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Multistability and unpredictability 
In numerous physical systems, from tossed coins to black holes, the complexity arising from the
coexistence of different outcomes limits our ability to make predictions.
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In numerous physical systems, from tossed 

coins to black holes, the complexity arising 

from the coexistence of different outcomes 

limits our ability to make predictions.
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Fractal dimension
The concept of dimension is more complex than what is taught 
in school. In fact, dimension can be calculated using a construc-
tive approach called the  box- counting method. It involves 
overlaying a grid of boxes of side length ε on a set of interest 
and counting the number of boxes N(ε) that contain some part 
of the set. The process is repeated with a series of decreasing 
values of ε. The value of N(ε) is expected to increase as ε de-
creases. In fact, N(ε) is proportional to ε- d for small ε, where d is 
the  box- counting— that is, fractal— dimension of the set.

For simple Euclidean sets like line segments and disks, 
the  box- counting method may seem unnecessary because 
their dimensions are already known (1 for a segment, 2 for 
a disk). For  more- complex geometric objects, such as frac-
tals, the method becomes extremely useful.

Fractals are geometrically complex sets that have a 
noninteger dimension. An example of a fractal object is the 

boundary between Hudson Bay and Atlantic Ocean drain-
age basins. The draining of different geographic positions 
into distinct basins resembles the sensitive dependence of 
outcomes on initial conditions in a dynamical system.

This series of maps illustrates the application of the 
 box- counting algorithm to the basin boundary (red). Each 
time we double the resolution, the number of boxes (gray) 
covering the curve increases. Continuing the process to very 
small values of ε, we can find a scaling law in which the 
exponent gives the fractal dimension of the curve.

In general, fractals have a fractal dimension greater than 
their topological dimension (1 for a line) but smaller than 
the dimension of the space in which they are embedded (2 
for a surface). Multistable systems often present basins of 
attraction with fractal boundaries, which have fundamental 
consequences for the system’s predictability.

Nevertheless, issues arise when you apply a bit of physical 
reasoning. The equations of motion of such a magnetic pen-
dulum can be easily derived through consideration of the 
attractive force between the magnet and the rod.1 Given the 
initial conditions, those deterministic equations will pre-
cisely predict where the pendulum will end up. Therefore, 
you are actually the one making the decision, on the basis of 
your particular choice of initial conditions! In fact, you could 
place the rod very close to your secretly desired outcome, but 
that feels too much like cheating. So how much control do 
you really have over the final outcome?

It is a fun mathematical problem to consider, but the prin-
ciples can be applied to more than just toys. Any system with 
multiple stable outcomes that are determined by the initial 
conditions is known as a multistable system. Such systems 
have historically been modeled by nonlinear equations of 
motion and solved with numerical methods. Yet even small 

errors in the initial conditions—due, perhaps, to finite numeri-
cal precision—can lead to significantly different predictions 
in chaotic systems. Statistics textbooks often use rolling dice 
or flipping coins as examples of randomness for that reason: 
Although in principle their motion can be described by clas-
sical mechanics,2 the precise initial conditions affect the final 
stable outcome.

Multistability is found in many areas of physics, ranging 
from the quantum world to general relativity, spanning 
basic probability and complex atmospheric models. Indeed, 
the inherent nonlinearities of Albert Einstein’s field equa-
tions often lead to multistable situations.3 For example, 
when two black holes orbit each other, the path of light 
around them is complicated by the competing gravitational 
wells and is difficult to predict. As illustrated in figure 2, 
photons face three possible outcomes in that scenario: being 
absorbed by black hole one, being absorbed by black hole 

D
ecision making can be tough. Transferring the choice to an 
unbiased authority, like a coin or a die, may help to relieve 
the pressure. Indeed, for just a few dollars, you can buy a 
decision-making toy (see figure 1), consisting of a rigid rod 
and three magnets typically labeled with different outcomes: 

yes, no, and maybe. Just pull the rod away from equilibrium and 
let it swing erratically until it points to the answer. The whimsical 
pendulum makes the choice for you.
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two, or escaping. Although photons around binary black 
holes differ significantly from magnetic pendulums, the two 
systems share several defining features.

Multistable systems pop up in other scientific disciplines 
too. The genetic toggle switch is a gene-regulation mecha-
nism that tends to the expressed or silenced state, depending 
on the initial concentrations of proteins.4 Such simple motifs 
allow for the construction of complex regulatory networks. 
The analysis of the system’s multistability may lead to a better 
understanding of gene expression.

Asymptotic states are not limited to steady states. Com-
plex scenarios can include periodic or even chaotic orbits. 
For instance, the multiple stable solutions of a swinging 
bell5 are various modes of oscillation. And figure 3 illus-
trates the pulsating modes of a modulated laser, which de-
pend on the initial conditions.6 In general, if any character-
istics allow us to distinguish between different asymptotic 

Yes No

Maybe

FIGURE 1. A DECISION-MAKING PENDULUM TOY has three 
possible outcomes: yes, no, and maybe. The magnet in the pendulum 
is most likely to stop right above one of the three corresponding 
magnets. The complex interplay between the initial conditions and 
the multiple ending positions makes the pendulum a multistable 
system. The final answer given by the pendulum may seem random, 
but the system can be modeled by three basins of attraction 
(colored), each of which represents a different answer. Knowledge of 
the initial release point will inform where the resting point will be.
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states, then we can and apply the theoretical framework of 
multistability.7

Fractal basins of attraction
One approach to investigating the behavior of multistable 
systems is building a map connecting initial conditions to 
their final outcome. Such a map is known as the basins of 
attraction. In figure 1, for example, the decision-making 
pendulum will come to rest above the yellow answer if it is 
released from the yellow basin of attraction. The term is 
borrowed from hydrology, in which a river basin is the area 
of land where rainfall ultimately gathers in a particular 
body of water. In nonlinear systems, the inherent unpredict-
ability often results in intricate, sometimes even fractal, 
basin shapes. (Various basins of attraction adorn this 
article.)

When a basin of attraction has a fractal boundary, common 
intuition regarding outcome predictability is useless.8 That is 
what allows a system like the decision-making pendulum to 
appear random. In a system with smooth basin boundaries, an 
enhancement in the precision of initial conditions by a factor of 
10 yields a corresponding improvement in the overall predict-
ability of the system. For fractal basins, increasing the precision 
10-fold may result in only a two- or threefold improvement in 
predictions, or in extreme cases, no improvement at all. That 

scenario recurs at every scale because of the self-repeating 
nature of fractals.

Fractals are widely recognized for their complex structure 
across all scales and their noninteger dimensions (see the box 
on page 46). The conventional topological dimension can be 
understood as the number of coordinates required to deter-
mine a point within an object: One coordinate is adequate for 
defining a position on a curve, two coordinates suffice for a 
point residing on a surface, and so forth. The fractal dimen-
sion generalizes the concept and offers insight into how ex-
tensively an object occupies space. For instance, a plane curve 
with a fractal dimension of 1.53 occupies more space than a 
line but less than a surface. The number is a proxy to describe 
how close we are to those limiting cases.

Nonetheless, the peculiarities of fractal boundaries extend 
beyond self-similarity and noninteger dimensions. They are 
just the tip of the iceberg, since the array of fractal basins 
encompasses extraordinary phenomena with fundamental 
implications for predictability.

Cataloging unpredictability
Typically, boundaries divide two regions, as a border between 
countries does. Occasionally, isolated points separate more than 
two regions—for example, Four Corners marks the boundary 
point between Arizona, Utah, Colorado, and New Mexico. 

ba

FIGURE 2. BINARY BLACK HOLES, like the ones shown in the simulation (a), form a multistable system. (Courtesy of the Simulating 
eXtreme Spacetimes project.) They can be represented by different basins (b), illustrated here as a photon in the vicinity of such a system 
with three possible end states: trapped by the first black hole (blue), trapped by the second black hole (green), or escaping both. In narrow 
regions known as eyebrows, the influence of the farther black hole is stronger than the closer one. Some models predict a fractal hierarchy 
of eyebrows, which adds complexity to the prediction. 
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Points like that have a higher level of unpredictability, and a 
deviation from the exact boundary point can have more than 
two possible outcomes: For example, someone at Four Corners 
who gets pushed down could end up in any of the four states. 
What happens when a boundary is composed entirely of such 
points? Although such a boundary may seem implausible, 
fractal objects often challenge conventional understanding.

In the early 20th century, Japanese topologist Takeo Wada 
proposed a method for creating such a mind-boggling struc-
ture: three connected sets with a common boundary. Wada 
basins, named after him, refer to three or more fractal basins 
separated by a single boundary. That topological property is 
not just a fanciful oddity; Wada basins are ubiquitous even 
in simple systems, such as a damped pendulum subjected to 
continuous forcing.8

Wada basins are not the basins with the most unpredict-
ability. Some fractal curves, such as Peano curves and Hilbert 
curves, can fill the space. A boundary occupying the whole 
space means that the slightest uncertainty will lead to an un-
known outcome. Despite being deterministic and regardless of 
how much the precision is improved, the system will always be 
unpredictable. Scenarios like that are modeled by what are 
known as riddled basins. In a way, riddled basins can be 
considered a bridge between determinism and randomness. In 

addition to Wada and riddled basins, multistable systems give 
rise to many more peculiar species, including sporadically 
fractal basins, intermingled basins, and basins with tentacles.9

Usually, one of the first steps in analyzing a dynamic pro-
cess involves allowing the state to evolve until an asymptotic 
behavior is recognized. A decision-making pendulum can still 
be moving slightly when it becomes clear which marked mag-
net the pendulum will stop above. Trials with different initial 
conditions may uncover alternative outcomes. Nonetheless, in 
some systems, that process is far from trivial, since the basins 
of the system can be hidden.10 That situation arises when the 
basins are located away from their corresponding outcomes 
and there are no transient processes leading to them. The de-
tection of such elusive basins requires special procedures.

Basins located close to their corresponding attractor can 
also be problematic when those attractors are found every-
where. Extreme multistability11 can arise when conservative 
chaos meets small dissipation; it leads to an overwhelming 
quantity of different attractors. Indeed, an arbitrarily large 
number of attractors can arise in that kind of situation. Still, 
manipulation of the system allows for custom-made sce-
narios of multistability. Two peculiar examples of such are 
megastability12 and matryoshka multistability,13 in which 
attractors are nested and form an onion-like structure.
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FIGURE 3. A MODULATED LASER DEMONSTRATES MULTISTABILITY when initial conditions of the setup are changed.6 In the top 
illustration, the initial conditions cause the output power (red) to feature large pulses at a third of the frequency of the modulation signal 
(blue). In the bottom illustration, the output power and modulation signal have the same oscillation frequency.
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Furthermore, changing the parameters of the object of 
inquiry sometimes gives birth to two possible outcomes, an 
event called bifurcation. The same system may present a 
huge variety of situations depending on its precise para- 
meters. The rich diversity of basins and associated phenom-
ena are why creating tools to understand their unpredictabil-
ity and classify them is necessary.

The multistability toolkit
The most straightforward method to quantify the unpredict-
ability associated with basins is measuring their relative vol-
ume. Consider a loaded die for which the basin of one face 
occupies a volume 20 times as great as the volume of all the 
other faces combined.  Clearly, a die will land with the biased 
face up most of the time. That simple measure, known as 
basin stability,14 has been successfully applied to the charac-
terization of multistable networks and high-dimensional 
systems, such as atmospheric models.

But basins are much more than just their size. Equivalent 
basin volumes in two systems do not necessarily imply the 
same predictability for both. Not only does the basin volume 
matter, but its morphology does also. For example, a bistable 
system with symmetric basins separated by a smooth bound-
ary (imagine a two-by-two chessboard) and a system with 
riddled boundaries (imagine TV static) can present identical 
volumes. Even though the basin stability is the same in both 
cases, the situations are very different. The basin entropy,15 a 
recently developed tool, incorporates both aspects to provide 
a quantitative measure of uncertainty.

Basin entropy can be understood as a nonlinear combina-
tion of multiple factors, including the fractal dimension of the 
boundaries and the number of attractors within a basin. In that 
way, the entropy accounts for the basin’s morphology and 
allows for the creation of a rational taxonomy.16 For example, 
Wada basins maximize the number of attractors separated by 
the boundary, while riddled basins maximize the fractal di-
mension. Beyond quantifying asymptotic unpredictability in 
multistable systems, the basin entropy also quantifies fractal 
boundaries, bifurcations, and other defining characteristics.

Yet we are not simply doomed to observe the complexity of 
multistable systems; we can attempt to tame it.17 You might find 
yourself trapped in one state but want to transition to another. 
In such cases, it is crucial to determine the minimal perturbation 
needed to move the system out of a basin of attraction. Interest-
ingly, that minimal action provides yet another measure of the 
sensitivity associated with the basins. Instead of taking a static 
approach, you can use a carefully timed perturbation to drive 
the evolving trajectory from one asymptotic state to another. 
Regardless of the method, once the optimal window is identi-

fied, an external control can lead the system to the desired state. 
But how to make that optimum perturbation may not be known 
a priori. Alternatively, other techniques bypass that difficulty by 
employing feedback methods.

Delving into the realm of multistability transforms our 
perception of everyday objects and unveils a world of new 
possibilities. This article began with a discussion of a frivo-
lous decision-making toy, but an understanding of multista-
bility is pivotal in advanced topics such as neuroscience.18 By 
leveraging the vocabulary derived from the study of non-
linear dynamics—akin to equations of motion governing a 
simple pendulum—we can gain a deeper understanding of 
the intricate mechanisms underlying cognitive choices. The 
interplay among attractors in multistable systems mirrors 
the complex cognitive processes at play when individuals 
navigate decisions.

Multistability is a prevalent phenomenon observed across 
various realms of physics, including classical mechanics, quan-
tum mechanics, and cosmology. Its pervasive nature highlights 
its significance in unraveling the complexities of physical 
phenomena across different scales and domains. Insights 
derived from the study of elementary dynamical systems 
often have profound implications for addressing challenges 
encountered in diverse fields. The lessons learned in simple 
systems provide valuable perspectives and methodological 
approaches that offer fresh insights into long-standing ques-
tions across physics. Thus, the exploration of multistability not 
only enriches our understanding of fundamental physics but 
also fosters interdisciplinary synergies.
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