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Abstract. The paper is a part of student cooperation in AKTION project (Austria-Czech). Taylor series method for solving
differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred
in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information
Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used
algorithms for numerically solving differential equations.

The paper deals with possibilities of numerical solution of Initial Value Problems of Ordinary Differential Equations
(ODEs) - using the Taylor series method with automatic computation of higher Taylor series terms.

The explicit and implicit scheme of Taylor series method is compared with numerical solvers implemented in MATLAB
software [1]. The computation time and accuracy of our approach are compared with that of MATLAB ode solvers on a set of
ODEs test examples [2].
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INTRODUCTION

The “Modern Taylor Series Method” (MTSM) is used for numerical solution of differential equations. The MTSM is
based on a recurrent calculation of the Taylor series terms for each time interval. Thus the complicated calculation of
higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor
series term is numerically calculated. Solving the convolution operations is another typical algorithm used.

An important part of the MTSM is an automatic integration order setting, i.e. using as many Taylor series terms as
the defined accuracy requires. Thus it is usual that the computation uses different numbers of Taylor series terms for
different steps of constant length.

The MTSM has been implemented in TKSL software [3]. Some articles that are focused on the MTSM were
published last years [4, 5].

There are several papers that focus on computer implementations of the Taylor series method in different context “a
variable order and variable step” (see, for instance, [6, 7]). Another more detailed description of a variable step size
version and software implementation of the Taylor series method can be seen in [8]. The stability domain for several
Taylor methods is presented in [9]. Promising A-stable combination of implicit Taylor series method with Trapezoidal
rule is described in [10].
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EXPLICIT SOLVERS

The best-known and most accurate method of calculating a new value of a numerical solution of ordinary differential
equation y′ = f (t,y), y(0) = y0 is to construct the Taylor series [11, 12].

The n−th order method (ORD = n) uses n Taylor series terms in the explicit form

yi+1 = yi +h · f (ti,yi)+
h2

2!
· f [1](ti,yi)+ · · ·+ hn

n!
· f [n−1](ti,yi) , ORD = n . (1)

(2)

Non-Stiff Problems

Benchmark set of ordinary differential equations [2] was used for tests. Following comparisons of entire “non-stiff
package”, except for non-continuous equations F1 - F5 have been completed. Simulated interval (tmax) was set to 100
seconds, minimal integration time step (h) was set to 1 second.

MTSM (based on explicit Taylor series form (2)) was compared with MATLAB explicit ode solvers. It was found
that the best MATLAB solver for our set of test examples was ode45 solver. Results of computation times comparisons
for MTMS (expTay) ORD = 10 can be seen in Tab. 1 (every time is taken from 50 runs of computations). Ratios of
computation times

ratio1e =
ode45
expTay

, ratio2e =
expTay

ode45

can be seen in Tab. 1 (the bold numbers represents faster solutions of computations).
Median time of all examples for different order of MTSM can be seen in figure right to Tab. 1.

TABLE 1. Comparison of ode45 and explicit Taylor (ORD = 10)

ode45
[s]

expTay
[s] ratio1e ratio2e

A1 0.0118 0.0053 2.2108 0.4523
A2 0.0047 0.0055 0.8541 1.1708
A3 0.0304 0.0164 1.8603 0.5375
A4 0.0048 0.0050 0.9571 1.0448
A5 1.8295 0.0349 52.3957 0.0191
B1 0.0485 0.0315 1.5404 0.6492
B2 0.0222 0.0086 2.5713 0.3889
B3 0.0104 0.0064 1.6132 0.6199
B4 0.0365 1.0375 0.0351 28.4578
B5 0.0240 0.0032 7.4430 0.1344
C1 0.0165 0.0123 1.3407 0.7459
C2 0.0710 0.4187 0.1696 5.8964
C3 0.0378 0.0216 1.7494 0.5716
C4 0.0552 0.0918 0.6012 1.6633
D1 0.0553 0.7054 0.0784 12.7506
D2 0.0603 0.6933 0.0870 11.4892
D3 0.0716 0.7111 0.1007 9.9329
D4 0.0932 0.7062 0.1320 7.5786
D5 0.1269 1.9798 0.0641 15.6022
E1 0.0259 0.0552 0.4693 2.1308
E2 0.0581 0.0564 1.0302 0.9707
E3 0.0271 0.1009 0.2682 3.7290
E4 0.0042 0.0050 0.8381 1.1932
E5 0.0129 0.0338 0.3811 2.6243

median 0.9595 3.2340
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IMPLICIT SOLVERS

There are some peculiar systems of differential equations, which cannot be solved by commonly used (explicit) numer-
ical methods - the stiff systems. While the definition of this kind of systems is intuitively clear to the mathematicians
the exact definition has not been yet specified [13].

Similarly like explicit Taylor series the implicit form of the n−th order method (ORD = n) can be expresed in the
form

yi+1 = yi +h · f (ti+1,yi+1)− h2

2!
· f ′(ti+1,yi+1)−·· ·− (−h)n

n!
· f (n−1)(ti+1,yi+1) , ORD = n . (3)

Stiff Problems

Implicit Taylor Series Method with Recurrent Calculation of Taylor Series Terms and Newton Method (ITMRN)
based on (3) was implemented in MATLAB. Stability and accuracy of the ITMRN computation of ODEs were
analyzed.

Benchmark set of ordinary differential equations [2] was used for tests. Comparisons of entire “stiff package”
equations A1, A3, A4, B1-B5 where analytic solution is well-known (obtained from Maple software [14]) have been
completed. Simulated interval was used from article, integration time step was set to time interval (just 1 integration
step was needed).

TABLE 2. Comparison of MATLAB stiff ode solvers and ITMRN

ode15s
[s]

impTay1
[s]

impTay2
[s]

impTay3
[s] ratio1i ratio2i ratio3i ||Error(y)|| (ORD)

A1 0.0538 0.0022 0.0023 0.0015 34.1588 58.8119 36.5149 3.2468×10−5 (10)
A3 0.0722 0.0023 0.0024 0.0015 45.9286 83.017842 50.9011 1.064661×10−5 (10)
A4 0.0920 0.0129 0.0069 0.0037 24.6389 67.185681 28.1318 3.063018×10−5 (6)
B1 0.5533 0.0012 0.0010 0.00063 872.6757 12678.4996 7307.7485 0.7003512×10−5 (3)
B2 0.0608 0.0043 0.0044 0.0026 22.9871 59.6822 28.7128 3.248772×10−5 (10)
B3 0.0651 0.0043 0.0045 0.0027 23.5398 63.9215 30.2985 3.248772×10−5 (10)
B4 0.1377 0.0044 0.0046 0.0027 50.4536 228.7384 105.1956 3.248772×10−5 (10)
B5 1.4354 0.0044 0.0045 0.0027 525.8835 1388.9469 594.2142 3.248772×10−5 (10)

Three types of ITMRN were implemented:

• Implicit Taylor series method + Newton’s method where Jacobian matrix was computed using differential
formulae - impTay1 in Tab. 2

• Implicit Taylor series method + Newton’s method where Jacobian matrix was computed with symbolic opera-
tions (analytically) - impTay2 in Tab. 2

• Implicit Taylor series method + Newton’s method where Jacobian matrix was computed using Broyden’s method
- impTay3 in Tab. 2

Absolute error ||Error(y)|| in Tab. 2 of numerical solution is defined as difference between numerical yi and
analytical y(ti) solution

||Error(y)||= ||yi− y(ti)|| , (4)

where ti = h · i (for ITMRN and our test examples in Tab. 2 - i = 1 and h = tmax). Maximum absolute error in our tests
is set to 10−4. Absolute error is completed with information of (ORD) used.

Time of computations of ode15, impTay1, impTay2, impTay3 are presented for test equations in Tab. 2. Ratios of
computation times for others MATLAB implicit solvers

ratio1i =
ode15s

impTay3
, ratio2i =

ode25s

impTay3
, ratio3i =

ode23tb

impTay3
,

can be also seen in Tab. 2.
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Condition number of Jacobian matrix in Newton iteration method becomes higher, that is why multiple arithmetic
is needed for higher order and higher integration step size. 3

CONCLUSIONS

Ten Taylor series terms (ORD = 10) of explicit Taylor series proved to be the best method for the given set of “non-
stiff” ODEs. As expected, a solution of linear systems of ODEs using higher order Taylor series (and corresponding
higher integration time step) was faster than that of low order Taylor series method (lower integration step).

Multiple arithmetic for higher order of implicit Taylor series method (and higher integration step) must be used as
condition number of Jacobian matrix in Newton iteration method becomes higher.

Detailed information will be given during the ICNAAM 2013 conference.

ACKNOWLEDGMENTS

This paper has been elaborated in the framework of the project New creative teams in priorities of scientific research,
reg. no. CZ.1.07/2.3.00/30.0055 (CZ.1.05/1.1.00/02.0070), supported by Operational Programme Education for Com-
petitiveness and co-financed by the European Social Fund and the state budget of the Czech Republic. The paper
includes the solution results of the Ministry of Education, Youth and Sport research project No. MSM 0021630528
and the international AKTION research project Number 64p13.

REFERENCES

1. T. MathWorks, MATLAB and Simulink for Technical Computing (2013), URL http://www.mathworks.com[online].
2. W. H. Enright, and J. D. Pryce, “Two FORTRAN packages for assessing initial value methods,” in ACM Trans. Math. Softw.,

ACM, 1987, vol. 13, pp. 1–27, ISSN 0098-3500.
3. J. Kunovský, Modern Taylor Series Method, FEI-VUT Brno, 1994, habilitation work.
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