Howard University - Spring 2020

MATH 158, Section 1

Exam 3 - practice test

[10] 1. Use a double integral to find the volume of the solid under the plane $z=2 x+3 y$ and over the rectangle $R=\{(x, y): 3 \leq x \leq 6,1 \leq y \leq 2\}$.
[15] 2. Evaluate the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$ for $\vec{F}=\langle 2 x-y, x+3 y-z, 3 z-2 x\rangle$ over the circle of radius 1 given by the parametric equations $\vec{r}(t)=$ $(\cos t, \cos t, \sin t-1), 0 \leq t \leq 2 \pi$. You might find convenient applying Stokes' Theorem.
[15] 3. Reverse the order of integration in

$$
\int_{0}^{2} \int_{x^{2}}^{4} x e^{-y^{2}} d y d x
$$

and evaluate the integral.
[15] 4. Evaluate the double integral $\iint_{R} y d A$, where R is the region between the circle $x^{2}+y^{2}=9$ and $x^{2}+y^{2}=4$, in both Cartesian and Polar coordinates.
[15] 5. Consider the vector field $\vec{F}(\vec{x})=\left\langle 2 x-y, 3 y^{2}-x\right\rangle$.

1. Verify that \vec{F} is conservative;
2. Find a function V such that $F=\vec{\nabla} V$;
3. Evaluate the line integral of \vec{F} on the curve $\vec{x}(t)=\left(1+\cos (\pi t), \sqrt{1+t^{3}}\right)$ for $0 \leq t \leq 2$.
[15] 6. Evaluate the flux $\oiint_{S} \vec{F} \cdot \vec{d} S$ of $\vec{F}=\left\langle x y z, x+y+z, x^{2}-3 z\right\rangle$ over the cube S given by $0 \leq x, y, z \leq 1$. You might find convenient applying the divergence theorem.
[15] 7. Write down the integral

$$
\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{x^{2}+y^{2}}^{32-x^{2}-y^{2}} d z d y d x
$$

in cylindrical coordinates and evaluate it.

Extra Credit:

1. Evaluate the Jacobian of the transformation $x=u+v, y=2 u+2 v$. What does the result mean from the geometrical point of view?
2. Find a way to evaluate

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

