
HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS MATH156, Midterm 2 November 7, 2022 2:00pm - 3:00pm

Instructions:

- \Rightarrow You are required to keep your webcam on during the entire period of the exam.
- \Rightarrow Write your solutions on paper (no need to print the exam's pdf).

Show all your work as neatly and legibly as possible. Make your reasoning clear.

- \Rightarrow As soon as you finish the test: write you name on each of the pages, scan your solution in pdf or jpeg format and email it to <roberto.deleo@howard.edu>.
- 10 points 1. Consider the curve $\pi \sin(x+y) = \pi y^2 \cos x$, whose graph is shown below. Find the equation of the tangent line to this curve at (0,0).

- 10 points 2. Use l'Hopital's rule to show that $\lim_{h \to 0} \frac{f(4+2h) f(4-2h)}{4h} = f'(4)$. Show your reasoning.
- 40 points 3. Consider the one-parameter family of functions $p(x) = x^3 3a \ln(x)$, where x > 0and $a \neq 0$.
 - 1. Find the number of critical numbers depending on *a*. How many different cases do we have?
 - 2. Draw a sign chart for p'(x).
 - 3. Based on the sign chart, for each critical number, say whether it is a local max, a local min or an inflection point. Justify your answer.

- 4. How do critical number(s) change as a increases? And what happens to it/them as $a \to 0$?
- 10 points 4. A bug is walking on the parabola $y = 2x^2 x$. At what point on the parabola are the x and y coordinates changing at the same rate?
- 10 points 5. The sum of two positive numbers is 24. What is the largest possible value of their product? Show your reasoning.

Extra Credit

- 10 points 6. Consider the one-parameter family of functions $q(x) = x^2 + a \sin(x)$. Is the number of critical numbers of q(x) finite or infinite? Why? Does the answer depends on a?
- 10 points 7. Solve problem 2 by linearizing $f(4 \pm h)$ about h = 0.

Calculus 1 Formulae:

- 1. Continuity: $\lim_{x\to x_0} f(x) = f(x_0)$
- 2. Differentiability: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) f(x_0)}{h}$
- 3. Forward Difference: $\frac{f(x_0+h)-f(x_0)}{h}$
- 4. Backward Difference: $\frac{f(x_0) f(x_0 h)}{h}$
- 5. Centered Difference: $\frac{f(x_0+h)-f(x_0-h)}{2h}$
- 6. Differentiations rules:

$$(x^n)' = nx^{n-1}, \ (\sin x)' = \cos x, \ (\cos x)' = -\sin x, \ (e^x)' = e^x$$

$$(f(x) + kg(x))' = f'(x) + kg'(x)$$
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$
$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$