

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Solvability of the Cohomological Equation for regular vector fields on the plane

Roberto De Leo

Department of Mathematics Howard University Washigton, DC & INFN Cagliari, Italy

Lehigh University Geometry and Topology Conference 2016

Outline

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

1 The General Setting

2 The Cohomological Equation in the Plane

3 A Basic Example

4 General Results & Open Problems

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems
$$\begin{split} M \text{ smooth manifold with coordinates } (x^{\alpha}), \ \alpha &= 1, \cdots, m \\ \xi &= (\xi^{\alpha}) \text{ smooth vector field on } M \\ \Phi_{\xi}^{t} &: M \to M \text{ flow of } \xi \text{, i.e. } \xi_{p} &= \frac{d}{dt} \Phi_{\xi}^{t}(p) \Big|_{t=0}, \ \forall p \in M \\ \text{can be seen as a 1st-order linear Partial Diff. Op. on } C^{\infty}(M) \\ L_{\xi}f(p) &:= \frac{d}{dt} f(\Phi_{\xi}^{t}(p)) \Big|_{t=0} = \xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p) \end{split}$$

Natural Questions:

- **1** How to characterize the sets $L_{\xi}(C^{r}(M)) \cap C^{k}(M), L_{\xi}(W_{loc}^{l,p}(M)) \cap C^{k}(M)$?
- 2 How do these sets depend on the *topology* and *geometry* of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems
$$\begin{split} M \text{ smooth manifold with coordinates } (x^{\alpha}), \ \alpha &= 1, \cdots, m \\ \xi &= (\xi^{\alpha}) \text{ smooth vector field on } M \\ \Phi^t_{\xi} &: M \to M \text{ flow of } \xi \text{, i.e. } \xi_p &= \frac{d}{dt} \Phi^t_{\xi}(p) \Big|_{t=0} \text{, } \forall p \in M \\ \text{can be seen as a 1st-order linear Partial Diff. Op. on } C^{\infty}(M) \\ L_{\xi}f(p) &:= \frac{d}{dt} f(\Phi^t_{\xi}(p)) \Big|_{t=0} = \xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p) \end{split}$$

Natural Questions:

- How to characterize the sets $L_{\xi}(C^{r}(M)) \cap C^{k}(M), L_{\xi}(W_{loc}^{l,p}(M)) \cap C^{k}(M)$?
- 2 How do these sets depend on the *topology* and *geometry* of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems
$$\begin{split} M \text{ smooth manifold with coordinates } (x^{\alpha}), \ \alpha &= 1, \cdots, m \\ \xi &= (\xi^{\alpha}) \text{ smooth vector field on } M \\ \Phi^t_{\xi} &: M \to M \text{ flow of } \xi \text{, i.e. } \xi_p = \frac{d}{dt} \Phi^t_{\xi}(p) \Big|_{t=0}, \ \forall p \in M \\ \xi \text{ can be seen as a 1st-order linear Partial Diff. Op. on } C^{\infty}(M) \\ L_{\xi}f(p) &:= \frac{d}{dt} f(\Phi^t_{\xi}(p)) \Big|_{t=0} = \xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p) \end{split}$$

Natural Questions:

- How to characterize the sets $L_{\xi}(C^{r}(M)) \cap C^{k}(M), L_{\xi}(W_{loc}^{l,p}(M)) \cap C^{k}(M)$?
- 2 How do these sets depend on the *topology* and *geometry* of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

$$\begin{split} M \text{ smooth manifold with coordinates } (x^{\alpha}), \ \alpha &= 1, \cdots, m \\ \xi &= (\xi^{\alpha}) \text{ smooth vector field on } M \\ \Phi^t_{\xi} &: M \to M \text{ flow of } \xi, \text{ i.e. } \xi_p &= \frac{d}{dt} \Phi^t_{\xi}(p) \Big|_{t=0}, \ \forall p \in M \\ \xi \text{ can be seen as a 1st-order linear Partial Diff. Op. on } C^{\infty}(M) \\ L_{\xi}f(p) &:= \frac{d}{dt} f(\Phi^t_{\xi}(p)) \Big|_{t=0} = \xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p) \end{split}$$

Natural Questions:

Ingredients:

1 How to characterize the sets $L_{\xi}(C^r(M)) \cap C^k(M), L_{\xi}(W^{l,p}_{loc}(M)) \cap C^k(M)$?

2 How do these sets depend on the *topology* and *geometry* of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

$$\begin{split} M \text{ smooth manifold with coordinates } (x^{\alpha}), \ \alpha &= 1, \cdots, m \\ \xi &= (\xi^{\alpha}) \text{ smooth vector field on } M \\ \Phi_{\xi}^{t} &: M \to M \text{ flow of } \xi, \text{ i.e. } \xi_{p} &= \frac{d}{dt} \Phi_{\xi}^{t}(p) \Big|_{t=0}, \ \forall p \in M \\ \xi \text{ can be seen as a 1st-order linear Partial Diff. Op. on } C^{\infty}(M) \\ L_{\xi}f(p) &:= \frac{d}{dt} f(\Phi_{\xi}^{t}(p)) \Big|_{t=0} = \xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p) \end{split}$$

Natural Questions:

- How to characterize the sets $L_{\xi}(C^{r}(M)) \cap C^{k}(M)$, $L_{\xi}(W_{loc}^{l,p}(M)) \cap C^{k}(M)$?
- 2 How do these sets depend on the topology and geometry of the foliation F_ξ of all integral trajectories of ξ?

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation $L_{\xi}f = g$, $g \in C^k(M)$

It is well-known that the solvability of the CE is locally trivial since, by the method of characteristics, if τ is some curve everywhere transversal to ξ 's flow, then

$$f(p) = f_{\tau}(p_0) + \int_0^{p_{\tau}, p_0} g\left(\Phi_{\xi}^t(p)\right) dt$$

where f_{τ} is any function defined on τ , p_0 the (unique) point of τ s.t. p_0 and p belong to the same leaf of \mathcal{F}_{ξ} and t_{p,p_0} is the time needed to travel between these two points under Φ_{ε}^t .

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation $L_{\xi}f = g$, $g \in C^k(M)$

It is well-known that the solvability of the CE is locally trivial since, by the method of characteristics, if τ is some curve everywhere transversal to ξ 's flow, then

$$f(p) = f_{\tau}(p_0) + \int_0^{t_{p,p_0}} g\left(\Phi_{\xi}^t(p)\right) dt$$

where f_{τ} is any function defined on τ , p_0 the (unique) point of τ s.t. p_0 and p belong to the same leaf of \mathcal{F}_{ξ} and t_{p,p_0} is the time needed to travel between these two points under Φ_{ξ}^t .

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation $L_{\xi}f = g, \quad g \in C^k(M)$

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This f provides a global solution iff γ covers M under Φ^t_{ξ} :

Theorem (Duistermaat & Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}(C^{\infty}(M)) = C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:
S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems", arXiv:math/0701461v3
and by G. Forni in case of Sobolev spaces of weakly diff. functions which are zero in some nbhd of the zeros of ξ:
G. Forni, "Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This f provides a global solution iff γ covers M under Φ^t_{ξ} :

Theorem (Duistermaat & Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}(C^{\infty}(M)) = C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:

S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems", arXiv:math/0701461v3

and by G. Forni in case of Sobolev spaces of weakly diff. functions which are zero in some nbhd of the zeros of ξ :

G. Forni, "Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This f provides a global solution iff γ covers M under Φ^t_{ξ} :

Theorem (Duistermaat & Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}(C^{\infty}(M)) = C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:

S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems", arXiv:math/0701461v3

and by G. Forni in case of Sobolev spaces of weakly diff. functions which are zero in some nbhd of the zeros of ξ :

G. Forni, "Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

Theorem (Novikov, 2007)

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Let (M, Ω) be a compact symplectic surface of genus ≥ 2 . Then, for a generic $\xi \in Ham_{\Omega}(M)$, the operator $L_{\xi}: C^{\infty}(M) \to C^{\infty}(M)$ has an infinite-dimensional cokernel, namely there infinitely many linearly independent functions not in the image of L_{ξ} .

Theorem (Forni, 1997)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2 and $\Sigma \subset M$ a finite set. Then there is a $r \geq 1$ such that, for almost all $\xi \in Ham_{\Omega}(M)$ s.t. $\{\xi = 0\} = \Sigma$, if $g \in W^{r-1,2}(M)$ has compact support in $M \setminus \Sigma$ and $\int_{M} g \Omega = 0$ then $L_{\xi}f = g$ has a distributional solution in $W_{loc}^{-r,2}(M \setminus \Sigma)$.

Theorem (Novikov, 2007)

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Let (M, Ω) be a compact symplectic surface of genus ≥ 2 . Then, for a generic $\xi \in Ham_{\Omega}(M)$, the operator $L_{\xi}: C^{\infty}(M) \to C^{\infty}(M)$ has an infinite-dimensional cokernel, namely there infinitely many linearly independent functions not in the image of L_{ξ} .

Theorem (Forni, 1997)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2 and $\Sigma \subset M$ a finite set. Then there is a $r \geq 1$ such that, for almost all $\xi \in Ham_{\Omega}(M)$ s.t. $\{\xi = 0\} = \Sigma$, if $g \in W^{r-1,2}(M)$ has compact support in $M \setminus \Sigma$ and $\int_{M} g \Omega = 0$ then $L_{\xi}f = g$ has a distributional solution in $W_{loc}^{-r,2}(M \setminus \Sigma)$.

APR 2 4 2 2 4 4 2 2

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems We are interested in the particular case $M = \mathbb{R}^2$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a *regular* vector field. Analog. we call a smooth function f *regular* if its differential df is never zero.

Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems We are interested in the particular case $M = \mathbb{R}^2$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a *regular* vector field. Analog. we call a smooth function f *regular* if its differential df is never zero.

Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems We are interested in the particular case $M = \mathbb{R}^2$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a *regular* vector field. Analog. we call a smooth function f *regular* if its differential df is never zero.

Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems We are interested in the particular case $M = \mathbb{R}^2$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a *regular* vector field. Analog. we call a smooth function f *regular* if its differential df is never zero.

Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

General Motivations

- this is the simplest PDE on manifolds;
- ξ and (g + 1)ξ have smoothly conjugate flows iff g ∈ L_ξ(C[∞](M)) [Katok];
- a C[∞] metric g (dt)² on the leaves of F_ξ arises as the pull-back smooth function f : M → ℝ iff g ∈ L_ξ(C[∞](M))
 [A. Loi, G. D'Ambra & RdL];

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. L_ξΩ = 0] iff ker L_ξ contains regular functions, i.e. iff F_ξ's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi}f = 0$ has no non-trivial solutions [Wazewsky].

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1)\xi$ have smoothly conjugate flows iff $g \in L_{\xi}(C^{\infty}(M))$ [Katok];
- a C[∞] metric g (dt)² on the leaves of F_ξ arises as the pull-back smooth function f : M → ℝ iff g ∈ L_ξ(C[∞](M)) [A. Loi, G. D'Ambra & RdL];

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. L_ξΩ = 0] iff ker L_ξ contains regular functions, i.e. iff F_ξ's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi}f = 0$ has no non-trivial solutions [Wazewsky].

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1)\xi$ have smoothly conjugate flows iff $g \in L_{\xi}(C^{\infty}(M))$ [Katok];
- a C^{∞} metric $g(dt)^2$ on the leaves of \mathcal{F}_{ξ} arises as the pull-back smooth function $f: M \to \mathbb{R}$ iff $g \in L_{\xi}(C^{\infty}(M))$ [A. Loi, G. D'Ambra & RdL];

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. L_ξΩ = 0] iff ker L_ξ contains regular functions, i.e. iff F_ξ's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi}f = 0$ has no non-trivial solutions [Wazewsky].

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1)\xi$ have smoothly conjugate flows iff $g \in L_{\xi}(C^{\infty}(M))$ [Katok];
- a C[∞] metric g (dt)² on the leaves of F_ξ arises as the pull-back smooth function f : M → ℝ iff g ∈ L_ξ(C[∞](M)) [A. Loi, G. D'Ambra & RdL];

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. L_ξΩ = 0] iff ker L_ξ contains regular functions, i.e. iff F_ξ's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that L_ξf = 0 has no non-trivial solutions [Wazewsky].

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1)\xi$ have smoothly conjugate flows iff $g \in L_{\xi}(C^{\infty}(M))$ [Katok];
- a C[∞] metric g (dt)² on the leaves of F_ξ arises as the pull-back smooth function f : M → ℝ iff g ∈ L_ξ(C[∞](M)) [A. Loi, G. D'Ambra & RdL];

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. L_ξΩ = 0] iff ker L_ξ contains regular functions, i.e. iff F_ξ's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi}f = 0$ has no non-trivial solutions [Wazewsky].

References on Regular Foliations on \mathbb{R}^2

A few references:

- H. Whitney, Regular families of curves, Annals of Math., 34:2, 1933, 244-270
- T. Wazewsky, Sur un probleme de caractere integral relatif a l'equation dz/dx + Q(x,y)dz/dy = 0, Mathematica Cluj, 8, **1934**, 103-116
- E. Kamke, Uber die partielle Differentialgleichung f(x,y)dz/dx + g(x,y)dz/dy = h(x,y). II, Math. Z., 42, **1936**, 287-300
- W. Kaplan, Regular curve-families filling the plane, Duke Math. J., 7:1, 1940, 154-185
- L. Markus, Global structure of ordinary differential equations on the plane, Trans. of the AMS, 76:1, 1954, 127-148
- A. Hæfliger & G. Reeb, Varietés (non separées) a une dimension et structures feuilletées du plan, Enseignement Math., 3, 1957, 107-125
- J.L. Weiner, First integrals for a direction field on a simply connected plane domain, Pac. J. of Math., 132:1, **1988**, 195-208
- L. Mazzi and M. Sabatini, On the existence of global first integrals in the plane, Ann. di Mat. Pura ed Appl., IV, 1993, 143-160

Equation in R² R. De Leo

Cohomological

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Fundamental Results

Definition

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ {}_{\mathbb{D}^{\,2}} \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems A function f is a First Integral for ξ if $L_{\xi}f = 0$ and f is regular. It is a *weak* FI if df = 0 is a cod-1 submfd. It is a C^0 FI if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ with no C^1 first integral.

Fheorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)

Every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has a C^0 first integral.

Fundamental Results

Definition

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ {}_{\mathbb{D}^{\,2}} \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems A function f is a First Integral for ξ if $L_{\xi}f = 0$ and f is regular. It is a *weak* FI if df = 0 is a cod-1 submfd. It is a C^0 FI if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ with no C^1 first integral.

Theorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)

Every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has a C^0 first integral.

Fundamental Results

Definition

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ {}_{\mathbb{D}^{\,2}} \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems A function f is a First Integral for ξ if $L_{\xi}f = 0$ and f is regular. It is a *weak* FI if df = 0 is a cod-1 submfd. It is a C^0 FI if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ with no C^1 first integral.

Theorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)

Every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has a C^0 first integral.

Solvability and Smooth Structure of leaf space

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Theorem (Hæfliger & Reeb, 1957)

The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is a <u>possibly non-Hausdorff</u> 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hæfliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions.

Theorem (Hæfliger & Reeb, 1957)

 $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is Hamiltonian [with resp. to some symplectic form] iff $C^{\infty}(\mathcal{F}_{\xi})$ contains regular functions.

Solvability and Smooth Structure of leaf space

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Theorem (Hæfliger & Reeb, 1957)

The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is a <u>possibly non-Hausdorff</u> 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hæfliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions.

Theorem (Hæfliger & Reeb, 1957)

 $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is Hamiltonian [with resp. to some symplectic form] iff $C^{\infty}(\mathcal{F}_{\xi})$ contains regular functions.

Solvability and Smooth Structure of leaf space

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Theorem (Hæfliger & Reeb, 1957)

The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is a <u>possibly non-Hausdorff</u> 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hæfliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions.

Theorem (Hæfliger & Reeb, 1957)

 $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ is Hamiltonian [with resp. to some symplectic form] iff $C^{\infty}(\mathcal{F}_{\xi})$ contains regular functions.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

 $\mathsf{CE} \text{ in } \mathbb{R}^2$

A Basic Example

General Results & Open Problems

In this subject it is central the concept of separatrices of a vector field ξ .

Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory. Clearly $\xi \simeq const$ iff it has separatrices.

E.g. $y = \pm \pi/2, \pm 3\pi/2, \ldots$ are separatrices of $\xi = (\sin y, \cos y)$

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

 $\mathsf{CE} \text{ in } \mathbb{R}^2$

A Basic Example

General Results & Open Problems

In this subject it is central the concept of separatrices of a vector field ξ . Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory. 12/23

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems In this subject it is central the concept of separatrices of a vector field ξ . Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory. Clearly $\xi \simeq const$ iff it has separatrices.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Paradigmatic example: the \boldsymbol{Y} space

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems The simplest non-Hausdorff 1-dim mfd is the "letter **Y**", namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff x = y, x, y < 0.

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems The simplest non-Hausdorff 1-dim mfd is the "letter **Y**", namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff x = y when x, y < 0.

A smooth structure on **Y** is given by a pair of charts $\varphi_{1,2}: \mathbb{R} \to r_{1,2}$ s.t. the coordinate changes $\varphi_1^{-1}\varphi_2$ and $\varphi_2^{-1}\varphi_1$ are smooth diffeomorphisms of $(-\infty, 0)$ in itself.

The key point here is that $\varphi_1^{-1}\varphi_2$ (or its inverse) can be divergent at x = 0 and it can do that with different speeds.

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems The simplest non-Hausdorff 1-dim mfd is the "letter **Y**", namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff x = y when x, y < 0.

A smooth structure on **Y** is given by a pair of charts $\varphi_{1,2}: \mathbb{R} \to r_{1,2}$ s.t. the coordinate changes $\varphi_1^{-1}\varphi_2$ and $\varphi_2^{-1}\varphi_1$ are smooth diffeomorphisms of $(-\infty, 0)$ in itself.

The key point here is that $\varphi_1^{-1}\varphi_2$ (or its inverse) can be divergent at x = 0 and it can do that with different speeds.

Paradigmatic example: the Y space

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Two inequivalent smooth structures on \mathbf{Y} :

- **1** $\mathcal{A}_1 = \{\varphi_1(t) = t, \varphi_2(t) = t\}$. Then $C^{\infty}(\mathbf{Y}_{\mathcal{A}_1})$ contains regular functions, e.g. $f_{\phi_1}(t) = t = f_{\phi_2}(t)$.
- **2** $A_3 = \{\varphi_1(t) = t, \varphi_2(t) = t^3\}$. Then $C^{\infty}(\mathbf{Y}_{A_3})$ contains no regular functions!

Indeed $f_2(t)=f_1(arphi_1arphi_2^{-1}(t))$ so that, in \mathcal{A}_3 ,

$$\begin{split} f_1'(0) &= \left[(\varphi_2 \varphi_1^{-1}(t))' f_2'(\varphi_2 \varphi_1^{-1}(t)) \right] \bigg|_{t=0} = \left[3t^2 f_2'(t^3) \right] \bigg|_{t=0} = 0 \\ & \text{ as long as } f_2 \text{ is } C^1. \end{split}$$

Note that we get an inequivalent smooth structure \mathcal{A}_{2k+1} for every $k = 0, 1, \ldots$ by setting $\varphi_2(t) = t^{2k+1}$.

Paradigmatic example: the Y space

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Two inequivalent smooth structures on \mathbf{Y} :

- **1** $\mathcal{A}_1 = \{\varphi_1(t) = t, \varphi_2(t) = t\}$. Then $C^{\infty}(\mathbf{Y}_{\mathcal{A}_1})$ contains regular functions, e.g. $f_{\phi_1}(t) = t = f_{\phi_2}(t)$.
- **2** $A_3 = \{\varphi_1(t) = t, \varphi_2(t) = t^3\}$. Then $C^{\infty}(\mathbf{Y}_{A_3})$ contains no regular functions!

Indeed $f_2(t)=f_1(arphi_1arphi_2^{-1}(t))$ so that, in \mathcal{A}_3 ,

$$\begin{split} f_1'(0) &= \left[(\varphi_2 \varphi_1^{-1}(t))' f_2'(\varphi_2 \varphi_1^{-1}(t)) \right] \bigg|_{t=0} = \left[3t^2 f_2'(t^3) \right] \bigg|_{t=0} = 0 \\ & \text{ as long as } f_2 \text{ is } C^1. \end{split}$$

Note that we get an inequivalent smooth structure \mathcal{A}_{2k+1} for every $k = 0, 1, \ldots$ by setting $\varphi_2(t) = t^{2k+1}$.

The case $\xi = (2y, 1 - y^2)$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This picture shows the characteristics of $\xi = (2y, 1 - y^2)$ and (dashed) of $\eta = (-2, 2y)$. Note that $\mathcal{F}_{\xi} \simeq \mathbf{Y}$.

The case $\xi = (2y, 1 - y^2)$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems This picture shows the characteristics of $\xi = (2y, 1 - y^2)$ and (dashed) of $\eta = (-2, 2y)$. Note that $\mathcal{F}_{\xi} \simeq \mathbf{Y}$.

The case $\xi = 2y\partial_x + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

The two lines $y = \pm 1$ are *inseparable* in the quotient topology of \mathcal{F}_{ξ} ,

in fact they are the only two separatrices of ξ and are precisely the double point of \mathbf{Y} . e regular vector field η is everywhere transversal to ξ

イロト 不同下 イヨト イヨト

1

The case $\xi = 2y\partial_x + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems The two lines $y = \pm 1$ are *inseparable* in the quotient topology of \mathcal{F}_{ξ} , in fact they are the only two separatrices of ξ and are precisely the double point of **Y**.

イロト 不得 トイヨト イヨト

3

The case $\xi = 2y\partial_x + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems The two lines $y = \pm 1$ are *inseparable* in the quotient topology of \mathcal{F}_{ξ} , in fact they are the only two separatrices of ξ and are precisely the double point of **Y**. The regular vector field η is everywhere transversal to ξ .

イロン イロン イヨン イヨン 三日

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Consider $F(x, y) = (y^2 - 1)e^x$ and $G(x, y) = 2ye^x$. By direct calculation it's easy to see that $L_{\xi}F = 0$, $L_{\xi}G = L_{\eta}F = 2(1 + y^2)e^{2x} > 0$, $L_{\eta}G = 0$.

The first and last relations say that both ξ and η are Hamiltonian w/resp to $\Omega = dx \wedge dy$, the central ones express the mutual trasversality of \mathcal{F}_{ξ} and \mathcal{F}_{η} . The map $\Phi_{FG} = (F, G) : \mathbb{R}^2 \to \mathbb{R}^2$ straightens both foliations:

$$\xi' = \frac{1}{L_{\xi}G}\xi, \ \eta' = \frac{1}{L_{\xi}G}\eta$$
$$(\Phi_{FG})_*\xi' = \partial_{y'}, \ (\Phi_{FG})_*\eta' = \partial_{x'}$$

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Consider $F(x, y) = (y^2 - 1)e^x$ and $G(x, y) = 2ye^x$. By direct calculation it's easy to see that $L_{\xi}F = 0$, $L_{\xi}G = L_{\eta}F = 2(1 + y^2)e^{2x} > 0$, $L_{\eta}G = 0$.

The first and last relations say that both ξ and η are Hamiltonian w/resp to $\Omega = dx \wedge dy$, the central ones express the mutual trasversality of \mathcal{F}_{ξ} and \mathcal{F}_{η} .

The map $\Phi_{FG} = (F,G) : \mathbb{R}^2 \to \mathbb{R}^2$ straightens both foliations:

$$\xi' = \frac{1}{L_{\xi}G}\xi, \ \eta' = \frac{1}{L_{\xi}G}\eta$$
$$(\Phi_{FG})_*\xi' = \partial_{y'}, \ (\Phi_{FG})_*\eta' = \partial_{x'}$$

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Consider $F(x, y) = (y^2 - 1)e^x$ and $G(x, y) = 2ye^x$. By direct calculation it's easy to see that $L_{\xi}F = 0$, $L_{\xi}G = L_{\eta}F = 2(1 + y^2)e^{2x} > 0$, $L_{\eta}G = 0$.

The first and last relations say that both ξ and η are Hamiltonian w/resp to $\Omega = dx \wedge dy$, the central ones express the mutual trasversality of \mathcal{F}_{ξ} and \mathcal{F}_{η} . The map $\Phi_{FG} = (F, G) : \mathbb{R}^2 \to \mathbb{R}^2$ straightens both foliations:

$$\xi' = \frac{1}{L_{\xi}G}\xi, \ \eta' = \frac{1}{L_{\xi}G}\eta$$
$$(\Phi_{FG})_*\xi' = \partial_{y'}, \ (\Phi_{FG})_*\eta' = \partial_{x'}$$

The case $\xi = 2y\partial_x + (1-y^2)\partial_y$

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

 $\ln \mathbb{F}_0 = \mathbb{R}^2 \setminus [0, \infty) \times \{0\}$ the two separatrices are $\{0\} \times (0,\infty) \text{ and } \{0\} \times (-\infty,0)$

18/23

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

 $\ln \mathbb{F}_0 = \mathbb{R}^2 \setminus [0, \infty) \times \{0\}$ the two separatrices are $\{0\} \times (0,\infty) \text{ and } \{0\} \times (-\infty,0)$ and the Cohomological Equation $L_{\mathcal{E}'}f = g, g \in C^k(\mathbb{R}^2)$

18/23

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

 $\ln \mathbb{F}_0 = \mathbb{R}^2 \setminus [0, \infty) \times \{0\}$ the two separatrices are $\{0\} \times (0,\infty) \text{ and } \{0\} \times (-\infty,0)$ and the Cohomological Equation $L_{\mathcal{E}'}f = g, g \in C^k(\mathbb{R}^2)$ writes simply as $\partial_{y'} f(x', y') = q(x', y'), \ q \in C^k(\mathbb{F}_0).$

18 / 23

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

 $\ln \mathbb{F}_0 = \mathbb{R}^2 \setminus [0, \infty) \times \{0\}$ the two separatrices are $\{0\} \times (0,\infty) \text{ and } \{0\} \times (-\infty,0)$ and the Cohomological Equation $L_{\mathcal{E}'}f = g, g \in C^k(\mathbb{R}^2)$ writes simply as $\partial_{y'} f(x', y') = q(x', y'), \ q \in C^k(\mathbb{F}_0).$ A C^k solution extends "across the two separatrices" to a C^r (resp. $W_{loc}^{k,p}$) function iff the "gap function" $gap(x') = \int_{-1}^{1} g(x', y') dy', \ x' < 0,$

can be extended to a C^r (resp. $W_{loc}^{k,p}$) solution at the origin.

イロト イポト イヨト イヨト 三日

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems For example consider $g(x',y') = y' \in C^{\infty}(\mathbb{R}^2)$, so that $f(x',y') = (y')^2/2$.

In the original \mathbb{R}^2 , this means that the solution of $L_{\xi}f=2(1+y^2)e^x(2ye^x)=4y(1+y^2)e^{2x}$ is $f(x,y)=2y^2e^{2x}\in C^\infty(\mathbb{R}^2).$

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems For example consider $g(x',y') = y' \in C^{\infty}(\mathbb{R}^2)$, so that $f(x',y') = (y')^2/2$.

In the original \mathbb{R}^2 , this means that the solution of $L_{\xi}f = 2(1+y^2)e^x(2ye^x) = 4y(1+y^2)e^{2x}$ is $f(x,y) = 2y^2e^{2x} \in C^{\infty}(\mathbb{R}^2)$.

イロト 不得下 イヨト イヨト 二日

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems
$$\begin{split} & \text{Now consider} \\ g(x',y') = \frac{1}{\sqrt{(x')^2 + (y')^2}} \in L^1_{loc}(\mathbb{R}^2) \cap C^\infty(\mathbb{R}^2 \setminus \{(0,0)\}), \\ & \text{so that } f(x',y') = \ln(\sqrt{(x')^2 + (y')^2} + y'). \end{split}$$

In the original \mathbb{R}^2 , this means that the solution of $L_{\xi}f=2(1+y^2)e^x\frac{1}{2(1+y^2)e^x}=1$

is $f(x,y) = x + 2\ln|1-y| \in L^1_{loc}(\mathbb{R}^2) \cap C^{\infty}(\mathbb{R}^2 \setminus \{y=1\}).$

The case $\xi = 2y\partial_r + (1-y^2)\partial_y$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems Now consider $g(x',y') = \frac{1}{\sqrt{(x')^2 + (y')^2}} \in L^1_{loc}(\mathbb{R}^2) \cap C^{\infty}(\mathbb{R}^2 \setminus \{(0,0)\}),$ so that $f(x',y') = \ln(\sqrt{(x')^2 + (y')^2} + y').$

In the original \mathbb{R}^2 , this means that the solution of $L_{\xi}f = 2(1+y^2)e^x \frac{1}{2(1+y^2)e^x} = 1$ is $f(x,y) = x + 2\ln|1-y| \in L^1_{loc}(\mathbb{R}^2) \cap C^{\infty}(\mathbb{R}^2 \setminus \{y=1\}).$

General Results

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

For every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, dim coker $L_{\xi} = \infty$ iff ξ has separatrices.

Theorem (RdL, 2011)

Theorem (RdL, 2011)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has only isolated separatrices and every separatrix is inseparable from just a finite number of other characteristics, $L_{\xi}f > 0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, each pair of adjacent inseparable characteristics has a saturated nhbd diffemorphic to \mathbb{F}_0 and the CE reduces there to $\partial_{y'}f = g$.

General Results

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Theorem (RdL, 2011)

For every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, dim coker $L_{\xi} = \infty$ iff ξ has separatrices.

Theorem (RdL, 2011)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has only isolated separatrices and every separatrix is inseparable from just a finite number of other characteristics, $L_{\xi}f > 0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, each pair of adjacent inseparable characteristics has a saturated nhbd diffemorphic to \mathbb{F}_0 and the CE reduces there to $\partial_{y'}f = g$.

General Results

$\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

Theorem (RdL, 2011)

For every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, dim coker $L_{\xi} = \infty$ iff ξ has separatrices.

Theorem (RdL, 2011)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$ has only isolated separatrices and every separatrix is inseparable from just a finite number of other characteristics, $L_{\xi}f > 0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$, each pair of adjacent inseparable characteristics has a saturated nhbd diffemorphic to \mathbb{F}_0 and the CE reduces there to $\partial_{y'}f = g$.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

1 Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?

2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?

- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- (4) Extend these results to the cylinder and other surfaces.
- **5** Extend these results to \mathbb{R}^n .
- **6** Study 2-dimensional non-Hausdorff manifolds.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- **1** Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- 2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- () Extend these results to the cylinder and other surfaces.

イロト 不得下 イヨト イヨト 二日

- **5** Extend these results to \mathbb{R}^n .
- **6** Study 2-dimensional non-Hausdorff manifolds.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- 1 Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- 2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- ④ Extend these results to the cylinder and other surfaces.
- **5** Extend these results to \mathbb{R}^n .
- **6** Study 2-dimensional non-Hausdorff manifolds.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- 1 Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- 2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- **4** Extend these results to the cylinder and other surfaces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

22 / 23

5 Extend these results to \mathbb{R}^n .

6 Study 2-dimensional non-Hausdorff manifolds.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- 1 Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- 2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- **④** Extend these results to the cylinder and other surfaces.

22 / 23

5 Extend these results to \mathbb{R}^n .

6 Study 2-dimensional non-Hausdorff manifolds.

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- **1** Does $L_{\xi}f > 0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- 2 What can be said about \mathcal{F}_{ξ} for *generic* vector fields in $\xi \in \mathfrak{X}_r(\mathbb{R}^2)$?
- **3** Study the space of solutions of $\partial_{y'}f = g$ in \mathbb{F}_0 .
- **④** Extend these results to the cylinder and other surfaces.
- **5** Extend these results to \mathbb{R}^n .
- **6** Study 2-dimensional non-Hausdorff manifolds.

Recent references

 $\begin{array}{c} \text{Cohomological} \\ \text{Equation in} \\ \mathbb{R}^2 \end{array}$

R. De Leo

General Setting

CE in \mathbb{R}^2

A Basic Example

General Results & Open Problems

- G. Forni, The CE for area-preserving flows on compact surfaces, El. Res. Ann. of the AMS, 1:3, 1995
- G. Forni, Solutions of the CE for area-preserving flows on compact surfaces of higher genus, Ann. of Math., 2:2, 295-344, 1999
- G. Forni, Sobolev regularity of solutions of the CE, arXiv:0707.0940, 2007
- S.P. Novikov, Dynamical systems and differential forms. Low dimensional Hamiltonian systems., Geometric and probabilistic structures in dynamics, 271-287, Contemp. Math., 469, AMS, 2008, arXiv:math/0701461
- R. De Leo, Solvability of the CE for regular vector fields on the plane, Ann. of Gl. An. and Geom., 39:3, 231-248, 2011, arXiv:1007.3016
- R. De Leo, T. Gramtchev and A. Kirilov, Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane, in "Pseudo-Differential Operators: Analysis, Applications and Computations", L. Rodino, M.W. Wong and H. Zhu eds., Springer, 2011, arXiv:1001.2121
- R. De Leo, Weak solutions of the CE in the plane for regular vector fields, Math. Phys., An. and Geom., 18:18, 2015, arXiv:1401.5158