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1. Integration by parts

Logarithmic norm of matrix

µ2[A] = max
x 6=0

xTAx

xTx
⇒ xTAx ≤ µ2[A] · xTx

For d2/dx2 , introduce the inner product

〈u, v〉 =

∫ 1

0
ū(x)v(x)dx ⇒ ‖u‖2

2 = 〈u, u〉
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The logarithmic norm of d2/dx2

Can we find a constant µ2[d2/dx2] such that

〈u, u′′〉 ≤ µ2[d2/dx2] · ‖u‖2
2

for all functions u ∈ C 2
0 [0, 1]?

Yes, and µ2[d2/dx2] = −π2
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Integration by parts Cool!

∫ 1

0
uv ′ dx = [uv ]10 −

∫ 1

0
u′v dx

Because u(0) = u(1) = 0, this can be written

〈u, v ′〉 = −〈u′, v〉

Apply to d2/dx2 ⇒

〈u, u′′〉 = −〈u′, u′〉 = −‖u′‖2
2
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Sobolev’s lemma

Lemma For all functions u with u(0) = u(1) = 0 it holds that

‖u′‖2 ≥ π‖u‖2

Proof Fourier analysis (Parseval’s theorem)

u =
√

2
∞∑
k=1

ck sin kπx ⇒ u′ = π
√

2
∞∑
k=1

kck cos kπx

implies ‖u′‖2 ≥ π‖u‖2

Note Equality for u(x) = sinπx
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Logarithmic norm of d2/dx2 on [0, 1]

We now have

〈u, u′′〉 = −〈u′, u′〉 = −‖u′‖2
2 ≤ −π2‖u‖2

2

Theorem The logarithmic norm of d2/dx2 on C 2
0 [0, 1] is

µ2[d2/dx2] = −π2

Corollary The 2pBVP u′′ = f (x) with u(0) = u(1) = 0 has a
unique solution with ‖u‖2 ≤ ‖f ‖2/π

2
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2. Linear operators and adjoint operators

Definition Given an operator A,

〈v ,Au〉 = 〈A∗v , u〉

defines the adjoint operator A∗

Example For vectors and matrices, AT is the adjoint of A, as

〈v ,Au〉 = vTAu = (ATv)Tu = 〈A∗v , u〉

A matrix is “self-adjoint” (symmetric) if A = AT
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Self-adjoint differential operators L∗ = L

Example 1 d2/dx2 is self-adjoint on C 2
0 [0, 1]

Proof Integrate twice by parts 〈v , u′′〉 = −〈v ′, u′〉 = 〈v ′′, u〉

Example 2 L =
d

dx

(
p(x)

d

dx

)
+ q(x) is self-adjoint on C 2

0 [0, 1]

〈v ,Lu〉 = 〈v , (pu′)′ + qu〉 = 〈v , (pu′)′〉+ 〈v , qu〉
= −〈v ′, pu′〉+ 〈qv , u〉
= −〈pv ′, u′〉+ 〈qv , u〉
= 〈(pv ′)′, u〉+ 〈qv , u〉
= 〈(pv ′)′ + qv , u〉 = 〈Lv , u〉 = 〈L∗v , u〉
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. . . but some are anti-selfadjoint L∗ = −L

Example 3 L = d/dx is anti-selfadjoint on C 2
0 [0, 1]

Proof Integrate by parts, 〈v , u′〉 = −〈v ′, u〉, so L∗ = −L

Some are neither self-adjoint nor anti-selfadjoint

Example 4 L =
d

dx

(
p(x)

d

dx

)
+

d

dx
+ q(x)

The latter tend to be “trouble-makers”
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Eigenvalues of self-adjoint operators are real

Let Au = λu, then λ = λ̄ because

λ‖u‖2
2 = 〈u, λu〉 = 〈u,Au〉 = 〈A∗u, u〉

= 〈Au, u〉 = 〈λu, u〉 = λ̄‖u‖2
2

(Anti-selfadjoint operators have imaginary eigenvalues)

Eigenvectors are orthogonal – let Au = λu and Av = µv , then

λ〈v , u〉 = 〈v ,Au〉 = 〈A∗v , u〉
= 〈Av , u〉 = µ〈v , u〉

So λ 6= µ implies orthogonality, 〈v , u〉 = 0
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3. Elliptic operators

Definition An operator is elliptic if for all u 6= 0

〈u,Au〉 > 0

Example −d2/dx2 on C 2
0 [0, 1]

Proof Integrate by parts

−〈u, u′′〉 = 〈u′, u′〉 ≥ π2〈u, u〉

by Sobolev’s lemma
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Elliptic operators. . .

More generally,

− d

dx

(
p(x)

d

dx

)
+ q(x)

is elliptic if p(x) > 0 and q(x) ≥ 0

Example Poisson equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= f (x , y)

−∆ is an elliptic operator

13 / 27



Positive definite operators

Definition An operator is positive definite if it is self-adjoint and
elliptic

Example −d2/dx2 as µ2[d2/dx2] = −π2 on C 2
0 [0, 1]

Negative Laplacian −∆ (leads to FEM theory)

Procedure

Analyze the differential operator, discretize to preserve symmetry
and ellipticity, using high order (if possible) and adaptive grids

14 / 27



4. From Finite Differences to Finite Elements

Start with linear differential equation

Au = f + boundary conditions

Finite Difference Method (FDM) The main idea

• Replace functions u and f by vectors

• Replace differential operator A by matrix

• Obtain a linear system of equations

Example 1D Poisson equation
d2

dx2
u = f (x) → T∆xu = f
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Finite Elements and the Galerkin method

Galerkin Method (FEM) The main idea

• Approximate function u by polynomials v

• Keep differential operator A as is

• Insert v into original equation

• Choose v to minimize the residual ‖Av − f ‖L2

Choose v as a piecewise polynomial satisfying boundary conditions,
and find the best approximation using integration by parts

This is in principle a least squares approximation
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Best approximation = least squares

Let {ϕj} be a polynomial basis, and make the ansatz

v(x) =
N∑
j=1

cjϕj(x)

Minimizing ‖Av − f ‖2 is equivalent to requiring that
the residual is orthogonal to each and every ϕi

〈ϕi ,Av − f 〉 = 0 ∀i

This is least-squares approximation
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Best approximation. . .

As A is linear,

Av = A
N∑
j=1

cjϕj =
N∑
j=1

cjAϕj

Then

〈ϕi ,Av − f 〉 = 0 ⇔
N∑
j=1

〈ϕi ,Aϕj〉cj = 〈ϕi , f 〉

Linear system of equations Ac = b with
∑

aijcj = bi , and where

aij = 〈ϕi ,Aϕj〉 bi = 〈ϕi , f 〉

The system is assembled from the basis {ϕi} and the operator A
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5. Weak formulation 1D Poisson −u′′ = f

If −u′′ = f then for all v satisfying v(0) = v(1) = 0

〈v ,−u′′〉 = 〈v , f 〉

Integrate by parts and use Dirichlet boundary data to get

Weak formulation 〈v ′, u′〉 = 〈v , f 〉 ∀v

Note

• u only needs to be once continuously differentiable, not twice

• Integration by parts corresponds to a “Choleski factorization”
of the positive definite operator
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Weak formulation and energy norm

Definition The energy norm is defined by a(v , u) = 〈v ′, u′〉 and
the weak formulation can be written:

Find a function u such that for all test functions v it holds

a(v , u) = 〈v , f 〉

What functions? Choose a polynomial space V with basis {ϕj},
satisfying the boundary conditions, and require v ∈ V and u ∈ V,
all defined on suitable grid {xi}
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The Finite Element Method (FEM)

Given grid {xi}, choose piecewise linear basis polynomials

ϕj(xi ) = 1 if i = j , otherwise 0
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1

1.2

Piecewise linear interpolant v ≈ u can be written

v(x) =
N∑
j=1

cjϕj(x) Note v(xi ) = ci ≈ u(xi )
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6. Galerkin cG(1) method 1D Poisson −u′′ = f

Best approximation a(v , u) = 〈v , f 〉, with u, v ∈ V, leads to

a(ϕi ,

N∑
j=1

cjϕj) = 〈ϕi , f 〉

which is equivalent to the finite element equation Kc = b

N∑
j=1

〈ϕ′i , ϕ′j〉cj = 〈ϕi , f 〉 ∀ϕi ∈ V

The stiffness matrix K with elements {〈ϕ′i , ϕ′j〉}Ni ,j=1 can be
computed as soon as the basis {ϕj} has been constructed

The right-hand side vector b depends on the data f
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Equation system 1D Poisson −u′′ = f

Assume an equidistant grid with spacing ∆x and note that

ϕ′i (x) = 1/∆x x ∈ [xi−1, xi ]

ϕ′i (x) = −1/∆x x ∈ [xi , xi+1]

ϕ′i (x) = 0 elsewhere

Then

〈ϕ′i , ϕ′i 〉 =

∫ xi+1

xi−1

1

∆x2
dx =

2

∆x

〈ϕ′i , ϕ′i+1〉 =

∫ xi+1

xi

−1

∆x2
dx =

−1

∆x
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Stiffness matrix

For equidistant grid with spacing ∆x the stiffness matrix is

K∆x =
1

∆x
tridiag(−1 2 − 1)

Note

• The stiffness matrix is K∆x = −∆x · T∆x

• It is positive definite, therefore nonsingular

• Smallest eigenvalue λ1[K∆x ] ≈ π2∆x
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Mass matrix

Compute RHS integrals using numerical integration

〈ϕi , f 〉 ≈ 〈ϕi ,

N∑
j=0

fjϕj〉 =
1∑

k=−1

fi+k〈ϕi , ϕi+k〉

Need to compute 〈ϕi , ϕi+k〉 =
∫ xi+1

xi−1
ϕi (x)ϕi+k(x) dx

The integrals are 〈ϕi , ϕi 〉 = 2∆x/3 and 〈ϕi , ϕi+1〉 = ∆x/6

For equidistant grid with spacing ∆x the mass matrix is

M∆x =
∆x

6
tridiag(1 4 1)
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Assembling the system of equations

Finite element equation for −u′′ = f is a tridiagonal system

K∆x c = M∆x f

with stiffness matrix

K∆x =
1

∆x
tridiag(−1 2 −1)

and mass matrix

M∆x =
∆x

6
tridiag(1 4 1)

26 / 27



Advantages of the Finite Element Method

• Produces “continuous solution” not only on grid points

• Boundary conditions built into test functions

• In PDEs, easy to work with complex geometries

• Can easily use nonuniform grids

• Can also use basis of higher degree splines

• Rich theoretical foundation

Note Weak formulation allows using piecewise linear
approximations, in spite of v ′′ = 0 for such “solutions”
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