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 On the Pointwise Limit of

 Complex Analytic Functions
 Alan F. Beardon and David Minda

 1. INTRODUCTION. While most elementary texts on real analysis contain an ex-
 ample to show that a pointwise limit of differentiable functions need not be differ-
 entiable, hardly any texts on complex analysis contain an example to show that the
 pointwise limit of analytic functions need not be analytic. This is a rather odd state of
 affairs, for the whole tenor of complex analysis is that one obtains so much from so
 little, and if pointwise convergence is to be sufficient one would expect it to be so in
 complex analysis rather than in real analysis. Our primary aim in this expository pa-
 per is to stimulate interest in examples of pointwise convergent sequences of analytic
 functions in the hope that they might be mentioned more often, and to reach as wide
 an audience as possible we have kept our discussion at an elementary level.

 We begin in section 2 with two simple examples to show that the pointwise limit
 of a sequence of analytic functions need not be analytic. Both examples are known
 and, as presented here, are suitable for inclusion in a first course in complex function
 theory. As these examples are the main motivation for the paper, we have given them
 in some detail. The rest of the paper more or less follows a chronological account of
 the history of this topic, starting with the work of Stieltjes in 1894. It is of interest
 to note that despite the repeated use of Montel's theory of normal families in modem
 discussions of this topic, most of this work was completed before Montel introduced
 normal families. For more details of the history of this subject, see [11].

 2. EXAMPLES OF A NON-ANALYTIC LIMIT FUNCTION. From a modem

 viewpoint, it is easy to see from Montel's theory of normal families why an example
 of a non-analytic pointwise limit of analytic functions requires a little work. Montel
 proved that the family of functions f that are analytic in a region Q, and that map
 02 into the complement of three given points w1, w2, and w3 in the extended plane, is
 normal in Q2. It follows from this that if a sequence f, of analytic functions is pointwise

 convergent in Q2, and if each f, fails to take any of the values wj there, then the
 convergence is locally uniform, and the limit is analytic. Thus, in any example f, of

 the type we are seeking, f, (2) must cover all but two points of the complex sphere.
 However, we take a different route, and we shall not use Montel's theorem at all in this
 paper.

 Our first example of a non-analytic limit needs only Cauchy's Integral Formula; it
 is a slight modification of Exercise 11 in [12, p. 326], and a more detailed discussion
 (though not on this aspect) can be found in [5, pp. 160-162], where it is shown to
 be closely related to the so-called Mittag-Leffler function. The second example is,
 in effect, a straightforward application of a simplified (and self-contained) version of
 Runge's theorem applied to rational functions. The idea of this example can be found
 (with varying degrees of detail) in, for example, [3], [8], [9], [12], and [14]; we remark
 that Runge does not mention such an example in his fundamental paper [13].

 Example 2.1. We shall construct an entire function E that has a radial limit 0 at 00 in

 each direction except along the positive real axis R+, where Re[E(x)] -+ +oo as x -+
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 +oo. Given this, we let F(z) = exp(-E(z)), so that F is an entire function with radial
 limit 1 at 00 in all directions except along R+, where it has radial limit 0. It follows that

 the sequence of entire functions F, defined by Fn (z) = F (nz) converges pointwise on
 C to a function that is 1 on the complement of [0, +oo) and 0 on (0, +oo).

 For each positive a, let Ya be the boundary curve of the half-strip Ha given in R2
 by (a, +oo) x (-7r, 7r), and let Ea be the exterior of Ha (see Figure 1). Notice that if
 a < b then Ea C Eb, and that Ha n Eb is the open rectangle (a, b) x (-7r, 7r).

 a + int

 lP MR:

 Figure 1.

 Now let f(z) = exp(exp(z)). As If(x - ir)l = 1/ exp(exp x), If I is integrable on
 Ya with integral II f llI,a with respect to Idz l, say, and this ensures that the function

 (Z 1 J f(w) dw
 la (z) = diw--Z

 exists and is analytic in the complement of Ya. Obviously,

 Ilf lll ,a

 I 2rdist(z, Ya)

 and this shows (i) that Ia has radial limit 0 at 00 in all directions except along R+,
 and (ii) that Ia is bounded on the real segment [a + 1, +00oo). In fact, Ia (x) -- 0 as
 x - +oo, but we do not need this.

 Next, suppose that 0 < a < b and that z Ya U Vb. Then

 1 fl f(w) = f(Z)Xa,b(Z),
 Ib(Z) - Ia(Z) - 2fiWan )W(Z) --bZ 27i( wanEb)W-Z

 where Xa,b is the characteristic function of the rectangle Ha n Eb. This shows that

 Ib (Z) = la (Z) on Ea, and as Ua Ea = C, this means that we can define an entire function
 E by E (z) = Ia (z) on Ea, for each a. In particular, E has radial limit 0 at 00 in every
 direction except possibly along R+. If x e Ha n R+ we choose any b with b > x; then
 x c Eb and

 E(x) = Ib(X) = Ia(x) + f(x) = 0(1) + exp(exp x)

 as x -- +oo so that Re[E(x)] - +oo as x -* +oo. This completes the example.
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 We remark that (as stated in [12, p. 327]) the function F in this example also
 provides an interesting example relating to Liouville's theorem, for the function
 [1 - F(z)][1 - F(-z)] has radial limit zero in all directions but it is not identically
 zero.

 Example 2.2. First, we consider a compact subset K of C whose complement Q is
 connected, and let C(K) be the space of functions that are defined and continuous on
 K equipped with the metric of uniform convergence on K. For each w in Q let R[w]
 be the space of finite sums of the form ,n an (z - w)n, where the n here are integers.
 Then R[w] C C(K), and we denote the closure of R[w] in C(K) by R[w]. Note that
 each R[w] contains all polynomials. In our view, the following lemma contains the
 essential idea behind Runge's theorem.

 Lemma 2.3. R[w] does not depend on w.

 Proof The relation wl ~ w2 if and only if R[wl] = R[w2] is an equivalence rela-
 tion on Q2. As Q is connected, it suffices to show that each equivalence class is open.
 Take any w in Q, and construct an open neighbourhood N of w (in Q?) such that
 diam(N) < dist(N, K). Now take any w' in N. Each element of R[w] is the sum of a

 polynomial (which lies in R [w']) and a finite number of terms of the form aj (z - w)-.
 Now

 1 1 0

 (Z - w)m (Z- OW)m Y -k=0Z W
 The series on the right converges uniformly on K, and its partial sums lie in R[w'].
 We conclude that R[w] C R[w']. The reverse inclusion holds by interchanging w and
 w' and the proof of Lemma 2.3 is complete. 0

 Suppose now that f is any rational function all of whose poles, say w, ..., Wk, lie
 in Q. Then (by considering a partial fraction expansion of f and using Lemma 2.3) we
 see that

 f E R[wl] U ... U R[wk] = R['],

 where " is any chosen point in Q?. If I|I is chosen sufficiently large, the elements of
 R['] are analytic in some open disc containing K and so can be uniformly approx-
 imated on K by polynomials. We deduce that any rational function whose poles lie
 outside K can be approximated uniformly on K by polynomials.

 The index, or winding number, v(z, y) of a curve y about a point z not on y is

 1 dw

 2rri , w - z

 and so if y lies in i2, then this function of z can be approximated uniformly on K by a
 (finite) Riemann sum

 i ak

 where the Wk are on y. It follows that the function z - v(y, z) can be approximated
 uniformly on K by polynomials. If we apply this with K = K, and y = y,, where
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 Kn = {0} U {z E C:2/n < Izl < n, 1/n < arg(z) < 27r}

 and y,, the circle Izl = 1/n, we obtain polynomials pn such that Ipn (z) - v(z, n,,)I <
 1/n on Kn. Clearly, Pn (z) tends to 1 if z = 0 and to 0 otherwise.

 3. THE HISTORY. Stieltjes seems to have been the first to consider pointwise
 convergent sequences of analytic functions, and in 1894 he proved that if a uni-
 formly bounded sequence of analytic functions converges locally uniformly on some

 nonempty open subset o20 of a region Q2, then the sequence converges to an analytic
 function throughout ?2 [15, p. 56]. In 1901 Osgood extended this by showing that if
 the convergence takes place merely on a dense subset of Q20, then the convergence is

 uniform on each compact subset of ?2 so that the limit is analytic throughout ?2 [8].
 Two years later, Vitali proved that it suffices to assume that convergence takes place

 on a set of points having a limit point in ?2 [16].
 In [8] Osgood considered the problem of a sequence of analytic functions converg-

 ing pointwise to some function f in a region Q2, and he was well aware of the fact that
 f need not be analytic. Indeed he says explicitly that, by using Runge's theorem ([13],
 published in 1885), one can construct an example in which, for n = 1, 2, 3, ..., the
 limit function f takes the value 1/n on some open (nonempty) subset On of ?2. In the
 same paper, Osgood also proved the following result which, in his words, "presupposes
 only the bare convergence of the series-nothing more."

 Osgood's Theorem. Suppose that fl, f2, ... are analytic in a region ?2, and that
 fn -+ f pointwise in ?2. Then there is a dense open subset Q2o of ?2 on which the
 convergence is locally uniform, and in which f is analytic.

 Here we are using the modem terminology that f, -+ f locally uniformly in ?2
 if the convergence is uniform on each compact subset of ?2. Osgood's theorem does
 not seem to be as well known as it might be; moreover, even when it is stated the
 assertion that the convergence is locally uniform on 2o is usually omitted. This is
 unfortunate, for the set where f is analytic does not necessarily coincide with the
 set on which convergence is locally uniform (see Examples 2.1 and 2.2). For a more
 modem reference to Osgood's theorem, see [2, p. 190]. More delicate questions on this
 topic have been discussed extensively by Lavrentieff (and others) in the 1930s, and we
 shall describe some of their results later in the paper.

 Equicontinuity was introduced by Ascoli in 1884, and Osgood used this idea in his
 1901 paper. Arzelh had shown in 1895 that equicontinuity and local uniform bound-
 edness is equivalent to the compactness of a family of functions (although the word
 'compact' was not introduced by Fr6chet until 1906). All of these results, including
 Osgood's results, were proved before Montel introduced his theory of normal fami-
 lies [7]. Of course, Montel's ideas provide the right setting in which to discuss con-
 vergence of analytic functions, and it is well known that if fi, f2, . . . are analytic in

 a region ?2, fn -+ f pointwise in ?2, and {f,} is a normal family in ?2, then fn -+ f
 locally uniformly on ?2 and f is analytic there. This simple result provides examples
 of situations in which the pointwise convergence of analytic functions does yield an
 analytic limit, and as an example we mention the following result.

 Theorem 3.1. Suppose that fi , f2, .... are analytic and univalent in a region ?2, and
 that fn -+ f pointwise in ?2. Then f is analytic in ?2.

 As far as we know, this result first appears in [3], where it is remarked that the
 proof (which is not given) uses Montel's deep theorem that a family of analytic maps
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 that omits three values is a normal family. In fact, the standard growth theorem for
 univalent functions together with pointwise convergence shows that in this case { f, } is
 normal in Q and so the result follows directly from Lemma 4.1. Better still, it follows
 from Osgood's original result as we now show.

 Proof Take any zo in Q; it suffices to show that f is analytic near zo. Using Osgood's

 theorem, we can find an open disk D, say {z : Iz - I < R}, that lies in D, that con-
 tains Zo, and that is such that f, converges uniformly in some neighbourhood of " to
 some analytic function g. Applying the usual growth theorem for univalent functions
 in the unit disc (see, for example, [4, Theorem 2.6]) to the function

 fn ( + Rz) - fn (C) F(z) = = z + azz2 +2 ,
 Rf'n(()

 we see that for each n, and each w in D,

 R21fn( )l Iw- _1 ffn(W)- fn(M)01 < (R -Iw - )2

 As the sequences fn(?) and fn'() are convergent (to g(') and g'(?), respectively),
 they are bounded, and this implies that the sequence (f,) is uniformly bounded on
 some neighbourhood of zo. The analyticity of f at zo now follows from Stieltjes's
 original theorem. N

 For a discussion of the pointwise limit of a sequence of M6bius transformations
 (whose domain need not be open) see [1] and [10].

 4. OSGOOD'S THEOREM. In this section we give a proof of Osgood's theorem,
 and in the next section we shall look a little more closely at some of the issues raised
 by Osgood's paper. We begin with some convenient (but nonstandard) terminology.
 Suppose that f', f2, ... are analytic in a region Q in C; then (irrespective of whether or

 not (f,) converges) we introduce the subsets R(fn), Z(f,), B(f,), A(f,), and S(fn)
 of 2.

 (a) A point z is a regular point of (f,) if there is a neighbourhood of z on which (fn)
 converges uniformly. If z is not a regular point of (f,), then it is an irregular
 point of (f,). The sets of regular and irregular points are denoted by RI(f,) and

 Z(fn), respectively.
 (b) The sequence (f,) is locally bounded at z if there exists a neighbourhood of z

 on which the family (f,) is uniformly bounded. The set 13(fn) is the set of z at
 which the sequence (f,) is locally bounded.

 (c) The sequence (f,) is pointwise analytic at z if there exists an open neighbour-
 hood N of z on which the sequence {f, } is pointwise convergent to some func-
 tion that is analytic in N. The set of points at which (f,) is pointwise analytic is
 the analytic set A(f,); the complement of A(f,) in '2 is the singular set S(f,).

 It is clear that the sets R(f,), 3B(f,), and A(f,) are open and that, for entirely
 elementary reasons,

 ,(fn) C (f) C (f c , '(Z(f,) C A(f,) C i2.
 The theorem of Stieltjes shows that, in the presence of pointwise convergence of (f,)

 throughout '2, we have 13(f,) C R(f,) and hence
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 R(fn) = l3(fn) c A(f,) c Q. (4.1)
 We have already mentioned that in many cases R(fn) A (fn), and we shall return to
 discuss this shortly.

 In order to prove Osgood's theorem with (4.1) available, we need show only that the

 pointwise convergence of the fn in Q2 implies that 3(fn) is dense in Qt. This does not
 require anything as sophisticated as the Baire Category Theorem (which is sometimes
 used at this point), and here we follow what is essentially Osgood's original argument.

 It is enough to prove that each open disk D in Q2 contains a subdisk A on which
 {f :fn > 1} is uniformly bounded. Suppose that an open disc D fails to have this
 property; then so does every subdisk of D. As D fails to have the property, there
 exists a zl in D, and an fin1, such that Ifm, (zl)l > 1. As fm, is continuous at z1,
 Ifm,, > 1 throughout some closed disc D1 contained in the interior of D. As D fails
 to have the given property, so too does D1 and using the same argument again, we
 can obtain a closed disc D2 contained in the interior of D1, and some function fm2
 such that Ifm21 > 2 throughout D2. The argument can be repeated indefinitely, and
 it yields a decreasing sequence of closed discs Dn, and a sequence of functions fI,
 such that I fm, I > n throughout D,. As the sequence (fn) is unbounded at any point of
 the (nonempty) intersection f, Dn, we have contradicted the assumption of pointwise
 convergence throughout D and the proof of Osgood's theorem is complete. 0

 5. LAVRENTIEFF'S RESULTS. Osgood's theorem raises several issues; for ex-
 ample:

 (a) Can any dense open subset of Q2 be the set A(f,) of some pointwise convergent
 sequence (fn),

 and

 (b) can any dense open subset of ?2 be the set R(f,) of some pointwise convergent
 sequence (fn)?

 A detailed examination of these and related issues was undertaken by Lavrentieff (and
 others), and Lavrentieff answered both (a) and (b) by characterizing those dense open

 subsets of ?2 that are of the form A(fn), and those that are of the form 7(fn) (in each
 case, for some pointwise convergent sequence (fn)) [6]. These characterizations imply
 that there exists a dense open subset Q20 of ?2 that is not of the form A(fn), and a dense

 open subset Q21 of ?2 that is not of the form R(fn). Guided by our desire for only
 elementary arguments, we give a simple example of each type.

 Example 5.1. Suppose that the fn are analytic and converge pointwise to f in a sim-
 ply connected region ?, and take any Jordan curve y in R(fn). Then f -- f uni-
 formly on y, and the Cauchy criterion for uniform convergence combined with the
 Maximum Modulus Theorem shows that f, -+ f uniformly on and inside y. This
 proves that if f, f pointwise on the simply connected region Q2, then each compo-
 nent of R(fn) is simply connected. It follows that if Q0 is obtained from ?2 by removing
 a single point (for example), then t o cannot be the set R(J(f) for any sequence (f,);
 thus the answer to (b) is no.

 In Example 2.2 we have

 2 = C, A(pn) = C\{0}, R(pn) = C\[0, +oo),

 and in this example A(pn) 7 R(pn). In general, it seems important to distinguish
 between A(fn) and R(fn), and Example 5.1 seems relevant when one tries to construct
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 explicit examples in which the limit function is not analytic throughout G2. Without
 going into details (but for reasons that are apparent from the standard proof of Runge's
 theorem), in order to use Runge's theorem it seems necessary to construct compact sets
 that omit 'thin channels' leading to oo, and it seems to be that the uniform convergence
 fails in the limiting positions of these 'channels'. Indeed, Example 5.1 suggests that

 in order to construct a non-analytic limit it might be necessary that A(f,) # 7R(f).
 Interestingly, the non-analytic limit given in Example 2.1 also exhibits an 'exceptional'
 ray even though Runge's theorem is not used there.

 We now give an example to show that not every dense open subset of ?2 is of the

 form A(fn).

 Example 5.2. This example is the Sierpiriski gasket, a fractal set that was first con-
 structed by Sierpiiiski in 1916. The idea for this example (but not the use of the
 Sierpiiiski gasket) is taken from [6]. We begin with a brief (and informal) descrip-
 tion of the Sierpifiski gasket. Let Q2 be any open disc and let vl, v2, and v3 be points
 in ?2 that form the vertices of an equilateral triangle. Let To be the boundary of the tri-
 angle with vertices vi. Now let v' be the midpoint of the segment [v1, v2] and similarly angle with vertices vi.sNow let vi
 for vI and v, and let T1 be the boundary of the triangle with vertices v1, v, v. We
 now have four open equilateral triangles (each is half the size of the original triangle),
 and the boundary of the union of these four open triangles is To U T1. We repeat this
 process in each of the three outer smaller open triangles, and then in the outer triangles
 we obtain in this way, and so on indefinitely. The Sierpiiiski gasket G is the compact

 set To U T7 U .... The complement ?2\G of G in ?2 consists of the outside of the orig-
 inal triangle, together with a countable number of mutually disjoint open equilateral
 triangles. For us, the essential feature of G is that it has the property that any open
 neighbourhood of any point of G contains a complete, but 'scaled-down' copy of G.

 We claim that the dense open subset Q2\G of 2 is not of the form 4A(fn) for any

 pointwise convergent sequence of analytic functions (f,) in ?2. To see this, consider
 any sequence of functions f, analytic in ?2 with f, -- f pointwise on 2 and, for each
 z in ?2, define

 on(z) = sup{lf,(z) - fm(Z)l : m > n} , Un = {-z E 2 : On(z) > 1}.

 If Zo E Un there is some m with m > n and I f,(zo) - fm (zo) I > 1 and then, from the
 continuity of fn and fm,, the same holds for all z near zo; thus each Un is an open
 set. Further, the pointwise convergence of f, shows that on -+ 0 pointwise on S2; thus
 nnU, = 0. Now Baire's Category Theorem implies (and is sometimes stated in the
 form) that if V, are open subsets of a complete metric space X, and if n, V, = 0, then
 there is some VN, and some nonempty open set V in X, such that V n VN = 0. We
 apply this with X = G and Vn, = U, n G, and deduce that there is some N and some
 (relatively) open set V of G such that V n UN = 0. Thus there is an open disc A in C
 that meets G and is such that for each z in A n G,

 sup{IfN(z) - fm (z)I : m > N} < 1.

 As fN is continuous on the compact set G, it is bounded there, and we deduce that the
 sequence (f,,) is uniformly bounded on A n G.

 As every neighbourhood of every point of G contains a small closed triangular
 region E used in the construction of G, and for which 8 E C G, we deduce that there
 is such a closed region (in A) with (f,,) uniformly bounded on l82. It follows that
 (f,,) is uniformly bounded on the closed region X, and hence, from (4.1), that the
 interior of E is contained in A(f,,). As the interior of 2 contains points of G (because
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 of the self-similarity of G) we deduce that some points of G are in A(fn) so that,
 as claimed, Q2\G : A(fn). Note that in this example we have Q2\G : R(fn), even
 though each component (except the 'exterior' of To) of the dense open subset Q\G is
 simply connected.

 Finally, Lavrentieff has characterized those sets that can be the singular set of some
 limit function, and also those sets that can be the irregular set of some sequence.
 To describe this characterization in a little more detail, we consider the ideas in Ex-
 ample 5.2. Suppose that Q is a simply connected region and that f is the pointwise
 limit of the sequence (fn) of functions analytic in Q. Let S be the singular set of f
 (that is, S = 2\A(fn)), and let So be any closed subset of S. Then So is a complete
 metric space and so, as for the Sierpiiiski gasket, there exists an open disk A that meets
 So and is such that (f,) is uniformly bounded on A n So, and hence also on the closure
 A n So of this set. It now follows that if D is any subregion of A with the property that

 D C A n So, (5.1)

 then the sequence (f,) is uniformly bounded in D, and pointwise convergent there, so
 that f is analytic in D and hence D n S = 0. To summarise, the singular set S has the
 property thatfor every closed subset So of S, there exists an open disc A in Q that meets
 So and is such that D n S = 0 for any subdomain D of A satisfying (5.1). Lavrentieff
 has shown that this is a necessary and sufficient condition for a relatively closed sub-
 set S of a simply connected region 0 to be the singular set of some limit function in Q2,
 and he calls any such set an M-set. He also characterizes the relatively closed subsets
 of a simply connected region 02 that are the irregular set of some pointwise convergent
 sequence (fn) in Q, calling such sets M*-sets.
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 Finding Those Perfect Words

 RAT is perfect. Three letters, three anagrams: RAT, TAR, ART. Just perfect.
 CATS is perfect, too. Cats, acts, scat, and cast. Unfortunately DOGS is deficient.
 It has just two anagrams, including itself.

 * TEA is abundant! It can make four words with only three letters. POTS is also
 abundant. But TEAPOSTS is prime. A word in which all of its permutations
 make words could be called superabundant. Can you find any'?

 * Most words are prime. They have no other anagrams, just themselves. Are the
 one-letter words prime? Perfect? Superabundant? Is there a longest prime?

 * PASS is a four-letter perfect word. STAR is a four-letter abundant word. Can
 you find others?

 * Perfect five-letter words can be tricky to find. How about that perfect STEAK?
 Others?

 * PRIEST is a perfect six-letter word-what is the longest perfect word?

 * Can you write a "perfect story"?

 (Dictionary used: Official Scrabble Players Dictionary 3)

 -Submitted by Michael Naylor
 Western Washington University
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