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Origin and Evolution of the
Secant Method in One Dimension

Joanna M. Papakonstantinou and Richard A. Tapia

Abstract. Many in the mathematical community believe that the secant method arose from
Newton’s method using a finite difference approximation to the derivative, most likely because
that is the way that it is taught in contemporary texts. However, we were able to trace the
origin of the secant method all the way back to the Rule of Double False Position described
in the 18th-century B.C. Egyptian Rhind Papyrus, by showing that the Rule of Double False
Position coincides with the secant method applied to a linear equation. As such, it predates
Newton’s method by more than 3,000 years. In this paper, we recount the evolution of the
Rule of Double False Position as it spanned many civilizations over the centuries leading to
what we view today as the contemporary secant method. Unfortunately, throughout history
naming confusion has surrounded the Rule of Double False Position. This naming confusion
was primarily a product of the last 500 years or so and became particularly troublesome in the
past 50 years, creating confusion in the use of the terms Double False Position method, Regula
Falsi method, and secant method. We elaborate on this confusion and clarify the names used.

1. INTRODUCTION. The goal of this paper is to present a historical development
of the secant method in one dimension. We hope to enhance perspective and under-
standing by presenting the secant method in an environment that includes the closely-
related algorithms of Newton’s method, the Regula Falsi method, and the modified
Regula Falsi method. Hence, we begin by describing these methods using current
functional notation in §2. An implied convention in the literature that we subscribe
to is that the secant method is an iterative procedure, while the Rule of Double False
Position is not. The historical development of the Rule of Double False Position as a
non-iterative method is presented in §3. Here we demonstrate first that the algebraic
formula characterizing the Rule of Double False Position is exactly the algebraic for-
mula that characterizes the secant method. Hence, the Rule of Double False Position
can be viewed as the first iteration of the secant method. However, the original defi-
nition of the Rule of Double False Position was for a linear equation. Moreover, for a
linear equation, the secant method converges in one iteration; in this application, the
two methods coincide and the Rule of Double False Position should be considered
the origin of the secant method. In §4 we present the various names that have been
associated with the Rule of Double False Position throughout many civilizations and
centuries. The first path to obtaining the secant method is complete once iteration has
been incorporated into the Rule of Double False Position. This completion is discussed
in §5. In §6 we consider the naming of the secant method and the first determination
of its convergence rate. A second path to the secant method is the path that originates
with Newton’s method. This path is briefly discussed in §7. Finally, in §8 we make
some concluding remarks and attempt to rationalize and perhaps clarify the naming
confusion that evolved over the many years.

2. FOUR BASIC ALGORITHMS. In this section, we present the numerical meth-
ods using current functional notation that will be referred to throughout the paper.
Consider f : R→ R and let x∗ ∈ R be a zero of the function f .
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2.1. Newton’s Method. The guiding principle in Newton’s method is the use of a
succession of zeros of tangent lines to better approximate a zero of the function f (x).
In Figure 1, f (x) represents the nonlinear function whose zero we are trying to find.

f (x)
x0 x1 x2

Figure 1. Newton’s method begins by using the tangent line passing through the point (x0, f (x0)).

The point-slope form of the line passing through the point (x0, f (x0)) with slope
f ′(x0) is

l(x) = f (x0)+ f ′(x0)(x − x0).

Now, letting x1 be the x-intercept of this line, i.e., the point such that l(x) = 0, we
obtain

x1 = x0 −
f (x0)

f ′(x0)
.

Hence, the iteration

xk+1 = xk −
f (xk)

f ′(xk)
(1)

is Newton’s method and xk represents the kth approximation to the solution.

2.2. The Secant Method. In contrast to Newton’s method, which uses a succession
of zeros of tangent lines, the guiding principle in the secant method is the use of a
succession of zeros of secant lines obtained by two-point interpolation to better ap-
proximate a zero of a function f (x). In Figure 2, f (x) represents the function whose
zero we are trying to find.

The two-point form of the line passing through the points (x0, f (x0)) and (x1,

f (x1)) is

l(x) =
(x − x0)

(x1 − x0)
f (x1)+

(x − x1)

(x0 − x1)
f (x0). (2)

Now, letting x2 be the x-intercept of this line, i.e., the point such that l(x) = 0, we
obtain

x2 = x1 −
x1 − x0

f (x1)− f (x0)
f (x0). (3)
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f (x)
x0 x1x2

Figure 2. The secant method begins by using the secant line passing through the points (x0, f (x0)) and
(x1, f (x1)).

The resulting iteration

xk+1 = xk −
xk − xk−1

f (xk)− f (xk−1)
f (xk), (4)

is the secant method and can also be written as

xk+1 =
xk−1 f (xk)− xk f (xk−1)

f (xk)− f (xk−1)
. (5)

As mentioned above, a popular way of obtaining the secant method in one dimension
is to replace the derivative in the Newton iteration (1) with the difference quotient

f (xk)− f (xk−1)

xk − xk−1
,

which can be viewed as an approximation to f ′(xk). This is an interesting fact, but it
should not be treated as a definition.

2.3. The Regula Falsi Method. The guiding principle of the Regula Falsi method is,
like the secant method, the use of a succession of zeros of secant lines obtained from
two-point interpolation to better approximate a zero of a function f (x). In Figure 3,
f (x) represents the function whose zero we are trying to find.

A key difference between the Regula Falsi method and the secant method is that in
the first step of the Regula Falsi method, the two initial estimates, x0 and x1, are chosen
such that f (x0) and f (x1) are of opposite signs ( f (x0) f (x1) < 0). This is unlike the
secant method, where there is no restriction that the initial estimates bracket a zero.
The iteration

xk+1 =
x f (xk)− xk f (x)

f (xk)− f (x)
(6)

is the Regula Falsi method, where x is an endpoint of the original bracketing interval
that remains fixed. At each step of the Regula Falsi method, the current approxima-
tion replaces the previous interval endpoint whose corresponding function value has
the same sign as the current best estimate of x∗, while the other interval endpoint is
retained. A new secant line of f (x) is constructed and the process is continued in an
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f (x)
x0 x3

x2 x1

f (x0)

f (x3)

f (x2)

f (x1)

x*

Figure 3. The Regula Falsi method: x∗ may not always remain bracketed at each step.

iterative fashion, always holding the same initial estimate, one endpoint of the origi-
nal bracketing interval, fixed for all subsequent iterations while the other endpoint is
always updated. Booth [3], in 1955, seems to be the first to refer to this method as
Regula Falsi.

The key feature of the Regula Falsi method is that, instead of always using the two
most recently computed iterates as in the secant method (5), one of the initial estimates
is held fixed for all subsequent iterations while the other endpoint is always updated.
However, it is important to mention that in the Regula Falsi method, as in the secant
method, a zero does not necessarily remain bracketed by successive iterates at each
step and, in some instances, the methods fail.

2.4. The Modified Regula Falsi Method. Modifications of the Regula Falsi method
have been made that ensure that a zero remains bracketed at each step;1 see Figure 4.
For example, at each step, if instead of holding one of the interval endpoints fixed, the
interval endpoints are changed to ensure that the new interval contains a zero of f (x).
This just means that the x-value corresponding to the function value that has opposite
sign as the current function value is always retained, and not just in the first step as

f (x)
x0 x3

x2 x1

f (x0)

f (x3)

f (x2)

f (x1)

x*

Figure 4. The Modified Regula Falsi method: x∗ remains bracketed at each step.

1Early examples of modifications of the Regula Falsi method may be found in Willers’ 1948 book [31]
and in Householder’s 1953 book [13].
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in the Regula Falsi method.2 Stanton [27], in 1961, was the first author that we could
find to explicitly describe our Modified Regula Falsi method. He referred to it as the
Regula Falsi method.

The bracketing feature of the Modified Regula Falsi method should be viewed as a
safeguarding procedure that enhances convergence of the approximating sequence to a
zero of the function under consideration. However, it does so at a price, since it is well
known that the Modified Regula Falsi method is much slower than the secant method.
We digress briefly from the main purpose of the paper to qualify these remarks.

An iterative method for approximating a zero of a nonlinear equation is said to have
convergence rate r if it generates sequences {xk}, that when they converge to a zero x∗,
they satisfy the inequality

|xk+1 − x∗| ≤ c |xk − x∗|r (7)

for positive constants c and r and for no larger r . It is well known that the convergence
rate for Newton’s method is 2; for the secant method, the convergence rate is the golden
mean 1

2 (1 +
√

5) ≈ 1.62; and for the Regula Falsi method and the Modified Regula
Falsi method, the convergence is linear, i.e., a rate of 1 with a constant c < 1. Newton’s
method and the secant method, when they converge, are extremely fast; however, they
are only guaranteed to converge if the initial guesses are sufficiently close to a zero.
Newton’s method requires the calculation of a function value and a derivative value
per iteration. The secant method requires only one function value per iteration. Hence,
if the calculation of a function and a derivative are comparable, then we could perform
two iterations of the secant method with the same work needed to perform one iteration
of Newton’s method. Such a two-step method would have a convergence rate of the
golden mean squared, which is substantially larger than 2. Thus, from a computational
complexity point of view, the secant method is an optimal method. The safeguarding
modification of the secant method that leads to the Modified Regula Falsi method
promotes convergence, but destroys its fast convergence. Therefore, a good strategy
would be to consider the hybrid method of starting out with Modified Regula Falsi and
then switching to the secant method, and this is often done.

3. THE FASCINATING LIFE OF THE RULE OF DOUBLE FALSE POSI-
TION. Our story begins with the so-called Rule of Single False Position and the Rule
of Double False Position, which collectively we call the Rules of False Position. The
history of the Rule of Double False Position spans many civilizations over many cen-
turies. In ancient times, mathematics was used as a tool to answer questions that arose
in daily life. The earliest evidence of two of these tools (the Rules of False Position)
was found in Egyptian papyri and Babylonian clay tablets from the 18th century B.C.3

The Rules of False Position were always written rhetorically rather than using the
language or notation of today’s mathematics, as they were not known at the time. In
addition, the problems that were solved using the Rules of False Position were often
presented within the context of a real-life situation. As we describe the Rules of False
Position, it is critically important to realize that the Egyptians and the Babylonians did
not know algebra, indeed it did not exist at that time, nor did they have the notion of
an equation; hence, they could not make obvious simplifications and they did not work
with a general rule. There is no evidence of the use of a procedure instead, each prob-

2To learn more about modifications of the Regula Falsi method that ensure that each new interval contains
a zero, see Bronson [4].

3For more on the history of mathematics in the Babylonian civilization, see Høyrup [14], Neugebauer
[19], and Robson [24].
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lem used specific numbers with the solution given as a set of instructions. So, problems
that would be considered trivial today posed a high degree of difficulty in ancient times.

The most important mathematical text from ancient Egypt is the Ahmes Pa-
pyrus, written by the scribe Ahmes in about 1659 B.C. and derived from material
dated approximately 2000–1800 B.C. [8]. Today it is called the Rhind Mathematical
Papyrus after the Scottish Egyptologist and antiquarian Alexander Henry Rhind, who
purchased it from a shop in Luxor while traveling in Egypt and brought it back to
England in 1858. The Papyrus was donated by Rhind’s estate to the British Museum
in 1864, where it still resides today [8, 21]. The Rhind Mathematical Papyrus, written
in hieratic notation4 (see Figure 5), is a two-sided document containing a collection of
87 real-life word problems, with solutions on one side and tables to aid in computation
on the other. The examples cover a wide range of mathematical ideas needed for a
scribe to fulfill his duties. Thus, we deduce that this treatise was used in the training
of scribes.

3.1. The Rule of Single False Position. While the problems of the Rhind Mathemat-
ical Papyrus were written rhetorically, scholars are in agreement that they represent
what can be expressed today as algebraic equations. Problems 24–34 of the Rhind
Mathematical Papyrus are examples of problems in one unknown of the first degree,
which can be represented using contemporary algebraic notation as finding a number
x such that

a1x + · · · + an x = c. (8)

Of course, using algebra, we would simplify such problems to

ax = c, (9)

where a = a1 + a2 + · · · + an . Also, from a current mathematical point of view, this
problem is simple to solve. We need only to sum the ai s in (8) and divide c by a to get
the solution x = c

a . However, remember that the people of the time could not perform
algebraic simplifications; hence, the value of the coefficient a was not known.

The first step of the method they used to solve for x in the rhetorical analog of the
linear equation (8), was to choose a so-called false position, i.e., an initial guess of the
solution. The initial guess was not so arbitrary. Instead, the false position was chosen
with the aim of operating with whole numbers, since calculation with fractions could
present difficulties [8]. Keep in mind that they were working only with the rhetorical
analog of equation (8) and not with the simplified algebraic equation (9). The Rule of
Single False Position is the following.

Choose a false position (initial guess) x = x0, and calculate c0 where

ax0 = c0.

Now, calculate

x =
(c)(x0)

c0
, (10)

4The hieroglyphic form was pictorial, where each character represented an object. The hieratic form was
symbolic. It replaced frequently-used symbols with new symbols that made it more economical. As time passed
and writing came into general use in Egypt, even the hieratic form proved to be too cumbersome. This led to
the invention of a type of shorthand, the demotic (popular) notation [5].
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which we recognize as the solution

x = (c)

(
1

a

)
.

Hence, the solution was obtained (10) without determining a or dividing by a.5 (See
Table 1 for an example.) This method was later called Simple False Position [8], Pro-
cess of Supposition, or most commonly, the Rule of Single False Position [16]. In
essence, this method was a way of using an initial guess to obtain the solution to a spe-
cific problem and was not a general rule for solving other problems of the same kind.

Today, knowing the form of the equation and knowing simple algebra, if we were
asked to solve Equation (8) not knowing the value of a, knowing the value of c, and
being able to calculate cx for any given x , most clever students would come up with
the Rule of Single False Position. It is a reasonable solution technique and it is quite
remarkable that it was discovered in that day and age without the knowledge of equa-
tions or algebra.

We now present an example problem solved by using the Rule of Single False Po-
sition. Figure 5 illustrates Problem 26 from the Rhind Mathematical Papyrus, written
in hieratic notation.6

Figure 5. (Taken from Chabert [8].)

To demonstrate how difficult the notation and the technique of calculation was at
that time, we transcribe Problem 26 from hieroglyphic notation into algebraic notation
and describe the enumerated steps to solve the problem using the Rule of Single False
Position (see Table 1).

3.2. The Rule of Double False Position. Since the Egyptians had the Rule of Single
False Position to solve for x in ax = c, they quite naturally tried to apply it to other
real-life word problems, which we would represent today using algebraic notation as
finding a number x such that

ax + b = c, (11)

where b 6= 0. Having no knowledge of algebra at the time, people did not know how
to move terms from one side of an equation to the other [16]. Furthermore, they con-
sidered (9) and (11) to represent two different mathematical phenomena.

5For a discussion of the differing schools of thought on how this problem was solved, see math historian
Eleanor Robson’s book [24].

6A discussion of this problem can be found in various texts. To read more on Egyptologist Thomas E.
Peet’s comments on this problem, see [22].
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Table 1. Description of Problem 26 of the Rhind Mathematical Papyrus. Adapted from Chabert [8].

Step Transcription of hieroglyphics Description using algebraic notation

1 A quantity, 1
4 of it added to it, becomes 15 x + 1

4 x = 15

2 Operate on 4; make thou 1
4 of them, namely 1 Guess x = 4

The total is 5. 4+ 1 = 5.

3 Operate on 5 for the finding of 15 Divide: 15
5 = 3

\1 5
\2 10

There becomes 3.

4 Multiply: 3 times 4. Multiply wrong answer (x = 4) by 3:
1 3 3× 4 = 12.

2 6,

\4 12
There becomes 12.

5 1 12, 12+ 1
4 (12) = 15

1
4 3

Total 15

6 The quantity is 12. 1
4 of it is 3; the total is 15. Thus, x = 12.

The first step of the method they used to solve for x in the rhetorical analog of the
linear equation (11) was to choose two different initial guesses (false positions) of the
solution. There were no restrictions on the initial guesses. Suppose that the first guess
of the solution is x = x0; then we get the corresponding residual error e0, where

ax0 + b − c = e0. (12)

Suppose that the second guess of the solution is x = x1; then we get the corresponding
residual error e1, where

ax1 + b − c = e1. (13)
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They gave instructions7 on how to obtain the solution using the relation

x =
x0e1 − x1e0

e1 − e0
. (14)

This method for solving for x is now most commonly referred to as the Rule of Double
False Position [16].8

3.3. Double False Position as the Secant Method. If for the two arbitrary false po-
sitions, x0 and x1, we write e0 = f (x0) and e1 = f (x1), where f (x) = ax + b − c,
then we obtain the solution9

x =
x0 f (x1)− x1 f (x0)

f (x1)− f (x0)
, (15)

which coincides with the first step of the secant method (5) applied to the equation
f (x) = 0. It is most interesting that the secant method applied to a linear equation
converges in one step; hence, it is correct to say that the Rule of Double False Position
is the secant method applied to a linear equation.

When compared to the construction of the Rule of Single False Position, it is much
more remarkable that the ancients were able to construct the Rule of Double False
Position. It should be considered a great mathematical milestone. On the one hand,
we are quite surprised that what they constructed coincides with the secant method
for a linear equation. On the other hand, from a purely philosophical point of view,
we reason that if we are given a linear equation and two points of interpolation and
were able to write down an expression for the solution, then the procedure must be
equivalent to constructing a line through these two points and giving the x-intercept
of this line as the solution, i.e., the guiding principle of the secant method. Since the
function is linear, the line interpolating the two points is the original function, and we
obtain the exact solution without iterating. It is satisfying that there is beautiful and
wonderful consistency in mathematics.

The Egyptian papyri contained rhetorical examples that represent linear equations
solved using the Rule of Double False Position. While many of the problems dealt with
the sale and distribution of properties, inheritance, or for the purpose of portion control
and the prediction of production, some of the problems presented seem inconsequential
in comparison. For example, consider the following problem.10

When asking someone his age he answers: if my age were doubled and added to
this 1

2 , 1
3 , and 1

4 part of my age and 6 years, then all together should equal 80.
How old is he?

This example can be written using algebraic notation as the linear equation

2x +
1

2
x +

1

3
x +

1

4
x + 6 = 80.

7Instructions resemble: “Multiply the second error by the first guess and multiply the first error by the
second guess. Subtract whichever product is smaller from the larger and divide this result by the difference of
the smaller error subtracted from the larger error.”

8In the next section, we explain that this rule was first given an English name, the Rule of Two (False)
Positions, by Chuquet in 1484.

9In 1978, Smeur [26] described how Frisius’ in 1540 solved 1 1
2 x2
= 200 using the “Rule of Double

False.” Smeur explained that x is calculated from x =
x2

1 f2−x2
2 f1

f2− f1
, which lends itself to the notation we use in

(15).
10Taken from p. 67 of Smeur [26] but originally appeared on p. 186 v. of J. van der Scheure’s 1611 edition

of his 1600 Arithmetica, oft Rekenconst, Haarlem.
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To solve this problem using the Rule of Double False Position, first let x0 = 36, then
e0 = 2x0 +

1
2 x0 +

1
3 x0 +

1
4 x0 + 6 − 80 = 37.11 Next, let x1 = 16, then e1 = 2x1 +

1
2 x1 +

1
3 x1 +

1
4 x1 + 6− 80 = −24 2

3 . Thus, the solution to this problem is

x =
x0e1 − x1e0

e1 − e0
= 24.

The Egyptian papyri also contained rhetorical examples that represent systems of
two linear equations in two unknowns, which are solved using the Rule of Double
False Position. The fact that similar problems were solved using the same method in
different civilizations in the same time frame provides evidence that these problems
reflect the problems of that time. Although the literature suggests that each civilization
independently invented the same method to solve these problems, we are of the opinion
that traders carried stories, hence transferring information (such as the explanation of
this process used to answer the problems that arose) along trade lines between Egypt
and Babylonia. Consider the following problem.12

Let a 1 mǔ of good field cost 3 hundred; and 7 mǔ of poor field cost 5 hundred.
Now 1 qǐng field is bought together, the price is 1 myriad. Of the good and poor
fields, how much is there each?

This example can be written using algebraic notation as the system of linear equations

g + p = 100 (mǔ)

300g +
500

7
p = 10000 (coins)

where g and p represent the areas (in mǔ) of the good and poor fields, respectively.13

To solve this problem using the Rule of Double False Position, first let g0 = 20, then
p0 = 80, and e0 = 300g0 +

500
7 p0 − 10000 = 1714 2

3 . Next, let g1 = 10, then p1 = 90,
and e1 = 300g1 +

500
7 p1 − 10000 = −571 3

7 . Thus, the solution to this problem is

g =
g0e1 − g1e0

e1 − e0
= 12

1

2
and p = 87

1

2
.

They cleverly eliminated one variable, in turn, reducing the system to a linear equation
of the form (11). As a result, they were able to use the Rule of Double False Position
to obtain the exact solution to the system of linear equations.

There is evidence that the Egyptians extended the Rule of Double False Position
to quadratics but did not use the rule in an iterative manner. They performed only one
step and were aware that when the problem was more complicated (e.g., quadratic), the
solution they obtained using the Rule of Double False Position was only approximate.
Consider the following problem.14

Divide 40 into two numbers so that the sum of both squares is 850.

11At that time, they used the initial guess, x0, to calculate 2x0 +
1
2 x0 +

1
3 x0 +

1
4 x0 + 6 = 117. Then, they

evaluated 117− 80 to determine the corresponding error e0 = 37.
12Taken from p. 37 of Lun [17].
13 Qǐng and mǔ are units of area measure such that 1 qǐng = 100 mǔ.
14Taken from p. 71 of Smeur [26] but originally appeared on p. 186 v. of J. van der Scheure’s 1611 edition

of his 1600 Arithmetica, oft Rekenconst, Haarlem. This example can also be found on p. 7 of Ma [17].
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This example can be written using algebraic notation as the system of two equations
(one of which is second order) with two unknowns,

x + y = 40,

x2
+ y2

= 850.

To attempt the solution of this problem using the Rule of Double False Position, first
let x0 = 30, then y0 = 10, and e0 = x2

0 + y2
0 − 850 = 150. Next, let x1 = 20, then

y1 = 20, and e1 = x2
1 + y2

1 − 850 = −50. Thus, the answer to this problem obtained
using the Rule of Double False Position is

x =
x0e1 − x1e0

e1 − e0
=

45

2
= 22.5 and y =

35

2
.

However, we see that x2
+ y2

= ( 45
2 )2
+ ( 35

2 )2
= 813 1

2 6= 850; thus the solution is
only approximate. Therefore, the application of the Rule of Double False Position to a
quadratic can be viewed as taking one step of the secant method on the given quadratic.
To justify this algebraically, first simplify the above system to the quadratic equation
(with one unknown) as

f (x) = x2
− 40x + 375.

Let x0 = 30, so f (x0) = 75. Now, let x1 = 20, so f (x1) = −25. After performing one
step of the secant method, the approximate solution obtained is

x =
x0 f (x1)− x1 f (x0)

f (x1)− f (x0)
= 22.5,

which is the same approximate solution obtained from using the Rule of Double False
Position.

The use of the Rule of Double False Position appeared in the texts of many civi-
lizations in the centuries following. For example, the earliest surviving Chinese math-
ematics text, Jiǔ Zhang Suàn Shù (Computational Prescriptions in Nine Chapters) [8],
also known as The Nine Chapters on the Mathematical Art [16], dates back to the
Hàn Dynasty around 200 B.C., and represents the collective efforts of many scholars
over several centuries. It contains 246 problems in nine chapters, with each chapter
containing practical problems connected with everyday life, their solutions, and brief
descriptions of the methods used to solve them.15 In Chapter 7 (the title, in English,
translates to “Excess and Deficit”), twenty problems were solved using yı́ng bù zú shu,
which literally means “too much and not enough” and can be recognized as the Rule
of Double False Position [8]. This is the first evidence of the Rule of Double False
Position being considered a general rule to be used on particular problems and given
a name.

In the 9th century, the Arab mathematician Abu Jafar Mohammad ibn-Musa al-
Khwarizmi wrote two influential books, which were translated into Latin in the 12th
century and circulated throughout Europe [2].16 Also in the 9th century, Abu Kamil

15The purpose of The Nine Chapters on the Mathematical Art was similar to that of the Rhind Mathemati-
cal Papyrus—to serve as a practical handbook with problems that the ruling officials of the state were likely to
encounter [5].

16Only John of Seville’s 12th-century Latin translation of Al-Khwarizmi’s second book, Algorithmi de
numero indorum, “Calculation within Indian Numerals,” still exists [5]. Latin was the lingua franca of the
scientific world [28].
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wrote Kitab fil-jabr w’al muqabalah, ‘Book of Algebra’ (a commentary on, and elab-
oration of, Al-Khwarizmi’s work). This was entirely devoted to Hitab al Khata’ayn,
which literally means ‘rule of the two errors’, and can be recognized as the Rule of
Double False Position [8].

The first evidence of the use of the Rule of Double False Position in 12th-century
India is found in an anonymous Latin book, Liber Augmenti et Diminutionis, which
literally means “Book of Increase and Decrease.” This Latin book was translated from
Arabic and presented the rule Hisab al Khata’ayn, (which in Latin translates to “Reg-
ula Augmenti et Diminitionis,” and in English translates to “Rule of Increase and De-
crease”) to solve a linear equation. In 12th-century India, problems were posed simply
for the pleasure of solving them instead of for utilitarian function (unlike the texts that
previously contained mathematics).

In 1202, Leonardo Pisano, also known as Fibonacci, wrote Liber Abaci, “Book of
the Abacus,” which contained 15 chapters dealing with arithmetic and algebra, includ-
ing a mixture of Indian arithmetic methods and Arab algebraic methods.17 In Chapter
13 of Liber Abaci, Fibonacci described the Arabic rule, Elchataytm (which can be rec-
ognized as the Rule of Double False Position) and referred to it as the Augmented and
Diminished method. He applied this rule to rhetorical problems that represent linear
equations, and 29 of these problems were reproduced with little or no change from the
Kamil’s Arabic “Book of Algebra” [5, 25].

In 1484, Chuquet completed a three-part mathematical manuscript18 entitled “Tri-
party en la science des nombres.” In the final section of the first part of his “Triparty,”
Chuquet describes what he called “the rule of two false positions”, which can be rec-
ognized as the Rule of Double False Position. This is the first time an English title is
given to what is now most commonly called the Rule of Double False Position.

In the 16th century, Latin names and terms were introduced to describe existing
mathematical methods. In 1527, Bienewitz [1], also known as Petrus Apianus, intro-
duced the term “Regula Falsi,” his Latin translation of the Rule of Double False Posi-
tion, and defined it as a method that “learns to produce truth from two lies” [18].19 (The
term “Regula Falsi” literally translates to “rule of falseness.”) Bienewitz explained that
the term ‘false’ is used because the solution is produced from two ‘false’ initial esti-
mates and not because the method is wrong or false [1].

The fact that Bienewitz introduced the term Regula Falsi to refer to the method al-
ready known as the Rule of Double False Position (and named “Rule of Two False
Positions” by Chuquet in 1484) arguably explains how the Rule of Double False Po-
sition acquired the name the Regula Falsi method. From this point on, the Rule of
Double False Position was referred to as not only the Rule of Double False Position
but also as Regula Falsi.20 This marks the start of the naming confusion involving
Regula Falsi, which we elaborate on later.

Recall that the Rule of Double False Position was originally defined for rhetorical
examples that represent linear equations, but it was also used, in a non-iterative man-
ner, to obtain approximate solutions to rhetorical examples that represent quadratic

17Fibonacci wrote Liber Abaci after returning from extensive travel about the Mediterranean, visiting
Egypt, Syria, Greece, Sicily, and Provence, to receive a solid mathematical foundation. Liber Abaci was re-
vised in 1228, circulated in manuscript form until it was printed in Italy in 1857, and was not translated into
English until 2002 [5].

18According to Nordgaard [20], Chuquet was little known outside of France yet had a considerable in-
fluence in France. Chuquet’s “Triparty” was circulated only in manuscript and was not printed until 1880. A
study [10], published in 1985, includes an extensive translation of Chuquet’s mathematical manuscript.

19This is information from Maas [18]. The original text by Bienewitz is in German.
20The term “Regula Falsi” came into use long before the Regula Falsi method was developed (in the 1950s)

and it was used to describe the Rule of Double False Position.
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equations. In 1540, Frisius [11] claimed that he was the first to apply the Rule of
Double False Position (which he called Regula Falsi) to quadratic equations of the
form ax2

= b.21 Frisius’ application of (his slightly modified version of) the Rule
of Double False Position was an exercise performed strictly out of theoretical in-
terest, since by this time, algebra was known and practiced. Consider the following
problem.22

From a rectangle of 200 square yards the length is one and a half times the width.
What are the length and the width.

This example can be written using algebraic notation as the system of two equations,

l × w = 200,

l = 1
1

2
w,

where l and w represent the length and width of the rectangle, respectively. Fri-
sius was aware that he could have used direct substitution to simplify this system to
1 1

2w
2
= 200, a quadratic equation in one variable, and solve for w2. However, he

wanted to demonstrate that it was possible to solve the problem using the Rule of
Double False Position. To do this, he first let w0 = 4; then the length is 6, the area is
24, and e0 = 1 1

2w
2
0 − 200 = −176. Next, he let w1 = 20, which resulted in a length

of 30, an area of 600, and e1 = 1 1
2w

2
1 − 200 = 400.

At this step, Frisius modified the Rule of Double False Position. Instead of solving
for w as

w0e1 − w1e0

e1 − e0
,

he evaluated w2 as

w2
0e1 − w2

1e0

e1 − e0

and took the square root of this result. (At the time, knowledge of square and cube roots
was known and root tables existed for quick reference.) Frisius calculated the width
to be 11 27

55 and the length to be 15 77
100 ; however, 11 27

55 × 15 77
100 ≈ 181 6= 200. Frisius

knew, as he stated, that the Rule of Double False Position is correct only for linear
equations. He realized that the solution he attained from using his modified Rule of
Double False Position on his example problem described above was only approximate,
since he stated that it is impossible to get the exact answer using this method.

4. NAMES ASSOCIATED WITH THE RULE OF DOUBLE FALSE POSI-
TION. Even though the Rule of Double False Position dates back to the 18th century

21In 1525, German mathematician Christoff Rudolff wrote the first German algebra book Die coss, which
means “the variable,” where the Rules of Coss (where ax2

= b represents the second Rule of Coss, ax3
= b

represents the third Rule of Coss, etc.) are presented and the modern symbol for the square root is introduced.
Gemma Frisius made his claim in response to Rudolff’s comment that it was impossible to solve the second,
third, and fourth Rules of Coss using Rules of False (which consist of the Rules of Single and Double False
Position). Frisius solved the third and fourth Rules of Coss using a modification of the Rule of Single False
Position.

22Taken from p. 72 of Smeur [26] but originally appeared in Frisius [11].
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B.C., it was not thought of as a general rule or a method at that time, and therefore was
not given a specific name. It was not until 200 B.C., in China, that it was considered a
general rule and given a name—yı́ng bù zú shu. Since then, it has been given different
names (see Table 2) but has most commonly been referred to as the Rule of Double
False Position since the 11th century A.D.

Table 2. Evolution of the naming of the Rule of Double False Position.

Country Century Rule name

Egypt 18th B.C. —

Babylonia 18th B.C. —

China 2nd B.C. yı́ng bù zú (too much and not enough)

Arab 9th A.D. hisab al-Khataayn (rule of two errors)

Europe 11th A.D. elchataym (two errors)

Africa 13th A.D. method of scales

Europe 15th,16th A.D. rule of two false positions/regula falsi/
rule of double false position/regula positionum

U.S. 20th A.D. rule of double false position/method of false position/
regula falsi/secant method

5. THE END OF THE FIRST PATH TO THE SECANT METHOD. In 1545,
Cardano [7], in his Artis Magnae, demonstrated that the Rule of Double False Position
(calling it “De Regula Liberae Positionis,” which literally translates to “(Concerning)
the rule of free position”) could be used as an iterative procedure.23 He described
the rule as an iterative process, where multiple steps must be performed in order to
improve the approximation [6]. He solved quadratic and cubic equations using the rule
and included explanations of how he solved the problems using the rule [2]. We have
now traveled the path from the Rule of Double False Position to what we know today
as the secant method for a nonlinear equation. Cardano called it “De Regula Liberae
Positionis.” Of course, this awkward name never achieved acceptance in the literature.

Before we leave this section, we make a few comments. Newton was not fond of
publishing his work, including the origin of the calculus. However, he kept a fairly
detailed notebook of his scientific and mathematical ideas. These unpublished papers,
dated early 1665, remained in the possession of the family estate until 1872, when
the fifth Earl of Portsmouth donated many of the papers to Cambridge University,
where they still reside. Whiteside’s collection of Newton’s unpublished notes, entitled
Newton’s Waste Book [30], includes in Volume I (covering the period 1664–1669) an
illustration of a geometric technique based on similar triangles that Newton used to
approximate a zero of a nonlinear equation. Newton’s technique (which he did not
refer to by any name) is equivalent to the Rule of Double False Position applied to
a nonlinear equation. We point out that in describing both methods, Newton did not
mention iteration, even though by this time Cardano’s work on iterating the Rule of
Double False Position was over one hundred years old. We believe that if Newton had
been familiar with Cardano’s work, then he would not have proposed his version of
the Rule of Double False Position. Moreover, we believe that Newton did not discover

23A copy of the original Latin text was made by scanning microfiche.
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the secant method by taking a finite difference approximation to the derivative as dis-
cussed earlier. This will be revisited in §6. In formulating what today we call Newton’s
method, Newton did not state the method in terms of the formal derivative, although it
was undoubtedly known to him at the time. Newton worked with polynomial equations
and presented the correction term as an algebraic quantity, which would be the same
as we would obtain using the correction term defined in (1) in terms of the deriva-
tive. He did consider several equations that involved trigonometric expressions. Here,
he cleverly treated the trigonometric terms as infinite polynomials by replacing them
with their power series expansions. To what extent Newton knew that his correction
term could be stated in terms of the derivative is open to speculation. We believe that
he knew, since he often gained motivation from drawing pictures. An equally profound
question is to ask to what extent Newton understood the notion of iteration. We know
that he did not iterate either of the two proposed algorithms in his writings. One school
of thought is that, since the Rule of Double False Position was initially applied to a
linear equation and did not have to be iterated, the notion of iteration was sufficiently
foreign that it took Cardano to hammer it home as a break in mathematical algorith-
mic tradition. Another school of thought is that, once the first iteration is defined, it is
a rather straightforward realization that the procedure could be continued in the obvi-
ous fashion. Perhaps the truth is somewhere in between, with individuals belonging to
each school. However, it is our considered opinion that Newton belonged to the latter
school and believed that iteration was an obvious extension of his methods. Hence, if
we credit Newton with the so-called Newton’s method, even though he did not specif-
ically state iteration in its description, then it is fair to say that Newton discovered the
secant method independently, around the same time that he proposed what we today
call Newton’s method.

6. NAMING AND CONVERGENCE RATE FOR THE SECANT METHOD.
Thomas Fincke [9] introduced the word “secant” in his 1583 treatise on geometry
[2]. The word “secant” is from the Latin root “secare”, which means to cut. This term
makes sense, since Fincke depicted cutting a circle. It was in the same treatise that
Fincke introduced the secant line.

In 1958, T. A. Jeeves [15] seems to be the first to use the term “secant method” to
refer to the algorithm under discussion. Jeeves explained that it is “the secant modifi-
cation of Newton’s method”. Jeeves also presented the first proof that we can locate of
the golden mean convergence rate of the secant method (in one dimension). He proved
that at each iteration of the secant method, the increase in the number of significant
digits is 1

2 (1+
√

5) ≈ 1.62 (the golden mean) times the previous increase.

7. A SECOND PATH TO THE SECANT METHOD. Clearly, the second path that
led to the contemporary secant method is through obtaining the secant method as
a modification of Newton’s method. Our historical journey would not be complete
without attempting to determine who first proposed such a modification of Newton’s
method and who first realized that the two paths—the Cardano Rule of Double False
Position path and the modified Newton’s method path—led to the same destination,
the contemporary secant method.

The answer to these two questions can be found in the literature associated with
the naming of the secant method. Jeeves included a footnote referencing the previous
work of Wegstein, who in a 1958 paper [29], referred to what Jeeves called the secant
method as a “modified form of Newton’s method” and explained that this method
was contained implicitly in Willers’ 1948 book [31] as “the method of false position.”
Willers described only the first iteration, so we do not know exactly what he meant by
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his method of false position. However, in doing so he captured the guiding principle of
the secant method, i.e., two-point linear interpolation. In summary, Wegstein in 1958
stated that the secant method was a modified form of Newton’s method and that it was
contained implicitly in Willer’s book as the method of false position. It follows then
that we should credit Wegstein for connecting our two paths to the secant method,
understanding that this connection is somewhat sketchy.

Table 3. Some examples of the inconsistencies in naming the Regula Falsi method, the Modified Regula Falsi
method, and the secant method.

Date Authors Regula Falsi (R.F.) Modified R.F. Secant Method

1944 Whittaker and Robinson rule of false position

1948 Willers method of
false position

1953 Householder regula falsi

1955 Booth regula falsi/
rule of false position

1958 Wegstein modified form
of Newton’s method

1958 Jeeves secant method

1960 Ostrowski regula falsi iteration with successive
adjacent points

1961 Stanton regula falsi

1962 Hochstrasser rule of false position

1964 Traub regula falsi secant iteration function (I.F.)

1964 Henrici regula falsi

1964 Fröberg regula falsi

1966 Isaacson and Keller classical regula method of false position
falsi method

1970 Ortega and Rheinboldt regula falsi secant method

1972 Blum method (or rule) of false position/
regula falsi

1974 Dahlquist and Björck regula falsi

1975 Smeur rule of false

1977 Gellert, Hellwich fixed point method secant method method of false position
Küstner and Kästner

1978 Atkinson regula falsi

1981 Gill, Murray regula falsi/ secant method/
and Wright method of false position method of linear interpolation

2008 Dahlquist and false-position method/
Björck regula falsi
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8. NAMING CONFUSION. Table 3 represents some of the different names that
have been used to describe the Regula Falsi method, the Modified Regula Falsi method,
and the secant method. The blank spaces in the table indicate that either the method
was not presented, or the method was not referred to by a specific name by that partic-
ular author(s).

References to the actual Rule of Double False Position became a part of the naming
confusion. In 1978, Smeur [26] described the Rule of Double False Position, explained
that it is called Regula Falsi or Rule of False, and stated that the rule is only correct for
linear equations.24 In 1991, Hämmerlin and Hoffman [12] stated that the Regula Falsi
method was one step of the secant method and that the secant method was a result
of iterating the Regula Falsi method. It seems to be implicit that they understood that
the Rule of Double False Position (which they called Regula Falsi, the name originally
introduced by Bienewitz) was used for linear equations, in turn implying that the secant
method was used for nonlinear equations and was iterated.

We have shown that the terms Regula Falsi and Rule of False Position have been
used interchangeably to describe the Regula Falsi method and the Modified Regula
Falsi method, as well as the secant method. In addition, we presented some of the
many inconsistencies in the naming of the Regula Falsi method, the Modified Reg-
ula Falsi method, and even the secant method. Our respect for the authors mentioned
is such that, while collectively they created mass confusion in the naming of these
various methods, we believe that each must have been working within an implicit un-
derstanding. We think that they viewed a “false position” as an initial approximation
to the solution, and “Regula Falsi” or “Rule of False Position” as any method that uses
linear interpolation based on two false positions to obtain a new approximation to the
solution. There is naming consistency within this understanding; however, the confu-
sion unfortunately remains. We must admit that in recent years, primary sources have
been overlooked. As a result, contemporary usage is as follows. The Modified Reg-
ula Falsi method described in §2.4 is now what current mathematics texts and popular
websites call the Regula Falsi method, and it is presented in sections on bracketing
methods because it is a natural extension of the method of bisection (which is a brack-
eting method). Furthermore, the Regula Falsi method described in §2.3 is ignored in
current mathematical texts. However, today everyone calls the secant method the se-
cant method.
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Another Proof of Young’s Inequality for Products

Several different proofs of Young’s inequality can be found in numerous articles and text-
books. An elementary proof for the generalized form is presented here in two steps. We first
state the generalized Young’s inequality on Rn . Let p1, p2, . . . , pn be real numbers such that
pk > 1 for all k = 1, 2, . . . , n, and

∑n
k=1

1
pk
= 1. For nonnegative real numbers a1, a2, . . . , an ,

we have

n∑
k=1

a pk
k

pk
≥ a1a2 . . . an .

Step 1. For any given n positive integers m1, m2, . . . , mn with GCD(m1, m2, . . . , mn) = 1, we
define M =

∑n
k=1 mk and pk =

M
mk

. Hence, we have

pk > 1 for every k = 1, 2, . . . , n; and
n∑

k=1

1

pk
= 1. (1)

For any n nonnegative numbers a1, a2, . . . , an , we have

n∑
k=1

a pk
k

pk
=

1

M

n∑
k=1

mka pk
k =

1

M

(a p1
1 +a p1

1 + · · · +a p1
1 )︸ ︷︷ ︸

m1-times

+ · · · +(a pn
n +a pn

n + · · · +a pn
n )︸ ︷︷ ︸

mn -times

 .

By using the inequality

Arithmetic Mean = A ≥ G = Geometric Mean

we will get Young’s inequality for rational numbers:

n∑
k=1

a pk
k

pk
≥

[
n∏

k=1

(
a pk

k

)mk

]1/M

=

n∏
k=1

ak . (2)

Step 2. To prove this inequality for any real numbers pk satisfying (1), we take sequences of
rational p j,k, j = 1, 2, . . . , converging to pk for those irrational pk’s. Inequality (2) holds for
p j,k’s for each j = 1, 2, . . . and k = 1, 2, . . . , n. By taking the limit of both sides as j goes
to infinity, the continuity of the function f (x) = cx/x , for any nonnegative constant c and
x > 1, gives us the generalized form of Young’s inequality for any pk > 1, k = 1, 2, . . . , n.
And n = 2 gives us the more standard form of Young’s inequality

a p

p
+

bq

q
≥ ab,

where p > 1, q > 1, 1/p + 1/q = 1, and a, b are nonnegative numbers.

—Submitted by M. Reza Akhlaghi,
Big Sandy Community & Technical College
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