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Broad Statement of the Problem

Ingredients:

M smooth manifold with coordinates (xα), α = 1, · · · ,m
ξ = (ξα) smooth vector field on M

Φt
ξ : M →M flow of ξ, i.e. ξp =

d

dt
Φt
ξ(p)

∣∣∣
t=0

, ∀p ∈M

ξ can be seen as a 1st-order linear Partial Diff. Op. on C∞(M)

Lξf(p) :=
d

dt
f(Φt

ξ(p))
∣∣∣
t=0

= ξα
∂f

∂xα
(p)

Natural Questions:

1 How to characterize the sets
Lξ(C

r(M)) ∩ Ck(M), Lξ(W
l,p
loc(M)) ∩ Ck(M)?

2 How do these sets depend on the topology and geometry
of the foliation Fξ of all integral trajectories of ξ?
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Cohomological Equation

This problem is equivalent to characterizing the functions g
for which it is solvable the so-called Cohomological Equation

Lξf = g , g ∈ Ck(M)

It is well-known that the solvability of the CE is locally trivial
since, by the method of characteristics, if τ is some curve

everywhere transversal to ξ’s flow, then

f(p) = fτ (p0) +

∫ tp,p0

0
g
(
Φt
ξ(p)

)
dt

where fτ is any function defined on τ , p0 the (unique) point of
τ s.t. p0 and p belong to the same leaf of Fξ and tp,p0 is the
time needed to travel between these two points under Φt

ξ.
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Cohomological Equation

This f provides a global solution iff γ covers M under Φt
ξ:

Theorem (Duistermaat & Hormander, 1972)

Let M be an open manifold. Then Lξ(C
∞(M)) = C∞(M)

iff ξ admits a global transversal, i.e. iff Fξ ' R.

The global solvability of the CE was recently investigated for
compact surfaces by S.P. Novikov in case of smooth functions:

S.P. Novikov, “Dynamical Systems and Differential Forms. Low

Dimensional Hamiltonian Systems”, arXiv:math/0701461v3

and by G. Forni in case of Sobolev spaces of weakly diff.
functions which are zero in some nbhd of the zeros of ξ:

G. Forni, “Solutions of the cohomological equation for area-preserving

flows on compact surfaces of higher genus”, Ann. of Math. 2:2 (1997)
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Cohomological Equation

Theorem (Novikov, 2007)

Let (M,Ω) be a compact symplectic surface of genus ≥ 2.
Then, for a generic ξ ∈ HamΩ(M), the operator
Lξ : C∞(M)→ C∞(M) has an infinite-dimensional cokernel,
namely there infinitely many linearly independent functions not
in the image of Lξ.

Theorem (Forni, 1997)

Let (M,Ω) be a compact symplectic surface of genus ≥ 2 and
Σ ⊂M a finite set. Then there is a r ≥ 1 such that, for almost
all ξ ∈ HamΩ(M) s.t. {ξ = 0} = Σ, if g ∈W r−1,2(M) has
compact support in M \Σ and

∫
M gΩ = 0 then Lξf = g has a

distributional solution in W−r,2loc (M \ Σ).
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Specific Statement of the Problem

We are interested in the particular case M = R2

when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these very strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the
disjoint union of such trajectories. We will use Fξ to indicate
this foliation.
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Motivations

General Motivations
• this is the simplest PDE on manifolds;
• ξ and (g + 1)ξ have smoothly conjugate flows iff
g ∈ Lξ(C∞(M)) [Katok];

• a C∞ metric g (dt)2 on the leaves of Fξ arises as the
pull-back smooth function f : M → R iff g ∈ Lξ(C∞(M))
[A. Loi, G. D’Ambra & RdL];

Motivations Specific to the plane
• ξ is a regular Hamiltonian vector field for some symplectic

structure [i.e. there exists a volume form Ω on the plane
s.t. LξΩ = 0] iff kerLξ contains regular functions, i.e. iff
Fξ’s leaves are the level sets of a regular function.

• there are “counterintuitive” ξ whose characteristics are
arranged in such way that Lξf = 0 has no non-trivial
solutions [Wazewsky].
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References on Regular Foliations on R2

A few references:
• H. Whitney, Regular families of curves, Annals of Math., 34:2, 1933,

244-270

• T. Wazewsky, Sur un probleme de caractere integral relatif a l’equation
dz/dx+Q(x, y)dz/dy = 0, Mathematica Cluj, 8, 1934, 103-116

• E. Kamke, Uber die partielle Differentialgleichung
f(x, y)dz/dx+ g(x, y)dz/dy = h(x, y). II, Math. Z., 42, 1936, 287-300

• W. Kaplan, Regular curve-families filling the plane, Duke Math. J., 7:1,
1940, 154-185

• L. Markus, Global structure of ordinary differential equations on the
plane, Trans. of the AMS, 76:1, 1954, 127-148

• A. Hæfliger & G. Reeb, Varietés (non separées) a une dimension et
structures feuilletées du plan, Enseignement Math., 3, 1957, 107-125

• J.L. Weiner, First integrals for a direction field on a simply connected
plane domain, Pac. J. of Math., 132:1, 1988, 195-208

• L. Mazzi and M. Sabatini, On the existence of global first integrals in the
plane, Ann. di Mat. Pura ed Appl., IV, 1993, 143-160
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Fundamental Results

Definition

A function f is a First Integral for ξ if Lξf = 0 and f is
regular. It is a weak FI if df = 0 is a cod-1 submfd.
It is a C0 FI if it is not constant on any open set.

Theorem (Wazewski 1934)

There exists a ξ ∈ Xr(R2) with no C1 first integral.

Theorem (Kamke 1936)

The restriction of any ξ ∈ Xr(R2) to a bounded open domain
has a C∞ first integral.

Theorem (Kaplan 1940)

Every ξ ∈ Xr(R2) has a C0 first integral.
10 / 23
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Solvability and Smooth Structure of leaf space

Theorem (Hæfliger & Reeb, 1957)

The leaf space Fξ of ξ ∈ Xr(R2) is a possibly non-Hausdorff
2nd-countable simply-connected oriented 1-dimensional smooth
manifold and viceversa.

Theorem (Hæfliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one
inequivalent smooth structure and only one of them admits
regular functions.

Theorem (Hæfliger & Reeb, 1957)

ξ ∈ Xr(R2) is Hamiltonian [with resp. to some symplectic
form] iff C∞(Fξ) contains regular functions.
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Separatrices of planar vector fields

In this subject it is central the concept of
separatrices of a vector field ξ.

Separatrices are characteristics of ξ that cannot be separated,
in the quotient topology, from some other integral trajectory.

Clearly ξ ' const iff it has separatrices.
E.g. y = ±π/2,±3π/2, . . . are separatrices of ξ = (sin y, cos y)
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Paradigmatic example: the Y space

The simplest non-Hausdorff 1-dim mfd is the “letter Y”,

namely the quotient of the disjoint union of two lines r1,2

under the equivalence relation x ∼ y iff x = y, x, y < 0.
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The simplest non-Hausdorff 1-dim mfd is the “letter Y”,

namely the quotient of the disjoint union of two lines r1,2

under the equivalence relation x ∼ y iff x = y when x, y < 0.

A smooth structure on Y is given by a pair of charts
ϕ1,2 : R→ r1,2 s.t. the coordinate changes ϕ−1

1 ϕ2 and ϕ−1
2 ϕ1

are smooth diffeomorphisms of (−∞, 0) in itself.

The key point here is that ϕ−1
1 ϕ2 (or its inverse) can be

divergent at x = 0 and it can do that with different speeds.
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Paradigmatic example: the Y space

Two inequivalent smooth structures on Y:

1 A1 = {ϕ1(t) = t, ϕ2(t) = t}. Then C∞(YA1) contains
regular functions, e.g. fφ1(t) = t = fφ2(t).

2 A3 = {ϕ1(t) = t, ϕ2(t) = t3}. Then C∞(YA3) contains
no regular functions!

Indeed f2(t) = f1(ϕ1ϕ
−1
2 (t)) so that, in A3,

f ′1(0) =
[
(ϕ2ϕ

−1
1 (t))′f ′2(ϕ2ϕ

−1
1 (t))

] ∣∣∣∣
t=0

= [3t2f ′2(t3)]

∣∣∣∣
t=0

= 0

as long as f2 is C1.

Note that we get an inequivalent smooth structure A2k+1 for
every k = 0, 1, . . . by setting ϕ2(t) = t2k+1.
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The case ξ = (2y, 1− y2)

This picture shows the characteristics of ξ = (2y, 1− y2)
and (dashed) of η = (−2, 2y). Note that Fξ ' Y.
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The case ξ = 2y∂x + (1− y2)∂y

The two lines y = ±1 are inseparable

in the quotient topology of Fξ,

in fact they are the only two separatrices of ξ

and are precisely the double point of Y.

The regular vector field η is everywhere transversal to ξ.
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The case ξ = 2y∂x + (1− y2)∂y

Consider F (x, y) = (y2 − 1)ex and G(x, y) = 2yex.

By direct calculation it’s easy to see that

LξF = 0, LξG = LηF = 2(1 + y2)e2x > 0, LηG = 0.

The first and last relations say that both ξ and η are
Hamiltonian w/resp to Ω = dx ∧ dy,

the central ones express the mutual trasversality of Fξ and Fη.

The map ΦFG = (F,G) : R2 → R2 straightens both foliations:

ξ′ = 1
LξG

ξ, η′ = 1
LξG

η

(ΦFG)∗ξ
′ = ∂y′ , (ΦFG)∗η

′ = ∂x′
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The case ξ = 2y∂x + (1− y2)∂y

Below is the image F0
def
= ΦFG(R2) = R2 \ [0,∞)× {0}
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The case ξ = 2y∂x + (1− y2)∂y

In F0 = R2 \ [0,∞)× {0}
the two separatrices are

{0} × (0,∞) and {0} × (−∞, 0)

and the Cohomological Equation

Lξ′f = g, g ∈ Ck(R2)

writes simply as

∂y′f(x′, y′) = g(x′, y′), g ∈ Ck(F0).

A Ck solution extends “across the two separatrices”

to a Cr (resp. W k,p
loc ) function iff the “gap function”

gap(x′) =
1∫
−1

g(x′, y′)dy′, x′ < 0,

can be extended to a Cr (resp. W k,p
loc ) solution at the origin.
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The case ξ = 2y∂x + (1− y2)∂y

For example consider g(x′, y′) = y′ ∈ C∞(R2),

so that f(x′, y′) = (y′)2/2.

In the original R2, this means that the solution of

Lξf =2(1 + y2)ex(2yex) =4y(1 + y2)e2x

is f(x, y) = 2y2e2x∈ C∞(R2).
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The case ξ = 2y∂x + (1− y2)∂y

Now consider
g(x′, y′) = 1√

(x′)2+(y′)2
∈ L1

loc(R2) ∩ C∞(R2 \ {(0, 0)}),

so that f(x′, y′) = ln(
√

(x′)2 + (y′)2 + y′).

In the original R2, this means that the solution of

Lξf =2(1 + y2)ex 1
2(1+y2)ex

=1

is f(x, y) = x+ 2 ln |1− y|∈ L1
loc(R2) ∩ C∞(R2 \ {y = 1}).
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General Results

Theorem (RdL, 2011)

For every ξ ∈ Xr(R2), dim coker Lξ =∞ iff ξ has separatrices.

Theorem (RdL, 2011)

If ξ ∈ Xr(R2) has only isolated separatrices and every
separatrix is inseparable from just a finite number of other
characteristics, Lξf > 0 has a C∞ solution.

Theorem (RdL, 2015)

If ξ ∈ Xr(R2), each pair of adjacent inseparable characteristics
has a saturated nhbd diffemorphic to F0 and the CE reduces
there to ∂y′f = g.
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Open Problems

1 Does Lξf > 0 have a C∞ solution for every ξ ∈ Xr(R2)?

2 What can be said about Fξ for generic vector fields in
ξ ∈ Xr(R2)?

3 Study the space of solutions of ∂y′f = g in F0.

4 Extend these results to the cylinder and other surfaces.

5 Extend these results to Rn.

6 Study 2-dimensional non-Hausdorff manifolds.
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