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A rough sketch of DNA’s structure

DNA is a double chain of nucleotides

there are ∼ 30 atoms / nucleotide

a DNA chain has 105–1010 nodes.

Nucleotides have two components:

a Sugar-Phosphate group (backbone)

and a Nitrogen Base.

The SP group is the same for all nodes,

the sequence of NB is the genetic info.

There are four types of NB:

Adenine, Guanine, Cytosine, Thymine.

Covalent bonds link NB with SP,

H-bonds bet. facing NB link the two chains.
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What solitons have to do with DNA

It is an old conjecture1 that rotational kinks and breathers
could play a functional role in DNA’s

transcription and denaturation phenomena.

These phenomena are quite complex – involving the interaction
with enzimes, cell environment and so on – hence the focus has

been set on formulating a reliable model describing in simple terms
the dynamics of DNA as a mechanical system.

1see A. Davydov, Solitons in Molecular Systems, Kluwer (1981),
S. Englander et al., PNAS USA 77 (1980)
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Our Main Goal

Our main goal is to understand whether

the essentially inhomogeneous DNA molecule,

seen as a mechanical system, supports the existence

of narrow (of the order of 10bp) twist solitons (kinks)

able to move for long enough distances (of the order of 100bp)

at the natural speeds for the transcription

and duplication phenomena (in the range 50–103bp/s)

under an external force and dissipation.
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Starting point: the Salerno and Yakushevich models

∆ϕn,1=ϕn,1−ϕn−1,1

∆ϕn,2=ϕn,2−ϕn−1,2

HS=
∑

n

In,1
2
ϕ̇2
n,1+

In,2
2
ϕ̇2
n,2︸ ︷︷ ︸

Kinetic Energy

+K ts
n,1(∆ϕn,1)2+K ts

n,2(∆ϕn,2)2︸ ︷︷ ︸
Torsion + Stacking

+ Kp
n r̄2 [1−cos(ϕn,1−ϕn,2)]︸ ︷︷ ︸

Pairing (physical pendulum)

HY =
∑

n

In,1
2
ϕ̇2
n,1+

In,2
2
ϕ̇2
n,2︸ ︷︷ ︸

Kinetic Energy

+K ts
n,1(1−cos ∆ϕn,1)+K ts

n,2(1−cos ∆ϕn,2)︸ ︷︷ ︸
Torsion + Stacking

+

+ Kp
n [rn,1(rn,1+rn,2)(1−cosϕn,1)+rn,2(rn,1+rn,2)(1−cosϕn,2)−rn,1rn,2(1−cos(ϕn,1−ϕn,2))]︸ ︷︷ ︸

Pairing (harmonic potential in the distance between facing bases)
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Twist Solitons in DNA

We consider a double chain with N nodes
and look for solutions ϕn,i (t)
with boundary conditions

ϕ1,1(t) = 0, ϕ1,2(t) = 0

ϕN,1(t) = 2πp, ϕN,2(t) = 2πq

with p, q ∈ Z.

We call (p, q) the topological type
of the solution.
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Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1, 1)
solutions of HY are symmetric and each one is exactly

a sine-Gordon kink, i.e. a kink solution of
µ∂ttϕ(x , t) = K∂xxϕ(x , t)− κ sinϕ(x , t)

ϕn,1 ϕn,1

t

n

ϕn,1
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Motion of kinks in the inhomogeneous Salerno model
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Motion of kinks in the inhomogeneous Yakushevich model
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Our composite model for DNA

Cn,1

Cn,2

deq
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Our composite model for DNA

Cn,1

Cn,2

deq

H = T + Vt + Vs + Vp + Vh + Vw
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Our composite model for DNA

Cn,1

Cn,2

deq

H = T + Vt + Vs + Vp + Vh + Vw

T =
1

2

N∑
n=1

2∑
i=1

[
It θ̇

2
n,i + mn,i Ċ

2
n,i

]
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Our composite model for DNA

Cn,1

Cn,2

deq

H = T + Vt + Vs + Vp + Vh + Vw

T =
1

2

N∑
n=1
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i=1

[
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Numerical matters

The initial profiles of the kinks were determined by looking for
extremals of the action after the “constant speed” discrete ansatz

q̇n = v(qn − qn+1)/δ, where qn = (θn,1, θn,2, φn,1, φn,2).

For the evolution, since all systems we deal with are conservative,
we decided to use geometric integrators
in order to minimize the error sources.

We started by using a Lagrangian approach to study kinks
evolution in the Yakushevich model, mainly because several
geometric integrators for Lagrangian systems were available

on the net, in particular those developed by Ernst Hairer
(GNI IRK2).
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Numerical matters

When we switched to our composite model we found out that no
geometric integrators were available instead for Lagrangians whose

kinetic energy depends on the spatial coordinates (e.g. double
pendulum). We contacted Hairer and were suggested to switch to

the Hamiltonian approach, for which he kindly provided to us
several geometric integrators (GRKAAD).

Finally, we repeated some of the numerical results using
non-symplectic ODEs algorithms from the GSL

and found an excellent agreement.

REMARK: there is a time scale inerent in our numerical analysis.
Consider the simplest case of the Yakushevich model (SG):

µ∂ttϕ(x , t) = K∂xxϕ(x , t)− κ sinϕ(x , t)
We have µ ' 1.3 · 10−25kKs2/mol while K ' κ ' 1kJ/mol . In

order to have constants of the same order of magnitude we must
change time unit to TU = 3.4 · 10−13s!.
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Why we do not use a harmonic pairing potential

Under the harmonic approximation, kinks in the composite model
do not move even in homogeneous chains.

Cadoni, De Leo, Demelio, Gaeta Twist solitons in inhomogeneous DNA



Motion of kinks in the composite homogeneous model

H = v2
N∑

n=1

2∑
i=1

[
I

2δ2
[∆θn,i ]

2 + m[∆Cn,i ]
2

]
+

N∑
n=1

2∑
i=1

gt [1− cos(∆θn,i )] +
1

2

N∑
n=1

2∑
i=1

gs
d2
xy (Cn+1,i ;Cn,i )

(dbs + r̄)2
+

N∑
n=1

d
[
1− e−µ(d(Cn,1;Cn,2)−deq)

]2
+ Vh + Vw
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v = 0.4 v = 0.62 ' vlim

īt = 1.1, īs = 1.3, gt = 1, gs = 0.3, gh = 0.01, gp = 0.02, d = 0.02, µ = 6.3
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Motion of kinks in the composite inhomogeneous model
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īt = 1.1, īs = 1.3, gt = 1, gs = 0.3, gh = 0.01, gp = 0.02, d = 0.02, µ = 6.3
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Motion of kinks in the inhomogeneous YakMorse model

HY =
∑

n
In,1

2
ϕ̇2
n,1+

In,2
2
ϕ̇2
n,2+g(2−cos ∆ϕn,1−cos ∆ϕn,2)+K

[
1−e−µ(d(Cn,1;Cn,2)−deq )

]2
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Motion of kinks in the inhomogeneous YakMorse model

HY =
∑

n
In,1

2
ϕ̇2
n,1+

In,2
2
ϕ̇2
n,2+g(2−cos ∆ϕn,1−cos ∆ϕn,2)+K

[
1−e−µ(d(Cn,1;Cn,2)−deq )

]2

Ī = 7, g = 7.5, K = 0.02, µ = 11
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Traveled Distance vs Initial Position in the Chain

How much the traveled distance varies by the starting point at v = 0.4?

Yak Morse Model, HA2 chain
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Traveled Distance vs Initial Position in the Chain

How much the traveled distance varies by the starting point at v = 0.4?

Composite Model, HA2 chain
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Dissipation and external forces

We introduce in the Yakushevich equations for the θn,i a new term νθ̇n,i + F0.
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Dissipation and external forces

We introduce in the Yakushevich equations for the θn,i a new term νθ̇n,i + F0.

v = 0, 2, Ī = 7, g = 21, K = 1
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Dissipation and external forces

Now we do the same after replacing the harmonic pairing potential with a Morse one.
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Dissipation and external forces

Now we do the same after replacing the harmonic pairing potential with a Morse one.

v = 0.4, Ī = 7, g = 7.5, K = 0.02, µ = 11
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Very slow kinks

Finally we try to create very slow kinks in the Yakushevich (1st row) and YakMorse (2nd row) models
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Very slow kinks

Finally we try to create very slow kinks in the Yakushevich (1st row) and YakMorse (2nd row) models

v = 4.7 · 10−3

v = 2.1 · 10−4

v = 1.1 · 10−3

v = 7.1 · 10−5
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A remark about stability

Gianne Derks (U. of Surrey) pointed out to us that (1, 1) solitons in the Yakushevich model are instable.

We verified numerically that this instability disappears when a Morse pairing potential is used:
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Strong points of the model

1 The Salerno and Yakushevich models are so basic that,
to get equations compatible with the observed dispersion
relations, one must use unphysical coupling constants.
Splitting the degrees of freedom of backbone and bases angles
proved to be enough to allow using physical values.

2 In the composite model, in the Harmonic approximation for
pairing, kinks do not move even in homogeneous chains,
leading to the introduction of the Morse potential. A
posteriori, Morse potential also allows motion of kinks in the
Yakushevich inhom. model. Hence improving the geometry of
the model also requires a more physical pairing potential.

3 In the Harmonic approx. the (1, 1) solitons are unstable, with
a Morse potential they are stable.
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Future Directions

1 Investigate numerically about dissipation, external forces and
low speed solitons for the composite model.

2 Analyze numerically what happens for several other real DNA
sequences to prove that the “global” dynamics really does not
depend on the particular sequence and look for the activation
regions discussed by Salerno in his seminal paper.

3 Investigate numerically about the interaction DNA/RNAP
studied analytically in a recent paper by G. Derks and
G. Gaeta in the context of the Yakushevich model.
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