Howard University - Fall 2020

MATH 158, Section 1

Exam 2

[20] 1. Find unitary vectors for which the directional derivative of $f(x, y)=3 x y^{2}-x \ln y+\sin (\pi x y)$ is maximum, minimum and zero at $(2,1)$. Then find the linearization of $f(x, y)$ at $(2,1)$ and use it to evaluate $f(2.1,1.9)$ without calculator. Finally, find the equation of the plane tangent to the graph $z=f(x, y)$ at $(2,1)$.
[20] 2. Find all local maxima, minima and saddle points of the function

$$
f(x, y)=11 x^{2}-2 x^{3}+2 y^{2}+4 x y
$$

[20] 3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$ does not exist.
[25] 4. Find the absolute maximum and minimum of $f(x, y)=x^{2}+2 y^{2}-4 y$ in the closed disc $x^{2}+y^{2} \leq 9$.
[15] 5. The function $z(x, y)$ is implicitly defined by the equation

$$
z^{5}-x z+y+1=3 .
$$

Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(1,2,1)$.
Extra Credit:
[10] 6. Suppose that $f(x, y)$ has a critical point at (a, b), namely $f_{x}(a, b)=$ $f_{y}(a, b)=0$, and that $f_{x x}(a, b)$ and $f_{y y}(a, b)$ have opposite signs. What can you say about the kind of critical point? Explain why.

