HOWARD UNIVERSITY
 DEPARTMENT OF MATHEMATICS
 MATH156, Midterm 2
 November 7, 2022 9:00am - 10:00am

Instructions:

\Rightarrow You are required to keep your webcam on during the entire period of the exam.
\Rightarrow Write your solutions on paper (no need to print the exam's pdf).
Show all your work as neatly and legibly as possible. Make your reasoning clear.
\Rightarrow As soon as you finish the test: write you name on each of the pages, scan your solution in pdf or jpeg format and email it to roberto.deleo@howard.edu.

10 points 1. Consider the curve $\sin (x+y)=y^{2} \cos x$, whose graph is shown below.
Find the equation of the tangent line to this curve at $(0,0)$.

10 points
2. Use l'Hopital's rule to show that $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)$. Show your reasoning.

40 points 3 . Consider the one-parameter family of functions $p(x)=x^{4}-2 a x^{2}$, where $a \neq 0$.

1. Find for which values of a do critical points exist and for which values they do not exist.
2. In both cases, draw a sign chart for $p^{\prime}(x)$.
3. Based on the sign chart, for each critical number (if any) say whether it is a local max, a local min or an inflection point. Justify your answer.
4. How do critical numbers change as a increases? And what happens to them as $a \rightarrow 0$?

10 points 4. A bug is walking on the parabola $y=x^{2}$. At what point on the parabola are the x and y coordinates changing at the same rate?
5. The sum of two positive numbers is 12 . What is the smallest possible value of the sum of their squares? Show your reasoning.

Extra Credit

6. Consider the one-parameter family of functions $q(x)=x^{3}+a \sin (x)$. Is the number of critical numbers of $q(x)$ finite or infinite? Why? Does the answer depends on a ?
7. Solve problem 2 by linearizing $f(x \pm h)$ about $h=0$.

Calculus 1 Formulae:

1. Continuity: $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$
2. Differentiability: $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
3. Forward Difference: $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$
4. Backward Difference: $\frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}$
5. Centered Difference: $\frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}$
6. Differentiations rules:

$$
\begin{gathered}
\left(x^{n}\right)^{\prime}=n x^{n-1},(\sin x)^{\prime}=\cos x,(\cos x)^{\prime}=-\sin x,\left(e^{x}\right)^{\prime}=e^{x} \\
(f(x)+k g(x))^{\prime}=f^{\prime}(x)+k g^{\prime}(x) \\
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)} \\
(f(g(x)))^{\prime}=g^{\prime}(x) \cdot f^{\prime}(g(x))
\end{gathered}
$$

