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A rough sketch of DNA's structure

DNA is a double chain of nucleotides
there are ~ 30 atoms / nucleotide
a DNA chain has 10°-10° nodes.
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A rough sketch of DNA's structure

DNA is a double chain of nucleotides
there are ~ 30 atoms / nucleotide
a DNA chain has 10°-10° nodes.

Nucleotides have two components:

a Sugar-Phosphate group (backbone)
and a Nitrogen Base.

" The SP group is the same for all nodes,

the sequence of NB is the genetic info.
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A rough sketch of DNA's structure

DNA is a double chain of nucleotides
there are ~ 30 atoms / nucleotide
a DNA chain has 10°-10° nodes.

Nucleotides have two components:

a Sugar-Phosphate group (backbone)
and a Nitrogen Base.

5 TheSP group is the same for all nodes,

the sequence of NB is the genetic info.

There are four types of NB:

Adenine, Guanine, Cytosine, Thymine.
Covalent bonds link NB with SP,

H-bonds bet. facing NB link the two chains.
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What solitons have to do with DNA

It is an old conjecture! that rotational kinks and breathers
could play a functional role in DNA's
transcription and denaturation phenomena.

see A. Davydov, Solitons in Molecular Systems, Kluwer (1981),
S. Englander et al., PNAS USA 77 (1980)
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What solitons have to do with DNA

It is an old conjecture! that rotational kinks and breathers
could play a functional role in DNA's
transcription and denaturation phenomena.

site of nuclectide addition
1o growing RNA strand

DNA helix

see A. Davydov, Solitons in Molecular Systems, Kluwer (1981),
S. Englander et al., PNAS USA 77 (1980)
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What solitons have to do with DNA

It is an old conjecture! that rotational kinks and breathers
could play a functional role in DNA's
transcription and denaturation phenomena.

site of nuclectide addition
1o growing RNA strand

These phenomena are quite complex — involving the interaction
with enzimes, cell environment and so on — hence the focus has
been set on formulating a reliable model describing in simple terms
the dynamics of DNA as a mechanical system.

see A. Davydov, Solitons in Molecular Systems, Kluwer (1981),
S. Englander et al., PNAS USA 77 (1980)
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Our Main Goal

Our main goal is to understand whether
the essentially inhomogeneous DNA molecule,
seen as a mechanical system, supports the existence
of narrow (of the order of 10bp) twist solitons (kinks)
able to move for long enough distances (of the order of 100bp)
at the natural speeds for the transcription
and duplication phenomena (in the range 50-103bp/s)

under an external force and dissipation.
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Starting point: the Salerno and Yakushevich models
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Starting point: the Salerno and Yakushevich models

App1=¢n1—Pn-1,1
Acpn,ZZSOn,Z_Sanl,Z
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Starting point: the Salerno and Yakushevich models

App1=¢n1—Pn-1,1
Acpn,ZZSOn,Z_Sanl,Z

n22

HSZ

(D1 K (Bpn2)? + KE T [L1—cos(ion1—¢n2)]

Kinetic Energy Torsion + Stacking Pairing (physical pendulum)
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Starting point: the Salerno and Yakushevich models

App1=¢n1—Pn-1,1
Acpn,2290n,2_$0n71,2

Hs=3, - 2 2 KE (B )P HKE(Bpn2) + KE P2 [L—cos(n1—n2)]
Kinetic Energy Torsion + Stacking Pairing (physical pendulum)
221 (1—cos Apn1)+Kp2H(1—cos Apn2) +
Kinetic Energy Torsion + Stacking

+ KB, 1(rn,141n,2)(1—cos ©n,1)+1n,2(n,14rn,2)(1—=COS pn,2) = Fn, 1 2(1—Cc08(0n,1—¢n,2))]

Pairing (harmonic potential in the distance between facing bases)
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Twist Solitons in DNA

We consider a double chain with N nodes
and look for solutions ¢, ;(t)
with boundary conditions

¢1,1(t) =0, p12(t) =0

ena(t) = 2mp, pno(t) =27q
with p, q € Z.

We call (p, q) the topological type
of the solution.

Cadoni, De Leo, Demelio, Gaeta Twist solitons in inhomogeneous DNA



Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1,1)
solutions of Hy are symmetric and each one is exactly
a sine-Gordon kink, i.e. a kink solution of

1Orp(x, t) = KOxxp(x, t) — Ksin p(x, t)
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Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1,1)
solutions of Hy are symmetric and each one is exactly
a sine-Gordon kink, i.e. a kink solution of

1Orp(x, t) = KOxxp(x, t) — Ksin p(x, t)
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Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1,1)
solutions of Hy are symmetric and each one is exactly
a sine-Gordon kink, i.e. a kink solution of

1Orp(x, t) = KOxxp(x, t) — Ksin p(x, t)
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Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1,1)
solutions of Hy are symmetric and each one is exactly
a sine-Gordon kink, i.e. a kink solution of
1Orp(x, t) = KOxxp(x, t) — Ksin p(x, t)
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Twist Solitons in DNA

REMARK: in the continuous homogeneous limit the (1,1)
solutions of Hy are symmetric and each one is exactly
a sine-Gordon kink, i.e. a kink solution of
1Orp(x, t) = KOxxp(x, t) — Ksin p(x, t)
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Fig. 3. Fraction of kinks that moves at least the number of base-pairs given by the x-axis. The solid line corresponds to the real genome of the
T7-phage, while the dashed line corresponds to a random sequence.
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Our composite model for

A T G C mean Sugar
m 134 125 150 110 130 85
I (3.6 % 10°|3.0 x 10%[4.4 x 10°|2.3 x 10°|3.3 x 10°(2.0 x 10°
i 39 2.9 4.1 2.7 34 31
dea| 1.0 1.0 10 1.0 L0 -
deg 3.0 3.0 3.0 3.0 3.0 -
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Our composite model for

A T G C mean Sugar
| Rt dpy + 2r, 1 I Izr,.;; +dy, T 1) o en 50 0 T =
d,

I 3.6 x 10°|3.0 % 10%[4.4 % 10°|2.3 % 10°]3.3 x 10°|2.9 x 10°

1 3.9 2.9 4.1 2.7 34 31

dis 1.0 1.0 1.0 1.0 L0 -

deg 3.0 3.0 3.0 3.0 3.0 -
H=T+Vi+ Vet Vot Vi + Vi
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Our composite model for DNA

| A T G C mean Sugar
R+ dps + 21 IQV‘,.; +dys + lfl - 134 125 150 110 190 5

I 3.6 x 10°|3.0 % 10%[4.4 % 10°|2.3 % 10°]3.3 x 10°|2.9 x 10°

i 3.9 2.9 4.1 27 34 31
ds 10 1.0 10 1.0 10 -
deg| 3.0 3.0 3.0 3.0 3.0 -

H=T+Vi+ Vet Vot Vi + Vi

N 2

T = %Z > {lté,z,v,- + anCr%,i:|

n=1 j=1
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Our composite model for DNA

A T G C mean Sugar
|—.’”"'~ + 2y 2z + b TR m | 134 125 150 110 130 85
i : I {3.6%10°(3.0 % 10°[4.4 % 10%|2.3 % 10°(3.3 x 10°]2.9 % 10°
i 39 29 41 27 34 31
die| 1.0 10 1.0 10 10 -
de,| 3.0 3.0 3.0 3.0 30 -

H=T+Vi+ Vet Vot Vi + Vi

71 33 [/0’2 tm '62]
== 0 i niCni
2 n=1 =1 " !

N 2
Ve = Z Z K¢ [1 — cos(AB, )]
n=1i=1
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Our composite model for DNA

A T G C mean Sugar
|—.’”"'~ + 2y 2z + b TR m | 134 125 150 110 130 85
i : I {3.6%10°(3.0 % 10°[4.4 % 10%|2.3 % 10°(3.3 x 10°]2.9 % 10°
i 39 29 41 27 34 31
die| 1.0 10 1.0 10 10 -
de,| 3.0 3.0 3.0 3.0 30 -

H=T+Vi+ Vet Vot Vi + Vi

71 3 22:[/9'2 tm '62]
=3 tVn i n,iCni
2 n=1i=1 " "
N 2
Ve =" Ke [l - cos(Ab,,)]
n=1 i=1

N 2 2 .
1 di (Coya,is Cai)
VS—EZ;;KS (db5+F)2

Cadoni, De Leo, Demelio, Gaeta Twist solitons in inhomogeneous DNA



Our composite model for DNA

A T G C mean Sugar
|—.’”"'~ + 2y 2z + b TR m | 134 125 150 110 130 a‘gs
: I {3.6%10°(3.0 % 10°[4.4 % 10%|2.3 % 10°(3.3 x 10°]2.9 % 10°
i 39 29 41 27 34 31
die| 1.0 10 1.0 10 10
de,| 3.0 3.0 3.0 3.0 30 -

H=T+Vi+ Vet Vot Vi + Vi

1 N2 ) ~2
T = 3 Z Z [lten,, + anCn,i]

n=1 j=1

d2,(Cayii Coi)

-~
Il
N —
WE
]~
FS

7)2
n=1 i=1 (dbs + f’)
N 2
Vo= 3 Dy [1 = e (i -du)
n=1

(Morse potential)
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ur composit

| R+ dps + 211 |
1

IQV‘,.;; + dps + lfl

A T G C mean Sugar
m 134 125 150 110 130 85
I (3.6 % 10°|3.0 x 10%[4.4 x 10°|2.3 x 10°|3.3 x 10°(2.0 x 10°
i 39 2.9 4.1 2.7 34 31
dea| 1.0 1.0 10 1.0 L0 -
deg 3.0 3.0 3.0 3.0 3.0 -

K K. K, Dar Deoe a I,
lo bd |130kJ/mol - 3.5 N/m|30 meV |45 meV |247" [K, /100
up bd|720kJ/mol|16.6N/m |30 N/m |50 meV |75 meV [4A7" | K,/25
g s e dar dac H gn
lo bd 0.58 - 0.91 0.013 0.02 B.8 | g:/100
up bd| 32 16 78 002 | 003 [176] g./25

H=T+Vi+ Vet Vot Vi + Vi

1N 2 _ _
T = > 2 ; {/te,z,,,' + mnﬁic,%_,,}
N 2
Ve = Z Z K¢ [1 — cos(AB, )]
n=1i=1
1A 2 (Cornii o)
Vs = 5 nz::l ; ngy(dbs + ;)2
V, = i Dy [1 - e#(dCrrssiCo) )] 2
n=1

(Morse potential)
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Numerical matters

The initial profiles of the kinks were determined by looking for
extremals of the action after the “constant speed” discrete ansatz

qn - V(qn - qn+1)/5: where qn = (91‘1717 0n,27 ¢n,17 ¢n72)-
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Numerical matters

The initial profiles of the kinks were determined by looking for
extremals of the action after the “constant speed” discrete ansatz

qn - V(qn - qn+1)/5: where qn = (91‘1717 0n,27 ¢n,17 ¢n72)-

For the evolution, since all systems we deal with are conservative,
we decided to use geometric integrators
in order to minimize the error sources.
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Numerical matters

The initial profiles of the kinks were determined by looking for
extremals of the action after the “constant speed” discrete ansatz

qn - V(qn - qn+1)/5: where qn = (91‘1717 0n,27 ¢n,17 ¢n72)-

For the evolution, since all systems we deal with are conservative,
we decided to use geometric integrators
in order to minimize the error sources.

We started by using a Lagrangian approach to study kinks
evolution in the Yakushevich model, mainly because several
geometric integrators for Lagrangian systems were available
on the net, in particular those developed by Ernst Hairer
(GNILIRK?2).
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Numerical matters

When we switched to our composite model we found out that no
geometric integrators were available instead for Lagrangians whose
kinetic energy depends on the spatial coordinates (e.g. double
pendulum). We contacted Hairer and were suggested to switch to
the Hamiltonian approach, for which he kindly provided to us
several geometric integrators (GRKAAD).
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Numerical matters

When we switched to our composite model we found out that no
geometric integrators were available instead for Lagrangians whose
kinetic energy depends on the spatial coordinates (e.g. double
pendulum). We contacted Hairer and were suggested to switch to
the Hamiltonian approach, for which he kindly provided to us
several geometric integrators (GRKAAD).

Finally, we repeated some of the numerical results using
non-symplectic ODEs algorithms from the GSL
and found an excellent agreement.
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Numerical matters

When we switched to our composite model we found out that no
geometric integrators were available instead for Lagrangians whose
kinetic energy depends on the spatial coordinates (e.g. double
pendulum). We contacted Hairer and were suggested to switch to
the Hamiltonian approach, for which he kindly provided to us
several geometric integrators (GRKAAD).

Finally, we repeated some of the numerical results using
non-symplectic ODEs algorithms from the GSL
and found an excellent agreement.

REMARK: there is a time scale inerent in our numerical analysis.
Consider the simplest case of the Yakushevich model (SG):
10 p(x, t) = Kdxxip(x, t) — rsin (x, t)

We have ;1 ~ 1.3 - 10725kKs? /mol while K ~ x ~ 1kJ/mol. In
order to have constants of the same order of magnitude we must
change time unit to TU = 3.4 - 10735
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Why we do not use a harmonic pairing potential

Under the harmonic approximation, kinks in the composite model
do not move even in homogeneous chains.

520 520
n n
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500 500
400 | 490 |
480 L L L 480 L L L
0 50 100 150 & 200 0 50 100 150 t 200

il
4
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Motion of kinks in the composite homogeneous model

e W TG B (G o) | & 2
H= VZZZ [252 [A0,, + mIAC,,] ] +Zzgr[1 — cos(Afp)] + Ezzgsixy(db +" oE + Zd [1 B R ] R VARV
s

n=1j=1 n=1i=1 n=1i=1 n=1
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Motion of kinks in the composite homogeneous model

Sy SES 19n o a3 (G Gol) | A(CotiCoz)—deg)|?
2 2 1% (Cat1,is Coi i (ConiCoz)—
H,vzz[wmen,l +m[ACn1]]Jrzzgp[lfcos(AG",)] ) I R AT

n=1j=1 n=1i=1 n=1i=1 n=1

B=117,=13 g =1 g =03, g,=001, g, =002 d =002 =63

2

.
950 1000 1050 = 1100 950 1000 1050 = 1100
(a) (e)

= 2000

s
1750 1800 1850 n 1900 2090 2140 2190 m 2240
(b) (f)
v=04 v =0.62 ~ v,
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Motion of kinks in the composite homogeneous model

N 2 N 2 N 2 2 . N
1 N i Ca, L _d)]?
H=Y 3" [QJZ[AH,,,]Zer[AC",] ] 3D &l —cos(20,)1+5 30D O +Yd[1- et v, v,
1 o n=

n=1j=1 n=1i=1 n=1 i=

B=117,=13 g =1 g =03, g,=001, g, =002 d =002 =63

2000 - 0 b
n <=2 05 e e
1500 + s =" i 04 F
il 0.3
1000 | 0.2
- 01
500 La== e . 0 . .
0 1000 2000 t 3000 0 1000 2000 £ 3000

(h)
v=0.62~ Viim
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Motion of kinks in the composite inhomogeneous model

N2 N2 N 2
H= VZZZ[é};[AGW]?erm[ACn,]]JrZth[lfcosAﬁm)] %ZZ dbn\Jlrrr)Qny +Zdn[1*€ 1(d(Ca1iCor2)— dq)] TVt Vi
=1 i=1

n=1i=1 n=1j=1
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Motion of kinks in the composite inhomogeneous model

N 2 . N N 2
H= vZZZ[;;;[Aen,12+mn,[Acn,]]+Zzgt[1—cosman,)1 %ZZ db”‘:r);’ +Zdn[1fe HCniCo)=0]’ 1 v 4 v,
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Motion of kinks in the composite inhomogeneous model

N 2 . N N 2
H= vZZZ[;;;[Aen,12+mn,[Acn,]]+Zzgt[1—cosman,)1 %ZZ db”j'r);’ +Zdn[1fe HCniCo)=0]’ 1 v 4 v,
n=1i=1

n=1i=1 n=1j=1

B=117,=13 g =1 g =03, g,=001, g, =002 d =002 =63
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Motion of kinks in the inhomogeneous YakMorse model

I I _ 2
Hy =3, 5442 1+ 75% 62 - +g(2—cos App1—cos Awn,z)—&-K[l—e*“(d(cml’Cni)*deq)]

Cadoni, De Leo, Demelio, Gaeta Twist solitons in inhomogeneous DNA



Motion of kinks in the inhomogeneous YakMorse model

I I _ oy 2
Hy = Zn nT’lei,H‘ n2,2 ¢i,2+g(2—cosAtpn,1—cos AWn,2)+K[1—e m(d(Cp,1:Cp,2) deq)]

1=7,g=75 K=0.02 p=11
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Traveled Distance vs Initial Position in the Chain
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veled Distance vs Initial Position in the Chain

How much the traveled distance varies by the starting point at v = 0.47
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veled Distance vs Initial Position in the Chain

How much the traveled distance varies by the starting point at v = 0.47
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Dissipation and external forces

We introduce in the Yakushevich equations for the §,; a new term 1/9"’,- + Fo.
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Dissipation and external forces

We introduce in the Yakushevich equations for the §,; a new term 1/9"’,- + Fo.
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Dissipation and external forces

Now we do the same after replacing the harmonic pairing potential with a Morse one.
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Dissipation and external forces

Now we do the same after replacing the harmonic pairing potential with a Morse one.
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Very slow kinks

Finally we try to create very slow kinks in the Yakushevich (1st row) and YakMorse (2nd row) models
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Very slow kinks

Finally we try to create very slow kinks in the Yakushevich (1st row) and YakMorse (2nd row) models
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A remark about stability

Gianne Derks (U. of Surrey) pointed out to us that (1,1) solitons in the Yakushevich model are instable.
We verified numerically that this instability disappears when a Morse pairing potential is used:
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A remark about stability

Gianne Derks (U. of Surrey) pointed out to us that (1,1) solitons in the Yakushevich model are instable.

We verified numerically that this instability disappears when a Morse pairing potential is used:

i 8 =504

B0 w1000 800w 1O0D0 500 w1000 500 w1000

Figure 6. Motion of (1.1) kinks in the Y (left) and YM (right) models with v = 0.4km/s,
I=7 K;=21 Ky=1 D =002 v =11 In each picture we show three kinks starting
at n = 500: 1. thes
condition (lighter points): 3. the one with asymmetric

etric continuous one (thin line); 2. the one with symmetric initial
ial conditions (darker points)

their initial profiles have been desymmetrized by modifying the position of two points on
the chain 1 by 1071, In the ¥ model the “asymmetric” kink in the chain 1 moves back-

wards with speed apposite to the one on the chs
the corresponding symmetric ones, which instead behave in the expected way (including
the fact that after just 500 TTT it is already slightly behind the corresponding continuons
one). In the YM model instead the “asymmetric” kink is virtually indistinguishable by
the

ane

2. Mareover they are both faster than

metric one and both are still keeping the pace of the corresponding continuous
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Strong points of the model

© The Salerno and Yakushevich models are so basic that,
to get equations compatible with the observed dispersion
relations, one must use unphysical coupling constants.
Splitting the degrees of freedom of backbone and bases angles
proved to be enough to allow using physical values.
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Strong points of the model

© The Salerno and Yakushevich models are so basic that,
to get equations compatible with the observed dispersion
relations, one must use unphysical coupling constants.
Splitting the degrees of freedom of backbone and bases angles
proved to be enough to allow using physical values.

@ In the composite model, in the Harmonic approximation for
pairing, kinks do not move even in homogeneous chains,
leading to the introduction of the Morse potential. A
posteriori, Morse potential also allows motion of kinks in the
Yakushevich inhom. model. Hence improving the geometry of
the model also requires a more physical pairing potential.
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Strong points of the model

© The Salerno and Yakushevich models are so basic that,
to get equations compatible with the observed dispersion
relations, one must use unphysical coupling constants.
Splitting the degrees of freedom of backbone and bases angles
proved to be enough to allow using physical values.

@ In the composite model, in the Harmonic approximation for
pairing, kinks do not move even in homogeneous chains,
leading to the introduction of the Morse potential. A
posteriori, Morse potential also allows motion of kinks in the
Yakushevich inhom. model. Hence improving the geometry of
the model also requires a more physical pairing potential.

@ In the Harmonic approx. the (1, 1) solitons are unstable, with
a Morse potential they are stable.
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Future Directions

@ Investigate numerically about dissipation, external forces and
low speed solitons for the composite model.
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Future Directions

@ Investigate numerically about dissipation, external forces and
low speed solitons for the composite model.

@ Analyze numerically what happens for several other real DNA
sequences to prove that the “global” dynamics really does not
depend on the particular sequence and look for the activation
regions discussed by Salerno in his seminal paper.
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Future Directions

@ Investigate numerically about dissipation, external forces and
low speed solitons for the composite model.

@ Analyze numerically what happens for several other real DNA
sequences to prove that the “global” dynamics really does not
depend on the particular sequence and look for the activation
regions discussed by Salerno in his seminal paper.

@ Investigate numerically about the interaction DNA/RNAP
studied analytically in a recent paper by G. Derks and
G. Gaeta in the context of the Yakushevich model.
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