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Motivations Introduction Notations and some remainder on Free Maps Results

A Fundamental Question

A natural question in mathematics is whether an arbitrary “object”
of a class defined abstractly can be seen as a “sub-object” of some

“canonical” object of the class. For example:

Theorem (Whitney, 1944)

Every m-dimensional C∞ manifold M admits an embedding into
R2m and an immersion into R2m−1.

Theorem (Nash, 1956; Gromov, 1986)

Every m-dimensional C∞ Riemannian manifold M admits an
embedding into Rm2+5m+3.
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Distributions

Our ultimate goal is to answer the analogue question for
Riemannian distributions.

In more detail:

Definition
Let M be a C∞ manifold. A k-distribution H on M is a vector
subbundle H ⊂ TM such that dimHm = k , ∀m ∈ M.

Example
A vector field ξ on M with no singular point determines a
1-distribution H = span ξ.
A 1-form ω on M with no singular point determines a
“codimension-1”-distribution H = ker ω.
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Riemannian distributions

Definition
A Riemannian k-distribution (H, g) on M is a pair of a
k-distribution H ⊂ TM and a positive-definite section g of the
symmetric tendor product of H∗ by itself.

Example
The restriction to H of any Riemannian metric on M makes H
Riemannian.
If the vector field ξ on M has no singular point, every strictly
positive function ψ : M → R induces a metric on any
1-dimensional distribution H = span ξ by setting
g(ξx , ξx ) = ψ(x).
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H-immersions

Definition
Let g be a metric on H, i.e. a positive-definite symmetric section
of H∗ ⊗H∗. We say that f ∈ C∞(M, Rq) is a H-immersion of M
into Rq if f ∗eq |H = g .

Clearly H-immersion can exist only for q ≥ k .

Example

Let ξ a vector field without zeros on M, H = span{ξ} the
corresponding 1-distribution on M, f a map M → R and θ a base
of H∗ dual to ξ (so that θ(ξ) = 1). Then

f ∗eq
∣∣
H = (Lξ f )2θ ⊗ θ .

Hence f is an H-immersion iff either Lξ f > 0 or Lξ f < 0.
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H-immersions

Example
Consider the distribution Hξ associated to the planar vector field
ξ(x , y) = 2y∂x + (1− y2)∂y .

Hξ-immersions may arise for q ≥ 1 and DHξ ,1(f ) = (Lξ f )2θ ⊗ θ,
so a map f : R2 → R is a Hξ-immersions if Lξ f 6= 0 on R2.

Topologically, this is equivalent to the fact that the integral
trajectories of ξ are everywhere transversal to f ’s level sets.

E.g. f (x , y) = yex is a Hξ-immersion of R2 into R since
Lξ f (x , y) = (1+ y2)ex > 0.
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H-immersions

Integral Trajectories
of ξ(x , y) = 2y∂x + (1− y2)∂y

Level sets
of f (x , y) = yex
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Ultimate goal and Intermediate results

Question
Can every Riemannian k-distribution on M be induced via some
H-immersion f : M → Rq?

We believe the answer is positive.

So far we rather focused on two simpler tasks:

1 Solve a weaker version of our ultimate goal: if some metric g
on H is induced via some f : M → Rq and we slightly deform
g into g ′, can we deform f into f ′ so that f ′ induces g ′ on H?

2 Find concrete cases of “geometrically interesting” distributions
where this happens for the lowest q possible
(i.e. in “critical dimension”).
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The Isometric Operator

Imm(M, Rq) immersions of the smooth manifold M into Rq

eq Euclidean metric on Rq

S0
2 (M) symmetric tensor product of T ∗M by itself

Γ∞(S0
2 (M)) smooth sections of S0

2 (M)→ M

G(M) ⊂ Γ∞(S0
2 (M)) set of Riemannian metrics over M

Definition
We call isometric operator the map

DM,q : Imm(M, Rq) −→ G(M)
f 7→ f ∗eq
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The Isometric Operator

DM,q is a continuous map when the functional spaces
are endowed with Whitney strong topology.

DM,q is central in the isometric immersions theory:
e.g. every m-dimensional Riemannian manifold can be
isometrically immersed into Rq iff all operators DM,q,
dimM = m, are surjective.

The property we focus on here is the following weaker
version: is DM,q, restricted to some open subset of
Imm(M, Rq), an open map? In other words, if

DM,q(f0) = g0

then is DM,q(f ) = g is solvable in some nbhd of g0?
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Linearization of the Isometric Operator

Use indices α, β = 1, . . . ,m and i , j = 1, . . . , q.
In coords (xα) on M and (y i ) on Rq

f writes as (f i (xα)) and the equation D(f ) = g writes as

δij∂αf i ∂βf j = gαβ

Take a smooth curve gλ and look for a solution fλ. Then

2δij∂αf i ∂βδf j = δgαβ

where δf i = df i
λ

dλ

∣∣
λ=0

and δgαβ = d(gλ)αβ

dλ

∣∣
λ=0

.
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Linearization of the Isometric Operator

Definition

The operator `M,q(f , δf ) = 2δij∂αf i ∂βδf j is called the linearization
of DM,q. We say that DM,q is infinitesimally invertible over some
open set A ⊂ Imm(M, Rq) if the equation

`M,q(f , δf ) = δg

is solvable over A.

Theorem (Newton-Nash-Moser-Gromov IFT)

If DM,q is infinitesimally invertible over A, then

DM,q |A : A → G(M)
is an open map.
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Nash’s trick

Using Nash’s trick the linearized equation

2δij∂αf i ∂βδf j = δgαβ

becomes a fully algebraic system
of qm := m +m(m + 1)/2 eqs. in the q unknowns δf i :

{
δij∂αf i δf j = hα

δij∂αβf i δf j = ∂αhβ + ∂βhα − δgαβ/2

Clearly a sufficient condition for the solvability of this system

is that the qm × q matrix D2f =
(

∂αf i

∂αβf i

)
have rank qm.
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Free Maps

Definition
A map f ∈ C∞(M, Rq) s.t. rk D2f = qm at every point of M is
called a free map. We denote by Free(M, Rq) the set of all smooth
free maps M → Rq.

As a corollary of the Newton-Nash-Moser-Gromov IFT
we get immediately that

Theorem (Nash, 1956)

The restriction of DM,q to Free(M, Rq) ⊂ Imm(M, Rq) is an open
map.
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Free Maps

Clearly Free(M, Rq) = ∅ if q < qm
(we say that qm is the “critical dimension”).

A standard transversality argument shows that being free is a
generic property for q ≥ m + qm.

For qm ≤ q < m + qm the existence of free maps is a more
complicated matter. E.g. if M is parallelizable we know that
Free(M, Rq) 6= ∅ for q ≥ qm if M is open and for q > qm if
M is closed (Gromov, Eliashberg).

Example

The map F (x1, . . . , xm) = (x1, . . . , xm, (x1)2, x1x2, . . . , (xm)2)
belongs to Free(Rm, Rqm).
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Partial Isometries

Definition
We call partially isometric operator the map

DH,q : ImmH(M, Rq) −→ G(H)
f 7→ f ∗eq |H

Locally every k-distribution H on M
is the span of k vector fields ξa and

DH,q(f ) = δijLξa f
iLξb f

j θa ⊗ θb

where Lξa f
i is the Lie derivative of f i with respect to ξa

and the 1-forms θa, a = 1, . . . , k , are dual of the ξa in H∗.
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Linearization of DH,q

In a trivialization of H the equation DH,q(f ) = g writes as

δijLξa f
iLξb f

j = gab

Take a smooth curve gλ and look for a solution fλ. Then

2δijLξa f
iLξb δf j = δgab

where δf i = df i
λ

dλ

∣∣
λ=0

and δgab = d(gλ)ab
dλ

∣∣
λ=0

.
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Linearization of DH,q

By the Newton-Nash-Moser-Gromov IFT we know that a sufficient
condition for DH,q to be an open map over some open set

A ⊂ C∞(M, Rq) is that the linearized equation

2δijLξa f
iLξb δf j = gab

be solvable for all f ∈ A.

Using the Nash trick we get the following equivalent fully algebraic
system of qk = k + k(k + 1)/2 eqs in q unknowns δf i :{

δijLξa f
i δf j = ha

δij (LξaLξb + LξbLξa)f
i δf j = Lξahb + Lξbha − δgab/2
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H-free maps

Clearly a sufficient condition for the resolution of such system
is that the qk × q matrix

Dξ1,··· ,ξk (f ) =



Lξ1 f
1 · · · Lξ1 f

q

...
...

...
Lξk f

1 · · · Lξk f
q

L2
ξ1
f 1 · · · L2

ξ1
f q

Lξ1Lξ2 f
1 + Lξ2Lξ1 f

1 · · · Lξ1Lξ2 f
q + Lξ2Lξ1 f

q

...
...

...
L2

ξk
f 1 · · · L2

ξk
f q


have rank qk at every point.
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H-free maps

Definition (Gromov)

A H-immersion f of M into Rq s.t. rk Dξ1,··· ,ξk f = qk for every
trivialization of H at every point of M is called a H-free map. We
denote by FreeH(M, Rq) the set of all smooth H-free maps
M → Rq.

As a corollary of the Newton-Nash-Moser-Gromov IFT
we get immediately that

Theorem 1
The restriction of DH,q to FreeH(M, Rq) ⊂ ImmH(M, Rq) is an
open map.
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H-free Maps

Clearly FreeH(M, Rq) = ∅ if q < qk
(we call qk the “critical dimension”).

A standard transversality argument shows that being free is a
generic property for q ≥ m + qk .

We did not investigate yet what happens in the intermediate
range qk ≤ q < m + qk .
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H-free maps of 1-distributions in R2 in critical dim.

Example
Consider again the case of a 1-distribution Hξ = span ξ.
Hξ-free maps can arise only for q ≥ 1+ q1 = 2.
A map f = (f 1, f 2) : R2 → R2 is Hξ-free iff

Dξ f =

(
Lξ f 1 Lξ f 2

L2
ξ f

1 L2
ξ f

2

)

has non-zero determinant at every point.
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H-free maps

Theorem 2

Let H be a k-distribtion on M. If f ∈ ImmH(M, Rk) and
F ∈ Free(Rk , Rqk ) then F ◦ f ∈ FreeH(M, Rk).
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H-free maps

Proof.
The proof is just a direct calc., here we show only the case k = 1.
Let F = (χ, φ) ∈ Free(M, R2) and f ∈ ImmH(M, R). Then

detDξF (f ) =

∣∣∣∣∣ Lξ [χ(f )] Lξ [φ(f )]

L2
ξ [χ(f )] L2

ξ [φ(f )]

∣∣∣∣∣ =

=

∣∣∣∣∣ χ′(f )Lξ f φ′(f )Lξ f

χ′(f )L2
ξ f + χ′′(f )[Lξ f ]2 φ′(f )L2

ξ f + φ′′(f )[Lξ f ]2

∣∣∣∣∣ =

=

∣∣∣∣∣ χ′(f ) φ′(f )

χ′′(f ) φ′′(f )

∣∣∣∣∣ [Lξ f ]3
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Some classes of distr. H with H-free maps in crit. dim.

Lemma (Weiner, 1988)

Let H ⊂ TR2 a Hamiltonian distribution (i.e. H = ker dH for
some regular function H : R2 → R) and ξ any section of H → M
without zeros. Then there exists a smooth function f : R2 → R

s.t. Lξ f > 0 (i.e. ImmH(R2, R) 6= ∅).

Proposition 1

Under the hypothesis above, FreeH(R2, R2) 6= ∅.
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H-free maps of 1-distributions in R2 in critical dimension

Example

Consider again ξ = 2y∂x + (1− y2)∂y .
Recall that Lξ(yex ) > 0 and ψ(t) = (t, t2), ψ̂(t) = (cos t, sin t)

belong to Free(R, R2) since D2ψ =
(
1 2x
0 2

)
and

D2ψ̂ =
(
− sin t cos t
− cos t − sin t

)
. Hence, for example, the maps

f (x , y) = (yex , y2e2x )

and
f̂ (x , y) = (cos(yex ), sin(yex ))

both belong to FreeHξ
(R2, R2).

Note that these are Hξ-free maps in critical dimension.
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Some classes of distr. H with H-free maps in crit. dim.

We generalized Weiner’s Lemma in three different directions.
In the first we do not require ξ to be Hamiltonian:

Lemma (1. 1-distributions in R2)

Let ξ a vector field on R2 of finite type (i.e. the set of its
separatrices is closed and each leaf is inseparable from just finitely
many other leaves) with no zeros.
Then there exists a function f : R2 → R s.t. Lξ f > 0
(i.e. Immspan ξ(R2, R) 6= ∅).

Proposition 2

Under the hypotheses above, Freespan ξ(R2, R2) 6= ∅.
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Some classes of distr. H with H-free maps in crit. dim.

Example

Consider ξ = (3y − 1)∂x + (1− y2)∂y on R2. This vector field is
not Ham. w/resp. to any symplectic structure on R2 but it is
transversal to the level sets of f (x , y) = yex .
Hence e.g. (yex , y2e2x ) is span ξ-free.

Int. Traj. of ξ Level sets of f
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Some classes of distr. H with H-free maps in crit. dim.

In the 2nd we realize that a Hamiltonian system on R2 is a compl.
integr. syst. (CIS) and we consider more general CISs:

Lemma (2. Lagrangian n-distr. on symplectic mfds (M2n, Ω))

Let (M2n, Ω) be a symplectic manifold admitting a CIS
{I1, · · · , In}, H ⊂ TM the n-dimensional Lagrangian distribution
H = ∩n

i=1 ker dIi and F the corresponding Lagrangian foliation.
Assume that the Hamiltonian vector fields ξi associated to the Ii
are all complete and that every leaf of F has no compact
component. Then there exist n smooth functions f i on M s.t.
Lξi f

j = 0, i 6= j , and Lξi f
i > 0 (i.e. ImmH(M, Rn) 6= ∅).

Proposition 3

Under the hypotheses above, FreeH(M, Rqn) 6= ∅.
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Some classes of distr. H with H-free maps in crit. dim.

Example

Consider the CIS {I} on R× S1 with I (z , φ) = sin φez . The
corresponding Hamiltonian vector field w/resp to Ω = dz ∧ dφ is
ξ = ez (cos φ∂z − sin φ∂φ). The level sets of I are non-compact so
we know there exists f s.t. Lξ f > 0. E.g. Lξ(cos φez ) = e2z > 0.
Hence the map (cos φez , cos2 φe2z ) is span ξ-free.

Int. Traj. of ξ Level sets of f
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Some classes of distr. H with H-free maps in crit. dim.

In the 3rd we think a Ham. system on R2 as a Poisson-Riemann
system (PRS) and consider PRSs of higher dimension:

Theorem (3. Riemann-Poisson bracket)

Let M be an n-dim. oriented Riemannian mfd,
H = {h1, · · · , hn−2} a set of n− 2 functions funct. ind. at every
point and {f , g}H = ∗[dh1 ∧ · · · ∧ dhn−2 ∧ df ∧ dg ]
the corresponding Riemann-Poisson bracket. Then, if h ∈ C∞(M)
is funct. ind. from all the hi and H = span{ξh} for
ξh(f ) = {h, f }H , there exists a (possibly multivalued) smooth
function F : M → R such that Lξh f > 0 (i.e. ImmH(M, R) 6= ∅).

Proposition 4

Under the hyp. above and if f is single-val., FreeH(M, R2) 6= ∅.
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Open Problems

1 h-principle for H-immersions and H-free maps: what can be
said in general for the existence of H-immersions and H-free
maps in the intermediate range? (i.e. when q is not big enough
for genericity but not small enough to rule out their existence)

2 Find explicit H-free maps in critical dimension for more classes
of distributions.

3 Prove (or disprove!) the “main goal”, i.e. that for every H the
operator DH,q is surjective for q large enough.

4 Study what happens for other structures on H (symplectic,
contact, connections and so on).
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