{array}\right.
$$

from which you hopefully will be able to tell that $\theta_{0}=\pi / 2$ and $r_{0}=1$ (because the cosine is zero only at $\pi / 2$ and $3 \pi / 2$, the sine is equal to 1 only at $\pi /$ and $r_{0}^{2}=0+1$).

Hence, finally,

$$
\begin{gathered}
g_{r}\left(1, \frac{\pi}{2}\right)= \\
=x_{r}\left(1, \frac{\pi}{2}\right) f_{x}\left(x\left(1, \frac{\pi}{2}\right), y\left(1, \frac{\pi}{2}\right)\right)+y_{r}\left(1, \frac{\pi}{2}\right) f_{y}\left(x\left(1, \frac{\pi}{2}\right), y\left(1, \frac{\pi}{2}\right)\right)= \\
=x_{r}\left(1, \frac{\pi}{2}\right) f_{x}(0,1)+y_{r}\left(1, \frac{\pi}{2}\right) f_{y}(0,1)= \\
=3 x_{r}\left(1, \frac{\pi}{2}\right)-y_{r}\left(1, \frac{\pi}{2}\right) .
\end{gathered}
$$

and, similarly,

$$
g_{\theta}\left(1, \frac{\pi}{2}\right)=3 x_{\theta}\left(1, \frac{\pi}{2}\right)-y_{\theta}\left(1, \frac{\pi}{2}\right) .
$$

We have seen in class the derivatives of x and $y \mathrm{w} /$ resp to r and θ :

$$
x_{r}=\cos \theta, y_{r}=\sin \theta, x_{\theta}=-r \sin \theta, y_{\theta}=r \cos \theta
$$

so

$$
x_{r}\left(1, \frac{\pi}{2}\right)=0, y_{r}\left(1, \frac{\pi}{2}\right)=1, x_{\theta}\left(1, \frac{\pi}{2}\right)=-1, y_{\theta}\left(1, \frac{\pi}{2}\right)=0 .
$$

Finally, we get that

$$
g_{r}\left(1, \frac{\pi}{2}\right)=3 \cdot 0-1=-1, g_{\theta}\left(1, \frac{\pi}{2}\right)=3 \cdot(-1)-0=-3 .
$$

In matricial form,

$$
\binom{g_{r}}{g_{\theta}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{3}{-1}=\binom{-1}{-3} .
$$

Extra Credit

[10] 8. Write the equation of the plane $x=y$ in spherical coordinates.

Solution: In spherical coordinates, $x=\rho \cos \theta \sin \phi$ and $x=\rho \sin \theta \sin \phi$, so the equation $x=y$ becomes

$$
\rho \cos \theta \sin \phi=\rho \sin \theta \sin \phi
$$

namely

$$
\cos \theta=\sin \theta
$$

and so

$$
\tan \theta=1
$$

which is also equivalent to the more explicit

$$
\theta=\pi / 4,3 \pi / 4
$$

