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HISTORY OF THE RIEMANN MAPPING THEOREM 

J. L. WALSH, University of Maryland 

The Riemann mapping theorem, that an arbitrary simply connected region 
of the plane can be mapped one-to-one and conformally onto a circle, first appeared 
in the Inaugural dissertation of Riemann (1826-1866) in 1851. The theorem is im- 
portant, for by it a result proved for the circle can often be transformed from the 
circle to a more general region. The proof is difficult, as involving both behavior 
of a function in the small (conformal mapping) and behavior in the large (one-to- 
one mapping). Riemann's proof was open to criticism and in the following decades 
numerous mathematicians sought for a proof, e.g., H. A. Schwarz (1843-1921), 
A. Harnack (1851-1888), H. Poincare (1854-1912), etc., until the first rigorous 
proof was given in 1900 by W. F. Osgood. The proof of Osgood represented, in my 
opinion, the "coming of age" of mathematics in America. Until then, numerous 
American mathematicians had gone to Europe for their doctorates, or for other 
advanced study, as indeed did Osgood. But the mathematical productivity in this 
country in quality lagged behind that of Europe, and no American before 1900 
had reached the heights that Osgood then reached. 

William Fogg Osgood (1864-1943) was born in Boston in 1864, graduated from 
Harvard College in 1886, stayed in Cambridge for a year of graduate work, and 
then went to Gottingen with a Harvard fellowship for further study, especially 
with Felix Klein (1849-1925). According to gossip, Osgood became so enamored 
of a Gottingen lady that his work suffered and Klein sent him to Erlangen for his 
doctorate. In any case, he was accorded the degree from Erlangen in 1890 for a thesis 
on Abelian integrals, and one or two days later he married the girl in G6ttingen, 
and one or two days still later they sailed for the United States of America. His 

Professor Walshreceived his Harvard Ph. D. under Maxime Bocher and George David Birkhoff. 
He continued at Harvard as Instructor through Perkins, Professor of Mathematics and became 
Professor Emeritus in 1966; since then he has been at the Univ. of Maryland. He has spent leaves of 
absence at the Sorbonne, the Univ. of Munich, the Institute for Advanced Study, and has spent 
several sabbatical leaves in Paris and Jerusalem. 

He is a Fellow of the American Academy of Arts and Sciences and a Member of the National 
Academy of Sciences. Both the SIAM Journal on Numerical Analysis and the Journal of Approxim- 
ation Theory have dedicated volumes to Joseph Walsh. His main research is on zeros, extremal 
problems, and approximations by polynomials and orthogonal functions. He is widely known for 
his invention of the Walsh functions. 
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Russian Tranlation - 1961), Location of Critical Points of Analytic and Harmonic Functions (Amer. 
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HISTORY OF THE RIEMANN MAPPING THEOREM 271 

early mathematical work was also of high quality. During the 1890's he was Lebes- 
gue's forerunner in the study of sequences of functions of a real variable. Osgood 
taught at Harvard from 1890 until his retirement in 1933. 

Osgood seems not to have received the recognition for his work that he deserves. 
For instance, C. Carath6odory and G. Julia each wrote a book on conformal mapping 
without mention of the name of Osgood. 

We proceed now with the proof of Riemann's theorem! 
By a simply connected region Riemann understood a region bounded by a simple 

closed curve, and before him special mappings by simple functions were well known. 
We assume the given region to be bounded, which may require an elementary pre- 
liminary transformation. Let us examine Riemann's proof (based on Dirichlet's 
Principle) and postpone discussion of its validity. 

Mapping of a region T onto a circle is equivalent to the existence of Green's 
function for T, namely a function G(z) such that 

(1) G(z) is harmonic in T except at the origin 0, assumed interior to T; 
(2) in the neighborhood of 0 the function takes the form G(z) _ G(z) + log r, 

where r = I z I and G&(z) is harmonic throughout T; 
(3) G(z) is continuous and equal to zero at every point of the boundary C of T. 
These three conditions determine G(z) uniquely. Green's function for a region T 

is invariant under one-to-one conformal mapping of T. 
If the function w = 0(z) maps T (Figure 1) onto I w I < 1 so that 4(0) = 0, 

then we clearly have 

+(z) = eG(-)+H(z) 

where H(z) is conjugate to G(z) in T, for each of the conditions (1), (2), (3), is satis- 
fied by G(z) as thus defined. Conversely, if G(z) is Green's function for T with pole 
in 0, then every point of T is transformed by w = +(z) into a point I w < 1 . Each 
locus L,: I +(z) j = r, 0< r < 1 in T bounds two subregions of T, where 
G(z) > log r and G(z) < log r respectively; the locus L, has no multiple points and 

z-pl. 
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272 J. L. WALSH [March 

separates 0 and C. On L, we have aG/In # 0, where n is the interior normal for the 
latter subregion, whence 

rG ds = argw Lr = OrH ds f logr ds = 2X, 

so the transformation w = +(z) defines a one-to-one map of T onto j wI < 1. 
If T is given, the determination of G(z) requires the solution of the Dirichlet 

problem for T with the prescribed boundary values logr on C, a problem that 
Riemann treated by means of Dirichlet's principle. The physical evidence for the 
existence of G(z) is great, for in the steady two-dimensional flow of heat, the temper- 
ature is a harmonic function provided T is a uniform body whose continuous 
boundary temperatures on C are prescribed. 

The Dirichlet integral defined for a function u(x, y) given in a region T is de- 
fined as 

D(u) = JJ [(a)2 + aul 2 dxdy (20). 

T 

We compare this integral with the corresponding integral where u(x, y) is replaced 
by u(x, y) + a v(x, y), where v(x, y) vanishes on the boundary C of T. Thus we 
have, to study the function u(x, y) with given boundary values minimizing D(u), 

fJri Du [au\d1 ('du av au av 
D(u +v|+ (dx dy++ 2(e - + dxddy 1 1 /x Lo ay (vx ox ay ay 

T ~~~~~~~~~T Considered as a function of v, this second term on the right must be zero, namely, 

ca au8~ a (au \1 C J axjv- - + -~ - v-j---)dxdy -J vVudxdy =0 
T ~~~~~~~~~~T 

for all choices of the arbitrary function v. The former of these two integrals reduces 
to two contour integrals over C with v (= 0 on C) as a factor of the integrand. Thus 
for the function u minimizing D(u), v2 u = 0 throughout T, and u Is harmonic in T. 
"The function solving the boundary value problem is the function minimizing D(u)." 

This "proof," although accepted by Riemann, is obviously open to various 
objections: 

(1) The treatment has a meaning only if C has certain properties of smoothness 
and differentiability. 

(2) The fact that D(u) has a non-negative greatest lower bound does not show the 
existence of a minimum (Weierstrass). 
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1973] HISTORY OF THE RIEMANN MAPPING THEOREM 273 

(3) The fact that D(u) < Xo for some u(x, y) satisfying the given boundary values 
needs to be shown (Prym 1871, Hadamard 1906). 

It is convenient to assume that T is bounded; if not, we may use the transformation 
w = 1(Z - a) /(z - f), where a and , are two distinct boundary points of T. Then 
T in the z-plane corresponds to two regions T1 and T2 on the w-sphere, one-to-one 
conformal images of T, which have no common point. If two such regions do not 
exist, a point w1 in T, can be joined to a point w1 by a path in T1 separating w = 0 
and w = oo, so there is a closed curve in T separating a and fi, and T is not simply 
connected. Inversion of a point of T2 to infinity now maps T1 onto a bounded 
region. 

We mention here several results that we shall need for discussion of Osgood's 
proof. 

(1) Axel Harnack's Theorem (1887). If a function un is harmonic in a region Tfor 
all sufficiently large values of n, and if u. increases at all points of Twhen n increases; 
if furthermore at a single point of T u. approaches a (finite) limit when n becomes 
infinite; then un converges at all points of T, to a function harmonic throughout T. 
(It is reported that when Harnack first told Felix Klein of this theorem, the latter 
refused to believe its validity.) 

(2) H. A. Schwarz. Green's function exists for a simply connected region T bounded 
by a finite number of analytic arcs. (Schwarz used the alternating method, due to C. 
Neumann.) 

(3) Lemma. If the bounded region T contains the closure of the region T1, and if 
O lies in T1, then the respective Green's functions g and gI with poles in 0 for T and 
T1 satisfy the inequality g > g1 > 0 in T1. For the difference g - g, is harmonic in 
T1, and g1 = 0, g > g1, on the boundary of TI, whence g - g1 > 0, g - g1 0, 
throughout T1. 

z-pl. 
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274 J. L. WALSH [March 

(4) Given a region T1, it can be exhausted by a monotonic sequence of subregions, 
composed for instance of adjacent squares whose sides are parallel to the coordinate 
axes. 

image of 
P1 

Reco = logR 

FIG. 3 

Given, now, (Figure 2) a bounded simply connected region T1 of the z-plane, we 
show that T1 can be transformed into a region T of the w-plane in such a manner 
that a given boundary point P1 of T1 corresponds to a point P of a circle F which 
contains T. Let T1 be considered to lie on the Riemann surface for co = log z with 
P1 at z = 0. The image T2 in the co-plane of T1 consists (Figure 3) of an infinite 
number of images of T1, each the translation of another such region by the vector 

z Gl) W 
. , , ~~~~~~~~w-pl. 

P1 00 P 

T1 T2 T 

Q oF 

FIG. 4 
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w = + 2ii. In each such region the point at infinity w = oo corresponds to P1, for 
all boundary points of T1 in the region j z J < a correspond to points co with Re o 
< log e. Let I z I < R be the smallest circular disk with center P1 containing T1; 
then all points of T2 lie in the half-plane Re o < log R. A linear transformation 
carrying to infinity in the w-plane a finite point w0, Re co0 > log R; carries T2 into a 
region T of the w-plane (Figure 4) which lies in a circular disk D (image of Re o 
< log R) whose boundary passes through the image P of P1. 

It may be noted too that an arbitrary point Q of T2 with Im Q = Im co0 can be 
chosen so that Q is simultaneously carried into Ow in the w-plane. The point O, in 
T is then the center of D. 

Let Dn be a monotonic sequence of subregions of Tcontaining 0,, and each with 
a Green's function gn with pole in 0, with Dn+1 v Dn, exhausting T. Let g0 be 
Green's function for D with pole in Ow; then gn <g0 in D,. Let g = IimnO, gn, 
defined (Harnack) and harmonic throughout T except in 0. Then g is Green's 
function for T; we have 0 < g. < go, 0 < g ! go. Suppose Pk e T, Pk -+ P. Since 

lim g9(Pk)=O for Pk e D, 
Pk- P 

we also have 

lim g(Pk) =0, g(P) = 0, 
Pk-+P 

and this shows the existence of Green's function for Tand thus completes Osgood's 
proof of Riemann's theorem. 

We have not mentioned the work of Hilbert (1862-1943), who gave a treatment of 
Riemann's theorem in weakened form by new methods of the Calculus of Variations, 
commencing about 1900. This general problem in the Calculus of Variations was 
presented as Problem 20 in his famous Paris lecture of 1900. He suggested in particular 
thesis topics on the subject for several American doctoral students in Gottingen: 
C. A. Noble, E. R. Hedrick, and Max Mason. However, Hilbert's method required 
certain smoothness properties of the boundary and of the limit function, and was 
thus less general than the idea of the original Dirichlet principle and less general 
than Osgood's proof. A new method of proof, based on function theoretic rather 
than potential theoretic properties, was developed by F. Riesz and L. Fejer, published 
in 1923 by T. Rad6. Montel's theory of normal families was used, and a lemma due 
to Koebe. This is the standard modern proof. 

Research supported in part by U. S. Air Force of Scientific Research, Grant AF 69-1690. 

References 

1. B. Riemann, Grundlagen fur eine allgemeine Theorie der Funktionen einer veranderlichen 
complexen Gr6sse. Inauguraldissertation, G6ttingen, 1851. 

This content downloaded by the authorized user from 192.168.52.70 on Tue, 11 Dec 2012 20:50:08 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


276 S. GREITZER [March 

2. A. Harnack, Logarithmisches Potential, Leipzig, 1887, p. 167. 
3. H. A. Schwarz, Zur Integration der partiellen Differentialgleichung Au = 0, Ges. Math. 

Abhandlungen vol. 11. pp. 144-171. See also Osgood, Funktionentheorie, Fifth Ed. Leipzig 1928, 
Ch. 14?4. 

4. Henri Poincar6, Sur un th6or6me de la th6orie g6n6rale des fonctions, Bull. Soc. Math. 
France, 11 (1883) 112-125. 

5. , Sur l'uniformisation des fonctions analytiques, Acta Mathematica, 31 (1907) 1-63. 
6. W. F. Osgood, On the existence of Green's function for the most general simply connected 

plane region, Trans. Amer. Math. Soc., 1 (1900) 310-314. 
7. , Funktionentheorie, Fifth Ed. Leipzig 1928, Ch. 14 ? 5. 
8. D. Hilbert, uYber das Dirichletsche Prinzip, Jber. Deutsch. Math-Verein., 8 (1900) 184-188. 
9. , uYber das Dirichletsche Prinzip, Math. Annalen, 59 (1904) 161-186. 

THE FIRST U. S. A. MATHEMATICAL OLYMPIAD 

S. GREITZER, Rutgers -- The State University 

At its meeting on September 1, 1971, the Mathematical Association of America 
agreed to sponsor a U. S. A. Mathematical Olympiad in addition to the Annual 
High School Mathematics Examination. The purpose of the Olympiad was to attempt 
to discover secondary school students with superior mathematical talent -who 
possessed mathematical creativity and inventiveness as well as competence in com- 
putational techniques. Participation was to be limited to about 100 students selected 
from the Honor Roll on the High School Mathematics Examination, plus a few 
students of superior ability selected from those states which did not participate in 
the High School Mathematics Examination. The Olympiad itself was to consist of 
five essay-type problems requiring mathematical power on the part of the partici- 
pants. The committee responsible for conducting the Olympiad consisted of Samuel 
L. Greitzer, Rutgers University, Alfred Kalfus, Babylon High School, Murray 
S. Klamkin, Ford Motor Company, and Nura D. Turner, SUNY at Albany. 

Invitations were sent to 106 students on April 14, 1972, and 100 students took 
the Olympiad on May 9, 1972. The committee which prepared the Olympiad 
consisted of Murray Klamkin, D. J. Newman, Yeshiva University and Abraham 
Schwartz, CUNY. The Olympiad is reproduced below. (Solutions have been provided 
at the end of this article.) 

THE FIRST U. S. A. MATHEMATICAL OLYMPIAD 

MAY 9, 1972 

1. The symbols (a, b, ..., g) and [a, b, ..., g] denote the greatest common divisor 
and the least common multiple, respectively, of the positive integers a, b, ...g. For 
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