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SIAM REVIEW 
Vol. 19, No. 2, April 1977 

WHICH ROOT DOES THE BISECTION ALGORITHM FIND?* 

GEORGE CORLISSt 

A student of elementary probability may be amused by an application of 
probability to numerical analysis. 

Let f be a continuous function on the closed interval [a, b] such that 
f(a)f(b) < 0. Then f has at least one root a on (a, b). The well-known bisection 
algorithm [1, p. 28] generates a sequence {[ak, bk]} of intervals on which a root is 
known to lie. Let aO = a, bo = b, and define Ck = (ak + bk)!2. If f(Ck) = 0, Ck = a, and 
the algorithm terminates. If f(ak)f(ck)<0, a e(ak, Ck), so let [ak+1, bk+1] = 

[ak, Ck]. For the other possible case, if f(ak)f(ck) > 0, a E (Ck, bk), so let 
[ak+1, bk+1]=[Ck, bk]. Ibk-akl= 2-kIbo-aol, so that the bisection algorithm is 
guaranteed to converge to some root of f on [a, b]. 

If f has more than one root on [a, b], a problem in [1, p. 35] asks which root 
the bisection algorithm usually locates. If f has n distinct, simple roots x1 <x2 < 
... <x, on [a, b] (f(xi) = Oandf'(xi) # 0), then it is well-known that the bisection 
algorithm finds the even numbered roots with probability zero. This paper shows 
that the probability of finding the odd numbered roots is uniform. 

Let Cn denote the class of continuous functions which satisfy f(a)f(b) < 0 
with exactly n distinct, simple roots on (a, b). Let the roots of f E Cn be denoted by 
x1 <x2 < ... < xn. We assume that the locations of the roots are independent and 
distributed according to a uniform random distribution on [a, b]. Let x0 = a and 
xn+1 = b. Let Pi,n denote the probability that the bisection algorithm converges to 
the ith root of f, given that f E Cn. Let Qi,n denote the probability that 

Xi <Co= (ao+bo)/2<xi+,, 

for i = 0, 1, ,n, given that f E Cn. 
We first note that n is odd and that Pi,n = 0 for all even i since at each step, the 

bisection algorithm discards the subinterval of length (bk - ak)!2 which contains 
an even number of roots. Hence for even i, xi will be found if and only if 
Ck = (ak + bk)!2 = xi at some step of the algorithm. 

THEOREM. For n odd, 

2 
for i odd, 

0 for i even. 

If i is even, Pi,n = 0 was shown above. The proof for i odd is by induction on n. 
P1,1 = 1, for if f has only one root on [a, b], the bisection algorithm is guaranteed 
to find it. 

* Received by the editors September 8, 1975 and in revised form December 18, 1975. 
t Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588. 
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326 GEORGE CORLISS 

Assume that 
2 

m m for i odd, 

Ofor i evren, 
for all odd m < n. 

Qi,n= ()/2 since it is equal to the probability that i of n trials (roots) land 
on the left half of [a, b]. 

If xi <co = (ao + bo)/2 <x,+1 for some fixed even j, then the probability of 
finding xi is given by 

Pi-j, for i >j, 
0 for i 'j, 

since the bisection algorithm will proceed on the interval [a1, b1] = [co, bo], which 
contains n -j roots of f. 

Similarly, if xj < co < x,+1 for some fixed odd j, then the probability of finding 
xi is given by 

0 for i >j, 
Pi,J for icj. 

Then 
n 

Pi,n = E P(finding xi given xj <co < xj+) 
j=0 
i-i n 

= Q jO, nPi j,n j +2 , QnPij 
j=O j=i 

j even j odd 

i-l 

=0,nPi,n + Qn,nPi,n + Qj,nPi jn-j 
j=2 

j even 

n-2 
+ 2 Qj,nPi,j, 

j=i 
j odd 

where we assume that 2 = -2 =0 . Hence, 

1 i-1 n-2 
Pi'n Qj,nPi-j,n-j + Y. Qj,nPi, 1- Q,n -n,n j= 2 j=i 

j even j odd 

j even j odd 

_ ( i-1 n+12 n n 2 
= ~~~~~ E 

2n_ ~ j-2 i n+1 
j even 

2 1 n + 1 
n+12 -2 ~% j L J e 1n+1v 

j even 
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THE BISECTION ALGORITHM 327 

We have shown that if a function f has n distinct, simple roots, the bisection 
algorithm is equally likely to find each odd root. 
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