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Plan of the presentation:

• Fundamental concepts

• General structure of a Dynamical System

• The case of the Logistic Map
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Fundamental
Concepts
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Dynamical System
A Dynamical System on a topological space X is some
continuous map (flow) Φ : T ×X → X , where usually the
“time” set T is either R (continuous time) or Z (discrete
time).

Given a point x ∈ X , the set Φt(x), t ∈ T , is the orbit of x
under the flow Φ.
Example: given a complete vector field v on a smooth
manifold M, the solutions of the ODE

ẋ(t) = v(x(t))

generate a flow Φ : R×M→M so that x(t) = Φt(x0) is the
solution to the ODE above with initial conditions
x(0) = x0.
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Discrete Dynamical Systems
When T = Z, a flow is simply given by the iteration of a
continuous map f : M→M, namely

Φn(x) = f n(x),n > 0,

where here by f n we mean the composition f ◦ f ◦ · · · ◦ f of f
with itself n times.

In general f is not invertible and by f−n(x), n > 0, we
mean the set of all points y such that f n(y) = x .

Finally, f 0 is the identity map.

From now on we wil consider only discrete dynamical
systems.
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Non-wandering points
Discrete dynamical systems arise naturally in many
applied contexts, for example as Poincaré maps of
continuous dynamical systems or as simplified models of
continuous ones.

In the continuous case, a great deal of information on the
behaviour of the dynamics is given by the study of the
stability of the fixed points and of the periodic solutions.
The corresponding concept in the discrete case is the set
of all non-wandering points, namely the set of all points
with the property that each of their nbhds intersects
eventually itself under the flow.
We denote by Ωf the set of non-wandering points of f .

Example: every point in a finite orbit
x , f (x), f 2(x), . . . , f n−1(x), with f n(x) = x , is a
non-wandering point.
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Attractors and Repellors
Given a point x ∈ X and a map f : X → X , we call ωf (x) the
set of all forward points of accumulation of the orbit of x
under f .

Similarly, we call αf (x) the set of all backward
points of accumulation of all backward orbits of x under
f .

By attractor A of f : X → X we mean an invariant closed
subset of non-wandering points such that there is a
positive measure set of points x ∈ X with ωf (x)⊂ A.

By retractor R of f : X → X we mean an invariant closed
subset of non-wandering points such that there is a
positive measure set of points x ∈ X with ωf (x)⊂ A.
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Natural Question
What can we say about the dynamics of points outside
Ωf ?

In the rest of the talk we will review the main general
results in this direction and will show that even in the
most elementary case of the logistic map the situation can
be far from trivial.
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Fundamental
Theorem

of Dynamics
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Morse decomposition (20s)
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Morse-Smale functions (60s)
In Sixties, S. Smale vastly generalized this observation by
Morse to Axiom-A diffeomorphisms, namely
diffeomorphisms f for which Ωf is hyperbolic (the tangent
space decomposes into attracting and repelling
subspaces) and periodic points are dense in Ωf . The
celebrated Smale’s horseshoe map is an Axiom-A map.

The motion of points outside of Ωf is gradient-like, namely
points move monotonically from an invariant component
of Ωf to some other one.

More technically, there exists a Lyapunov function L such
that, for every x outside of Ωf , L(f (x)) < L(x) and L
assumes different constant values on every invariant
component of Ωf .
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Smale’s horseshoe map
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Horseshoe’s attractor
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Conley’s Theorem (70s)
In Seventies Conley finally proved that every dynamical
system on a compact metric space is gradient-like outside
of an extension of Ωf called chain-recurrent set.

This is the set of all points R{ with the following
property: for every ε > 0 there is a sequence of points
x0,x1, . . . ,xn such that d(f (xi),xi+1) < ε and d(f (xn),x0) < ε.

Note that Ωf ⊂ R{.
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Example: Newton map of a complex
polynomial
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Example: Newton map of a real polynomial
map R2→ R2
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The Logistic Map
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Some History
The history of the Logistic map

fµ = µx(1− x) : [0,1]→ [0,1], µ ∈ [0,4],

goes back at least to 30s, where it was introduced by
Chaundy and Phillips in connection with population
dynamics.

It reappeared in 50s in a series of papers by Myrberg, that
discovered the bifurcation cascade that became
ultimately famous with Feigenbaum in 70s.

Usually the beginning of the massive interest and study
of this map is set to the celebrated paper by biologist R.
May “Simple mathematical models with very
complicated dynamics”, appeared on Nature in 1976.
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May’s bifurcation diagram (1976)
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Full bifurcation diagram (1982?)

Myrberg-Feigenbaum point µMF ' 3.5699.
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Zoom of the bifurcation diagram
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Natural questions
1. what is the structure of Ωfµ?

2. what is going on for µ≥ µMF ?

3. how general is this behavior?
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Universality of the diagram

In general, this qualitative behavior is shared by all
S-unimodal maps, namely maps with negative negative

Schwartzian derivative: Sf (x) = f ′′′(x)
f ′(x) −

3
2

[
f ′′(x)
f ′(x)

]2
.
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S-unimodal maps
A first universal property of S-unimodal maps was
discovered numerically by Feigenbaum: given the
sequence of bifurcating values µn at the left of µMF , the
limit

lim
n→∞

µn−µn−1

µn+1−µn
' 4.6692

does not depend on the particular form of fµ as long as it
is S-unimodal!
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General properties of S-unimodal maps
Let f : [0,1]→ [0,1] be any S-unimodal map. Define its
topological entropy as limsup log #{(f n)′(x) = 0}, namely a
measure of how fast the number of maxima and minima
of f n is increasing with n. Then:

1 f has exactly one attractor Af , whose basin we denote
by Bf (70s);

2 f has no “wandering intervals”, namely
[0,1] = Bf tΩf (70s);

3 when h(f ) = 0, the attractor can be either a cycle of 2k

points or a zero-measure Cantor set and there is no
chaos (80s);

4 when h(f ) > 0, the attractor can be either a cycle of
2k ·N points or a cycle of 2k ·N intervals or a Cantor
set and the dynamics is chaotic but only in case of
intervals the chaotic dynamics is supported on a set of
non-zero measure.
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What is happening for µ≥ µMF ?
The answer to this question was made rigorous only in
2000s!
The parameter space [0,4] can be decomposed into 3
disjoint sets R (regular ones, for which Afmu is a cycle of
points), F (non-regular ones, for which Afmu is a cycle of
intervals) and I (those for which the attractor is a Cantor
set).
Then R is an open dense set (Graczyk and Swiatek, 1997),
F is a Cantor set of non-zero measure (Jakobson, 1981)
and I is a Cantor set of zero measure (Lyubich, 2002).
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Zoom of the bifurcation diagram
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Structure of Ωfµ

Several authors (Jonker and Rand, van Strien and de
Melo, Lyubich and Blokh) studied the structure of Ωfµ :

this set is the union of finite or at most countably many
minimal invariant sets, one of which attracting and all
others repelling, and these sets are either all finite cycles
of points (when h(fµ) = 0) or all zero-measure Cantor sets
(when h(fµ) > 0).

To date, though, there is no work in literature that
considers the dynamical structure of Ωf , namely the
dynamics of f close to the components of Ωf . Notice that
this question is equivalent to applying the
Moser-Smale-Conley paradigm to the logistic map.
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Dynamics close to Ωfµ

Our result, joint work with J.A. Yorke, is the following:

the minimal invariant components of Ωfµ can be linearly
ordered as I1, I2, . . . so that points arbitrarily close to Ik can
get arbitrarily close to every Ik ′ with k ′ > k while are
confined away from every Ik ′ with k ′ < k .

We call such structure a tower. Such tower is always finite
when the attractor is a cycle of points or intervals while it
is infinite when the attractor is a Cantor set.

As a corollary of a result mentioned earlier, arbitrarily
close to every parameter µ giving rise to chaotic dynamics
there is a parameter with an infinite tower. We claim that
this property is general among discrete dynamical
systems in any dimension (work in progress).
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