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Dedicated to Ivan Georgievich Petrovskii

ON THE SOLUBILITY OF DIFFERENTIAL
EQUATIONS WITH SIMPLE CHARACTERISTICS

Yu. V. Egorov

A survey is given of papers devoted to the problem of the existence of solutions to linear
differential and pseudo-differential equations of principal type. The main results in this
field are due to Lewy, Hormander, Nirenberg, Treves and the author. We also give a new
theorem of maximal generality on local solubility of equations of principal type. By way of
illustration to the exposition we mention as examples: the Lewy operator; the operator
arising from the solution of the problem with directional derivatives for elliptic second
order equations; non-singular operators.
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Introduction

The question of the solubility (at least local) of the general linear
differential equation

(1) Ρ (x, D)u = f (x)

has been, and remains, one of the central problems in the general theory
of differential equations. As early as in 1946 Petrovskii [19] remarked
"that for the simplest non-analytic equations we do not know, as a rule,
whether or not there exists at least one solution. A study of this question
would be of importance." Although the problem of solubility is still a
long way from its final solution, results have been obtained in recent
years which for differential operators with simple real characteristics take
on a definitive character. We shall give an account of these results.

In this article we restrict our survey to papers known to us which deal
with a single equation with a single unknown function; we refer the
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114 Yu. V.Egorov

reader interested in systems of equations to the recent survey article by
Palamodov [17]. Throughout the paper we suppose that the coefficients
of (1) are infinitely differentiable with respect to all its variables.

It is, of course, local results of a negative character and positive results
on global solubility that present the greatest interest in the theory. However,
we cannot make these assertions without some preliminary local investiga-
tion. It would therefore seem a good idea, as a first step, to obtain a
complete theory of local solubility embracing necessary and sufficient
conditions.

1. It follows, of course, from the classical Cauchy-Kowalewska theorem
that if the coefficients of (1) and f{x) are analytic and if the principal
part of the operator P(x, D) of order m contains at least one pure
partial derivative of order m in some direction with a non-zero coefficient,
then the equation has an (analytic) solution (see [20], [23]). It is possible
to widen the above class of equations with analytic coefficients: it suffices
to suppose that at x0 some derivative DP of order m has a non-zero
coefficient, where β does not belong to the convex hull of the set of
multi-indices α Φ β for which aa (χ) ψ 0 in some neighbourhood of x0

(see [23]). However, it is not possible to widen the class of the functions
on the right-hand side of the equation: there exist equations with
analytic coefficients that have neither classical nor generalized solutions
for "most" functions f(x). The first example of such an equation was
discovered by Lewy in 1956 (see [23]). In §1 we give a detailed account
of this equation, which has the form

2. The results obtained up to 1953 made it possible to assert the
existence of solutions in the non-analytic case only for isolated classes —
mainly elliptic and hyperbolic — of equations. The study of the properties
of general differential operators beyond their dependence on their type
and order is closely tied up with the development of the theory of
distributions.

It was first shown in papers by Malgrange [35] and Ehrenpreis [27]
that if (1) has constant coefficients, then the equation is always soluble
(in any compact domain Ω с R") in the class of distributions Ζ)'(Ω) if
/ ε ΰ ' ( Ω ) (see also [3], [28], [42]). This remarkable theorem can be carried
over to the case of variable coefficients only for very narrow classes of
equations: namely for the so-called operators of constant strength (in
particular, for elliptic operators) (see [23], [39]). Such operators are
defined by the following condition: for any two points x, у e Ω we have

P(z, IX Cx,yp(y, |),
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where

In this case (1) has a solution и e Ζ,2(Ω) for / e Ζ,2(Ω), even if the
coefficients are merely continuous. This last result has been generalized
by Paneyakh [18] to general pseudodifferential operators whose principal
part is of constant strength.

3. The article [29] by Hormander is of fundamental significance for the
theory of solubility. He showed in this article that Lewy's example is not
a rare exception. Any differential equation (1) is non-soluble (even locally)
if at any characteristic point ix, ξ) e Τ* (Ω) (that is, a point where
P°(x, £) = 0) the function

12) сЧх £ ) - 2 1 т У - ( * ' ξ ) др°{Х'1)

takes a non-zero value.
This theorem was later generalized by Hormander to pseudo-differential

equations (see [31]). Hormander's proof in [29] of the above theorem
goes as follows. He shows first of all that if (1) has a solution for each
/ e D (Ω), then the formal adjoint operator P* must satisfy an a priori
estimate of the form

II HI. < с и i"» и,

for all functions υ€Ζ)(Ω). He then constructs a family of functions
vT = ^ т е ' т ш such that || uT | |s = 1 and ||P*yT||/->0 as τ-χ». The first step is
based on an application of a theorem of Bohr and the second, namely
the construction of the functions vT with the requisite properties, amounts
to a modification of the standard WKB method, by means of which the
problem reduces to that of finding solutions to the equation

(3) p° (x, grad w (x)) = 0 , w (0) = 0, grad w (0) = I

with a positive definite imaginary part. This method of Hormander is the
basis for all subsequent investigations on necessary conditions for
solubility.

It goes without saying that this theorem does not mean that (1) is
insoluble only for a single function fix). As Hormander has shown, if in
a neighbourhood ω of a point χ there is a function fix) for which (1)
has no solution, then the set of all such functions is of the second
category (see [23]).

Furthermore, if Ρ ix, D) is a differential first order operator with
homogeneous characteristic polynomial ρ ix, ξ) = p°ix, ξ) such that the
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equation Ρ (χ, D) и = f (χ) has no solution in any domain of R", then
the homogeneous equation Ρ (χ, D) и — fu = 0 has no non-trivial
solution и £ С1 (Ω) (Lewy; see [23]). The equation with real coefficients
PP*P*Pu = f where Ρ is the Lewy operator, has the form

and is not soluble in any domain of R3 for "most" functions f G D (R )
(see Treves [43]). In his book [23] Hormander mentions an example of
the self-adjoint second order operator with real coefficients

χι дх3 dxi дх3

for which (1) with some function f G S (R3) has no solution in any
neighbourhood of the origin.

Also in [23] he finds very broad conditions under which (1) is always
soluble if / e D' (Ω), and he singles out the class of the so-called
essentially normal equations, which have this property. This class is
characterized by the condition: the coefficients of the equation are of class
C1 (Ω) and there exists a differential operator Q (x, D) of order m — 1
with coefficients in C1 (Ω) such that

(4) 4 (x, I) = 2Re p° (χ, ξ) q (x, ξ).

In particular, all operators with constant or real coefficients in the
principal part (in this case q (χ, ξ) = 0) belong to this class.

4. A more complete analysis taking into account the values of the higher
order derivatives at the characteristic points was carried out in [36] by
Nirenberg and Treves for the case of first order differential equations of
the type

η '

5 = 1 J

We say that (1) is soluble at χ ο ε Ω if there exists a neighbourhood
ω с Ω of this point such that PD' (ω) D С? (ω).

If the coefficients a}(x) in (5) are analytic and ψ 0, then for this equation
to be solvable at the origin it is necessary and sufficient that the following
conditions hold. Let p° (χ, ξ) = 2 a} (x) lj, and let { } denote the Poisson
brackets

Б)
[ si dxj dx si,

j= ι J J
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Then the index of the first non-zero function in the list

ρ» (χ, ξ), C l (χ, ξ) = {ρ», p°}, c2 {χ, I) = {p°, Cl}, . · .

must be finite and even or else transfinite for all ξ Φ 0 and χ & ω, where
ω is a neighbourhood of the origin.

5. Further progress was tied up with the creation and broad application
of the theory of pseudodifferential operators (see [33], [30]).

On the one hand, pseudodifferential operators naturally occur in the
study of boundary value problems for differential equations (see, for
example, [31]). In fact, it turns out that the solubility of the resulting
pseudodifferential equation is equivalent to that of the original boundary
value problem. On the other hand, the theory of pseudodifferential
operators proves to be very useful in studying properties of differential
equations. For instance, to investigate the solubility of equations of
principal type it suffices to consider the case of pseudodifferential first
order equations; this makes things considerably easier.

Let us make the notion of local solubility of a pseudodifferential
operator more precise. We say that a pseudodifferential operator Ρ is
soluble at x0 if there exist two neighbourhoods U, V of x0 such that
U с V and for each / e С£° (£/) we can find a distribution и with
support in V satisfying (1) in U.

Hormander's article [31] was a most important stage in the later
development of the theory. He proved that if at each characteristic point
(χ, ξ) e Τ* (Ω) the function cl (x, | ) defined by (2) is negative, then (1)
is always soluble in Ω. Furthermore, if / e Hs (Ω), then there exists a
solution и (χ) of (1) in the class Hs + m +Ι(Ω) for any real s. The article

also contains the above-mentioned theorem on necessary conditions for
the solubility of pseudodifferential equations.

6. These results of Hormander have been elaborated and generalized in
a number of articles by the author [6] — [14], in which conditions of an
algebraic character on the principal symbol p°(x, ξ) of an operator Ρ are
obtained which determine the so-called hypoelliptic operators.

These operators are defined by the existence of an a priori estimate of
the form

(6) || и II, < С (К, s) (|| Pu | | s_m+6 + || a | U ) , VM ζ C~ (K),

where К is an arbitrary compact subset of Ω, s is any real number, and
0 < δ < 1. It is not difficult to show by the Hahn-Banach theorem that
if (6) holds, then the equation P*u - f is soluble, where P* is the formal
adjoint operator. I f / e Hs (Ω), then the equation P*u =f(x) has a
solution и (χ) in the class Ht + m _ δ (Ω).

We now describe an algebraic condition that is equivalent to the
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estimate (6). Let α^{χ, ξ) = Re p°(x, ξ), α2(χ, ξ) = Im p°(x, ξ). For hypo-
elliptic operators gradx, ζρ

ο(χ, ξ) Φ 0 if р°(х, ξ) = О (see [7]). Let

Я = "У Г а<ч (*• ξ) д д<ч (д. ё)

be the operator of differentiation along the bicharacteristic of the functions
at(x, ξ) (i = 1, 2), respectively. If α = (a1} . . ., am), 13 = 0 3 ! , . . . , ft,,), where
a.; > 0, (3;- > 0 are integers, then we denote by ЩЩ the operator
Щ1Щ1 . . . ЩтЩт. Let k^x, ξ) be the least of the numbers kx such
that ЩЩа2 (χ, ξ) Φ 0 for | α + β \ = kx (if α, (JC, ?) + ώ 2 (χ, ξ) Φ 0, then
we put ki (χ, ξ) = 0).

T H E O R E M 1 (see [10J). An operator Ρ is hypoelliptic if and only
if the following two conditions are fulfilled:

Л. The sign of a^ix, ξ) does not change from - to + when moving in
the positive direction along each curve χ = x(t), % = %{t) such that1

dt 3%; ' dt — ihTj ' a 2 ^ W' * Сг)) = υ.

35. к = sup ftj (χ, ξ) < oo, (χ, ξ) ζ Τ* (Ω), ξ # 0 Ч.

δ = k/ik + I). If k^Xo, Ιο) = /, w^ere (дс0> ξ0) e Γ* (Ω), Ь ^ 0,
then (6) са«ио? йо/с? for δ < //(/ + 1).

In particular, it follows from this that there are no operators Ρ (with
smooth symbols) for which the minimum value of δ in (6) is equal to
k/(k + 1), where A; is a non-negative integer.

In certain cases the proof of this theorem has been perfected by
Treves [47] and Eskin [24] (see also [14]).

When Ρ is a differential operator, this theorem can be restated as
follows:

T H E O R E M 2. Let Ρ (χ, D) be a differential operator of order m
and let к = sup кг (χ, ξ) be finite. For (1) to be soluble it is necessary
and sufficient that кг (χ, ξ) takes only even values. If the latter condition
holds, then (6) is true with δ = k/(k + 1).

7. Nirenberg and Treves [37] and the author [8] have simultaneously
and independently obtained the most general theorems to date on
necessary conditions for the solubility of (1). The author's theorem is
somewhat more general in that we only suppose that at a characteristic
point the vector gradx, %p°(x, ξ) is non-zero, while Nirenberg and Treves
suppose that grad?p°(x, | ) Φ 0. The methods of proof are also different,
although, as we have already said, both proofs follow the general scheme

1 Here and in the sequel f* (Ω) denotes the cotangent bundle with the zero section removed.
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laid down by Hormander. The statement of this theorem is as follows.
Let ko(x, ξ) be the least number к such that Я?а 2(х, ξ) Φ 0 (if
α,(χ, ξ) + ia2(x, ξ) Φ 0, then we put ko(x, ξ) = 0).

T H E O R E M 3. Let p°(x°, £°) = 0 and let ko(x°, ξ°) be odd, where
Re gradx, ξρ°(χ°, ξ°) Φ 0 and # ? o V > · ^V, (x°, ξ°) > 0. Then the equation
(1) is not insoluble at x0.

It is clear that the condition Re grad p°(x, ξ) Φ 0 is no restriction
because we can replace Ρ by the operator iP.

8. New sufficient conditions for solubility of a somewhat different
character have been obtained by Nirenberg and Treves [38] and the author
[11]. In [38] Nirenberg and Treves have obtained the following result.

T H E O R E M 4. Let Ρ be a differential operator of principal type
with analytic coefficients in the principal part. Suppose that for all χ in
a neighbourhood of x 0 the following condition holds:

(iP) On each null characteristic of Re p° (χ, ξ) the function Im p° (χ, ξ)
is of constant sign.

Then there exists a neighbourhood Ωο of x 0 such that for each
/ € Ζ,2(Ω0) there is a solution of (I) of class Я т _ 1 ( п 0 ) .

This theorem generalizes a result by the same authors in [36]. For the
case η = 2 this theorem was proved earlier by Treves [48].

We replace (oP) by the condition:
(aP) At the points of all the null characteristics of Re ρ the function

Im ρ has constant sign.
Then the condition of analyticity can be replaced by a condition of

sufficient smoothness of the coefficients.
This statement occurs also in the article [37] by Nirenberg and Treves.

Another proof of this last result and generalizations of it are given by the
author in [11] (see also [13]), where sufficient conditions for the
solubility of pseudodifferential equations of principal type are studied.

The proofs of the above theorems are very simple, but unfortunately
the statements contain certain ex|ra conditions which appear to be un-
necessary. By refining the proof somewhat, we arrive at the following
statement which is apparently best possible for the class of operators of
principal type.

T H E O R E M 5. Let Ρ (χ, D) be a pseudodifferential operator of
principal type satisfying condition {Л) of Theorem 1. Then for every point
x°e Ω and for each real s there is a neighbourhood ω с Ω such that for
any / G # 5 _ m + 1 № ) with supp / c Ω there exists a function и (х) е Я , ( П )
with compact support in Ω for which Pu - f in ω and

II и II. < С || / | | _ m t l + d || it I|s_±,

where the constants С and Cx do not depend on f and where Cx tends to

zero with the diameter of ω. If s > — -=·, then Cj can be taken to be zero.
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Theorem 5 remains true when Ρ is not an operator of principal type
but satisfies the following condition:

{&·) к = sup kx (χ, ξ) < °°, where the supremum is taken over all
(χ, ξ) e t* (Ω) for which p°(x, ξ) = 0, grads p°(x, | ) = 0.

9. Clearly a different approach to the problem of solubility of (1) is
possible: one can widen the class of generalized solutions under considera-
tion by going beyond the traditional framework of distribution theory.
Apparently every equation of principal type is soluble in the class of
analytic functions. The class of hyperfunctions introduced by Sato (see
[40]) provides a suitable apparatus for such a study. Hyperfunctions can
be regarded as limiting values in the real space of holomorphic functions.
However, Shapira has recently proved in [41] that the equation

has no solution in the class of hyperfunctions in any domain Ω С R2,
containing the origin for some function / e C°°(R2).

In [44] Treves introduces the class Ks of the so-called "ultradistribu-
tions". This class K" consists of the images under the Fourier transform of
functions ίΓ(ξ) for which

In this class Treves proves that (1) (and even the Cauchy problem for (1))
is locally soluble under very broad hypotheses.

There are a number of articles by Vishik and Eskin, Vishik and
Grushin, Maz'ya and Paneyakh (see, for example, [2], [15]), where in the
absence of solubility they introduce the so-called "coboundary" conditions,
which salvage the position. This approach is very suitable and reasonable
for the study of boundary value problems of Noether type. Unfortunately
we know of hardly any results that clarify the actual behaviour of the
solution in a neighbourhood of manifolds on which coboundary conditions
are assigned. In this connection we mention the article of Malyutov [16]
which concerns the study of the solutions of the problem with directional
derivatives.

Another possible approach is to clarify the conditions on / (and not on
the operator P) under which (1) has a solution in the class D' (Ω) (or
smoother), that is, a description of the set PD' (Ω).

Certain results along these lines have been obtained by Hormander in
his book [23]. Any investigations in this direction should prove to be of
great interest.

10. The questions of local solubility of equations not of principal type
have so far been studied very little. We mention the articles of Grushin
[4], Vishik and Grushin [2], Radkevich [21], [22], and Hormander [32].

11. In the sequel we shall mention some examples illustrating the above



On the solubility of differential equations with simple characteristics 121

discussion. In §1 we look at Lewy's equation and reproduce part of
Lewy's original proof. In §2 we consider a fashionable problem arising
from the study of the problem with directional derivatives for second
order elliptic equations. This example helps us to grasp better the geo-
metrical character of the "insoluble" equations. Finally, in § 3 we prove
the solubility of the so-called non-degenerate pseudodifferential equations
of principal type.

§1. Lewy's example

The first example of a first order equation with smooth (analytic)
coefficients having no solution with continuous first order derivatives in
any domain of R3 was constructed by Lewy in 1957. His equation takes
the form

where ζ = χ + iy, —^ = у (~57+*~я~) · ^ s e e m s to us that although

Hormander's proof is more suitable in the present special context, Lewy's
original proof is of interest in its own right and can be useful for
subsequent investigations. The main part of Lewy's proof consists of the
following:

T H E O R E M 6. Let \p(t)eCl bea real function. Suppose that the
equation

(8) Lu = ψ' (t)

has a solution of class Cl in a neighbourhood of the origin in R3. Then ψ (t)
is analytic at t - 0.

The general result can be deduced fairly easily from this.
P R O O F (Lewy). Let и (χ, у, t) be a solution to (8). Let χ + iy - rew

and ρ = r2. Note that

y ' dx ^ dy — e \dr + г дв j '

If we write U (t, p) = i ί rei&u (x, y, t) dQ. then we have
о

2л

But
2π 2π
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so that
2я

аи (t, p)

and.it follows from (8) and (9) that

2Л

[> » £ ] <*θ = 2шЧ|/ (t) +

or

dU . dU

Now F (i, p) = U + 2πφ (/) is of class C1 and satisfies the Cauchy-
Riemann equation

Hence V (t, ρ) is analytic in t and ρ for ρ > 0. Since the values of V are
real when ρ = 0, it has an analytic continuation for values ρ < 0. Thus, V
is analytic in t when ρ = 0, that is, \j/(t) is analytic at t = 0, as required.

The fact that и (х, у, t) is of class C1 was used only once in the above
proof, namely when we showed that V (t, p) is analytic. Since even a
generalized solution of the Cauchy-Riemann equation is an analytic
function, it suffices to suppose that и is a bounded measurable function
(or that ru -»· 0 as r -*• 0). Thus, if φ (t) e C°° but is not analytic at t = 0,
then (8) has no generalized solution in the class of bounded measurable
functions.

We now show that (7) has no solution of class D' (ω), where ω is an
arbitrary neighbourhood of the origin. By a theorem of Hormander (see
[23]) it suffices to show that the estimate

(10) || w \\s < С || L*w \\t

cannot hold for all w e. C£° (ω) for any real C, s, t. Here L* = --τ-- iz*r-
02 Ot

is the formal adjoint operator of L. The function ν = е-*'1*12+'2-1
satisfies the equation L*v = 0. Suppose for simplicity that
ω = {(χ, у, t): χ2 + у2 + t2 < 1} and that ψ e С™ (ω) is such that φ = 1
when p 2 = x2 + y2 + t2 < 1/л. Then f = L* (φυ) vanishes when ρ < V2 and
ρ > 1. It is not difficult to check that \\L* (φυ) \\t < С\*е~Х1А (here t can be

3
taken to be a natural number. On the other hand, Il¥n)||s> co\ i+s, where
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the constant c0 > 0 depends on s but not on λ. Substituting in (10)
w = φυ we obtain an inequality which cannot hold for all λ > λο· This
proves that (7) is not soluble in ω.

In the general case of a pseudodifferential operator of any order a proof
can be carried out along the same lines.

§ 2. The problem with directional derivatives

As a second example leading to an "insoluble" pseudodifferential
equation we now consider the classical problem of Poincare for an elliptic
second order equation. This problem has been studied in articles by
Bitsadze [1], Borrelli [26], Malyutov [16], the author and Kondrat'ev [5],
and others.

Let R J + 1 be the subset of R" + 1 consisting of the points
X = (JC,, . . ., xn + i) = (x, xn + i) for which xn + 1 > 0. Consider in R£ + 1

the equation

(И) Аи = 0

with the boundary condition

where a f 0 is a real constant. Note that the Shapiro-Lopatinskii condition
for this problem is violated only when xx = 0. Let

и (I, xmi) = \ и (χ, χη+ι) e-'(*. i) dx

be the Fourier transform of и (X) with respect to x. Because of (11),
" (£> xn + i) satisfies for xn + 1 > 0 the equation

the general solution of which has the form

(13) Ζ{l, xn+i) = ν(i)e-
x»+iftl -hi

Since we are interested in a solution that is bounded for jcn + 1 > 0, we
must put w (ξ) = 0. If we substitute (13) for ίΓ(ξ, л:п + 1 ) in the boundary
condition (12), we obtain

for xn + 1 = 0

that is,

(14) j (_«* | | | + tal,) v (|) gK». 5) dg = ( 2 π)« ^ (x).
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The last equation is a pseudodifferential equation with the symbol
P°(x, ?) = - * i Ι ξ I + ΐαξι- The characteristic points (χ, ξ) e T* (R") lie on
the plane xx = | i = 0. The bicharacteristics corresponding to \mp°(x, ξ)
are straight lines parallel to the Οχχ-axis. It follows from Theorems 1 and
3 that (14), and therefore also our boundary value problem, are soluble
for even k; when к is odd, solubility holds if and only if a > 0. For even
к this result is in accord with Theorem 7.3 of [5]. But if к is odd, then
for a > 0 we have a manifold of the first class in the terminology of [5];
in actual fact, the problem remains soluble even if we give supplementary
values for и (χ) for хг = 0; in other words, the dimension of the kernel of
this problem is infinite. Since the cases a > 0 and a < 0 are formally
adjoint to each other, this explains the absence of a priori estimates for
the adjoint operator for a < 0 and hence also the lack of a solution to
(11)-(12) for any function g (x). It is rather remarkable that if we give
up the idea of looking for a solution in the class of distributions but allow
the solution to have a singularity at χ ι - 0, then the problem (11)—(12) is
always soluble. The most precise description of the singularities of the
solution for this case has been given by Malyutov [16]. He proves that the
solution so obtained is bounded and tends to a limit as xt -*• 0 along each
ray passing through the points of the manifold xa = xn + 1 = 0 inside the
domain.

§ 3. Non-degenerate operators of principal type

In this section we prove that any pseudodifferential operator Ρ of
principal type satisfying the following two conditions is soluble.

1. THE CONDITION OF NON-DEGENERACY. At each characteristic point
(x, | ) e f* (Ω) the vectors Re grad p°(x, ξ) and Im grad p°(x, ξ) are non-
collinear.

2. clix, | ) < 0 ifp°(x, ξ) = 0.
We show that under these conditions the following a priori estimate

holds

(15) || и IU-! < С (δ) || Pu ||0, и б Со~ (ω),

where m > 0 is the order of Ρ, δ is the diameter of the domain ω, the
constant С (δ) is independent of и (χ), and С (δ) -»• 0 as δ -»· 0. The
solubility of (1) follows immediately from this estimate (see [23]).

The proof is based on the following propositions. Without loss of
generality we may assume that ρ (χ, ξ) = 0 outside a small neighbourhood
ω' Э ω.

L E M M A 1 (see [7]). If Ρ satisfies the above conditions, then the
following estimate holds

(16) II Pu | |0 < С (|| P*u Ho + || и \\m-i).
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P R O O F . It is easy to see that

(17) || Pu \\l = || P*u ||3 + (ClU, u),

where C, = [P*, P] = P*P - PP* is an operator of order 2m - 1, and
the principal part of the symbol of this operator is c°(x, £). Not that if
ρ (χ, ξ) is the distance to the characteristic manifold M, then there are
positive constants ax and a2 such that axp{x, ξ) < Ι ρ (χ, ξ) Ι < a2p (χ, ξ)
for (x, | ) e f* (ω). We denote by V/ the vector (grad* /(χ, ξ),
| ξ Igrad^ /(χ, £))· In a small neighbourhood U of the manifold Λ/ in
ω χ У ~ J we can find two smooth functions α (χ, ξ) and b (χ, ξ) such
that on Λ/ we have the inequalities:

(VA (*, ξ), V Re ρ» (χ, ξ)) = 0, (VA (x, I), Vim />° (χ,ξ )) = 0,

where

(18) h (x, 1) = c\ (x, I) -a (x, | ) Re p° (x, I) - b (χ, ξ) Im ρ» (χ, ξ).

This follows from the fact that the determinant of the system

Δ = | V Re p° I2 | V Im p° | 2 — (V Re p°, V Im p0)2

is non-zero because of condition 1. Thus, at those points of Μ where
c? (x, ξ) = 0 we have h (χ, ξ) = 0, V/ι (χ, ξ) = 0 because the vectors
V Re p°, V Im p° form at each characteristic point a basis for the plane
orthogonal to M. We extend the definition of α (χ, ξ) and b (χ, ξ) beyond
Ϊ/ to obtain smooth (C°°) functions for (χ, ξ) e ω χ У " 1 , and then
extend further to Γ* (ω) as positive homogeneous functions of order
m - 1. The function h (χ, ξ) is defined in Γ* (ω) by (18).

Because of the above properties of h (x, | ) and p° (χ, ξ) there exists a
constant N > 0 such that /г (χ, ξ) — Ν | ρ°(χ, ξ) Ρ is non-positive for
χ € ω, | ξ | = 1. It follows from (17) that for all functions и in C£°(co)

II Pu li; = || P*« |β + (5α, α) + (RP*u, и) + (Tu, и),

where S is a pseudodifferential operator of order 2m — 1 with the symbol
h (χ, ξ) - N | p° (χ, ξ) |211 Γ, the operator R has order m - 1, and Τ is
of order 2m — 2.

It follows from GSrding's inequality (see [31]) that

(Su, u)^C || и ||S,_i, в € С Г (*)·

Hence

II /^ Ifi < Ci (II P*u ie + || ц к»,.!),

as required.
L E M M A 2 (see [23], [18], [45]). // Ρ (χ, D) is an operator of
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principal type, then

(19) || и IU-! < С {$) (\\ P*u | |0 + \\ Pu | |0), и ζ С? (ω),

where δ и fAe diameter of ω, the constant С (δ) does not depend on
и (χ), and С (δ) -> 0 as δ -*• О.

P R O O F . Let e > 0 be any (sufficiently small) number. Let
φ (χ) e CS° (Rn), where ψ (x) = 1 when I x I < e and ψ (x) = 0 when
I x | > 2e. Suppose for simplicity that the domain ω lies in the ball
| χ | < δ. It suffices to prove (19) for operators P(x, D) with homogeneous
symbol p° (χ, ξ), because if Ρ = Po + Q, where Q is an operator of order
m — 1, then

|| Pou ||o + || P*u ||o < || Pu ||o + ||/>*u ||0 + d | | и |Ц_,.

If δ is so small that CXC (δ) < 1, then from the inequality

II И llm-1 <γθ (δ) (|| Λ,Μ Ho + И / > Но)

we immediately obtain (19). Thus, we may suppose from now on that
Ρ = Po. Denote by P°\x, D), Pm(x, D) the pseudodifferential operators
with the symbols Ър°(х, |)/3ξ;·, д2р°(х, |)/Э|/, respectively. Note that

(x, D) и = Ρ' 3 ' (x, D) (ψΐί) = Ρ (яуфи) - ^ P u +

where Τ is an operator of order — °°.
Therefore

^ (x, D) и \\l = (P (xflu), P^u) - (xtfPu, P<j>u) + (Tu,

(агуфи), P*u) + (агуфи, [ Ρ * , Ρ<3'>] u) - (хуфРи,

(Ги, Р ( 3 )ы) = (P'">*u, Р*ы) + (xflP&*u, P*u)

, [Ρ*, &

where Tx is an operator of order — «>. Hence we see that

(20) || P'j> (x, D) и \\l < С [|| « | |m_2 || P*u | |0 + ε || u Цм^ || P*u | |0

+ ε || и Н ^ + ε || Ри || || и IL.J + С (в) || и ||2т_2 <

< С'г (|| Pu ||о + || Р*и ||0) || и | | т_, + Се || и \^г + С (ε) || и

Here we have used the facts that | Xj \ < e in supp ψ (χ) and that
II " Hm-2< δ II Μ l l m - i for и e Co°° (ω). It is clear that

= Р^^фи = фР^^и + T2u, where the order of T2 is —°°, so that

(21) II №ihu Ho2 < II P<hu III + C, (ε) || и ||»т_2.

Further, because po(J)(x, if) is continuous, we have

| ψ [P<j> (x, D) - P<3' (0, D)} и
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so that

(22) || oJ)P<j> (0, D) и ||; < || ψΡ<3> (χ, D) и \ΐ +

Since Ρ is an operator of principal type,

:>coi&i»'m-i»>4-(i+i6iT-1-cs(i+isii)"u·,

where c 0 > 0. Hence from Parseval's equality we obtain

η

(23) 2
з = 1

As before (see (21)), we can show that

(24) || P<3> (0, D) и \\l < || 4>P<j> (0, D) и |g + C2 (ε) || u ||sm_2.

Finally, combining (20)-(24), we obtain

,) ε || u H ^ + C, (β) ||«\\U-

Since u e Co°° (ω), we have || и l l m _ 2 < δ || и | | m _ i . We can choose e and
then δ sufficiently small so that (C + C t) e < co/8, 52C3(e) < co/8, and
then

hence cancelling || и | | m _ i we obtain (19).
P R O O F O F T H E I N E Q U A L I T Y (15). Combining (16) and

(19) we see that for и е C0°°(CJ)

II и ||m_i < С (δ) (1 + С) || P*u Но + С (δ) С || « !!„_,.

If δ is so small that С (δ) С < 1/2, then it follows that
II и \\m_1 < 2C (δ) (1 + С) II P*u Ho, as required.
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