Solvability of the Cohomological Equation for regular vector fields on the plane

Roberto De Leo
Department of Mathematics
Howard University
Washigton, DC
\&
INFN
Cagliari, Italy

Lehigh University Geometry and Topology Conference 2016

Outline

(1) The General Setting
(2) The Cohomological Equation in the Plane
(3) A Basic Example
(4) General Results \& Open Problems

Broad Statement of the Problem

Cohomological Equation in \mathbb{R}^{2}
R. De Leo

General Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

Ingredients:

M smooth manifold with coordinates $\left(x^{\alpha}\right), \alpha=1, \cdots, m$

$$
\xi=\left(\xi^{\alpha}\right) \text { smooth vector field on } M
$$

can be seen as a 1st-order linear Partial Diff. Op. on $C^{\infty}(M)$

Natural Questions:

(1) How to characterize the sets $L_{\xi}\left(C^{r}(M)\right) \cap C^{k}(M), L_{\xi}\left(W_{l o c}^{l, p}(M)\right) \cap C^{k}(M)$?
(2) How do these sets depend on the topology and geometry of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

Broad Statement of the Problem

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General Setting

CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

Ingredients:

M smooth manifold with coordinates $\left(x^{\alpha}\right), \alpha=1, \cdots, m$

$$
\begin{gathered}
\xi=\left(\xi^{\alpha}\right) \text { smooth vector field on } M \\
\Phi_{\xi}^{t}: M \rightarrow M \text { flow of } \xi \text {, i.e. } \xi_{p}=\left.\frac{d}{d t} \Phi_{\xi}^{t}(p)\right|_{t=0}, \forall p \in M
\end{gathered}
$$

ξ can be seen as a 1st-order linear Partial Diff. Op. on $C^{\infty}(M)$

Natural Questions:

(1) How to characterize the sets $L_{\xi}\left(C^{r}(M)\right) \cap C^{k}(M), L_{\xi}\left(W_{l o c}^{l, p}(M)\right) \cap C^{k}(M)$?
(2) How do these sets depend on the topology and geometry of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

Broad Statement of the Problem

Ingredients:

M smooth manifold with coordinates $\left(x^{\alpha}\right), \alpha=1, \cdots, m$

$$
\begin{gathered}
\xi=\left(\xi^{\alpha}\right) \text { smooth vector field on } M \\
\Phi_{\xi}^{t}: M \rightarrow M \text { flow of } \xi \text {, i.e. } \xi_{p}=\left.\frac{d}{d t} \Phi_{\xi}^{t}(p)\right|_{t=0}, \forall p \in M
\end{gathered}
$$

ξ can be seen as a 1st-order linear Partial Diff. Op. on $C^{\infty}(M)$

$$
L_{\xi} f(p):=\left.\frac{d}{d t} f\left(\Phi_{\xi}^{t}(p)\right)\right|_{t=0}=\xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p)
$$

Natural Questions:

(1) How to characterize the sets $L_{\xi}\left(C^{r}(M)\right) \cap C^{k}(M), L_{\xi}\left(W_{l o c}^{l, p}(M)\right) \cap C^{k}(M)$?
(2) How do these sets depend on the topology and geometry of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

Broad Statement of the Problem

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General Setting

CE in \mathbb{R}^{2}
A Basic
Example
General Results \&

Problems

Ingredients:

M smooth manifold with coordinates $\left(x^{\alpha}\right), \alpha=1, \cdots, m$

$$
\begin{gathered}
\xi=\left(\xi^{\alpha}\right) \text { smooth vector field on } M \\
\Phi_{\xi}^{t}: M \rightarrow M \text { flow of } \xi \text {, i.e. } \xi_{p}=\left.\frac{d}{d t} \Phi_{\xi}^{t}(p)\right|_{t=0}, \forall p \in M
\end{gathered}
$$

ξ can be seen as a 1st-order linear Partial Diff. Op. on $C^{\infty}(M)$

$$
L_{\xi} f(p):=\left.\frac{d}{d t} f\left(\Phi_{\xi}^{t}(p)\right)\right|_{t=0}=\xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p)
$$

Natural Questions:

(1) How to characterize the sets

$$
L_{\xi}\left(C^{r}(M)\right) \cap C^{k}(M), L_{\xi}\left(W_{l o c}^{l, p}(M)\right) \cap C^{k}(M) ?
$$

(2) How do these sets depend on the topology and geometry
of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

Broad Statement of the Problem

Ingredients:

M smooth manifold with coordinates $\left(x^{\alpha}\right), \alpha=1, \cdots, m$

$$
\begin{gathered}
\xi=\left(\xi^{\alpha}\right) \text { smooth vector field on } M \\
\Phi_{\xi}^{t}: M \rightarrow M \text { flow of } \xi \text {, i.e. } \xi_{p}=\left.\frac{d}{d t} \Phi_{\xi}^{t}(p)\right|_{t=0}, \forall p \in M
\end{gathered}
$$

ξ can be seen as a 1st-order linear Partial Diff. Op. on $C^{\infty}(M)$

$$
L_{\xi} f(p):=\left.\frac{d}{d t} f\left(\Phi_{\xi}^{t}(p)\right)\right|_{t=0}=\xi^{\alpha} \frac{\partial f}{\partial x^{\alpha}}(p)
$$

Natural Questions:

(1) How to characterize the sets

$$
L_{\xi}\left(C^{r}(M)\right) \cap C^{k}(M), L_{\xi}\left(W_{l o c}^{l, p}(M)\right) \cap C^{k}(M) ?
$$

(2) How do these sets depend on the topology and geometry of the foliation \mathcal{F}_{ξ} of all integral trajectories of ξ ?

Cohomological Equation

This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation

$$
L_{\xi} f=g, \quad g \in C^{k}(M)
$$

It is well-known that the solvability of the CE is locally trivial since, by the method of characteristics, if τ is some curve everywhere transversal to ξ 's flow, then
where f_{τ} is any function defined on τ, p_{0} the (unique) point of τ s.t. p_{0} and p belong to the same leaf of \mathcal{F}_{ξ} and $t_{p, p_{0}}$ is the time needed to travel between these two points under Φ_{ξ}^{t}

Cohomological Equation

This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation

$$
L_{\xi} f=g, \quad g \in C^{k}(M)
$$

It is well-known that the solvability of the CE is locally trivial since, by the method of characteristics, if τ is some curve everywhere transversal to ξ 's flow, then

$$
f(p)=f_{\tau}\left(p_{0}\right)+\int_{0}^{t_{p, p_{0}}} g\left(\Phi_{\xi}^{t}(p)\right) d t
$$

where f_{τ} is any function defined on τ, p_{0} the (unique) point of τ s.t. p_{0} and p belong to the same leaf of \mathcal{F}_{ξ} and $t_{p, p_{0}}$ is the time needed to travel between these two points under Φ_{ξ}^{t}.

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \&
Open Problems

Cohomological Equation

This problem is equivalent to characterizing the functions g for which it is solvable the so-called Cohomological Equation

$$
L_{\xi} f=g, \quad g \in C^{k}(M)
$$

Cohomological
Equation in
\mathbb{R}^{2}
R. De Leo

General Setting

CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

Cohomological Equation

This f provides a global solution iff γ covers M under Φ_{ξ}^{t} :

Theorem (Duistermaat \& Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}\left(C^{\infty}(M)\right)=C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:
S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems', arXiv:math/0701461v3
and by G. Forni in case of Sobolev spaces of weakly diff. functions which are zero in some nbhd of the zeros of ξ :
G. Forni, "Solutions of the cohomological equation for area-preserving
flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

Cohomological Equation

This f provides a global solution iff γ covers M under Φ_{ξ}^{t} :

Theorem (Duistermaat \& Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}\left(C^{\infty}(M)\right)=C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:
S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems", arXiv:math/0701461v3
and by G. Forni in case of Sobolev spaces of weakly diff.
functions which are zero in some nbhd of the zeros of ξ :
G. Forni, "Solutions of the cohomological equation for area-preserving
flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

Cohomological Equation

This f provides a global solution iff γ covers M under Φ_{ξ}^{t} :

Theorem (Duistermaat \& Hormander, 1972)

Let M be an open manifold. Then $L_{\xi}\left(C^{\infty}(M)\right)=C^{\infty}(M)$ iff ξ admits a global transversal, i.e. iff $\mathcal{F}_{\xi} \simeq \mathbb{R}$.

The global solvability of the CE was recently investigated for compact surfaces by S.P. Novikov in case of smooth functions:
S.P. Novikov, "Dynamical Systems and Differential Forms. Low Dimensional Hamiltonian Systems", arXiv:math/0701461v3
and by G. Forni in case of Sobolev spaces of weakly diff. functions which are zero in some nbhd of the zeros of ξ :
G. Forni, "Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus", Ann. of Math. 2:2 (1997)

Cohomological Equation

Theorem (Novikov, 2007)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2. Then, for a generic $\xi \in \operatorname{Ham}_{\Omega}(M)$, the operator $L_{\xi}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ has an infinite-dimensional cokernel, namely there infinitely many linearly independent functions not in the image of L_{ξ}.

Theorem (Forni, 1997)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2 and $\Sigma \subset M$ a finite set. Then there is a $r \geq 1$ such that, for almost all $\xi \in \operatorname{Ham}_{\Omega}(M)$ s.t. $\{\xi=0\}=\Sigma$, if $g \in W^{r-1,2}(M)$ has compact support in $M \backslash \Sigma$ and $\int_{M} g \Omega=0$ then $L_{\xi} f=g$ has a distributional solution in $W_{\text {loc }}^{-r, 2}(M \backslash \Sigma)$

Cohomological Equation

Theorem (Novikov, 2007)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2. Then, for a generic $\xi \in \operatorname{Ham}_{\Omega}(M)$, the operator $L_{\xi}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ has an infinite-dimensional cokernel, namely there infinitely many linearly independent functions not in the image of L_{ξ}.

Theorem (Forni, 1997)

Let (M, Ω) be a compact symplectic surface of genus ≥ 2 and $\Sigma \subset M$ a finite set. Then there is a $r \geq 1$ such that, for almost all $\xi \in \operatorname{Ham}_{\Omega}(M)$ s.t. $\{\xi=0\}=\Sigma$, if $g \in W^{r-1,2}(M)$ has compact support in $M \backslash \Sigma$ and $\int_{M} g \Omega=0$ then $L_{\xi} f=g$ has a distributional solution in $W_{l o c}^{-r, 2}(M \backslash \Sigma)$.

Specific Statement of the Problem

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \& Open
Problems

We are interested in the particular case $M=\mathbb{R}^{2}$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential $d f$ is never zero

Even with these very strong restriction,
the problem is still rich and non-trivial

Definition

The set of integral trajectories of ξ foliates the plane as the disjoint union of such trajectories. We will use \mathcal{F}_{ξ} to indicate this foliation

Specific Statement of the Problem

Cohomological

R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \&
Open
Problems

We are interested in the particular case $M=\mathbb{R}^{2}$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call a smooth function f regular if its differential $d f$ is never zero.

Even with these very strong restriction the problem is still rich and non-trivial

Definition

The set of integral trajectories of \& foliates the plane as the disjoint union of such trajectories. We will use \mathcal{F}_{ξ} to indicate this foliation

Specific Statement of the Problem

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

We are interested in the particular case $M=\mathbb{R}^{2}$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call a smooth function f regular if its differential $d f$ is never zero.

Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the disjoint union of such trajectories. We will use \mathcal{F}_{ξ} to indicate this foliation

Specific Statement of the Problem

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \&
Open
Problems

We are interested in the particular case $M=\mathbb{R}^{2}$ when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call a smooth function f regular if its differential $d f$ is never zero.

> Even with these very strong restriction, the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the disjoint union of such trajectories. We will use \mathcal{F}_{ξ} to indicate this foliation.

Motivations

HOWARD
UNIVERSITY

Cohomological
Equation in \mathbb{R}^{2}

R．De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \＆ Open Problems

General Motivations

－this is the simplest PDE on manifolds；
－ξ and $(g+1) \xi$ have smoothly conjugate flows iff

a C^{∞} metric $g(d t)^{2}$ on the leaves of \mathcal{F}_{ξ} arises as the pull－back smooth function $f: M \rightarrow \mathbb{R}$ iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ ［A．Loi，G．D＇Ambra \＆RdL］；

Motivations Specific to the plane
－ξ is a regular Hamiltonian vector field for some symplectic structure［i．e．there exists a volume form Ω on the plane s．t．$L_{\xi} \Omega=0$ ］iff $\operatorname{ker} L_{\xi}$ contains regular functions，i．e．iff \mathcal{F}_{ξ}＇s leaves are the level sets of a regular function．
－there are＂counterintuitive＂ξ whose characteristics are arranged in such way that $L_{\xi} f=0$ has no non－trivial solutions［Wazewsky］

Motivations

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1) \xi$ have smoothly conjugate flows iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [Katok];
pull-back smooth function $f: M \rightarrow \mathbb{R}$ iff $g \in$
[A. Loi, G. D'Ambra \& RdL];
Motivations Specific to the plane
- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. $\left.L_{\xi} \Omega=0\right]$ iff $\operatorname{ker} L_{\xi}$ contains regular functions, i.e. iff \mathcal{F}_{ξ} 's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi} f=0$ has no non-trivial solutions [Wazewsky]

Motivations

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1) \xi$ have smoothly conjugate flows iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [Katok];
- a C^{∞} metric $g(d t)^{2}$ on the leaves of \mathcal{F}_{ξ} arises as the pull-back smooth function $f: M \rightarrow \mathbb{R}$ iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [A. Loi, G. D'Ambra \& RdL];

Motivations Specific to the plane

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. $L_{\xi} \Omega=0$] iff ker L_{ξ} contains regular functions, i.e. iff
\mathcal{F}_{ξ} 's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi} f=0$ has no non-trivial solutions [Wazewsky]

Motivations

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1) \xi$ have smoothly conjugate flows iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [Katok];
- a C^{∞} metric $g(d t)^{2}$ on the leaves of \mathcal{F}_{ξ} arises as the pull-back smooth function $f: M \rightarrow \mathbb{R}$ iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [A. Loi, G. D'Ambra \& RdL];

Motivations Specific to the plane

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. $L_{\xi} \Omega=0$] iff ker L_{ξ} contains regular functions, i.e. iff \mathcal{F}_{ξ} 's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi} f=0$ has no non-trivial solutions [M/azewsky]

Motivations

General Motivations

- this is the simplest PDE on manifolds;
- ξ and $(g+1) \xi$ have smoothly conjugate flows iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [Katok];
- a C^{∞} metric $g(d t)^{2}$ on the leaves of \mathcal{F}_{ξ} arises as the pull-back smooth function $f: M \rightarrow \mathbb{R}$ iff $g \in L_{\xi}\left(C^{\infty}(M)\right)$ [A. Loi, G. D'Ambra \& RdL];

Motivations Specific to the plane

- ξ is a regular Hamiltonian vector field for some symplectic structure [i.e. there exists a volume form Ω on the plane s.t. $L_{\xi} \Omega=0$] iff $\operatorname{ker} L_{\xi}$ contains regular functions, i.e. iff \mathcal{F}_{ξ} 's leaves are the level sets of a regular function.
- there are "counterintuitive" ξ whose characteristics are arranged in such way that $L_{\xi} f=0$ has no non-trivial solutions [Wazewsky].

References on Regular Foliations on \mathbb{R}^{2}

A few references:

- H. Whitney, Regular families of curves, Annals of Math., 34:2, 1933, 244-270
- T. Wazewsky, Sur un probleme de caractere integral relatif a l'equation $d z / d x+Q(x, y) d z / d y=0$, Mathematica Cluj, 8, 1934, 103-116
- E. Kamke, Uber die partielle Differentialgleichung $f(x, y) d z / d x+g(x, y) d z / d y=h(x, y)$. II, Math. Z., 42, 1936, 287-300
- W. Kaplan, Regular curve-families filling the plane, Duke Math. J., 7:1, 1940, 154-185
- L. Markus, Global structure of ordinary differential equations on the plane, Trans. of the AMS, 76:1, 1954, 127-148
- A. Hæfliger \& G. Reeb, Varietés (non separées) a une dimension et structures feuilletées du plan, Enseignement Math., 3, 1957, 107-125
- J.L. Weiner, First integrals for a direction field on a simply connected plane domain, Pac. J. of Math., 132:1, 1988, 195-208
- L. Mazzi and M. Sabatini, On the existence of global first integrals in the plane, Ann. di Mat. Pura ed Appl., IV, 1993, 143-160

Fundamental Results

Definition

A function f is a First Integral for ξ if $L_{\xi} f=0$ and f is regular. It is a weak FI if $d f=0$ is a cod- 1 submfd. It is a $C^{0} \mathrm{FI}$ if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ with no C^{1} first integral.

Theorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)

Fvery $\varepsilon \in \notin\left(\mathbb{R}^{2}\right)$ has a C^{0} first integral

Fundamental Results

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \&

Problems

Definition

A function f is a First Integral for ξ if $L_{\xi} f=0$ and f is regular. It is a weak FI if $d f=0$ is a cod- 1 submfd. It is a $C^{0} \mathrm{Fl}$ if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ with no C^{1} first integral.

Theorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)
Every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ has a C^{0} first integral

Fundamental Results

Cohomological

Definition

A function f is a First Integral for ξ if $L_{\xi} f=0$ and f is regular. It is a weak FI if $d f=0$ is a cod- 1 submfd. It is a $C^{0} \mathrm{FI}$ if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ with no C^{1} first integral.

Theorem (Kamke 1936)

The restriction of any $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ to a bounded open domain has a C^{∞} first integral.

Theorem (Kaplan 1940)

Every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ has a C^{0} first integral.

Solvability and Smooth Structure of leaf space

Theorem (Hæfliger \& Reeb, 1957)
The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is a possibly non-Hausdorff 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hafliger \& Reeb, 1957)
The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions

Theorem (Hæfliger \& Reeb, 1957)

$\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is Hamiltonian lwith resn to some symplectic form] iff $C^{\infty}\left(\mathcal{F}_{\xi}\right)$ contains regular functions.

Solvability and Smooth Structure of leaf space

Theorem (Hæfliger \& Reeb, 1957)

The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is a possibly non-Hausdorff 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hæfliger \& Reeb, 1957)
The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions.

Theorem (Hæfliger \& Reeb, 1957)
$\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is Hamiltonian [with resp. to some symplectic form] iff $C^{\infty}\left(\mathcal{F}_{\xi}\right)$ contains regular functions.

Solvability and Smooth Structure of leaf space

Theorem (Hæfliger \& Reeb, 1957)

The leaf space \mathcal{F}_{ξ} of $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is a possibly non-Hausdorff 2nd-countable simply-connected oriented 1-dimensional smooth manifold and viceversa.

Theorem (Hæfliger \& Reeb, 1957)

The non-Hausdorff manifolds above admit more than one inequivalent smooth structure and only one of them admits regular functions.

Theorem (Hæfliger \& Reeb, 1957)

$\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ is Hamiltonian [with resp. to some symplectic form] iff $C^{\infty}\left(\mathcal{F}_{\xi}\right)$ contains regular functions.

Separatrices of planar vector fields

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

In this subject it is central the concept of separatrices of a vector field ξ.
Separatrices are characteristics of ξ that cannot be separated
in the quotient topology, from some other integral trajectory.
Clearly $\xi \simeq$ const iff it has separatrices.
E.g. $y= \pm \pi / 2$

Separatrices of planar vector fields

In this subject it is central the concept of separatrices of a vector field ξ.
Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory.

Clearly $\xi \simeq$ const iff it has separatrices.
E.g. $y= \pm \pi / 2, \pm 3 \pi / 2$,
are separatrices of

Cohomological
Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \&
Open Problems

Separatrices of planar vector fields

In this subject it is central the concept of separatrices of a vector field ξ.
Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory.

Clearly $\xi \simeq$ const iff it has separatrices.
E.g. $y= \pm \pi / 2$ are separatrices of

Separatrices of planar vector fields

Cohomological

Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

In this subject it is central the concept of separatrices of a vector field ξ.
Separatrices are characteristics of ξ that cannot be separated, in the quotient topology, from some other integral trajectory.

Clearly $\xi \simeq$ const iff it has separatrices.
E.g. $y= \pm \pi / 2, \pm 3 \pi / 2, \ldots$ are separatrices of $\xi=(\sin y, \cos y)$

Paradigmatic example: the Y space

Cohomological

Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \& Open Problems

The simplest non-Hausdorff 1-dim mfd is the "letter \mathbf{Y} ", namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff $x=y, x, y<0$.

Paradigmatic example: the Y space

The simplest non-Hausdorff 1-dim mfd is the "letter \mathbf{Y} ",
namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff $x=y$ when $x, y<0$.

A smooth structure on \mathbf{Y} is given by a pair of charts $\varphi_{1,2}: \mathbb{R} \rightarrow r_{1,2}$ s.t. the coordinate changes $\varphi_{1}^{-1} \varphi_{2}$ and $\varphi_{2}^{-1} \varphi_{1}$ are smooth diffeomorphisms of $(-\infty, 0)$ in itself.

The key point here is that $\varphi_{1}^{-1} \varphi_{2}$ (or its inverse) can be divergent at $x=0$ and it can do that with different speeds.

Paradigmatic example: the Y space

The simplest non-Hausdorff 1-dim mfd is the "letter \mathbf{Y} ",
namely the quotient of the disjoint union of two lines $r_{1,2}$ under the equivalence relation $x \sim y$ iff $x=y$ when $x, y<0$.

A smooth structure on \mathbf{Y} is given by a pair of charts $\varphi_{1,2}: \mathbb{R} \rightarrow r_{1,2}$ s.t. the coordinate changes $\varphi_{1}^{-1} \varphi_{2}$ and $\varphi_{2}^{-1} \varphi_{1}$ are smooth diffeomorphisms of $(-\infty, 0)$ in itself.

The key point here is that $\varphi_{1}^{-1} \varphi_{2}$ (or its inverse) can be divergent at $x=0$ and it can do that with different speeds.

Paradigmatic example: the Y space

(1) $\mathcal{A}_{1}=\left\{\varphi_{1}(t)=t, \varphi_{2}(t)=t\right\}$. Then $C^{\infty}\left(\mathbf{Y}_{\mathcal{A}_{1}}\right)$ contains regular functions, e.g. $f_{\phi_{1}}(t)=t=f_{\phi_{2}}(t)$.
(2) $\mathcal{A}_{3}=\left\{\varphi_{1}(t)=t, \varphi_{2}(t)=t^{3}\right\}$. Then $C^{\infty}\left(\mathbf{Y}_{\mathcal{A}_{3}}\right)$ contains no regular functions!

Two inequivalent smooth structures on \mathbf{Y} :

General Setting
CE in \mathbb{R}^{2}

Indeed $f_{2}(t)=f_{1}\left(\varphi_{1} \varphi_{2}^{-1}(t)\right)$ so that, in \mathcal{A}_{3},
$f_{1}^{\prime}(0)=\left.\left[\left(\varphi_{2} \varphi_{1}^{-1}(t)\right)^{\prime} f_{2}^{\prime}\left(\varphi_{2} \varphi_{1}^{-1}(t)\right)\right]\right|_{t=0}=\left.\left[3 t^{2} f_{2}^{\prime}\left(t^{3}\right)\right]\right|_{t=0}=0$ as long as f_{2} is C^{1}.
Note that we get an inequivalent smooth structure $\mathcal{A}_{2 k+1}$ for every $k=0,1, \ldots$ by setting $\varphi_{2}(t)=t^{2 k+1}$.

Paradigmatic example: the Y space

(1) $\mathcal{A}_{1}=\left\{\varphi_{1}(t)=t, \varphi_{2}(t)=t\right\}$. Then $C^{\infty}\left(\mathbf{Y}_{\mathcal{A}_{1}}\right)$ contains regular functions, e.g. $f_{\phi_{1}}(t)=t=f_{\phi_{2}}(t)$.
(2) $\mathcal{A}_{3}=\left\{\varphi_{1}(t)=t, \varphi_{2}(t)=t^{3}\right\}$. Then $C^{\infty}\left(\mathbf{Y}_{\mathcal{A}_{3}}\right)$ contains no regular functions!

Two inequivalent smooth structures on \mathbf{Y} :

General Setting
CE in \mathbb{R}^{2}

Indeed $f_{2}(t)=f_{1}\left(\varphi_{1} \varphi_{2}^{-1}(t)\right)$ so that, in \mathcal{A}_{3},
$f_{1}^{\prime}(0)=\left.\left[\left(\varphi_{2} \varphi_{1}^{-1}(t)\right)^{\prime} f_{2}^{\prime}\left(\varphi_{2} \varphi_{1}^{-1}(t)\right)\right]\right|_{t=0}=\left.\left[3 t^{2} f_{2}^{\prime}\left(t^{3}\right)\right]\right|_{t=0}=0$ as long as f_{2} is C^{1}.
Note that we get an inequivalent smooth structure $\mathcal{A}_{2 k+1}$ for every $k=0,1, \ldots$ by setting $\varphi_{2}(t)=t^{2 k+1}$.

The case $\xi=\left(2 y, 1-y^{2}\right)$

Cohomological
Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

This picture shows the characteristics of $\xi=\left(2 y, 1-y^{2}\right)$ and (dashed) of $\eta=(-2,2 y)$.

The case $\xi=\left(2 y, 1-y^{2}\right)$

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

This picture shows the characteristics of $\xi=\left(2 y, 1-y^{2}\right)$ and (dashed) of $\eta=(-2,2 y)$. Note that $\mathcal{F}_{\xi} \simeq \mathbf{Y}$.

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

The two lines $y= \pm 1$ are inseparable in the quotient topology of \mathcal{F}_{ξ},
in fact they are the only two separatrices of ξ and are precisely the double point of \mathbf{Y}.

The regular vector field η is everywhere transversal to \&

$$
\text { The case } \xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}
$$

The two lines $y= \pm 1$ are inseparable in the quotient topology of \mathcal{F}_{ξ},
in fact they are the only two separatrices of ξ and are precisely the double point of \mathbf{Y}.

The regular vector field η is everywhere transversal to ξ.

$$
\text { The case } \xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}
$$

The two lines $y= \pm 1$ are inseparable in the quotient topology of \mathcal{F}_{ξ},
in fact they are the only two separatrices of ξ and are precisely the double point of \mathbf{Y}.

The regular vector field η is everywhere transversal to ξ.

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

General Results \& Open Problems

Consider $F(x, y)=\left(y^{2}-1\right) e^{x}$ and $G(x, y)=2 y e^{x}$. By direct calculation it's easy to see that

$$
L_{\xi} F=0, L_{\xi} G=L_{\eta} F=2\left(1+y^{2}\right) e^{2 x}>0, L_{\eta} G=0 .
$$

The first and last relations say that both ξ and η are Hamiltonian $w / r e s p$ to $\Omega=d x \wedge d y$,

the central ones express the mutual trasversality of \mathcal{J}_{ξ} and \mathcal{F}_{η}

The $\operatorname{map} \Phi_{F G}=(F, G): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ straightens both foliations:

$$
\text { The case } \xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}
$$

Consider $F(x, y)=\left(y^{2}-1\right) e^{x}$ and $G(x, y)=2 y e^{x}$. By direct calculation it's easy to see that

$$
L_{\xi} F=0, L_{\xi} G=L_{\eta} F=2\left(1+y^{2}\right) e^{2 x}>0, L_{\eta} G=0
$$

The first and last relations say that both ξ and η are Hamiltonian w/resp to $\Omega=d x \wedge d y$, the central ones express the mutual trasversality of \mathcal{F}_{ξ} and \mathcal{F}_{η}. The $\operatorname{map} \Phi_{F G}=(F, G): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ straightens both foliations:

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Consider $F(x, y)=\left(y^{2}-1\right) e^{x}$ and $G(x, y)=2 y e^{x}$. By direct calculation it's easy to see that

$$
L_{\xi} F=0, L_{\xi} G=L_{\eta} F=2\left(1+y^{2}\right) e^{2 x}>0, L_{\eta} G=0
$$

The first and last relations say that both ξ and η are Hamiltonian w/resp to $\Omega=d x \wedge d y$, the central ones express the mutual trasversality of \mathcal{F}_{ξ} and \mathcal{F}_{η}. The map $\Phi_{F G}=(F, G): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ straightens both foliations:

$$
\begin{gathered}
\xi^{\prime}=\frac{1}{L_{\xi} G} \xi, \eta^{\prime}=\frac{1}{L_{\xi} G} \eta \\
\left(\Phi_{F G}\right)_{*} \xi^{\prime}=\partial_{y^{\prime}},\left(\Phi_{F G}\right)_{*} \eta^{\prime}=\partial_{x^{\prime}}
\end{gathered}
$$

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Cohomological Equation in \mathbb{R}^{2}
R. De Leo

General Setting

CE in \mathbb{R}^{2}
A Basic Example

General Results \& Open Problems

Below is the image $\mathbb{F}_{0} \stackrel{\text { def }}{=} \Phi_{F G}\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2} \backslash[0, \infty) \times\{0\}$

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

Problems
$\ln \mathbb{F}_{0}=\mathbb{R}^{2} \backslash[0, \infty) \times\{0\}$
the two separatrices are $\{0\} \times(0, \infty)$ and $\{0\} \times(-\infty, 0)$ and the Cohomological Equation

writes simply as

A C^{k} solution extends "across the two separatrices"
to a C^{r} (resp. $W_{l o c}^{k, p}$) function iff the "gap function" $\operatorname{gap}\left(x^{\prime}\right)=\int g\left(x^{\prime}, y^{\prime}\right) d y^{\prime}, x^{\prime}<0$,
can be extended to a C^{r} (resp. $W_{l o c}^{k, p}$) solution at the origin.

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

General Results \& Open Problems

$$
\ln \mathbb{F}_{0}=\mathbb{R}^{2} \backslash[0, \infty) \times\{0\}
$$

the two separatrices are

$$
\{0\} \times(0, \infty) \text { and }\{0\} \times(-\infty, 0)
$$

and the Cohomological Equation

$$
L_{\xi^{\prime}} f=g, g \in C^{k}\left(\mathbb{R}^{2}\right)
$$

writes simply as

A C^{k} solution extends "across the two separatrices"
to a C^{r} (resp. $W_{l o c}^{k, p}$) function iff the "gap function"

can be extended to a $C^{r}\left(\right.$ resp. $\left.W_{l o c}^{k, p}\right)$ solution at the origin.

Cohomological
Equation in \mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic Example

Problems

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

$$
\ln \mathbb{F}_{0}=\mathbb{R}^{2} \backslash[0, \infty) \times\{0\}
$$

the two separatrices are

$$
\{0\} \times(0, \infty) \text { and }\{0\} \times(-\infty, 0)
$$

and the Cohomological Equation

$$
L_{\xi^{\prime}} f=g, g \in C^{k}\left(\mathbb{R}^{2}\right)
$$

writes simply as

$$
\partial_{y^{\prime}} f\left(x^{\prime}, y^{\prime}\right)=g\left(x^{\prime}, y^{\prime}\right), g \in C^{k}\left(\mathbb{F}_{0}\right)
$$

A C^{k} solution extends "across the two separatrices'
to a C^{r} (resp. $W_{l o c}^{k, p}$) function iff the "gap function"

$$
\text { The case } \xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}
$$

$$
\ln \mathbb{F}_{0}=\mathbb{R}^{2} \backslash[0, \infty) \times\{0\}
$$

the two separatrices are

$$
\{0\} \times(0, \infty) \text { and }\{0\} \times(-\infty, 0)
$$

and the Cohomological Equation

$$
\begin{gathered}
L_{\xi^{\prime}} f=g, g \in C^{k}\left(\mathbb{R}^{2}\right) \\
\text { writes simply as } \\
\partial_{y^{\prime}} f\left(x^{\prime}, y^{\prime}\right)=g\left(x^{\prime}, y^{\prime}\right), g \in C^{k}\left(\mathbb{F}_{0}\right) .
\end{gathered}
$$

A C^{k} solution extends "across the two separatrices" to a C^{r} (resp. $\left.W_{l o c}^{k, p}\right)$ function iff the "gap function"

$$
\operatorname{gap}\left(x^{\prime}\right)=\int_{-1}^{1} g\left(x^{\prime}, y^{\prime}\right) d y^{\prime}, x^{\prime}<0
$$

can be extended to a C^{r} (resp. $W_{l o c}^{k, p}$) solution at the origin.

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

For example consider $g\left(x^{\prime}, y^{\prime}\right)=y^{\prime} \in C^{\infty}\left(\mathbb{R}^{2}\right)$, so that $f\left(x^{\prime}, y^{\prime}\right)=\left(y^{\prime}\right)^{2} / 2$.

In the original \mathbb{R}^{2}, this means that the solution of $L_{\xi} f=2\left(1+y^{2}\right) e^{x}\left(2 y e^{x}\right)=4 y\left(1+y^{2}\right) e^{2 x}$ is $f(x, y)=2 y^{2} e^{2 x} \in C^{\infty}\left(\mathbb{R}^{2}\right)$

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

For example consider $g\left(x^{\prime}, y^{\prime}\right)=y^{\prime} \in C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\text { so that } f\left(x^{\prime}, y^{\prime}\right)=\left(y^{\prime}\right)^{2} / 2
$$

In the original \mathbb{R}^{2}, this means that the solution of

$$
\begin{gathered}
L_{\xi} f=2\left(1+y^{2}\right) e^{x}\left(2 y e^{x}\right)=4 y\left(1+y^{2}\right) e^{2 x} \\
\text { is } f(x, y)=2 y^{2} e^{2 x} \in C^{\infty}\left(\mathbb{R}^{2}\right) .
\end{gathered}
$$

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Cohomological

Equation in \mathbb{R}^{2}
R. De Leo

General

Setting
CE in \mathbb{R}^{2}
A Basic Example

Now consider

$$
g\left(x^{\prime}, y^{\prime}\right)=\frac{1}{\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}} \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right) \cap C^{\infty}\left(\mathbb{R}^{2} \backslash\{(0,0)\}\right)
$$

so that $f\left(x^{\prime}, y^{\prime}\right)=\ln \left(\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}+y^{\prime}\right)$.
In the original \mathbb{R}^{2}, this means that the solution of

The case $\xi=2 y \partial_{x}+\left(1-y^{2}\right) \partial_{y}$

Now consider

$$
g\left(x^{\prime}, y^{\prime}\right)=\frac{1}{\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}} \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right) \cap C^{\infty}\left(\mathbb{R}^{2} \backslash\{(0,0)\}\right)
$$

so that $f\left(x^{\prime}, y^{\prime}\right)=\ln \left(\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}+y^{\prime}\right)$.
In the original \mathbb{R}^{2}, this means that the solution of

$$
\begin{gathered}
L_{\xi} f=2\left(1+y^{2}\right) e^{x} \frac{1}{2\left(1+y^{2}\right) e^{x}}=1 \\
\text { is } f(x, y)=x+2 \ln |1-y| \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right) \cap C^{\infty}\left(\mathbb{R}^{2} \backslash\{y=1\}\right) .
\end{gathered}
$$

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General Results

General

Setting
CE in \mathbb{R}^{2}
A Basic
Example
General Results \& Open Problems

Theorem (RdL, 2011)

Theorem (RdL, 2011)

For every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, dim coker $L_{\xi}=\infty$ iff ξ has separatrices.

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ has only isolated separatrices and every
separatrix is inseparable from just a finite number of other
characteristics, $L_{\varepsilon} f>0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, each nair of adjacent inseparable characteristics
has a saturated nhbd diffemorphic to \mathbb{F}_{0} and the $C E$ reduces
there to $\partial_{y^{\prime}} f=g$

General Results

Theorem (RdL, 2011)
For every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, dim coker $L_{\xi}=\infty$ iff ξ has separatrices.

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ has only isolated separatrices and every separatrix is inseparable from just a finite number of other characteristics, $L_{\xi} f>0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, each pair of adjacent inseparable characteristics
has a saturated nhbd diffemorphic to \mathbb{F}_{0} and the CE reduces
there to $\partial_{y^{\prime}} f=g$

General Results

Theorem (RdL, 2011)

For every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, dim coker $L_{\xi}=\infty$ iff ξ has separatrices.

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$ has only isolated separatrices and every separatrix is inseparable from just a finite number of other characteristics, $L_{\xi} f>0$ has a C^{∞} solution.

Theorem (RdL, 2015)

If $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$, each pair of adjacent inseparable characteristics has a saturated nhbd diffemorphic to \mathbb{F}_{0} and the $C E$ reduces there to $\partial_{y^{\prime}} f=g$.

Open Problems

Cohomological

Equation in
\mathbb{R}^{2}
R. De Leo

General
Setting
CE in \mathbb{R}^{2}
A Basic
Example
General
Results \&
Open
Problems
(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in
$\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(5) Extend these results to \mathbb{R}^{17}
(6) Study 2-dimensional non-Hausdorff manifolds.

Open Problems

(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(3) Extend these results to \mathbb{R}^{n}
(6) Study 2-dimensional non-Hausdorff manifolds.

Open Problems

(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(5) Extend these results to \mathbb{R}^{n}
(0) Study 2-dimensional non-Hausdorff manifolds.

Open Problems

(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(5) Extend these results to \mathbb{R}^{n}
(6) Study 2-dimensional non-Hausdorff manifolds.

Open Problems

(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(5) Extend these results to \mathbb{R}^{n}.
(0) Study 2-dimensional non-Hausdorff manifolds.

Open Problems

(1) Does $L_{\xi} f>0$ have a C^{∞} solution for every $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(2) What can be said about \mathcal{F}_{ξ} for generic vector fields in $\xi \in \mathfrak{X}_{r}\left(\mathbb{R}^{2}\right)$?
(3) Study the space of solutions of $\partial_{y^{\prime}} f=g$ in \mathbb{F}_{0}.
(4) Extend these results to the cylinder and other surfaces.
(5) Extend these results to \mathbb{R}^{n}.
(6) Study 2-dimensional non-Hausdorff manifolds.

Recent references

- G. Forni, The CE for area-preserving flows on compact surfaces, El. Res. Ann. of the AMS, 1:3, 1995
- G. Forni, Solutions of the CE for area-preserving flows on compact surfaces of higher genus, Ann. of Math., 2:2, 295-344, 1999
- G. Forni, Sobolev regularity of solutions of the CE, arXiv:0707.0940, 2007
- S.P. Novikov, Dynamical systems and differential forms. Low dimensional Hamiltonian systems., Geometric and probabilistic structures in dynamics, 271-287, Contemp. Math., 469, AMS, 2008, arXiv:math/0701461
- R. De Leo, Solvability of the CE for regular vector fields on the plane, Ann. of GI. An. and Geom., 39:3, 231-248, 2011, arXiv:1007.3016
- R. De Leo, T. Gramtchev and A. Kirilov, Global Solvability in Functional Spaces for Smooth Nonsingular Vector Fields in the Plane, in "Pseudo-Differential Operators: Analysis, Applications and Computations", L. Rodino, M.W. Wong and H. Zhu eds., Springer, 2011, arXiv:1001.2121
- R. De Leo, Weak solutions of the CE in the plane for regular vector fields, Math. Phys., An. and Geom., 18:18, 2015, arXiv:1401.5158

