・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Partially Isometric Immersions and Free Maps

Roberto De Leo^{1,2}

joint work with G. D'Ambra and A. Loi

¹Dipartmento di Matematica Università di Cagliari, Italy

²INFN, sez. di Cagliari, Italy

DGA 2010 - Brno, August 27-31

ション ふゆ く 山 マ チャット しょうくしゃ

A Fundamental Question

A natural question in mathematics is whether an arbitrary "object" of a class defined abstractly can be seen as a "sub-object" of some "canonical" object of the class. For example:

Theorem (Whitney, 1944)

Every m-dimensional C^{∞} manifold M admits an embedding into \mathbb{R}^{2m} and an immersion into \mathbb{R}^{2m-1} .

A Fundamental Question

A natural question in mathematics is whether an arbitrary "object" of a class defined abstractly can be seen as a "sub-object" of some "canonical" object of the class. For example:

Theorem (Whitney, 1944)

Every m-dimensional C^{∞} manifold M admits an embedding into \mathbb{R}^{2m} and an immersion into \mathbb{R}^{2m-1} .

Theorem (Nash, 1956; Gromov, 1986)

Every m-dimensional C^{∞} Riemannian manifold M admits an embedding into \mathbb{R}^{m^2+5m+3} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Distributions

Our ultimate goal is to answer the analogue question for Riemannian distributions.

In more detail:

Definition

Let M be a C^{∞} manifold. A *k*-distribution \mathcal{H} on M is a vector subbundle $\mathcal{H} \subset TM$ such that dim $\mathcal{H}_m = k$, $\forall m \in M$.

Distributions

Our ultimate goal is to answer the analogue question for Riemannian distributions.

In more detail:

Definition

Let M be a C^{∞} manifold. A *k*-distribution \mathcal{H} on M is a vector subbundle $\mathcal{H} \subset TM$ such that dim $\mathcal{H}_m = k$, $\forall m \in M$.

Example

A vector field ξ on M with no singular point determines a 1-distribution $\mathcal{H} = span \xi$. A 1-form ω on M with no singular point determines a "codimension-1"-distribution $\mathcal{H} = \ker \omega$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Riemannian distributions

Definition

A Riemannian k-distribution (\mathcal{H}, g) on M is a pair of a k-distribution $\mathcal{H} \subset TM$ and a positive-definite section g of the symmetric tendor product of \mathcal{H}^* by itself.

Riemannian distributions

Definition

A Riemannian k-distribution (\mathcal{H}, g) on M is a pair of a k-distribution $\mathcal{H} \subset TM$ and a positive-definite section g of the symmetric tendor product of \mathcal{H}^* by itself.

Example

- The restriction to $\mathcal H$ of any Riemannian metric on M makes $\mathcal H$ Riemannian.
- If the vector field ξ on M has no singular point, every strictly positive function ψ : M → ℝ induces a metric on any 1-dimensional distribution H = span ξ by setting g(ξ_x, ξ_x) = ψ(x).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$\mathcal{H} ext{-immersions}$

Definition

Let g be a metric on \mathcal{H} , i.e. a positive-definite symmetric section of $\mathcal{H}^* \otimes \mathcal{H}^*$. We say that $f \in C^{\infty}(M, \mathbb{R}^q)$ is a \mathcal{H} -immersion of Minto \mathbb{R}^q if $f^*e_q|_{\mathcal{H}} = g$.

Clearly \mathcal{H} -immersion can exist only for $q \geq k$.

$\mathcal{H} ext{-immersions}$

Definition

Let g be a metric on \mathcal{H} , i.e. a positive-definite symmetric section of $\mathcal{H}^* \otimes \mathcal{H}^*$. We say that $f \in C^{\infty}(M, \mathbb{R}^q)$ is a \mathcal{H} -immersion of Minto \mathbb{R}^q if $f^*e_q|_{\mathcal{H}} = g$.

Clearly \mathcal{H} -immersion can exist only for $q \geq k$.

Example

Let ξ a vector field without zeros on M, $\mathcal{H} = span\{\xi\}$ the corresponding 1-distribution on M, f a map $M \to \mathbb{R}$ and θ a base of \mathcal{H}^* dual to ξ (so that $\theta(\xi) = 1$). Then

$$f^* e_q \big|_{\mathcal{H}} = (L_{\xi} f)^2 \theta \otimes \theta$$
.

Hence f is an \mathcal{H} -immersion iff either $L_{\xi}f > 0$ or $L_{\xi}f < 0$.

<ロ>

\mathcal{H} -immersions

Example

Consider the distribution \mathcal{H}_{ξ} associated to the planar vector field $\xi(x, y) = 2y\partial_x + (1 - y^2)\partial_y$.

 \mathcal{H}_{ξ} -immersions may arise for $q \geq 1$ and $\mathcal{D}_{\mathcal{H}_{\xi},1}(f) = (L_{\xi}f)^2 \theta \otimes \theta$, so a map $f : \mathbb{R}^2 \to \mathbb{R}$ is a \mathcal{H}_{ξ} -immersions if $L_{\xi}f \neq 0$ on \mathbb{R}^2 .

Topologically, this is equivalent to the fact that the integral trajectories of ξ are everywhere transversal to f's level sets.

E.g. $f(x, y) = ye^x$ is a \mathcal{H}_{ξ} -immersion of \mathbb{R}^2 into \mathbb{R} since $L_{\xi}f(x, y) = (1 + y^2)e^x > 0$.

$\mathcal{H} ext{-immersions}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H} -immersion $f: M \to \mathbb{R}^q$?

We believe the answer is positive.

ション ふゆ く 山 マ チャット しょうくしゃ

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H} -immersion $f: M \to \mathbb{R}^q$?

We believe the answer is positive.

So far we rather focused on two simpler tasks:

Solve a weaker version of our ultimate goal: if some metric g on H is induced via some f : M → ℝ^q and we slightly deform g into g', can we deform f into f' so that f' induces g' on H?

Ultimate goal and Intermediate results

Question

Can every Riemannian k-distribution on M be induced via some \mathcal{H} -immersion $f: M \to \mathbb{R}^q$?

We believe the answer is positive.

So far we rather focused on two simpler tasks:

- Solve a weaker version of our ultimate goal: if some metric g on H is induced via some f : M → ℝ^q and we slightly deform g into g', can we deform f into f' so that f' induces g' on H?
- Find concrete cases of "geometrically interesting" distributions where this happens for the lowest q possible (i.e. in "critical dimension").

The Isometric Operator

 $Imm(M, \mathbb{R}^q)$ immersions of the smooth manifold M into \mathbb{R}^q

- e_q Euclidean metric on \mathbb{R}^q
- $S_2^0(M)$ symmetric tensor product of T^*M by itself
- $\Gamma^\infty(S^0_2(M))$ smooth sections of $S^0_2(M) o M$
- $\mathcal{G}(M) \subset \Gamma^\infty(S^0_2(M))$ set of Riemannian metrics over M

Definition

We call isometric operator the map

$$\mathcal{D}_{M,q}: \quad Imm(M, \mathbb{R}^q) \quad \longrightarrow \quad \mathcal{G}(M) \\ f \qquad \mapsto \qquad f^* e_a$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Isometric Operator

• $\mathcal{D}_{M,q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.

ション ふゆ く 山 マ チャット しょうくしゃ

The Isometric Operator

- $\mathcal{D}_{M,q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.
- $\mathcal{D}_{M,q}$ is central in the isometric immersions theory: e.g. every *m*-dimensional Riemannian manifold can be isometrically immersed into \mathbb{R}^q iff all operators $\mathcal{D}_{M,q}$, dim M = m, are surjective.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

The Isometric Operator

- $\mathcal{D}_{M,q}$ is a continuous map when the functional spaces are endowed with Whitney strong topology.
- $\mathcal{D}_{M,q}$ is central in the isometric immersions theory: e.g. every *m*-dimensional Riemannian manifold can be isometrically immersed into \mathbb{R}^q iff all operators $\mathcal{D}_{M,q}$, dim M = m, are surjective.
- The property we focus on here is the following weaker version: is D_{M,q}, restricted to some open subset of Imm(M, R^q), an open map? In other words, if

$$\mathcal{D}_{M,q}(f_0) = g_0$$

then is $\mathcal{D}_{M,q}(f) = g$ is solvable in some nbhd of g_0 ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linearization of the Isometric Operator

Use indices
$$\alpha, \beta = 1, ..., m$$
 and $i, j = 1, ..., q$.
In coords (x^{α}) on M and (y^{i}) on \mathbb{R}^{q}
 f writes as $(f^{i}(x^{\alpha}))$ and the equation $\mathcal{D}(f) = g$ writes as

$$\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}f^{j}=g_{\alpha\beta}$$

Linearization of the Isometric Operator

Use indices
$$\alpha, \beta = 1, ..., m$$
 and $i, j = 1, ..., q$.
In coords (x^{α}) on M and (y^{i}) on \mathbb{R}^{q}
 f writes as $(f^{i}(x^{\alpha}))$ and the equation $\mathcal{D}(f) = g$ writes as

$$\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}f^{j}=g_{\alpha\beta}$$

Take a smooth curve g_{λ} and look for a solution f_{λ} . Then

$$2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}=\delta g_{\alpha\beta}$$

where
$$\delta f^{i} = \frac{df_{\lambda}^{i}}{d\lambda}\Big|_{\lambda=0}$$
 and $\delta g_{\alpha\beta} = \frac{d(g_{\lambda})_{\alpha\beta}}{d\lambda}\Big|_{\lambda=0}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Linearization of the Isometric Operator

Definition

The operator $\ell_{M,q}(f, \delta f) = 2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}$ is called the *linearization* of $\mathcal{D}_{M,q}$. We say that $\mathcal{D}_{M,q}$ is *infinitesimally invertible* over some open set $\mathcal{A} \subset Imm(\mathcal{M}, \mathbb{R}^{q})$ if the equation

$$\ell_{M,q}(f,\delta f) = \delta g$$

is solvable over \mathcal{A} .

Linearization of the Isometric Operator

Definition

The operator $\ell_{M,q}(f, \delta f) = 2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}$ is called the *linearization* of $\mathcal{D}_{M,q}$. We say that $\mathcal{D}_{M,q}$ is *infinitesimally invertible* over some open set $\mathcal{A} \subset Imm(\mathcal{M}, \mathbb{R}^{q})$ if the equation

$$\ell_{M,q}(f,\delta f) = \delta g$$

is solvable over \mathcal{A} .

Theorem (Newton-Nash-Moser-Gromov IFT)

If $\mathcal{D}_{M,q}$ is infinitesimally invertible over \mathcal{A} , then

$$\mathcal{D}_{M,q}|_{\mathcal{A}}: \mathcal{A} \to \mathcal{G}(M)$$

is an open map.

Using Nash's trick the linearized equation

$$2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}=\delta g_{\alpha\beta}$$

becomes a fully algebraic system of $q_m := m + m(m+1)/2$ eqs. in the q unknowns δf^i :

$$\begin{cases} \delta_{ij}\partial_{\alpha}f^{i}\delta f^{j} = h_{\alpha} \\ \delta_{ij}\partial_{\alpha\beta}f^{i}\delta f^{j} = \partial_{\alpha}h_{\beta} + \partial_{\beta}h_{\alpha} - \delta g_{\alpha\beta}/2 \end{cases}$$

ション ふゆ アメリア メリア しょうめん

Using Nash's trick the linearized equation

$$2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}=\delta g_{\alpha\beta}$$

becomes a fully algebraic system of $q_m := m + m(m+1)/2$ eqs. in the q unknowns δf^i :

$$\begin{cases} \delta_{ij}\partial_{\alpha}f^{i}\delta f^{j} = h_{\alpha} \\ \delta_{ij}\partial_{\alpha\beta}f^{i}\delta f^{j} = \partial_{\alpha}h_{\beta} + \partial_{\beta}h_{\alpha} - \delta g_{\alpha\beta}/2 \end{cases}$$

Clearly a sufficient condition for the solvability of this system is that the $q_m \times q$ matrix $D_2 f = \begin{pmatrix} \partial_{\alpha} f^i \\ \partial_{\alpha\beta} f^i \end{pmatrix}$ have rank q_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free Maps

Definition

A map $f \in C^{\infty}(M, \mathbb{R}^q)$ s.t. $rk D_2 f = q_m$ at every point of M is called a *free map*. We denote by $Free(M, \mathbb{R}^q)$ the set of all smooth free maps $M \to \mathbb{R}^q$.

ション ふゆ く 山 マ チャット しょうくしゃ

Free Maps

Definition

A map $f \in C^{\infty}(M, \mathbb{R}^q)$ s.t. $rk D_2 f = q_m$ at every point of M is called a *free map*. We denote by $Free(M, \mathbb{R}^q)$ the set of all smooth free maps $M \to \mathbb{R}^q$.

As a corollary of the Newton-Nash-Moser-Gromov IFT we get immediately that

Theorem (Nash, 1956)

The restriction of $\mathcal{D}_{M,q}$ to $Free(M, \mathbb{R}^q) \subset Imm(M, \mathbb{R}^q)$ is an open map.

Motivations	Introduction	Notations and some remainder on Free Maps	Results
Free Maps	5		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Clearly Free(M, ℝ^q) = Ø if q < q_m (we say that q_m is the "critical dimension").

- Clearly $Free(M, \mathbb{R}^q) = \emptyset$ if $q < q_m$ (we say that q_m is the "critical dimension").
 - A standard transversality argument shows that being free is a generic property for $q \ge m + q_m$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Free Maps
 - Clearly Free $(M, \mathbb{R}^q) = \emptyset$ if $q < q_m$ (we say that q_m is the "critical dimension").
 - A standard transversality argument shows that being free is a generic property for $q > m + q_m$.
 - For $q_m \leq q < m + q_m$ the existence of free maps is a more complicated matter. E.g. if M is parallelizable we know that *Free*(M, \mathbb{R}^q) $\neq \emptyset$ for $q > q_m$ if M is open and for $q > q_m$ if *M* is closed (Gromov, Eliashberg).

ション ふゆ く 山 マ チャット しょうくしゃ

- Free Maps
 - Clearly Free $(M, \mathbb{R}^q) = \emptyset$ if $q < q_m$ (we say that q_m is the "critical dimension").
 - A standard transversality argument shows that being free is a generic property for $q > m + q_m$.
 - For $q_m \leq q < m + q_m$ the existence of free maps is a more complicated matter. E.g. if M is parallelizable we know that *Free*(M, \mathbb{R}^q) $\neq \emptyset$ for $q > q_m$ if M is open and for $q > q_m$ if *M* is closed (Gromov, Eliashberg).

Example

The map
$$F(x^1, ..., x^m) = (x^1, ..., x^m, (x^1)^2, x^1x^2, ..., (x^m)^2)$$

belongs to *Free*($\mathbb{R}^m, \mathbb{R}^{q_m}$).

Partial Isometries

Definition

We call partially isometric operator the map

Locally every k-distribution \mathcal{H} on M is the span of k vector fields ξ_a and

$$\mathcal{D}_{\mathcal{H},\boldsymbol{q}}(f) = \delta_{ij} L_{\boldsymbol{\xi}_{\boldsymbol{a}}} f^{i} L_{\boldsymbol{\xi}_{\boldsymbol{b}}} f^{j} \; \theta^{\boldsymbol{a}} \otimes \theta^{\boldsymbol{b}}$$

where $L_{\xi_a} f^i$ is the Lie derivative of f^i with respect to ξ_a and the 1-forms θ^a , a = 1, ..., k, are dual of the ξ_a in \mathcal{H}^* .

◆□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

In a trivialization of \mathcal{H} the equation $\mathcal{D}_{\mathcal{H},q}(f) = g$ writes as

$$\delta_{ij} L_{\tilde{\zeta}_a} f^i L_{\tilde{\zeta}_b} f^j = g_{ab}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In a trivialization of \mathcal{H} the equation $\mathcal{D}_{\mathcal{H},q}(f) = g$ writes as

$$\delta_{ij}L_{\xi_a}f^iL_{\xi_b}f^j=g_{ab}$$

Take a smooth curve g_{λ} and look for a solution f_{λ} . Then

$$2\delta_{ij}L_{\xi_a}f^iL_{\xi_b}\delta f^j = \delta g_{ab}$$

where $\delta f^i = \frac{df_{\lambda}^i}{d\lambda}\Big|_{\lambda=0}$ and $\delta g_{ab} = \frac{d(g_{\lambda})_{ab}}{d\lambda}\Big|_{\lambda=0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By the Newton-Nash-Moser-Gromov IFT we know that a sufficient condition for $\mathcal{D}_{\mathcal{H},q}$ to be an open map over some open set $\mathcal{A} \subset C^{\infty}(\mathcal{M}, \mathbb{R}^q)$ is that the linearized equation

$$2\delta_{ij}L_{\xi_a}f^iL_{\xi_b}\delta f^j=g_{ab}$$

be solvable for all $f \in A$.

ション ふゆ アメリア メリア しょうめん

By the Newton-Nash-Moser-Gromov IFT we know that a sufficient condition for $\mathcal{D}_{\mathcal{H},q}$ to be an open map over some open set $\mathcal{A} \subset C^{\infty}(\mathcal{M}, \mathbb{R}^q)$ is that the linearized equation

$$2\delta_{ij}L_{\xi_a}f^iL_{\xi_b}\delta f^j=g_{ab}$$

be solvable for all $f \in A$.

Using the Nash trick we get the following equivalent fully algebraic system of $q_k = k + k(k+1)/2$ eqs in q unknowns δf^i :

$$\begin{cases} \delta_{ij} L_{\xi_a} f^i \delta f^j = h_a \\ \delta_{ij} (L_{\xi_a} L_{\xi_b} + L_{\xi_b} L_{\xi_a}) f^i \delta f^j = L_{\xi_a} h_b + L_{\xi_b} h_a - \delta g_{ab}/2 \end{cases}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Clearly a sufficient condition for the resolution of such system is that the $q_k \times q$ matrix

$$D_{\xi_{1},\cdots,\xi_{k}}(f) = \begin{pmatrix} L_{\xi_{1}}f^{1} & \cdots & L_{\xi_{1}}f^{q} \\ \vdots & \vdots & \vdots \\ L_{\xi_{k}}f^{1} & \cdots & L_{\xi_{k}}f^{q} \\ L_{\xi_{1}}^{2}f^{1} & \cdots & L_{\xi_{1}}^{2}L_{\xi_{1}}f^{q} \\ L_{\xi_{1}}L_{\xi_{2}}f^{1} + L_{\xi_{2}}L_{\xi_{1}}f^{1} & \cdots & L_{\xi_{1}}L_{\xi_{2}}f^{q} + L_{\xi_{2}}L_{\xi_{1}}f^{q} \\ \vdots & \vdots & \vdots \\ L_{\xi_{k}}^{2}f^{1} & \cdots & L_{\xi_{k}}^{2}f^{q} \end{pmatrix}$$

have rank q_k at every point.

\mathcal{H} -free maps

Definition (Gromov)

A \mathcal{H} -immersion f of M into \mathbb{R}^q s.t. $rk D_{\xi_1, \dots, \xi_k} f = q_k$ for every trivialization of \mathcal{H} at every point of M is called a \mathcal{H} -free map. We denote by $Free_{\mathcal{H}}(M, \mathbb{R}^q)$ the set of all smooth \mathcal{H} -free maps $M \to \mathbb{R}^q$.

\mathcal{H} -free maps

Definition (Gromov)

A \mathcal{H} -immersion f of M into \mathbb{R}^q s.t. $rk D_{\xi_1, \dots, \xi_k} f = q_k$ for every trivialization of \mathcal{H} at every point of M is called a \mathcal{H} -free map. We denote by $Free_{\mathcal{H}}(M, \mathbb{R}^q)$ the set of all smooth \mathcal{H} -free maps $M \to \mathbb{R}^q$.

As a corollary of the Newton-Nash-Moser-Gromov IFT we get immediately that

Theorem 1

The restriction of $\mathcal{D}_{\mathcal{H},q}$ to $Free_{\mathcal{H}}(M, \mathbb{R}^q) \subset Imm_{\mathcal{H}}(M, \mathbb{R}^q)$ is an open map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

\mathcal{H} -free Maps

 Clearly Free_H(M, ℝ^q) = Ø if q < q_k (we call q_k the "critical dimension").

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$\mathcal H$ -free Maps

- Clearly Free_H(M, ℝ^q) = Ø if q < q_k (we call q_k the "critical dimension").
- A standard transversality argument shows that being free is a generic property for q ≥ m + q_k.

ション ふゆ アメリア メリア しょうめん

\mathcal{H} -free Maps

- Clearly Free_H(M, ℝ^q) = Ø if q < q_k (we call q_k the "critical dimension").
- A standard transversality argument shows that being free is a generic property for q ≥ m + q_k.
- We did not investigate yet what happens in the intermediate range q_k ≤ q < m + q_k.

(日) (伊) (日) (日) (日) (0) (0)

\mathcal{H} -free maps of 1-distributions in \mathbb{R}^2 in critical dim.

Example

Consider again the case of a 1-distribution $\mathcal{H}_{\xi} = span \xi$. \mathcal{H}_{ξ} -free maps can arise only for $q \ge 1 + q_1 = 2$. A map $f = (f^1, f^2) : \mathbb{R}^2 \to \mathbb{R}^2$ is \mathcal{H}_{ξ} -free iff

$$\mathcal{D}_{\xi}f = egin{pmatrix} L_{\xi}f^1 & L_{\xi}f^2 \ L_{\xi}^2f^1 & L_{\xi}^2f^2 \end{pmatrix}$$

has non-zero determinant at every point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

\mathcal{H} -free maps

Theorem 2

Let \mathcal{H} be a k-distribution on M. If $f \in Imm_{\mathcal{H}}(M, \mathbb{R}^k)$ and $F \in Free(\mathbb{R}^k, \mathbb{R}^{q_k})$ then $F \circ f \in Free_{\mathcal{H}}(M, \mathbb{R}^k)$.

\mathcal{H} -free maps

Proof.

The proof is just a direct calc., here we show only the case k = 1. Let $F = (\chi, \phi) \in Free(M, \mathbb{R}^2)$ and $f \in Imm_{\mathcal{H}}(M, \mathbb{R})$. Then $\det D_{\xi}F(f) = \begin{vmatrix} L_{\xi}[\chi(f)] & L_{\xi}[\phi(f)] \\ L_{x}^{2}[\chi(f)] & L_{x}^{2}[\phi(f)] \end{vmatrix} =$ $= \left| \begin{array}{cc} \chi'(f)L_{\xi}f & \phi'(f)L_{\xi}f \\ \chi'(f)L_{\xi}^2f + \chi''(f)[L_{\xi}f]^2 & \phi'(f)L_{\xi}^2f + \phi''(f)[L_{\xi}f]^2 \end{array} \right| =$ $= \left| \begin{array}{c} \chi'(f) & \phi'(f) \\ \chi''(f) & \phi''(f) \end{array} \right| [L_{\xi}f]^3$

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

Lemma (Weiner, 1988)

Let $\mathcal{H} \subset T\mathbb{R}^2$ a Hamiltonian distribution (i.e. $\mathcal{H} = \ker dH$ for some regular function $H : \mathbb{R}^2 \to \mathbb{R}$) and ξ any section of $\mathcal{H} \to M$ without zeros. Then there exists a smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ s.t. $L_{\xi}f > 0$ (i.e. $Imm_{\mathcal{H}}(\mathbb{R}^2, \mathbb{R}) \neq \emptyset$).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Some classes of distr. ${\mathcal H}$ with ${\mathcal H}$ -free maps in crit. dim.

Lemma (Weiner, 1988)

Let $\mathcal{H} \subset T\mathbb{R}^2$ a Hamiltonian distribution (i.e. $\mathcal{H} = \ker dH$ for some regular function $H : \mathbb{R}^2 \to \mathbb{R}$) and ξ any section of $\mathcal{H} \to M$ without zeros. Then there exists a smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ s.t. $L_{\xi}f > 0$ (i.e. $Imm_{\mathcal{H}}(\mathbb{R}^2, \mathbb{R}) \neq \emptyset$).

Proposition 1

Under the hypothesis above, $Free_{\mathcal{H}}(\mathbb{R}^2, \mathbb{R}^2) \neq \emptyset$.

$\mathcal H\text{-}\mathsf{free}$ maps of 1-distributions in $\mathbb R^2$ in critical dimension

Example

Consider again
$$\xi = 2y\partial_x + (1 - y^2)\partial_y$$
.
Recall that $L_{\xi}(ye^x) > 0$ and $\psi(t) = (t, t^2)$, $\hat{\psi}(t) = (\cos t, \sin t)$
belong to $Free(\mathbb{R}, \mathbb{R}^2)$ since $D_2\psi = \begin{pmatrix} 1 & 2x \\ 0 & 2 \end{pmatrix}$ and
 $D_2\hat{\psi} = \begin{pmatrix} -\sin t & \cos t \\ -\cos t & -\sin t \end{pmatrix}$. Hence, for example, the maps
 $f(x, y) = (ye^x, y^2e^{2x})$

and

$$\hat{f}(x, y) = (\cos(ye^x), \sin(ye^x))$$

both belong to $Free_{\mathcal{H}_{\xi}}(\mathbb{R}^2, \mathbb{R}^2)$. Note that these are \mathcal{H}_{ξ} -free maps in critical dimension.

Some classes of distr. ${\mathcal H}$ with ${\mathcal H}\text{-free maps in crit. dim.}$

We generalized Weiner's Lemma in three different directions. In the first we do not require ξ to be Hamiltonian:

Lemma (1. 1-distributions in \mathbb{R}^2)

Let ξ a vector field on \mathbb{R}^2 of finite type (i.e. the set of its separatrices is closed and each leaf is inseparable from just finitely many other leaves) with no zeros. Then there exists a function $f : \mathbb{R}^2 \to \mathbb{R}$ s.t. $L_{\xi}f > 0$ (i.e. $Imm_{span \xi}(\mathbb{R}^2, \mathbb{R}) \neq \emptyset$).

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

We generalized Weiner's Lemma in three different directions. In the first we do not require ξ to be Hamiltonian:

Lemma (1. 1-distributions in \mathbb{R}^2)

Let ξ a vector field on \mathbb{R}^2 of finite type (i.e. the set of its separatrices is closed and each leaf is inseparable from just finitely many other leaves) with no zeros. Then there exists a function $f : \mathbb{R}^2 \to \mathbb{R}$ s.t. $L_{\xi}f > 0$ (i.e. $Imm_{span\xi}(\mathbb{R}^2, \mathbb{R}) \neq \emptyset$).

Proposition 2

Under the hypotheses above, $Free_{span_{\xi}}(\mathbb{R}^2, \mathbb{R}^2) \neq \emptyset$.

Some classes of distr. ${\mathcal H}$ with ${\mathcal H}$ -free maps in crit. dim.

Example

Consider $\xi = (3y - 1)\partial_x + (1 - y^2)\partial_y$ on \mathbb{R}^2 . This vector field is not Ham. w/resp. to any symplectic structure on \mathbb{R}^2 but it is transversal to the level sets of $f(x, y) = ye^x$. Hence e.g. (ye^x, y^2e^{2x}) is span ξ -free.

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

In the 2nd we realize that a Hamiltonian system on \mathbb{R}^2 is a compl. integr. syst. (CIS) and we consider more general CISs:

Lemma (2. Lagrangian *n*-distr. on symplectic mfds (M^{2n}, Ω))

Let (M^{2n}, Ω) be a symplectic manifold admitting a CIS $\{I_1, \dots, I_n\}, \mathcal{H} \subset TM$ the n-dimensional Lagrangian distribution $\mathcal{H} = \bigcap_{i=1}^n \ker dI_i$ and \mathcal{F} the corresponding Lagrangian foliation. Assume that the Hamiltonian vector fields ξ_i associated to the I_i are all complete and that every leaf of \mathcal{F} has no compact component. Then there exist n smooth functions f^i on M s.t. $L_{\xi_i}f^j = 0, i \neq j$, and $L_{\xi_i}f^i > 0$ (i.e. $Imm_{\mathcal{H}}(M, \mathbb{R}^n) \neq \emptyset$).

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

In the 2nd we realize that a Hamiltonian system on \mathbb{R}^2 is a compl. integr. syst. (CIS) and we consider more general CISs:

Lemma (2. Lagrangian *n*-distr. on symplectic mfds (M^{2n}, Ω))

Let (M^{2n}, Ω) be a symplectic manifold admitting a CIS $\{I_1, \dots, I_n\}, \mathcal{H} \subset TM$ the n-dimensional Lagrangian distribution $\mathcal{H} = \bigcap_{i=1}^n \ker dI_i$ and \mathcal{F} the corresponding Lagrangian foliation. Assume that the Hamiltonian vector fields ξ_i associated to the I_i are all complete and that every leaf of \mathcal{F} has no compact component. Then there exist n smooth functions f^i on M s.t. $L_{\xi_i}f^j = 0, i \neq j$, and $L_{\xi_i}f^i > 0$ (i.e. $Imm_{\mathcal{H}}(M, \mathbb{R}^n) \neq \emptyset$).

Proposition 3

Under the hypotheses above, $Free_{\mathcal{H}}(M, \mathbb{R}^{q_n}) \neq \emptyset$.

Some classes of distr. ${\mathcal H}$ with ${\mathcal H}$ -free maps in crit. dim.

Example

Consider the CIS $\{I\}$ on $\mathbb{R} \times \mathbb{S}^1$ with $I(z, \phi) = \sin \phi e^z$. The corresponding Hamiltonian vector field w/resp to $\Omega = dz \wedge d\phi$ is $\xi = e^z (\cos \phi \partial_z - \sin \phi \partial_{\phi})$. The level sets of I are non-compact so we know there exists f s.t. $L_{\xi}f > 0$. E.g. $L_{\xi}(\cos \phi e^z) = e^{2z} > 0$. Hence the map $(\cos \phi e^z, \cos^2 \phi e^{2z})$ is $span \xi$ -free.

(日) (伊) (日) (日) (日) (0) (0)

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

In the 3rd we think a Ham. system on \mathbb{R}^2 as a Poisson-Riemann system (PRS) and consider PRSs of higher dimension:

Theorem (3. Riemann-Poisson bracket)

Let M be an n-dim. oriented Riemannian mfd, $H = \{h_1, \dots, h_{n-2}\}$ a set of n - 2 functions funct. ind. at every point and $\{f, g\}_H = *[dh_1 \land \dots \land dh_{n-2} \land df \land dg]$ the corresponding Riemann-Poisson bracket. Then, if $h \in C^{\infty}(M)$ is funct. ind. from all the h_i and $\mathcal{H} = \text{span}\{\xi_h\}$ for $\xi_h(f) = \{h, f\}_H$, there exists a (possibly multivalued) smooth function $F : M \to \mathbb{R}$ such that $L_{\xi_h}f > 0$ (i.e. $Imm_{\mathcal{H}}(M, \mathbb{R}) \neq \emptyset$).

Some classes of distr. $\mathcal H$ with $\mathcal H$ -free maps in crit. dim.

In the 3rd we think a Ham. system on \mathbb{R}^2 as a Poisson-Riemann system (PRS) and consider PRSs of higher dimension:

Theorem (3. Riemann-Poisson bracket)

Let M be an n-dim. oriented Riemannian mfd, $H = \{h_1, \dots, h_{n-2}\}$ a set of n - 2 functions funct. ind. at every point and $\{f, g\}_H = *[dh_1 \land \dots \land dh_{n-2} \land df \land dg]$ the corresponding Riemann-Poisson bracket. Then, if $h \in C^{\infty}(M)$ is funct. ind. from all the h_i and $\mathcal{H} = \text{span}\{\xi_h\}$ for $\xi_h(f) = \{h, f\}_H$, there exists a (possibly multivalued) smooth function $F : M \to \mathbb{R}$ such that $L_{\xi_h}f > 0$ (i.e. $\text{Imm}_{\mathcal{H}}(M, \mathbb{R}) \neq \emptyset$).

Proposition 4

Under the hyp. above and if f is single-val., $Free_{\mathcal{H}}(M, \mathbb{R}^2) \neq \emptyset$.

Open Problems

• h-principle for \mathcal{H} -immersions and \mathcal{H} -free maps: what can be said in general for the existence of \mathcal{H} -immersions and \mathcal{H} -free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)

Open Problems

- h-principle for \mathcal{H} -immersions and \mathcal{H} -free maps: what can be said in general for the existence of \mathcal{H} -immersions and \mathcal{H} -free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
- Find explicit *H*-free maps in critical dimension for more classes of distributions.

Open Problems

- h-principle for H-immersions and H-free maps: what can be said in general for the existence of H-immersions and H-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
- Find explicit *H*-free maps in critical dimension for more classes of distributions.
- Solution Prove (or disprove!) the "main goal", i.e. that for every \mathcal{H} the operator $\mathcal{D}_{\mathcal{H},q}$ is surjective for q large enough.

(日) (伊) (日) (日) (日) (0) (0)

Open Problems

- h-principle for H-immersions and H-free maps: what can be said in general for the existence of H-immersions and H-free maps in the intermediate range? (i.e. when q is not big enough for genericity but not small enough to rule out their existence)
- Solution Find explicit \mathcal{H} -free maps in critical dimension for more classes of distributions.
- Solution Prove (or disprove!) the "main goal", i.e. that for every \mathcal{H} the operator $\mathcal{D}_{\mathcal{H},q}$ is surjective for q large enough.
- Study what happens for other structures on H (symplectic, contact, connections and so on).

Bibliography

- M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 9, Springer-Verlag
- M. Gromov and V.A. Rokhlin, *Immersions and embeddings in Riemannian geometry*, RMS 25 (1970), 1-57
- J. Weiner, First integrals for a direction field on a simply connected plane domain, Pac. J. of Math. 132:1 (1988), 195-208
- G. D'Ambra, A. Loi, -, Partially Isometric Immersions and Free Maps, to appear on Geom. Dedicata, http://arxiv.org/abs/1007.3024
- -, Solvability of the cohomological equation for regular vector fields on the plane, http://arxiv.org/abs/1007.3016
- T. Gramchev, A. Kirilov, -, Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane, http://arxiv.org/abs/1001.2121