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€ can be seen as a 1st-order linear Partial Diff. Op. on C*°(M)
d of
Lef(p) i= S (Om)| =€
ef(p) = 2 f(®ep))|,_ =&"5 (@)

Natural Questions:

©® How to characterize the sets
T l7
Le(CT(M)) N CH(M), Le(Wye(M)) N CH(M)?
® How do these sets depend on the topology and geometry
of the foliation F¢ of all integral trajectories of £7?
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This problem is equivalent to characterizing the functions g
oo for which it is solvable the so-called Cohomological Equation
Setting Lef =g, geCFM)

It is well-known that the solvability of the CE is locally trivial
since, by the method of characteristics, if 7 is some curve
everywhere transversal to ¢'s flow, then

) = £ (po) + /0 g (@) e

where f; is any function defined on 7, py the (unique) point of
T s.t. po and p belong to the same leaf of F¢ and ?,,,, is the
time needed to travel between these two points under @2.
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goneral Let M be an open manifold. Then L¢(C*(M)) = C>(M)

Setting

iff § admits a global transversal, i.e. iff F¢ ~ R.

The global solvability of the CE was recently investigated for
compact surfaces by S.P. Novikov in case of smooth functions:

S.P. Novikov, “Dynamical Systems and Differential Forms. Low
Dimensional Hamiltonian Systems”, arXiv:math/0701461v3

and by G. Forni in case of Sobolev spaces of weakly diff.
functions which are zero in some nbhd of the zeros of &:

G. Forni, “Solutions of the cohomological equation for area-preserving
flows on compact surfaces of higher genus', Ann. of Math. 2:2 (1997)
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R. De Leo Let (M, ) be a compact symplectic surface of genus > 2.
e Then, for a generic £ € Hamgq (M), the operator
Setting L¢ : C°(M) — C°°(M) has an infinite-dimensional cokernel,
namely there infinitely many linearly independent functions not
in the image of L.

Theorem (Forni, 1997)

Let (M,Q2) be a compact symplectic surface of genus > 2 and
Y C M a finite set. Then there is a r > 1 such that, for almost
all ¢ € Hamg(M) s.it. {€ =0} =%, ifg € Wr=b2(M) has
compact support in M \ ¥ and fMg Q=0 then L¢f = g has a
distributional solution in W;,""*(M \ %).
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i We are interested in the particular case M = R?
R. De Leo when £ is a vector field without zeros.

General
Setting

Definition

If £ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these very strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of £ foliates the plane as the
disjoint union of such trajectories. We will use F¢ to indicate
this foliation.
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Motivations

General Motivations

e this is the simplest PDE on manifolds;
e ¢ and (g + 1) have smoothly conjugate flows iff

g € Lg(C™°(M)) [Katok];
a C™ metric g (dt)* on the leaves of F¢ arises as the
pull-back smooth function f: M — R iff g € Lg(C™(M))
[A. Loi, G. D'Ambra & RdL];

Motivations Specific to the plane
¢ is a regular Hamiltonian vector field for some symplectic
structure [i.e. there exists a volume form 2 on the plane
s.t. L¢§) = 0] iff ker L¢ contains regular functions, i.e. iff
F¢'s leaves are the level sets of a regular function.
there are “counterintuitive” & whose characteristics are
arranged in such way that L¢ f = 0 has no non-trivial

solutions [Wazewsky].
8/23
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R. De Leo A function f is a First Integral for { if L¢f =0 and f is
regular. It is a weak Fl if df = 0 is a cod-1 submfd.
It is a CY Flif it is not constant on any open set.

Theorem (Wazewski 1934)
There exists a £ € X,(R?) with no C! first integral.

Theorem (Kamke 1936)

The restriction of any ¢ € X,.(R?) to a bounded open domain
has a C*® first integral.

Theorem (Kaplan 1940)

Every ¢ € X,(R?) has a C° first integral.
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R.De Leo The leaf space F¢ of £ € X, (R2) is a possibly non-Hausdorff
2nd-countable simply-connected oriented 1-dimensional smooth
manifold and viceversa.

Theorem (Hafliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one
inequivalent smooth structure and only one of them admits
regular functions.

Theorem (Hafliger & Reeb, 1957)

¢ € X,.(R?) is Hamiltonian [with resp. to some symplectic
form| iff C°°(F¢) contains regular functions.
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Cohomological

B In this subject it is central the concept of
separatrices of a vector field &.
Separatrices are characteristics of £ that cannot be separated,
in the quotient topology, from some other integral trajectory.
Clearly & ~ const iff it has separatrices.
E.g. y=+m/2,437w/2,... are separatrices of { = (siny, cosy)

1'0 (:5 0‘0 0?5 l.‘O 12/23
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R2 Two inequivalent smooth structures on Y:

O A = {p1(t) =t,p2(t) =t}. Then C°(Y 4,) contains
regular functions, e.g. fy, (t) =t = fg,(t).

A Az = {01(t) =t,p2(t) = t3}. Then C(Y 4,) contains

no regular functions!

Indeed fo(t) = fi(p15 (1)) so that, in Aj,

F1(0) = [(e297 (1) Fil2r ()] | = B2 F4(t)]

t=0

=0
t=0

as long as fo is C'.

Note that we get an inequivalent smooth structure A1 for
every k =0,1,... by setting @o(t) = t2F+1,
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Cohomological
Equation in

The two lines y = +1 are inseparable

in the quotient topology of ¢,

A Basic
Example

in fact they are the only two separatrices of &
and are precisely the double point of Y.

The regular vector field 7 is everywhere transversal to &.

15/23
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Equati}on in

Consider F(z,y) = (y> — 1)e® and G(z,y) = 2ye®.
By direct calculation it's easy to see that

LeF =0, LeG = LyF = 2(1 + y*)e** > 0, L,G = 0.

it The first and last relations say that both ¢ and n are
Hamiltonian w/resp to Q = dx A dy,
the central ones express the mutual trasversality of F¢ and F,.

The map ®rg = (F,G) : R? — R? straightens both foliations:
€ =156 1 = g0

((I)FG)*SI =0y, ((I)FG)*U/ = Bx’

16/23
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the two separatrices are
{0} x (0,00) and {0} x (—o0,0)
and the Cohomological Equation
A Basic Lef=g g€ Ck(Rz)

Example

writes simply as
Oy f(',y) = g(@',y), g € C¥(Fy).
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Cohomological
Equation in In Fo = R2\ [0,00) x {0}

the two separatrices are
{0} x (0,00) and {0} x (—o0,0)
and the Cohomological Equation
A Basic Lg/f =g g¢c Ck(Rz)
Framele writes simply as

Ay (') = g(a',y/), g € C*(Fo).

A CF solution extends “across the two separatrices’
to a C" (resp. I/Vlk’p) function iff the “gap function”

gap(x fgac ydy', o' <0,

can be extended to a C" (resp. VVlOf) solution at the origin.
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Cohomological
Equation in

For example consider g(2',y') =y € C*(R?),
so that f(z/,y) = (v/)?/2.

A Basic
Example

In the original R?, this means that the solution of
Lef =2(1 4 y?)e®(2ye®) =4y(1 + y*)e*®
is f(x,y) = 2y%e**c C=(R?).
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éxg.f;fe so that f(2/,y') = In(y/(z 24+9).
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Cohomological
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Now consider

90 y) = St € L (R) O (R {(0,0)),

et so that f(z',9') = In(y/(@')2 + (v')2 + ¢/).

In the original R?, this means that the solution of
Lef =2(1 + y)e” grrymyes =1

is f(z,y) =z +2In|l —y|€ L] (R?)NC>®(R2\ {y = 1}).

loc
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Theorem (RdL, 2015)

If ¢ € X,(R?), each pair of adjacent inseparable characteristics
has a saturated nhbd diffemorphic to IFy and the CE reduces
there to O,/ f = g.
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O Extend these results to the cylinder and other surfaces.
@ Extend these results to R".

@ Study 2-dimensional non-Hausdorff manifolds.
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