
Numerical Solution to Differential Equations using Matlab:

Part 2: Finite Element Methods

Niall Madden

21 March 2012 (Rev 12.03.24)

1 Outline

Today we want to develop some Matlab code to imple-
ment a simple finite element methods for a one-dimensional
problem:

− u ′′ + p(x)u ′ + r(x)u = f(x) x ∈ Ω := (0, 1), (1)

and with Dirichlet boundary conditions. The code given
below is for the simple case:

1. p ≡ 0 (this is often called the convective term,
especially in computational fluid dynamics).

2. The reaction term, r, is constant;

3. Linear basis functions for the finite dimensional
space. However, it’s written in such a way so that
it is not difficult to use higher-order polynomials.

4. The boundary conditions are of Dirichlet type. That
is, we specify the value of the solution on the bound-
ary. Alternatively, one could specify the first deriva-
tive, called a Neumann condition. Or some combi-
nation, giving a Robin condition.

5. The boundary conditions are homogeneous, i.e, u(0) =

u(1) = 0. However, it is very easy to adjust the
code to change this.

6. The mesh is uniform. But is not too challenging
to extend this code so that it works for arbitrary
meshes.

7. The method is implemented as a script file. It
would be better to implement this as a function.

8. The error is estimated in the L2-norm. To date, our
mathematical analysis has been for energy norms:
‖u− uh‖B :=

√
B(u− uh,u− uh).

9. The function Integrate is not given. (Addendum:
I’ve now posted a simple integrator to the webpage.
It uses 2-point Gaussian quadrature.).

We denote the mesh as ΩN := {x0 < x1 < · · · < xN}.
As with finite difference methods, we denote the mesh
width as hi = xi −xi−1. Since here the mesh is uniform,
we can write h = hi.

2 The code

This section contains the code. You can download it
from http://tinyurl.com/845fnul

2.1 Generic code comments

Your code should begin with a short description of what
the program does and why it was written.

1 %% Solve1dFeLinear.m 21/03/2012
2 % Written by Niall Madden for the course on
3 % Mathematics of the Finite Element Method.
4 % An implementation of a Finite Element Method
5 % for a one−dimensional problem on a uniform
6 % mesh, with linear basis elements.
7 % The problem (in strong form) is:
8 % −u'' + r u=f(x) on Omega=(0,1)
9 % u(0)=u(1)=0;

10 % See also Integrate.m

2.2 Problem specific information

The problem we’ll solve is a simplified variant on (1):

− u ′′ + ru = 4e−x on (0, 1), u(0) = u(1) = 0. (2)

The exact solution is readily available, and is given in
the code.

13 fprintf('A Finite Element implementation for:');
14 fprintf('\n −u'' + r u=f(x) on (0,1) \n');
15 fprintf('using linear basis elements \n');
16 r=1/4; % r is constant
17 f=@(x)(4*exp(−x));
18 u=@(x)16/3*((exp(x/2).*(exp(−1)−exp(−1/2)) − ...
19 exp(−x/2).*(exp(−1)−exp(1/2)))./(exp(1/2)− ...
20 exp(−1/2))− exp(−x));

1

http://www.maths.nuigalway.ie/~niall/MathsOfFEM/1DFE_Matlab/Solve1dFeLinear.m

2.5 And then build the linear system 2 THE CODE

2.3 Information on the method and mesh

To find a numerical solution to (2) we need to specify
the particular finite element discretization we’ll be us-
ing: that is we need to choose a mesh, and some basis
functions for our space. Here we are going to use a uni-
form mesh, so it is specified just by giving N, the number
of intervals on the mesh.

28 N=2ˆ5;
29 h = 1/N; % Assuming mesh is uniform
30 x = linspace(0,1,N+1)'; % mesh is a column vector

We’ll use piecewise linear basis functions, and define
them on a reference element [0,h]:

φ1(x) = 1 −
x

h
φ2(x) =

x

h
.

They are stored in a call array. I’m indexing from 1,
rather than 0, since that is what Matlab supports. Of
course we also need the derivatives. Although they are
constant in this case, I’m representing them as functions.
This is because you might like to use higher-order ele-
ments.

35 phi = {@(x)(1−x/h);
36 @(x)(x/h);};
37 Dphi = {@(x)(x*0−1/h);
38 @(x)(x*0+1/h); };

2.4 Now construct the element matrices

Every interval supports two basis functions. That means
that each contributes to two rows and to two columns of
the matrix. So we’ll represent these contributions as a
2 × 2 matrix. I use E2 to represent the contribution
from second-order term, and E0 the contribution from
the zero-order term. That is,

E2ij =

∫xi

xi−1

φ ′
jφ

′
idx. E0ij =

∫xi

xi−1

φjφidx.

51 E2 = zeros(2,2);
52 E0 = zeros(2,2);
53 for i=1:2
54 for j=1:2
55 E2(i,j) = Integrate(@(X)(Dphi{j}(X).*...
56 Dphi{i}(X)),0,h);
57 E0(i,j) = Integrate(@(X)(phi{j}(X).*...
58 phi{i}(X)),0,h);
59 end
60 end

Note that I have not included the reaction term, r in this
construct. This is because I want to use the E0 matrix
for forming the right-hand side, as is explained below.

2.5 And then build the linear system

Now we construct the linear system. Here, for purposes
of exposition, I’m building the matrix one interval at a
time. This is very slow, but easier to understand than
using a more complicated sparse construct. I’m a little
lazy in how the right-hand side is formed. Instead of
computing either the exact integral (f,φi), or a quadra-
ture approximation to that, I use the piecewise linear
interpolant to f. That is, the ith term in the right-hand
side is

(f,φi) ≈
(N∑

j=0

f(xj)φj(x),φi(x)
)

=

i+1∑
j=i−1

f(xj)
(
φj,φi

)
.

66 A = sparse(N+1, N+1);
67 F = zeros(N+1,1);
68 for i=1:N
69 A(i:i+1,i:i+1) = A(i:i+1,i:i+1) + E2 + r*E0;
70 F(i:i+1) = F(i:i+1) + E0*f(x(i:i+1));
71 end

2.6 Solve and display

The differential equation has homogeneous boundary con-
ditions. They are enforced explicitly as follows:

73 U = [0; A(2:end−1, 2:end−1)\F(2:end−1); 0];

2.7 Finally, compute the error

As mentioned in Section 1, this code does not compute
the error correctly, instead the L2 error is given. You
should adjust the code to estimate the error in the energy
norm.

82 L2Error=0;
83 Diff = @(X)(u(X) − interp1(x,U,X));
84 for i=1:N
85 L2Error = L2Error + ...
86 Integrate(@(X)(Diff(X).ˆ2), x(i),x(i+1));
87 end
88 L2Error = sqrt(L2Error);
89 fprintf('N=%6d, L2Error=%8.3d\n', N, L2Error);

2

	Outline
	The code
	Generic code comments
	Problem specific information
	Information on the method and mesh
	Now construct the element matrices
	And then build the linear system
	Solve and display
	Finally, compute the error

