HOWARD UNIVERSITY
 DEPARTMENT OF MATHEMATICS
 MATH156-12, Midterm 1
 October 8, 2022 10:00am - 11:00am

Instructions:

\Rightarrow You are required to keep your webcam on during the entire period of the exam and should be seated at a bright place in such a way that both of your hands and your desk can be seen via the webcam.
\Rightarrow The exam consists of 10 questions plus an extra credit question. Each question is worth 10 points.
\Rightarrow Write your solutions on paper (no need to print the exam's pdf). Show all your work as neatly and legibly as possible. Make your reasoning clear.
\Rightarrow As soon as you finish the test: write you name on each of the pages, scan your solution in pdf or jpeg format and email it to roberto.deleo@howard.edu.

10 points 1. Let $f(x)=\sqrt{1-x^{2}}$ and $g(x)=e^{x^{2}}$. Evaluate $f(g(x))$ and $g(f(x))$.

10 points 2. Let $f(x)=x^{2}+3 x+2$ and $g(x)=3 x^{2}+3 x$. Verify that both functions are infinitesimal for $x \rightarrow-1$ and evaluate $\lim _{x \rightarrow-1}\left|\frac{f(x)}{g(x)}\right|$. Which infinitesimal runs faster to zero? (if any)

10 points
3. Let

$$
f(x)= \begin{cases}\frac{x-2}{x^{2}-4}, & x<2 \\ c x^{3}-7, & x \geq 2\end{cases}
$$

For which values of c the function f is continuous on the whole real line? Justify your answer.
4. Linearize $f(x)=\sqrt[4]{2 x-1}$ about $x=1$ and use this linearization to evaluate "by hand" $\sqrt[4]{1.06}=f(1.03)$. Estimate the absolute and relative error knowing that $\sqrt[4]{1.06}=1.014674 \ldots$

10 points
5. Find the horizontal and vertical asymptotes of the function $f(x)=\frac{x^{2}}{x^{2}-1}$.

10 points

10 points

10 points

10 points

10 points
10. At which points is $f(x)$ not continuous? At which points is not differentiable? Explain.

Extra Credit

10 points
11. Sketch the graphs of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Calculus 1 Formulae:

1. Continuity: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$
2. Differentiability: $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
3. Forward Difference: $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
4. Backward Difference: $\frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}$
5. Centered Difference: $\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}$
6. Differentiations rules:

$$
\begin{gathered}
\left(x^{n}\right)^{\prime}=n x^{n-1},(\sin x)^{\prime}=\cos x,(\cos x)^{\prime}=-\sin x,\left(e^{x}\right)^{\prime}=e^{x} \\
(f(x)+k g(x))^{\prime}=f^{\prime}(x)+k g^{\prime}(x) \\
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)} \\
(f(g(x)))^{\prime}=g^{\prime}(x) \cdot f^{\prime}(g(x))
\end{gathered}
$$

