Howard University - Spring 2020
 MATH 158, Section 1
 Exam 2 - practice solutions

[20] 1. Find unitary vectors for which the directional derivative of $f(x, y)=3 x y^{2}-x \ln y+\sin (\pi x y)$ is maximum, minimum and zero at $(2,1)$. Then find the linearization of $f(x, y)$ at $(2,1)$ and use it to evaluate $f(2.1,1.9)$ without calculator. Finally, find the equation of the plane tangent to the graph $z=f(x, y)$ at $(2,1)$.

Solution: Since $\vec{\nabla} f=\left\langle 3 y^{2}-\ln y+\pi y \cos (\pi x y), 6 x y-x / y+\pi x \cos (\pi x y)\right\rangle$,

$$
\vec{\nabla} f(2,1)=\langle 3+\pi, 10+2 \pi\rangle .
$$

The direction of maximal growth for f at $(2,1)$ is the direction of the gradient. The unit vector in that direction is

$$
\vec{u}=\frac{\langle 3+\pi, 10+2 \pi\rangle}{\|\langle 3+\pi, 10+2 \pi\rangle\|} .
$$

The direction of maximal decrease is simply $-\vec{u}$. There are two unit vectors with respect to which the derivative is zero:

$$
\vec{v}=\frac{\langle 10+2 \pi,-(3+\pi)\rangle}{\|\langle 3+\pi, 10+2 \pi\rangle\|} \text { and }-\vec{v}
$$

The linearization of $f(x, y)$ at $(2,1)$ is
$f(x, y) \simeq f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)=6+(3+\pi)(x-2)+(10+2 \pi)(y-1)$
so that

$$
f(2.1,1.9) \simeq 6+(3+\pi) \cdot 0.1+(10+2 \pi) \cdot 0.9
$$

By plugging 3 for π we get $f(2,1) \simeq 6+0.6+14.4=21$. An exact calculation gives $f(2.1,1.9) \simeq 21.3637$, so with our very rough calculation we made an error of just about $0.3 / 21 \simeq 1 \%$!

The equation of the tangent plane can be obtained by just replacing $f(x, y)$ by z in the expression of the linearization:

$$
z=6+(3+\pi)(x-2)+(10+2 \pi)(y-1) .
$$

[10] 2. Find all local maxima, minima and saddle points of the function

$$
f(x, y)=11 x^{2}-2 x^{3}+2 y^{2}+4 x y
$$

Solution: Local extremal points of f are given by the zeros of its gradient. Since $\vec{\nabla} f=\left(22 x-6 x^{2}+4 y, 4 y+4 x\right)$ we must solve the system

$$
\begin{cases}22 x-6 x^{2}+4 y & =0 \\ 4 y+4 x & =0\end{cases}
$$

From the second we get that $y=-x$, so the first becomes $18 x-6 x^{2}=0$, whose solutions are $x=0,3$. Hence the gradient is zero at $(0,0)$ and $(3,-3)$. The second derivatives are $f_{x x}=22-12 x, f_{x y}=4, f_{y y}=4$, so that $f_{x x} f_{y y}-f_{x y}^{2}=$ $88-48 x-16=72-48 x$. At $(0,0), f_{x x} f_{y y}-f_{x y}^{2}=72>0$ and $f_{x x}=22>0$, so $(0,0)$ is a minimum. At $(3,3), f_{x x} f_{y y}-f_{x y}^{2}=72-144=-72<0$ and so it is a saddle.
[10] 3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$ does not exist.
Solution: On the x axis, $\frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=0$ and so the limit is 0 . On the diagonal $y=x$, $\frac{x^{2} y^{2}}{x^{4}+3 y^{4}}=\frac{x^{2} x^{2}}{x^{4}+3 x^{4}}=\frac{x^{4}}{4 x^{4}}=\frac{1}{4}$. Since we get different limits approaching $(0,0)$ on different lines, then the limit does not exist.
[20] 4. Find the absolute maximum and minimum of $f(x, y)=x^{2}+2 y^{2}-4 y$ in the closed disc $x^{2}+y^{2} \leq 9$.
Solution: The list of the candidate points to be a max or a min is the set of solutions of $\vec{\nabla} f=\overrightarrow{0}$ inside the disc plus the solutions of $\vec{\nabla} f=\lambda \vec{\nabla} g$ on the boundary of the disc.

Since $\vec{\nabla} f=\langle 2 x, 4 y-4\rangle$, its only zero is $(0,1)$. Now we need to solve the system

$$
\begin{cases}2 x & =\lambda 2 x \\ 4 y-4 & =\lambda 2 y \\ x^{2}+y^{2} & =9\end{cases}
$$

This is a 8th degree system so it can have at most 8 solutions. From the first equation we see that either $x=0$ or $\lambda=1$. If $x=0$ then from the last equation
we see that $y= \pm 3$, giving us the two new candidates $(0, \pm 3)$. If $\lambda=1$ then $4 y-4=2 y$ and so $y=2$. Then from the last equation we get that $x= \pm \sqrt{5}$, so we have other two candidates: $(\pm \sqrt{5}, 2)$. There cannot be other candidates. Now

$$
f(0,1)=-2, f(0,3)=6, f(0,-3)=30, f(\pm \sqrt{5}, 2)=5
$$

so the maximum is at $(0,-3)$ and the minimum at $(0,1)$.
[20] 5. The function $z(x, y)$ is implicitly defined by the equation

$$
z^{5}-x z+y+1=3 .
$$

Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(1,2,1)$.
Solution: By taking the partial derivative with respect to x of both sides we find

$$
5 z^{4} \partial_{x} z-z-x \partial_{x} z=0
$$

By taking the partial derivative with respect to y of both sides we find

$$
5 z^{4} \partial_{y} z-x \partial_{y} z+1=0
$$

Hence

$$
\partial_{x} z=\frac{z}{5 z^{4}-x}, \quad \partial_{y} z=-\frac{1}{5 z^{4}-x}
$$

In the point $x=1, y=2, z=1$ we get therefore

$$
\partial_{x} z=\frac{1}{4}, \quad \partial_{y} z=-\frac{1}{4} .
$$

