Partially Isometric Immersions and Free Maps

Roberto De Leo ${ }^{1,2}$
joint work with G. D'Ambra and A. Loi

${ }^{1}$ Dipartmento di Matematica
Università di Cagliari, Italy
${ }^{2}$ INFN, sez. di Cagliari, Italy

DGA 2010 - Brno, August 27-31

A Fundamental Question

A natural question in mathematics is whether an arbitrary "object" of a class defined abstractly can be seen as a "sub-object" of some "canonical" object of the class. For example:

Theorem (Whitney, 1944)

Every m-dimensional C^{∞} manifold M admits an embedding into $\mathbb{R}^{2 m}$ and an immersion into $\mathbb{R}^{2 m-1}$.

A Fundamental Question

A natural question in mathematics is whether an arbitrary "object" of a class defined abstractly can be seen as a "sub-object" of some "canonical" object of the class. For example:

Theorem (Whitney, 1944)

Every m-dimensional C^{∞} manifold M admits an embedding into $\mathbb{R}^{2 m}$ and an immersion into $\mathbb{R}^{2 m-1}$.

Theorem (Nash, 1956; Gromov, 1986)

Every m-dimensional C^{∞} Riemannian manifold M admits an embedding into $\mathbb{R}^{m^{2}+5 m+3}$.

Distributions

Our ultimate goal is to answer the analogue question for Riemannian distributions.

In more detail:

Definition

Let M be a C^{∞} manifold. A k-distribution \mathcal{H} on M is a vector subbundle $\mathcal{H} \subset T M$ such that $\operatorname{dim} \mathcal{H}_{m}=k, \forall m \in M$.

Distributions

Our ultimate goal is to answer the analogue question for Riemannian distributions.

In more detail:

Definition

Let M be a C^{∞} manifold. A k-distribution \mathcal{H} on M is a vector subbundle $\mathcal{H} \subset T M$ such that $\operatorname{dim} \mathcal{H}_{m}=k, \forall m \in M$.

Example

A vector field ξ on M with no singular point determines a 1-distribution $\mathcal{H}=$ span ξ.
A 1-form ω on M with no singular point determines a "codimension- 1 "-distribution $\mathcal{H}=\operatorname{ker} \omega$.

Riemannian distributions

Definition

A Riemannian k-distribution (\mathcal{H}, g) on M is a pair of a k-distribution $\mathcal{H} \subset T M$ and a positive-definite section g of the symmetric tendor product of \mathcal{H}^{*} by itself.

Riemannian distributions

Definition

A Riemannian k-distribution (\mathcal{H}, g) on M is a pair of a k-distribution $\mathcal{H} \subset T M$ and a positive-definite section g of the symmetric tendor product of \mathcal{H}^{*} by itself.

Example

- The restriction to \mathcal{H} of any Riemannian metric on M makes \mathcal{H} Riemannian.
- If the vector field ξ on M has no singular point, every strictly positive function $\psi: M \rightarrow \mathbb{R}$ induces a metric on any 1-dimensional distribution $\mathcal{H}=\operatorname{span} \xi$ by setting $g\left(\xi_{x}, \xi_{x}\right)=\psi(x)$.

\mathcal{H}-immersions

Definition

Let g be a metric on \mathcal{H}, i.e. a positive-definite symmetric section of $\mathcal{H}^{*} \otimes \mathcal{H}^{*}$. We say that $f \in C^{\infty}\left(M, \mathbb{R}^{q}\right)$ is a \mathcal{H}-immersion of M into \mathbb{R}^{q} if $\left.f^{*} e_{q}\right|_{\mathcal{H}}=g$.

Clearly \mathcal{H}-immersion can exist only for $q \geq k$.

\mathcal{H}-immersions

Definition

Let g be a metric on \mathcal{H}, i.e. a positive-definite symmetric section of $\mathcal{H}^{*} \otimes \mathcal{H}^{*}$. We say that $f \in C^{\infty}\left(M, \mathbb{R}^{q}\right)$ is a \mathcal{H}-immersion of M into \mathbb{R}^{q} if $\left.f^{*} e_{q}\right|_{\mathcal{H}}=g$.

Clearly \mathcal{H}-immersion can exist only for $q \geq k$.

Example

Let ξ a vector field without zeros on $M, \mathcal{H}=\operatorname{span}\{\xi\}$ the corresponding 1-distribution on M, f a map $M \rightarrow \mathbb{R}$ and θ a base of \mathcal{H}^{*} dual to ξ (so that $\theta(\xi)=1$). Then

$$
\left.f^{*} e_{q}\right|_{\mathcal{H}}=\left(L_{\xi} f\right)^{2} \theta \otimes \theta
$$

Hence f is an \mathcal{H}-immersion iff either $L_{\xi} f>0$ or $L_{\xi} f<0$.

\mathcal{H}-immersions

Example

Consider the distribution \mathcal{H}_{ξ} associated to the planar vector field $\xi(x, y)=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$.
\mathcal{H}_{ξ}-immersions may arise for $q \geq 1$ and $\mathcal{D}_{\mathcal{H}_{\tilde{\xi}}, 1}(f)=\left(L_{\xi} f\right)^{2} \theta \otimes \theta$, so a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a \mathcal{H}_{ξ}-immersions if $L_{\xi} f \neq 0$ on \mathbb{R}^{2}.

Topologically, this is equivalent to the fact that the integral trajectories of ξ are everywhere transversal to f 's level sets.
E.g. $f(x, y)=y e^{x}$ is a \mathcal{H}_{ξ}-immersion of \mathbb{R}^{2} into \mathbb{R} since $L_{\xi} f(x, y)=\left(1+y^{2}\right) e^{x}>0$.

\mathcal{H}-immersions

Integral Trajectories of $\xi(x, y)=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Level sets
of $f(x, y)=y e^{x}$

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H}-immersion $f: M \rightarrow \mathbb{R}^{q}$?

We believe the answer is positive.

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H}-immersion $f: M \rightarrow \mathbb{R}^{q}$?

We believe the answer is positive.

So far we rather focused on two simpler tasks:
(1) Solve a weaker version of our ultimate goal: if some metric g on \mathcal{H} is induced via some $f: M \rightarrow \mathbb{R}^{q}$ and we slightly deform g into g^{\prime}, can we deform f into f^{\prime} so that f^{\prime} induces g^{\prime} on \mathcal{H} ?

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H}-immersion $f: M \rightarrow \mathbb{R}^{q}$?

We believe the answer is positive.

So far we rather focused on two simpler tasks:
(1) Solve a weaker version of our ultimate goal: if some metric g on \mathcal{H} is induced via some $f: M \rightarrow \mathbb{R}^{q}$ and we slightly deform g into g^{\prime}, can we deform f into f^{\prime} so that f^{\prime} induces g^{\prime} on \mathcal{H} ?
(2) Find concrete cases of "geometrically interesting" distributions where this happens for the lowest q possible (i.e. in "critical dimension").

The Isometric Operator

$\operatorname{Imm}\left(M, \mathbb{R}^{q}\right)$ immersions of the smooth manifold M into \mathbb{R}^{q}
e_{q} Euclidean metric on \mathbb{R}^{q}
$S_{2}^{0}(M)$ symmetric tensor product of $T^{*} M$ by itself
$\Gamma^{\infty}\left(S_{2}^{0}(M)\right)$ smooth sections of $S_{2}^{0}(M) \rightarrow M$
$\mathcal{G}(M) \subset \Gamma^{\infty}\left(S_{2}^{0}(M)\right)$ set of Riemannian metrics over M

Definition

We call isometric operator the map

$$
\begin{array}{ccc}
\mathcal{D}_{M, q}: \operatorname{Imm}\left(M, \mathbb{R}^{q}\right) & \longrightarrow \mathcal{G}(M) \\
f & \longmapsto & f^{*} e_{q}
\end{array}
$$

The Isometric Operator

- $\mathcal{D}_{M, q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.

The Isometric Operator

- $\mathcal{D}_{M, q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.
- $\mathcal{D}_{M, q}$ is central in the isometric immersions theory: e.g. every m-dimensional Riemannian manifold can be isometrically immersed into \mathbb{R}^{q} iff all operators $\mathcal{D}_{M, q}$, $\operatorname{dim} M=m$, are surjective.

The Isometric Operator

- $\mathcal{D}_{M, q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.
- $\mathcal{D}_{M, q}$ is central in the isometric immersions theory: e.g. every m-dimensional Riemannian manifold can be isometrically immersed into \mathbb{R}^{q} iff all operators $\mathcal{D}_{M, q}$, $\operatorname{dim} M=m$, are surjective.
- The property we focus on here is the following weaker version: is $\mathcal{D}_{M, q}$, restricted to some open subset of $\operatorname{Imm}\left(M, \mathbb{R}^{q}\right)$, an open map? In other words, if

$$
\mathcal{D}_{M, q}\left(f_{0}\right)=g_{0}
$$

then is $\mathcal{D}_{M, q}(f)=g$ is solvable in some nbhd of g_{0} ?

Linearization of the Isometric Operator

Use indices $\alpha, \beta=1, \ldots, m$ and $i, j=1, \ldots, q$.
In coords $\left(x^{\alpha}\right)$ on M and $\left(y^{i}\right)$ on \mathbb{R}^{q}
f writes as $\left(f^{i}\left(x^{\alpha}\right)\right)$ and the equation $\mathcal{D}(f)=g$ writes as

$$
\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j}=g_{\alpha \beta}
$$

Linearization of the Isometric Operator

Use indices $\alpha, \beta=1, \ldots, m$ and $i, j=1, \ldots, q$.
In coords $\left(x^{\alpha}\right)$ on M and $\left(y^{i}\right)$ on \mathbb{R}^{q}
f writes as $\left(f^{i}\left(x^{\alpha}\right)\right)$ and the equation $\mathcal{D}(f)=g$ writes as

$$
\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j}=g_{\alpha \beta}
$$

Take a smooth curve g_{λ} and look for a solution f_{λ}. Then

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}=\delta g_{\alpha \beta}
$$

where $\delta f^{i}=\left.\frac{d f_{\lambda}^{i}}{d \lambda}\right|_{\lambda=0}$ and $\delta g_{\alpha \beta}=\left.\frac{d\left(g_{\lambda}\right)_{\alpha \beta}}{d \lambda}\right|_{\lambda=0}$.

Linearization of the Isometric Operator

Definition

The operator $\ell_{M, q}(f, \delta f)=2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}$ is called the linearization of $\mathcal{D}_{M, q}$. We say that $\mathcal{D}_{M, q}$ is infinitesimally invertible over some open set $\mathcal{A} \subset \operatorname{Imm}\left(M, \mathbb{R}^{q}\right)$ if the equation

$$
\ell_{M, q}(f, \delta f)=\delta g
$$

is solvable over \mathcal{A}.

Linearization of the Isometric Operator

Definition

The operator $\ell_{M, q}(f, \delta f)=2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}$ is called the linearization of $\mathcal{D}_{M, q}$. We say that $\mathcal{D}_{M, q}$ is infinitesimally invertible over some open set $\mathcal{A} \subset \operatorname{Imm}\left(M, \mathbb{R}^{q}\right)$ if the equation

$$
\ell_{M, q}(f, \delta f)=\delta g
$$

is solvable over \mathcal{A}.

Theorem (Newton-Nash-Moser-Gromov IFT)

If $\mathcal{D}_{M, q}$ is infinitesimally invertible over \mathcal{A}, then

$$
\left.\mathcal{D}_{M, q}\right|_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{G}(M)
$$

is an open map.

Nash's trick

Using Nash's trick the linearized equation

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}=\delta g_{\alpha \beta}
$$

becomes a fully algebraic system of $q_{m}:=m+m(m+1) / 2$ eqs. in the q unknowns δf^{i} :

$$
\left\{\begin{aligned}
\delta_{i j} \partial_{\alpha} f^{i} \delta f^{j} & =h_{\alpha} \\
\delta_{i j} \partial_{\alpha \beta} f^{i} \delta f^{j} & =\partial_{\alpha} h_{\beta}+\partial_{\beta} h_{\alpha}-\delta g_{\alpha \beta} / 2
\end{aligned}\right.
$$

Nash's trick

Using Nash's trick the linearized equation

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}=\delta g_{\alpha \beta}
$$

becomes a fully algebraic system of $q_{m}:=m+m(m+1) / 2$ eqs. in the q unknowns δf^{i} :

$$
\left\{\begin{aligned}
\delta_{i j} \partial_{\alpha} f^{i} \delta f^{j} & =h_{\alpha} \\
\delta_{i j} \partial_{\alpha \beta} f^{i} \delta f^{j} & =\partial_{\alpha} h_{\beta}+\partial_{\beta} h_{\alpha}-\delta g_{\alpha \beta} / 2
\end{aligned}\right.
$$

Clearly a sufficient condition for the solvability of this system is that the $q_{m} \times q$ matrix $D_{2} f=\binom{\partial_{\alpha} f^{i}}{\partial_{\alpha \beta} f^{i}}$ have rank q_{m}.

Free Maps

Definition

A map $f \in C^{\infty}\left(M, \mathbb{R}^{q}\right)$ s.t. rk $D_{2} f=q_{m}$ at every point of M is called a free map. We denote by $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)$ the set of all smooth free maps $M \rightarrow \mathbb{R}^{q}$.

Free Maps

Definition

A map $f \in C^{\infty}\left(M, \mathbb{R}^{q}\right)$ s.t. rk $D_{2} f=q_{m}$ at every point of M is called a free map. We denote by $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)$ the set of all smooth free maps $M \rightarrow \mathbb{R}^{q}$.

As a corollary of the Newton-Nash-Moser-Gromov IFT we get immediately that

Theorem (Nash, 1956)

The restriction of $\mathcal{D}_{M, q}$ to $\operatorname{Free}\left(M, \mathbb{R}^{q}\right) \subset \operatorname{Imm}\left(M, \mathbb{R}^{q}\right)$ is an open map.

Free Maps

- Clearly $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{m}$ (we say that q_{m} is the "critical dimension").

Free Maps

- Clearly $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{m}$ (we say that q_{m} is the "critical dimension").
- A standard transversality argument shows that being free is a generic property for $q \geq m+q_{m}$.

Free Maps

- Clearly $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{m}$ (we say that q_{m} is the "critical dimension").
- A standard transversality argument shows that being free is a generic property for $q \geq m+q_{m}$.
- For $q_{m} \leq q<m+q_{m}$ the existence of free maps is a more complicated matter. E.g. if M is parallelizable we know that $\operatorname{Free}\left(M, \mathbb{R}^{q}\right) \neq \varnothing$ for $q \geq q_{m}$ if M is open and for $q>q_{m}$ if M is closed (Gromov, Eliashberg).

Free Maps

- Clearly $\operatorname{Free}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{m}$ (we say that q_{m} is the "critical dimension").
- A standard transversality argument shows that being free is a generic property for $q \geq m+q_{m}$.
- For $q_{m} \leq q<m+q_{m}$ the existence of free maps is a more complicated matter. E.g. if M is parallelizable we know that $\operatorname{Free}\left(M, \mathbb{R}^{q}\right) \neq \varnothing$ for $q \geq q_{m}$ if M is open and for $q>q_{m}$ if M is closed (Gromov, Eliashberg).

Example

The map $F\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{m},\left(x^{1}\right)^{2}, x^{1} x^{2}, \ldots,\left(x^{m}\right)^{2}\right)$ belongs to $\operatorname{Free}\left(\mathbb{R}^{m}, \mathbb{R}^{q_{m}}\right)$.

Partial Isometries

Definition

We call partially isometric operator the map

$$
\begin{array}{ccc}
\mathcal{D}_{\mathcal{H}, q}: \quad \operatorname{Imm}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right) & \longrightarrow \mathcal{G}(\mathcal{H}) \\
f & \longmapsto & \left.f^{*} e_{q}\right|_{\mathcal{H}}
\end{array}
$$

Locally every k-distribution \mathcal{H} on M is the span of k vector fields ξ_{a} and

$$
\mathcal{D}_{\mathcal{H}, q}(f)=\delta_{i j} L_{\tilde{\xi}_{a}} f^{i} L_{\xi_{b}} f^{j} \theta^{a} \otimes \theta^{b}
$$

where $L_{\xi_{a}} f^{i}$ is the Lie derivative of f^{i} with respect to ξ_{a} and the 1 -forms $\theta^{a}, a=1, \ldots, k$, are dual of the ξ_{a} in \mathcal{H}^{*}.

Linearization of $\mathcal{D}_{\mathcal{H}, q}$

In a trivialization of \mathcal{H} the equation $\mathcal{D}_{\mathcal{H}, q}(f)=g$ writes as

$$
\delta_{i j} L_{\xi_{a}} f^{i} L_{\xi_{b}} f^{j}=g_{a b}
$$

Linearization of $\mathcal{D}_{\mathcal{H}, q}$

In a trivialization of \mathcal{H} the equation $\mathcal{D}_{\mathcal{H}, q}(f)=g$ writes as

$$
\delta_{i j} L_{\xi_{a}} f^{i} L_{\xi_{b}} f^{j}=g_{a b}
$$

Take a smooth curve g_{λ} and look for a solution f_{λ}. Then

$$
2 \delta_{i j} L_{\xi_{a}} f^{i} L_{\tilde{\zeta}_{b}} \delta f^{j}=\delta g_{a b}
$$

$$
\text { where } \delta f^{i}=\left.\frac{d f_{\lambda}^{i}}{d \lambda}\right|_{\lambda=0} \text { and } \delta g_{a b}=\left.\frac{d\left(g_{\lambda}\right)_{a b}}{d \lambda}\right|_{\lambda=0} \text {. }
$$

Linearization of $\mathcal{D}_{\mathcal{H}, q}$

By the Newton-Nash-Moser-Gromov IFT we know that a sufficient condition for $\mathcal{D}_{\mathcal{H}, q}$ to be an open map over some open set $\mathcal{A} \subset C^{\infty}\left(M, \mathbb{R}^{q}\right)$ is that the linearized equation

$$
2 \delta_{i j} L_{\xi_{a}} f^{i} L_{\xi_{b}} \delta f^{j}=g_{a b}
$$

be solvable for all $f \in \mathcal{A}$.

Linearization of $\mathcal{D}_{\mathcal{H}, q}$

By the Newton-Nash-Moser-Gromov IFT we know that a sufficient condition for $\mathcal{D}_{\mathcal{H}, q}$ to be an open map over some open set $\mathcal{A} \subset C^{\infty}\left(M, \mathbb{R}^{q}\right)$ is that the linearized equation

$$
2 \delta_{i j} L_{\xi_{a}} f^{i} L_{\xi_{b}} \delta f^{j}=g_{a b}
$$

be solvable for all $f \in \mathcal{A}$.
Using the Nash trick we get the following equivalent fully algebraic system of $q_{k}=k+k(k+1) / 2$ eqs in q unknowns δf^{i} :

$$
\left\{\begin{aligned}
\delta_{i j} L_{\xi_{a}} f^{i} \delta f^{j} & =h_{a} \\
\delta_{i j}\left(L_{\xi_{a}} L_{\xi_{b}}+L_{\xi_{b}} L_{\xi_{a}}\right) f^{i} \delta f^{j} & =L_{\xi_{a}} h_{b}+L_{\xi_{b}} h_{a}-\delta g_{a b} / 2
\end{aligned}\right.
$$

\mathcal{H}-free maps

Clearly a sufficient condition for the resolution of such system is that the $q_{k} \times q$ matrix

$$
D_{\tilde{\xi}_{1}, \cdots, \xi_{k}}(f)=\left(\begin{array}{ccc}
L_{\xi_{1}} f^{1} & \cdots & L_{\xi_{1}} f^{q} \\
\vdots & \vdots & \vdots \\
L_{\xi_{k}} f^{1} & \cdots & L_{\xi_{k}} f^{q} \\
L_{\tilde{\xi}_{1}}^{2} f^{1} & \cdots & L_{\tilde{\xi}_{1}}^{2} f^{q} \\
L_{\tilde{\xi}_{1}} L_{\xi_{2}} f^{1}+L_{\xi_{2}} L_{\xi_{1}} f^{1} & \cdots & L_{\xi_{1}} L_{\xi_{2}} f^{q}+L_{\xi_{2}} L_{\xi_{1}} f^{q} \\
\vdots & \vdots & \vdots \\
L_{\tilde{\xi}_{k}}^{2} f^{1} & \cdots & L_{\tilde{\xi}_{k}}^{2} f^{q}
\end{array}\right)
$$

have rank q_{k} at every point.

\mathcal{H}-free maps

Definition (Gromov)

A \mathcal{H}-immersion f of M into \mathbb{R}^{q} s.t. rk $D_{\tilde{\xi}_{1}, \cdots, \tilde{\xi}_{k}} f=q_{k}$ for every trivialization of \mathcal{H} at every point of M is called a \mathcal{H}-free map. We denote by $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)$ the set of all smooth \mathcal{H}-free maps $M \rightarrow \mathbb{R}^{q}$.

\mathcal{H}-free maps

Definition (Gromov)

A \mathcal{H}-immersion f of M into \mathbb{R}^{q} s.t. rk $D_{\tilde{\xi}_{1}, \cdots, \tilde{\zeta}_{k}} f=q_{k}$ for every trivialization of \mathcal{H} at every point of M is called a \mathcal{H}-free map. We denote by $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)$ the set of all smooth \mathcal{H}-free maps $M \rightarrow \mathbb{R}^{q}$.

As a corollary of the Newton-Nash-Moser-Gromov IFT we get immediately that

Theorem 1

The restriction of $\mathcal{D}_{\mathcal{H}, q}$ to $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right) \subset \operatorname{Imm}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)$ is an open map.

H-free Maps

- Clearly $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{k}$ (we call q_{k} the "critical dimension").

H-free Maps

- Clearly $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{k}$ (we call q_{k} the "critical dimension").
- A standard transversality argument shows that being free is a generic property for $q \geq m+q_{k}$.

H-free Maps

- Clearly $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q}\right)=\varnothing$ if $q<q_{k}$ (we call q_{k} the "critical dimension").
- A standard transversality argument shows that being free is a generic property for $q \geq m+q_{k}$.
- We did not investigate yet what happens in the intermediate range $q_{k} \leq q<m+q_{k}$.

\mathcal{H}-free maps of 1 -distributions in \mathbb{R}^{2} in critical dim.

Example

Consider again the case of a 1-distribution $\mathcal{H}_{\xi}=\operatorname{span} \xi$. \mathcal{H}_{ξ}-free maps can arise only for $q \geq 1+q_{1}=2$.
A map $f=\left(f^{1}, f^{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is \mathcal{H}_{ξ}-free iff

$$
D_{\xi} f=\left(\begin{array}{ll}
L_{\xi} f^{1} & L_{\xi} f^{2} \\
L_{\tilde{\xi}}^{2} f^{1} & L_{\tilde{\xi}}^{2} f^{2}
\end{array}\right)
$$

has non-zero determinant at every point.

\mathcal{H}-free maps

Theorem 2

Let \mathcal{H} be a k-distribtion on M. If $f \in \operatorname{Imm}_{\mathcal{H}}\left(M, \mathbb{R}^{k}\right)$ and $F \in \operatorname{Free}\left(\mathbb{R}^{k}, \mathbb{R}^{q_{k}}\right)$ then $F \circ f \in \operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{k}\right)$.

\mathcal{H}-free maps

Proof.

The proof is just a direct calc., here we show only the case $k=1$. Let $F=(\chi, \phi) \in \operatorname{Free}\left(M, \mathbb{R}^{2}\right)$ and $f \in \operatorname{Imm}_{\mathcal{H}}(M, \mathbb{R})$. Then

$$
\begin{gathered}
\operatorname{det} D_{\xi} F(f)=\left|\begin{array}{cc}
L_{\xi}[\chi(f)] & L_{\xi}[\phi(f)] \\
L_{\xi}^{2}[\chi(f)] & L_{\xi}^{2}[\phi(f)]
\end{array}\right|= \\
=\left|\begin{array}{cc}
\chi^{\prime}(f) L_{\xi} f & \phi^{\prime}(f) L_{\xi} f \\
\chi^{\prime}(f) L_{\xi}^{2} f+\chi^{\prime \prime}(f)\left[L_{\xi} f\right]^{2} & \phi^{\prime}(f) L_{\xi}^{2} f+\phi^{\prime \prime}(f)\left[L_{\xi} f\right]^{2}
\end{array}\right|= \\
=\left|\begin{array}{cc}
\chi^{\prime}(f) & \phi^{\prime}(f) \\
\chi^{\prime \prime}(f) & \phi^{\prime \prime}(f)
\end{array}\right|\left[L_{\xi} f\right]^{3}
\end{gathered}
$$

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

Lemma (Weiner, 1988)

Let $\mathcal{H} \subset T \mathbb{R}^{2}$ a Hamiltonian distribution (i.e. $\mathcal{H}=\operatorname{ker} d H$ for some regular function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$) and ξ any section of $\mathcal{H} \rightarrow M$ without zeros. Then there exists a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $L_{\xi} f>0$ (i.e. $\operatorname{Imm}_{\mathcal{H}}\left(\mathbb{R}^{2}, \mathbb{R}\right) \neq \varnothing$).

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

Lemma (Weiner, 1988)

Let $\mathcal{H} \subset T \mathbb{R}^{2}$ a Hamiltonian distribution (i.e. $\mathcal{H}=\operatorname{ker} d H$ for some regular function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$) and ξ any section of $\mathcal{H} \rightarrow M$ without zeros. Then there exists a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $L_{\xi} f>0$ (i.e. $\operatorname{lmm}_{\mathcal{H}}\left(\mathbb{R}^{2}, \mathbb{R}\right) \neq \varnothing$).

Proposition 1

Under the hypothesis above, $\operatorname{Free}_{\mathcal{H}}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \neq \varnothing$.

\mathcal{H}-free maps of 1 -distributions in \mathbb{R}^{2} in critical dimension

Example

Consider again $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$.
Recall that $L_{\xi}\left(y e^{x}\right)>0$ and $\psi(t)=\left(t, t^{2}\right), \hat{\psi}(t)=(\cos t, \sin t)$
belong to $\operatorname{Free}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ since $D_{2} \psi=\left(\begin{array}{cc}1 & 2 x \\ 0 & 2\end{array}\right)$ and
$D_{2} \hat{\psi}=\left(\begin{array}{cc}-\sin t & \cos t \\ -\cos t & -\sin t\end{array}\right)$. Hence, for example, the maps

$$
f(x, y)=\left(y e^{x}, y^{2} e^{2 x}\right)
$$

and

$$
\hat{f}(x, y)=\left(\cos \left(y e^{x}\right), \sin \left(y e^{x}\right)\right)
$$

both belong to $\operatorname{Free}_{\mathcal{H}_{\tilde{\xi}}}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$.
Note that these are $\mathcal{H}_{\mathcal{\zeta}}$-free maps in critical dimension.

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

We generalized Weiner's Lemma in three different directions. In the first we do not require ξ to be Hamiltonian:

Lemma (1. 1-distributions in \mathbb{R}^{2})

Let ξ a vector field on \mathbb{R}^{2} of finite type (i.e. the set of its separatrices is closed and each leaf is inseparable from just finitely many other leaves) with no zeros.
Then there exists a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $L_{\xi} f>0$ (i.e. $\left.\operatorname{Imm}_{\text {span }}\left(\mathbb{R}^{2}, \mathbb{R}\right) \neq \varnothing\right)$.

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

We generalized Weiner's Lemma in three different directions. In the first we do not require ξ to be Hamiltonian:

Lemma (1. 1-distributions in \mathbb{R}^{2})

Let ξ a vector field on \mathbb{R}^{2} of finite type (i.e. the set of its
separatrices is closed and each leaf is inseparable from just finitely many other leaves) with no zeros.
Then there exists a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ s.t. $L_{\xi} f>0$ (i.e. $\operatorname{Imm}_{\text {span } \xi}\left(\mathbb{R}^{2}, \mathbb{R}\right) \neq \varnothing$).

Proposition 2

Under the hypotheses above, $\operatorname{Free}_{\text {span } \xi}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \neq \varnothing$.

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

Example

Consider $\xi=(3 y-1) \partial_{x}+\left(1-y^{2}\right) \partial_{y}$ on \mathbb{R}^{2}. This vector field is not Ham. w/resp. to any symplectic structure on \mathbb{R}^{2} but it is transversal to the level sets of $f(x, y)=y e^{x}$. Hence e.g. $\left(y e^{x}, y^{2} e^{2 x}\right)$ is span ξ-free.

Int. Traj. of ξ

Level sets of f

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

In the 2nd we realize that a Hamiltonian system on \mathbb{R}^{2} is a compl. integr. syst. (CIS) and we consider more general CISs:

Lemma (2. Lagrangian n-distr. on symplectic mfds $\left(M^{2 n}, \Omega\right)$)

Let $\left(M^{2 n}, \Omega\right)$ be a symplectic manifold admitting a CIS $\left\{I_{1}, \cdots, I_{n}\right\}, \mathcal{H} \subset T M$ the n-dimensional Lagrangian distribution $\mathcal{H}=\cap_{i=1}^{n}$ ker $d l_{i}$ and \mathcal{F} the corresponding Lagrangian foliation. Assume that the Hamiltonian vector fields ξ_{i} associated to the I_{i} are all complete and that every leaf of \mathcal{F} has no compact component. Then there exist n smooth functions f^{i} on M s.t. $L_{\xi_{i}} f^{j}=0, i \neq j$, and $L_{\xi_{i}} i^{i}>0$ (i.e. $\operatorname{Imm}_{\mathcal{H}}\left(M, \mathbb{R}^{n}\right) \neq \varnothing$).

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

In the 2nd we realize that a Hamiltonian system on \mathbb{R}^{2} is a compl. integr. syst. (CIS) and we consider more general CISs:

Lemma (2. Lagrangian n-distr. on symplectic mfds $\left(M^{2 n}, \Omega\right)$)

Let $\left(M^{2 n}, \Omega\right)$ be a symplectic manifold admitting a CIS $\left\{I_{1}, \cdots, I_{n}\right\}, \mathcal{H} \subset T M$ the n-dimensional Lagrangian distribution $\mathcal{H}=\cap_{i=1}^{n}$ ker $d l_{i}$ and \mathcal{F} the corresponding Lagrangian foliation. Assume that the Hamiltonian vector fields ξ_{i} associated to the I_{i} are all complete and that every leaf of \mathcal{F} has no compact component. Then there exist n smooth functions f^{i} on M s.t. $L_{\xi_{i}} f^{j}=0, i \neq j$, and $L_{\xi_{i}} f^{i}>0$ (i.e. $\operatorname{Imm}_{\mathcal{H}}\left(M, \mathbb{R}^{n}\right) \neq \varnothing$).

Proposition 3

Under the hypotheses above, $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{q_{n}}\right) \neq \varnothing$.

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

Example

Consider the CIS $\{I\}$ on $\mathbb{R} \times \mathbb{S}^{1}$ with $I(z, \phi)=\sin \phi e^{z}$. The corresponding Hamiltonian vector field $w /$ resp to $\Omega=d z \wedge d \phi$ is $\xi=e^{z}\left(\cos \phi \partial_{z}-\sin \phi \partial_{\phi}\right)$. The level sets of I are non-compact so we know there exists f s.t. $L_{\bar{\tau}} f>0$. E.g. $L_{\tilde{\zeta}}\left(\cos \phi e^{z}\right)=e^{2 z}>0$. Hence the map $\left(\cos \phi e^{2}, \cos ^{2} \phi e^{2 z}\right)$ is span $\overline{\xi^{2}}$-free.

Int. Traj. of ξ

Level sets of f

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

In the 3rd we think a Ham. system on \mathbb{R}^{2} as a Poisson-Riemann system (PRS) and consider PRSs of higher dimension:

Theorem (3. Riemann-Poisson bracket)

Let M be an n-dim. oriented Riemannian mfd, $H=\left\{h_{1}, \cdots, h_{n-2}\right\}$ a set of $n-2$ functions funct. ind. at every point and $\{f, g\}_{H}=*\left[d h_{1} \wedge \cdots \wedge d h_{n-2} \wedge d f \wedge d g\right]$ the corresponding Riemann-Poisson bracket. Then, if $h \in C^{\infty}(M)$ is funct. ind. from all the h_{i} and $\mathcal{H}=\operatorname{span}\left\{\xi_{h}\right\}$ for $\xi_{h}(f)=\{h, f\}_{H}$, there exists a (possibly multivalued) smooth function $F: M \rightarrow \mathbb{R}$ such that $L_{\xi_{h}} f>0$ (i.e. $\left.\operatorname{Imm}_{\mathcal{H}}(M, \mathbb{R}) \neq \varnothing\right)$.

Some classes of distr. \mathcal{H} with \mathcal{H}-free maps in crit. dim.

In the 3rd we think a Ham. system on \mathbb{R}^{2} as a Poisson-Riemann system (PRS) and consider PRSs of higher dimension:

Theorem (3. Riemann-Poisson bracket)

Let M be an n-dim. oriented Riemannian mfd, $H=\left\{h_{1}, \cdots, h_{n-2}\right\}$ a set of $n-2$ functions funct. ind. at every point and $\{f, g\}_{H}=*\left[d h_{1} \wedge \cdots \wedge d h_{n-2} \wedge d f \wedge d g\right]$ the corresponding Riemann-Poisson bracket. Then, if $h \in C^{\infty}(M)$ is funct. ind. from all the h_{i} and $\mathcal{H}=\operatorname{span}\left\{\xi_{h}\right\}$ for $\xi_{h}(f)=\{h, f\}_{H}$, there exists a (possibly multivalued) smooth function $F: M \rightarrow \mathbb{R}$ such that $L_{\xi_{h}} f>0$ (i.e. $\operatorname{Imm}_{\mathcal{H}}(M, \mathbb{R}) \neq \varnothing$).

Proposition 4

Under the hyp. above and if f is single-val., $\operatorname{Free}_{\mathcal{H}}\left(M, \mathbb{R}^{2}\right) \neq \varnothing$.

Open Problems

(1) h-principle for \mathcal{H}-immersions and \mathcal{H}-free maps: what can be said in general for the existence of \mathcal{H}-immersions and \mathcal{H}-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)

Open Problems

(1) h-principle for \mathcal{H}-immersions and \mathcal{H}-free maps: what can be said in general for the existence of \mathcal{H}-immersions and \mathcal{H}-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
(2) Find explicit \mathcal{H}-free maps in critical dimension for more classes of distributions.

Open Problems

(1) h-principle for \mathcal{H}-immersions and \mathcal{H}-free maps: what can be said in general for the existence of \mathcal{H}-immersions and \mathcal{H}-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
(2) Find explicit \mathcal{H}-free maps in critical dimension for more classes of distributions.
(3) Prove (or disprove!) the "main goal", i.e. that for every \mathcal{H} the operator $\mathcal{D}_{\mathcal{H}, q}$ is surjective for q large enough.

Open Problems

(1) h-principle for \mathcal{H}-immersions and \mathcal{H}-free maps: what can be said in general for the existence of \mathcal{H}-immersions and \mathcal{H}-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
(2) Find explicit \mathcal{H}-free maps in critical dimension for more classes of distributions.
(3) Prove (or disprove!) the "main goal", i.e. that for every \mathcal{H} the operator $\mathcal{D}_{\mathcal{H}, q}$ is surjective for q large enough.
(3) Study what happens for other structures on \mathcal{H} (symplectic, contact, connections and so on).

Bibliography

(1) M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 9, Springer-Verlag
(2) M. Gromov and V.A. Rokhlin, Immersions and embeddings in Riemannian geometry, RMS 25 (1970), 1-57
(3) J. Weiner, First integrals for a direction field on a simply connected plane domain, Pac. J. of Math. 132:1 (1988), 195-208
(9) G. D'Ambra, A. Loi, -, Partially Isometric Immersions and Free Maps, to appear on Geom. Dedicata, http://arxiv.org/abs/1007.3024
(3) -, Solvability of the cohomological equation for regular vector fields on the plane, http://arxiv.org/abs/1007.3016
(6) T. Gramchev, A. Kirilov, -, Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane, http://arxiv.org/abs/1001.2121

