
Numerical Solution to Differential Equations using Matlab:

Part 3: a finite element implementation for a 2D elliptic problem

Niall Madden

28 March 2012

Abstract

Here is a short description of Matlab implementation of
a finite element method for a two-dimensional problem.
It presents my own approach (or, rather, a simplification
of that). However, parts of the implementation and de-
scription are based on the excellent presentation given
in [1]. If you are interested in developing a more expen-
sive implementation, I suggest you consult that book.

1 Outline

Following on from last week’s lab, today we want to de-
velop some Matlab code to implement a simple finite
element methods for the two-dimensional Poisson prob-
lem:

− (uxx + uyy) = f(x,y) x ∈ Ω := (0, 1)2, (1)

and with Dirichlet boundary conditions. Here are the
limits of this code, and how it could be extended:

1. It is for the problem −∆u = f. It can be extended
to the more general cases such as −∆u+ p · ∇u+

r(x,y)u = f, or −∇·(κ∇u) = f, where κ is variable.

2. I use linear basis functions on triangles. It would
take a little more work to extend to more general
elements.

3. We could implement mixed boundary conditions.
That is, we could have Dirichlet boundary condi-
tions on one part of the domain, and Neumann (for
example) on another.

4. The mesh is uniform. However, that is just for
generating nice-looking results. It works for an ar-
bitrary set of mesh points, which are then triangu-
lated using Matlab’s delaunay function.

5. The method is implemented as a script file. It
would be better to implement this as a function.

6. It is rather slow. I haven’t used any fancy sparse
constructs to build the system matrix. That would
not be hard to do, especially for a simple problem
like this one, but it would make the code much
harder to understand.

7. The simplest possible, one-point quadrature rule is
used. On the triangle, Tk, we estimate the integral∫

Tk

g(x,y)dA ≈ ḡArea(Tk).

where ḡ is the value of g at the centroid of Tk. This
is fine for constructing the element matrix, but is
a little crude for the right-hand side.

8. The maximum pointwise error is reported. It should
estimate the error in the energy norm.

2 The code

You can download the code from
http://www.maths.nuigalway.ie/ niall/MathsOfFEM

2.1 Generic code comments

As ever, our program begins with a short description of
what the program does and why it was written.

1 %% An implementation of a Finite Element Method
2 % Author: Niall Madden. Date: 28/03/12
3 % for a two−dimensional PDE with linear basis
4 % elements on triangles. The problem is:
5 % −(u xx + u yy) + r u=f(x,y) on Omega=(0,1)ˆ2
6 % u given on boundary

2.2 Problem specific information

The test problem is simple variant on (1):

− ∆u = 32(x− x2 + y− y2) on Ω, u(∂Ω) = 0, (2)

where Ω = (0, 1)2 is the unit square. The exact solution
is u(x,y) = 16xy(1−x)(1−y), and is shown in Figure 1.

1

http://www.maths.nuigalway.ie/~niall/MathsOfFEM

2.4 The basis elements 2 THE CODE

Figure 1: The solution to (2)

17 u=@(x,y)(16*x.*y.*(1−x).*(1−y));
18 uxx=@(x,y)−32*(y.*(1−y));
19 uyy=@(x,y)−32*(x.*(1−x));
20 f=@(x,y)(−uxx(x,y) − uyy(x,y));

2.3 The mesh

We’ll choose a fixed number N of mesh intervals on each
axis, and let x and y be vectors of N+ 1 mesh points on
[0, 1]. We then make a two-dimensional grid of (N+ 1)2

mesh points from these by taking the Cartesian product.
This is done by using the Matlab function meshgrid.
It returns two (N + 1) × (N + 1) matrices, which are
reshaped as vectors. This works by stacking the columns
of the matrices to gives two (column) vectors X and Y

with (N+1)2 entries. Now vertex i will have coordinates
(X(i), Y(i)). Here the mesh nodes are numbered left-
to-right and top-to-bottom (“lexicographical ordering”).
That is, node 1 is in the bottom left at (0, 0), node N+1
is in the bottom right at (1, 0), and note (N + 1)2 is in
the top right at (1, 1). So, for example, xk = X(T(k,:))

and yk = Y(T(k,:)) assigns the vectors xk and yk the
coordinates of the three vertices of triangle k.

30 N=2ˆ3;
31 x = linspace(0,1,N+1); y=x;
32 [X, Y] = meshgrid(x,y);
33 X = reshape(X',[],1);
34 Y = reshape(Y',[],1);

The next step is the triangulate the data. This could
be difficult, but there is a built in Matlab function called
delaunay to help us. It returns a (N + 1)2 × 3 ma-
trix. The kth row of this matrix will have the indices of
the three vertices of triangle k. Such a mesh for the
case N = 8 is shown in Figure 2 below. There is a

more sophisticated (and better) Matlab function called
DelaunayTri, but I don’t want to get into object ori-
ented programming here.

Figure 2: The triangulated mesh with N = 8

37 T = delaunay(X,Y);
38 figure(1); triplot(T,X, Y);

2.4 The basis elements

Our basis is the set of piecewise linear functions on mesh:

{φ(1)(x,y),φ(2)(x,y), . . . ,φ
(
(N+1)2

)
(x,y)},

where here I am indexing from 1 since that is what Mat-
lab does. Each of these can be defined as being the piece-
wise linear function such that

φ(k)(xi,yj) =

{
1 xi = X(k),yj = X(k)

0 otherwise.

Unlike in the one-dimensional case, we don’t tend to
think of an arbitrary basis function in terms of its sup-
port (that is, the triangles where it is non-zero). This
is because any number of triangulations are possible on
a set of nodes. Since each basis function corresponds
to a node, many triangulations are possible. Moreover,
on a given (even uniform) arrangement of mesh nodes,
different basis functions can have support on a differ-
ent number of triangles. For example, looking at Fig-
ure 2 you’ll see that the basis function associated with
the mesh point (2/4, 1/8) has support on seven triangles,
whereas the one associated with (2/8, 6/8) has support
only on four.

Instead, it make much more sense the consider each
triangle, and then determine the formula for the three
basis functions that have support on it. The trick is

2

2.6 Solve and display REFERENCES

to find an easy way of determining the coefficients. We
also need compute the area of each triangle, since this is
useful for the numerical quadrature procedure.

We dealing first with the area of the triangle, I’ll fol-
lowing the explanation and notation of [1, Section 4.6].
Suppose I have an arbitrary triangle Tk with vertices
(x1,y1), (x2,y2) and (x3,y3). This can be mapped to
the reference triangle TR on the vertices (s1, t1) = (0, 0),
(s2, s2) = (1, 0) and (s3, t3) = (0, 1). The mapping can
be done by(
x
y

)
=

(
x1

y1

)
+Jk

(
s
t

)
where Jk =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
.

Then the area of triangle k is Ak = |Jk|/2.
Now we will compute the coefficients of the three ba-

sis functions on the triangle Tk. The description here
follows [1, Section 7.1]. I will denote by φ1, φ2 and φ3

the restriction of the basis functions that have support
on Tk to Tk. Each is associated with a vertex of Tk, in
the sense that φ1 takes the value 1 at (x1,y3), and is
zero at (x2),y2) and (x3,y3). Then one could write

φi(x,y) = ai + bix+ ciy, for i = 1, 2, 3.

We have three equations and three unknowns:(
1 x1 y1

2 x2 y2

3 x3 y3

)(
a1

b1

c1

)
=

(
1
0
0

)

Lets write this as

Mk

(
a1

b1

c1

)
= e1.

This is trivial to form and solve in Matlab. In particular,
I form Mk by Mk = [ones(3,1), xk, yk].

Now the coefficients for φ2 and φ3 can be similarly
determined.

Mk

(
a2

b2

c2

)
= e2, Mk

(
a3

b3

c3

)
= e3.

So writing

Ck =

(
a1 a2 a3

b1 b2 b3

c1 c2 c3

)
we see than Ck = M−1

k .

2.5 Building the linear system

Our linear system is

AU = F,

where Ai,j =
∫
Ω∇φ

(i) · ∇φ(j)dA.

Rather than buildingA one entry at a time, we iterate
over each triangle and accumulate the integrals.

This is particularly easy in this case since the gradi-
ents are constant: ∇φi = (bi, ci)T .

The full code is given as

41 A = sparse((N+1)ˆ2, (N+1)ˆ2);
42 F = zeros((N+1)ˆ2, 1);
43 NT = length(T);
44 for k=1:NT
45 xk = X(T(k,:));
46 yk = Y(T(k,:));
47

48 Jk = [xk(2)−xk(1), xk(3)−xk(1);
49 yk(2)−yk(1), yk(3)−yk(1)];
50

51 Ak = abs(det(Jk))/2;
52 Mk = [ones(3,1), xk, yk];
53 Ck = inv(Mk);
54

55 E2 = zeros(3,3);
56 for i=1:3
57 for j=1:3
58 E2(i,j) = Ak*Ck(2:3, i)'*Ck(2:3, j);
59 end
60 end
61 A(T(k,:), T(k,:)) = A(T(k,:), T(k,:)) + E2;
62

63 Centroid x = sum(xk)/3;
64 Centroid y = sum(yk)/3;
65 F(T(k,:)) = F(T(k,:)) + ...
66 Ak*f(sum(xk)/3, sum(yk)/3)/3;
67 end

2.6 Solve and display

72 Boundary = find((X==0) | (X==1) | (Y==0) | (Y==1));
73 Interior = setdiff(1:(N+1)ˆ2, Boundary);
74 U = zeros((N+1)ˆ2, 1);
75 U(Boundary) = u(X(Boundary) , Y(Boundary));
76 F(Interior) = F(Interior) − ...
77 A(Interior, Boundary)*U(Boundary);
78 U(Interior) = A(Interior, Interior)\F(Interior);
79

80 figure(3);
81 subplot(1,3,1); trimesh(T,X,Y,u(X,Y));
82 subplot(1,3,2); trimesh(T,X,Y,U);
83 subplot(1,3,3); trimesh(T,X,Y,u(X,Y)−U);

References

[1] Mark S. Gockenbach. Understanding and implement-
ing the finite element method. SIAM, 2006.

3

	Outline
	The code
	Generic code comments
	Problem specific information
	The mesh
	The basis elements
	Building the linear system
	Solve and display

