
SIAM J. COMPUT. c\bigcirc 2019 Oded Schwartz and Elad Weiss
Vol. 48, No. 5, pp. 1481--1486

REVISITING ``COMPUTATION OF MATRIX CHAIN PRODUCTS""\ast

ODED SCHWARTZ\dagger AND ELAD WEISS\dagger

Abstract. The matrix chain ordering problem aims to reduce the number of arithmetic opera-
tions required for evaluating the product of N matrices. Using a dynamic programming algorithm
this problem can be solved in O(N3) time. Hu and Shing obtained a sophisticated algorithm that
solves the problem in O(N logN) [SIAM J. Comput., 11 (1982), pp. 362--373]. Unfortunately, as we
show here, the correctness proof of their algorithm is wrong. This flaw affects another algorithm for
the same problem, by Wang, Zhu, and Tian (2013), and algorithms for many other problems that use
chain matrix multiplication as a building block. We present an alternative proof for the correctness
of the first two algorithms and show that a third algorithm by Nimbark, Gohel, and Doshi (2011) is
beyond repair.

Key words. matrix multiplication, algorithms, matrix chain product

AMS subject classification. 68W40

DOI. 10.1137/18M1195401

1. Introduction. Given a chain multiplication of N matrices with dimensions
p1, . . . , pN+1, the number of scalar multiplications required is determined by the order
of multiplication, namely, by the parentheses assignment. The objective of the matrix
chain ordering problem (MCOP) is to find an optimal such parentheses assignment.
The dynamic programming algorithm of Godbole [4] solves this problem in O(N3). Hu
and Shing obtained an O (N logN) algorithm for the problem [5, 6, 7] by reducing it
to finding the optimal triangulation of a convex polygon (see Definition 2.8 in section
2). Unfortunately, the proof of one of the fundamental lemmas in [7] is incorrect:
Lemma 1 of [7] whose proof was omitted from the journal version and provided only
on page 3 of Part ii in [5]. Wang, Zhu, and Tian obtained a simpler O (N logN)
algorithm [16]. However, they rely on the correctness of Hu and Shing, particularly
on the erroneous proof. Other works also build on Hu and Shing's algorithm ([18, 17,
3, 2, 9, 8, 11, 13, 12, 15] is a partial list). We explain the flaw in the proof and present
an alternative proof, suggested by Shing [14].

We note that Bradford, Rawlins, and Shannon obtained a parallel polylogarithmic
MCOP algorithm with total work O

\bigl(
N log1.5 N

\bigr)
[1]. This algorithm is independent

of Hu and Shing's, hence it is not affected by our findings.
Also, a greedy algorithm for solving MCOP was proposed in [10], which does not

depend in any way on Hu and Shing's. We prove that this algorithm is incorrect by
providing a counterexample.

\ast Received by the editors June 20, 2018; accepted for publication (in revised form) July 1, 2019;
published electronically September 5, 2019.

https://doi.org/10.1137/18M1195401
Funding: This project has received funding from the European Research Council (ERC) under

the European Unions Horizon 2020 research and innovation programme (grant agreement 818252).
Research is supported by grants 1878/14, and 1901/14 from the Israel Science Foundation (founded
by the Israel Academy of Sciences and Humanities) and grant 3-10891 from the Ministry of Science
and Technology, Israel. Research is also supported by the Einstein Foundation and the Minerva
Foundation. This work was supported by the PetaCloud industry-academia consortium. This re-
search was supported by a grant from the United States-Israel Bi-national Science Foundation (BSF),
Jerusalem, Israel. This work was supported by the HUJI Cyber Security Research Center in con-
junction with the Israel National Cyber Bureau in the Prime Minister's Office.

\dagger School of Engineering and Computer Science, The Hebrew University of Jerusalem, Israel
(odedsc@cs.huji.ac.il, eladweiss@cs.huji.ac.il).

1481

https://doi.org/10.1137/18M1195401
mailto:odedsc@cs.huji.ac.il
mailto:eladweiss@cs.huji.ac.il

1482 ODED SCHWARTZ AND ELAD WEISS

Fig. 1. Vertex indexes of an 8-gon. Vertex weights are 10, 16, 24, 10, 64, 16, 32, 64, going clockwise.

Our contribution. In section 2 we provide preliminaries. In section 3 we bring
the lemma and the proof of [5] and explain the flaw in their proof. We then provide a
corrected proof by Shing [14]. In section 4 we provide a counterexample to the greedy
algorithm of [10].

2. Preliminaries. We next provide the required definitions from [5].

Definition 2.1. n-gon: An n-gon is a convex polygon with n vertexes. In a
weighted n-gon, each vertex v is assigned a positive integer weight, w(v). We adapt
the notation of [5] and denote the edge connecting v and u by v - u.

Definition 2.2. Vertex ordering: Given an n-gon, we define an order on the n
vertexes as follows. The smallest vertex is chosen to be the vertex with the smallest
weight. If there are more than one such vertex, then it is arbitrarily chosen from that
set. Then, we define u < v if w(u) < w(v), or if w(u) = w(v) and u is closer to the
smallest vertex traversing clockwise.

Definition 2.3. Vertex indexing (see Figure 1): We assign each vertex an index
from the set [n] to reflect the vertexes order. The smallest vertex is v1, and the largest
is vn. From now on, we also use these indexes to denote the weights: wi is the weight
of vertex vi.

Definition 2.4. Edge ordering: We say that an edge vi - vj is smaller than an
edge vp - vq if min \{ i, j\} < min \{ p, q\} , or if min \{ i, j\} = min \{ p, q\} and max \{ i, j\} <
max \{ p, q\} .

Definition 2.5. Polygon triangulation (see Figure 1): A triangulation of a con-
vex n-gon is a set of n - 2 nonintersecting arcs. The cost of a triangulation is the
sum of the costs of all the triangles in the triangulation. The cost of a triangle is the
product of the weights of its vertexes.

Definition 2.6. The l-optimal partition: A partition of an n-gon is a set of edges
forming a triangulation of the n-gon. An optimal partition is a partition of minimum
cost. If more than one partition minimizes the cost, among all optimal partitions, we
define the lexicographically optimal (l-optimal) partition to be the optimal partition of
smallest lexicographic order of edges.

Definition 2.7. A fan: A fan is a partition containing all arcs between v1 and
the other vertexes of the n-gon.

REVISITING ``COMPUTATION OF MATRIX CHAIN PRODUCTS"" 1483

Definition 2.8. The reduction: Given a matrix chain multiplication of length
N , it can be reduced to a convex polygon with N + 1 vertices, with the N + 1 matrix
dimensions as the vertices weights. A triangulation of this polygon corresponds to a
parentheses assignment on the matrix chain. Each of the N - 2 triangles corresponds
to a matrix multiplication instance. The cost of a triangle is exactly the cost of
multiplying two matrices with dimensions equal to the vertices weights.

Definition 2.9. Horizontal and vertical arcs: Consider a 4-gon vx, vw, vz, vy
(vertices ordered clockwise). An arc vx - vz is a vertical arc (with respect to the 4-gon)
if min \{ wx, wz\} < min \{ wy, ww\} , or min \{ wx, wz\} = min \{ wy, ww\} and max \{ wx, wz\} \leq
max \{ wy, ww\} . An arc vx - vz is called a horizontal arc (w.r.t the 4-gon) if min \{ wx, wz\}
> min \{ wy, ww\} and max \{ wx, wz\} < max \{ wy, ww\} . For brevity, we use h-arcs and
v-arcs to denote horizontal arcs and vertical arcs, respectively.

Definition 2.10. Potential horizontal arcs: Consider an arc vx - vz in an n-
gon. Let vw be the vertex with smallest weight among all vertices between vx and
vz, traversing clockwise. Let vy be the vertex with smallest weight among all vertices
between vz and vx, traversing clockwise. The arc vx - vz is a potential horizontal arc
if vy < vx < vz < vw.

Lemma 2.11 (see Corollary 1 in [5, Part 1, page 12]). For every way of choosing
v1, v2, . . . , (as prescribed), the l-optimum partition always contains v1 - v2 and v1 - v3.

Lemma 2.12 (see Corollary 3 in [5, Part 1, page 17]). All arcs in an optimum
partition are either v-arcs or h-arcs.

Lemma 2.13 (see Corollary 4 in [5, Part 1, page 19]). If vx - vz is an h-arc of an
optimal partition then vx - vz is a potential horizontal arc.

3. Lemma's proof correction. We first cite Lemma 1 in [5] (see Part ii, page
3) and its proof:

Lemma 3.1. If none of the potential h-arcs appears in the l-
optimum partition of the n-gon, the l-optimum partition must be the
fan of the n-gon.

Proof text as given in [5]. From Theorem 3 of Part I, we know
that any arc which exists as an h-arc in the l-optimum partition
must be a potential h-arc. Hence, if the l-optimum partition does not
contain any potential h-arc, the l-optimum partition must be made
up of v-arcs only. Hence, we have to show that among all partitions
which are made up of v-arcs only, the fan is (i) the lexicographically
smallest and (ii) one of the cheapest partitions in the n-gon.

(i) Since the fan consists of only v-arcs joining v1 to all other ver-
tices in the n-gon, it is by definition the lexicographically small-
est partition.

(ii) Suppose the l-optimum partition contains v-arcs only but is not
the fan. There must exist three vertices vi, vj , vk such that the
triangles (v1, vi, vj), (vi, vj , vk) are present in the l-optimum par-
tition. Since vi - vj is a v-arc (by assumption) and v1 is the

1484 ODED SCHWARTZ AND ELAD WEISS

smallest vertex in the n-gon, we have w1 = min \{ wi, wj\} and
max \{ wi, wj\} \leq wk. If we replace the arc vi - vj with the arc
v1 - vk we can get a partition whose cost is less than or equal to
that of the l-optimum partition but is lexicographically smaller
than the l-optimum partition, and results in a contradiction.

The last transition in the proof, marked in italic, is erroneous because it implicitly
assumes that

w1 \cdot wi \cdot wj + wi \cdot wj \cdot wk > w1 \cdot wi \cdot wk + w1 \cdot wj \cdot wk.

However, since wi = w1 and wj \leq wk

w1 \cdot wi \cdot wj + wi \cdot wj \cdot wk \leq w1 \cdot wi \cdot wk + w1 \cdot wj \cdot wk,

making the last transition in their proof incorrect. This lemma is crucial for the
correctness of their algorithm (both the version in [5] and in [7]).

Furthermore, the algorithm of Wang, Zhu, and Tian relies on this lemma as well
(see Theorem 1, page 704 in [16]).

3.1. Corrected proof. We present a corrected proof by Shing [14].

Proof of Lemma 3.1. Suppose the l-optimum partition contains v-arcs only but
is not the fan. There must exist three vertices vi, vj , vk such that the triangles
(v1, vi, vj), (vi, vj , vk) are present in the l-optimum partition. Since the original n-
gon is l-optimally partitioned, the subpolygon v1, vi, . . . , vk, . . . , vj which is formed
by the arcs v1 - vi, v1 - vj and the sides of the n-gon from vi to vj in the clockwise
direction must also be l-optimally partitioned. Since vi and vj are the only vertices
adjacent to v1 in the l-optimum partition of the subpolygon, it follows from Lemma
2.11 that one of \{ vi, vj\} must be the second smallest vertex and the other must be
the third smallest vertex in the subpolygon. Hence, for each vertex vm between vi
and vj , we have either v1 \leq vi \leq vj \leq vm if vi is the second smallest vertex or
v1 \leq vj \leq vi \leq vm if vj is the second smallest vertex, which implies that vi - vj is a
potential h-arc in the original n-gon, a contradiction.

4. Another algorithm based on Hu and Shing's. Wang, Zhu, and Tian
[16] build on the algorithm of Hu and Shing [5] and some of their theorems, to obtain
a simplified version of the O(NlogN) algorithm. However, Lemma 1 of [5] is at the
heart of their construction (see Theorem 1, page 704 in [16]). Hence the corrected
proofs are vital to the correctness of their algorithm as well.

5. A greedy \bfitO (\bfitN) algorithm. Nimbark, Gohel, and Doshi [10] presented an
O(N) greedy algorithm for finding the optimal parentheses assignment (see Algo-
rithm 1). Unfortunately, their algorithm is incorrect, as the following counterexample
demonstrates.

Consider the matrix product A1A2A3, where the dimensions are 2, 1000, 999, 10.
The greedy algorithm results with the parentheses assignment (A1(A2A3)). This
costs 999 \cdot 10 \cdot 999 + 2 \cdot 1000 \cdot 10 = 10, 000, 010. However, the optimal assignment is
((A1A2)A3) with cost 2 \cdot 1000 \cdot 999 + 2 \cdot 999 \cdot 10 = 2, 017, 980.

REVISITING ``COMPUTATION OF MATRIX CHAIN PRODUCTS"" 1485

Algorithm 1 Greedy Algorithm.

1: Let P = A1 \cdot A2 \cdot . . . \cdot An be a chain multiplication instance of n matrices.
2: Let ai - 1, ai be the dimensions of matrix Ai.
3: Let LcolOrder be a list of the matrices A1,...,n sorted by their column dimension

in descending order.
4: Let LrowOrder be a list of the matrices A1,...,n sorted by their row dimension in

descending order.
5: while LcolOrder contains more than one matrix do
6: Let Ak be the last element in LcolOrder.
7: Let Aj be the last element in LrowOrder for which Aj \cdot Ak is a valid matrix mul-

tiplication (e.g., Aj 's columns dimension is the same as Ak's rows dimension).

8: Put a new pair of parentheses: to the left of Aj , and to the right of Ak.
9: Create new intermediate result matrix Akj , having dimensions aj , ak - 1, and

insert it at the end of LcolOrder.
10: Delete Ak and Aj from both LcolOrder and LrowOrder.
11: end while

Acknowledgments. We are most grateful to Mantak Shing for reading an earlier
version of this manuscript and for offering the proof of Lemma 3.1.

REFERENCES

[1] P. G. Bradford, G. J. Rawlins, and G. E. Shannon, Efficient matrix chain ordering in
polylog time, SIAM J. Comput., 27 (1998), pp. 466--490.

[2] A. Czumaj, Parallel algorithm for the matrix chain product and the optimal triangulation
problems, in Annual Symposium on Theoretical Aspects of Computer Science, Springer,
Berlin, 1993, pp. 294--305.

[3] Z. Galil and K. Park, Dynamic programming with convexity, concavity and sparsity, Theoret.
Comput. Sci., 92 (1992), pp. 49--76.

[4] S. S. Godbole, On efficient computation of matrix chain products, IEEE Trans. Comput., 100
(1973), pp. 864--866.

[5] T. Hu and M. Shing, Computation of Matrix Chain Products, Part i, Part ii, Technical
report, STAN-CS-81-875, Stanford University CA Department of Computer Science, Palo
Alto, CA, 1981.

[6] T. C. Hu and M. T. Shing, Computation of matrix chain products, Part I, SIAM J. Comput.,
11 (1982), pp. 362--373.

[7] T. C. Hu and M. T. Shing, Computation of matrix chain products, Part II, SIAM J. Comput.,
13 (1984), pp. 228--251.

[8] H. Lee, J. Kim, S. J. Hong, and S. Lee, Processor allocation and task scheduling of matrix
chain products on parallel systems, IEEE Trans. Parallel Distrib. Syst., 14 (2003), pp. 394--
407.

[9] Y. A. Liu and S. D. Stoller, Dynamic programming via static incrementalization, Higher-
Order Symb. Comput., 16 (2003), pp. 37--62.

[10] H. Nimbark, S. Gohel, and N. Doshi, A novel approach for matrix chain multiplication using
greedy technique for packet processing, in Computer Networks and Information Technolo-
gies, Springer, Berlin, 2011, pp. 318--321.

[11] R. N. Pfeifer, J. Haegeman, and F. Verstraete, Faster identification of optimal contraction
sequences for tensor networks, Phys. Rev. E (3), 90 (2014), 033315.

[12] P. Ramanan, A new lower bound technique and its application: Tight lower bound for a
polygon triangulation problem, SIAM J. Comput., 23 (1994), pp. 834--851.

[13] P. Ramanan, An efficient parallel algorithm for the matrix-chain-product problem, SIAM J.
Comput., 25 (1996), pp. 874--893.

[14] M. Shing. private communication, 2018.
[15] D. Tang and G. Gupta, An efficient parallel dynamic programming algorithm, Comput. Math.

Appl., 30 (1995), pp. 65--74.

1486 ODED SCHWARTZ AND ELAD WEISS

[16] X. Wang, D. Zhu, and J. Tian, Efficient computation of matrix chain, in Proceedings of
the 2013 8th International Conference on Computer Science \& Education (ICCSE), IEEE,
Piscataway, NJ, 2013, pp. 703--707.

[17] F. F. Yao, Speed-up in dynamic programming, SIAM J. Algebr. Discrete Methods, 3 (1982),
pp. 532--540.

[18] R. Yuster and U. Zwick, Fast sparse matrix multiplication, ACM Trans. Algorithms, 1 (2005),
pp. 2--13.

	Introduction
	Preliminaries
	Lemma's proof correction
	Corrected proof

	Another algorithm based on Hu and Shing's
	A greedy O(N) algorithm
	References

