Infinitesimal invertibility

Infinitesimal invertibility of the metric inducing operator

Roberto De Leo
Department of Mathematics
Howard University
Washigton, DC
\&
INFN
Cagliari, Italy

Lehigh University Geometry and Topology Conference 2018

Outline

Infinitesimal
invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
(1) The General Setting
(2) Main Result
(3) PDOs and the Implicit Function Theorem
(4) Idea of the proof: inversion of linear PDOs
(5) An elementary example
(6) Bibliography

Three Isometric Embedding Thms of John Nash

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (C^{1} embeddings, Nash 1954) C^{0}-Riemannian manifolds M^{n} admit C^{1} embeddings into $\mathbb{R}^{2 n}$.

Theorem (Cr embeddings, $r>2$, Nash 1956)

Compact (resp. open) C^{r}-Riemannian manifolds M^{n} admit C^{r} embeddings into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$ (resp.

$r=3$,

Theorem (C embeddings, Nash 1966)

Compact C^{ω}-Riemannian manifolds M^{n} admit C^{ω} embeddings into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$.

Three Isometric Embedding Thms of John Nash

Infinitesimal invertibility R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (C^{1} embeddings, Nash 1954) C^{0}-Riemannian manifolds M^{n} admit C^{1} embeddings into $\mathbb{R}^{2 n}$.

Compact (resp. open) C^{r}-Riemannian manifolds M^{n} admit C^{r} embeddings into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$ (resp.
$\left.q=(n+1)\left(3 s_{n}+4 n\right)\right)$ and $s_{n}=n(n+1) / 2$, for every $r=3,4, \ldots, \infty$.

Theorem (C ${ }^{\omega}$ embeddings, Nash 1966)

Compact C^{ω}-Riemannian manifolds M^{n} admit C^{ω} embeddings
into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$.

Three Isometric Embedding Thms of John Nash

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (C^{1} embeddings, Nash 1954) C^{0}-Riemannian manifolds M^{n} admit C^{1} embeddings into $\mathbb{R}^{2 n}$.

Theorem (C^{r} embeddings, $r>2$, Nash 1956)
Compact (resp. open) C^{r}-Riemannian manifolds M^{n} admit C^{r} embeddings into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$ (resp.
$\left.q=(n+1)\left(3 s_{n}+4 n\right)\right)$ and $s_{n}=n(n+1) / 2$, for every $r=3,4, \ldots, \infty$.

Theorem (C^{ω} embeddings, Nash 1966)

Compact C^{ω}-Riemannian manifolds M^{n} admit C^{ω} embeddings into \mathbb{R}^{q}, with $q=3 s_{n}+4 n$.

The New Land of John Nash

Infinitesimal invertibility

R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Nash, like Columbus, unwillingly discovered a new land. Refining and improving Nash's isometric imbedding results would be like building bigger and faster ships than those in which Columbus had crossed the Atlantic.

But what is this new land? What is its geography, geology, ecology? How can one explore and cultivate this land? What can one build on this land? What is its future?

It may be hard to decide what this land is but it is easy to say what it is not:
what Nash discovered is not any part of the Riemannian geometry, neither it has much (if anything at all) to do with the classical PDE.

The New Land of John Nash

Infinitesimal invertibility

Nash's theorems are only superficially similar to the existence (and non-existence) results for isometric embeddings that rely on PDE and/or on relations between intrinsic, i.e. induced Riemannian, and extrinsic geometries of submanifolds in Euclidean spaces.

Nash's results points in the opposite direction: typically, the geometry of a Riemannian manifold X has no significant influence on its isometric embeddings to \mathbb{R}^{q}.

A Homotopy Perspective in PDEs

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Let F, G be two functional spaces and $\mathcal{D}: F \rightarrow G$ a Partial Differential Operator (PDO) between them.

Usually the solution of Partial Differential Equations (PDEs)

 $\mathcal{D}(f)=g$ of interest in analysis (and natural sciences) can be made unique by using appropriate initial or bdary conditions.Often in Geometry we rather have the opposite situation. The space of solutions is vast and we are rather interested in other questions such as:
(1) Assume that $\mathcal{D}\left(f_{0}\right)=g_{0}$. If g is close enough to g_{0}, are there solutions to $\mathcal{D}(f)=g$?

2 Consider a C^{r} family $g_{\lambda}, \lambda \in X$. If $\mathcal{D}\left(f_{0}\right)=g_{0}$, can we find a C^{r} family f_{λ} such that $\mathcal{D}\left(f_{\lambda}\right)=g_{\lambda}$ for all $\lambda \in X$?

A Homotopy Perspective in PDEs

Infinitesimal invertibility

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Let F, G be two functional spaces and $\mathcal{D}: F \rightarrow G$ a Partial Differential Operator (PDO) between them.

Usually the solution of Partial Differential Equations (PDEs) $\mathcal{D}(f)=g$ of interest in analysis (and natural sciences) can be made unique by using appropriate initial or bdary conditions.
Often in Geometry we rather have the opposite situation. The space of solutions is vast and we are rather interested in other questions such as:
(1) Assume that $\mathcal{D}\left(f_{0}\right)=g_{0}$. If g is close enough to g_{0}, are there solutions to $\mathcal{D}(f)=g$?
(2) Consider a C^{r} family $g_{\lambda}, \lambda \in X$. If $D\left(f_{0}\right)=g_{0}$, can we find a C^{r} family f_{λ} such that $\mathcal{D}\left(f_{\lambda}\right)=g_{\lambda}$ for all $\lambda \in X$?

A Homotopy Perspective in PDEs

Infinitesimal invertibility R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Let F, G be two functional spaces and $\mathcal{D}: F \rightarrow G$ a Partial Differential Operator (PDO) between them.

Usually the solution of Partial Differential Equations (PDEs) $\mathcal{D}(f)=g$ of interest in analysis (and natural sciences) can be made unique by using appropriate initial or bdary conditions.

Often in Geometry we rather have the opposite situation. The space of solutions is vast and we are rather interested in other questions such as:
(1) Assume that $\mathcal{D}\left(f_{0}\right)=g_{0}$. If g is close enough to g_{0}, are there solutions to $\mathcal{D}(f)=g$?
(2) Consider a C^{r} family $g_{\lambda}, \lambda \in X$. If $\mathcal{D}\left(f_{0}\right)=g_{0}$, can we find a C^{r} family f_{λ} such that $\mathcal{D}\left(f_{\lambda}\right)=g_{\lambda}$ for all $\lambda \in X$?

A Homotopy Perspective in PDEs

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Let F, G be two functional spaces and $\mathcal{D}: F \rightarrow G$ a Partial Differential Operator (PDO) between them.

Usually the solution of Partial Differential Equations (PDEs) $\mathcal{D}(f)=g$ of interest in analysis (and natural sciences) can be made unique by using appropriate initial or bdary conditions.

Often in Geometry we rather have the opposite situation. The space of solutions is vast and we are rather interested in other questions such as:
(1) Assume that $\mathcal{D}\left(f_{0}\right)=g_{0}$. If g is close enough to g_{0}, are there solutions to $\mathcal{D}(f)=g$?
(2) Consider a C^{r} family $g_{\lambda}, \lambda \in X$. If $\mathcal{D}\left(f_{0}\right)=g_{0}$, can we find a C^{r} family f_{λ} such that $\mathcal{D}\left(f_{\lambda}\right)=g_{\lambda}$ for all $\lambda \in X$?

Homotopy Perspective in PDEs

HOWARD
UNIVERSITY

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

In other words, in this context some more appropriate questions about a PDO $\mathcal{D}: F \rightarrow G$ over functional spaces F and G are:
(1) what is the maximal domain $F_{o p} \subset F$ over which $\mathcal{D}: F_{o p} \rightarrow G$ is an open map?
(2) what is the maximal domain $F_{S} \subset F$ over which $\mathcal{D}: F_{S} \rightarrow G$ is a Serre fibration?

Remark: throughout this talk all functional spaces will be endowed with the Withney C^{∞} topology, so that sets defined through open conditions will be open.
E.g. with this topology the set of immersions $\operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ is an open subset of $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$

Homotopy Perspective in PDEs

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

In other words, in this context some more appropriate questions about a PDO $\mathcal{D}: F \rightarrow G$ over functional spaces F and G are:
(1) what is the maximal domain $F_{o p} \subset F$ over which $\mathcal{D}: F_{o p} \rightarrow G$ is an open map?
(2) what is the maximal domain $F_{S} \subset F$ over which $\mathcal{D}: F_{S} \rightarrow G$ is a Serre fibration?

Remark: throughout this talk all functional spaces will be endowed with the Withney C^{∞} topology, so that sets defined through open conditions will be open.
E.g. with this topology the set of immersions $\operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ is an open subset of $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$.

Homotopy Perspective in PDEs

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

In other words, in this context some more appropriate questions about a PDO $\mathcal{D}: F \rightarrow G$ over functional spaces F and G are:
(1) what is the maximal domain $F_{o p} \subset F$ over which $\mathcal{D}: F_{o p} \rightarrow G$ is an open map?
(2) what is the maximal domain $F_{S} \subset F$ over which $\mathcal{D}: F_{S} \rightarrow G$ is a Serre fibration?

Remark: throughout this talk all functional spaces will be endowed with the Withney C^{∞} topology, so that sets defined through open conditions will be open.
E.g. with this topology the set of immersions $\operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ is an open subset of $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$.

Homotopy Perspective in PDEs

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

In other words, in this context some more appropriate questions about a PDO $\mathcal{D}: F \rightarrow G$ over functional spaces F and G are:
(1) what is the maximal domain $F_{o p} \subset F$ over which $\mathcal{D}: F_{o p} \rightarrow G$ is an open map?
(2) what is the maximal domain $F_{S} \subset F$ over which $\mathcal{D}: F_{S} \rightarrow G$ is a Serre fibration?

Remark: throughout this talk all functional spaces will be endowed with the Withney C^{∞} topology, so that sets defined through open conditions will be open.
E.g. with this topology the set of immersions $\operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ is an open subset of $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$.

A Serre fibration case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$
(4) Free $^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If M^{n} is compact, the restr. D
is a Serre fibration for $q \geq s_{n}+2 n+3$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$.

A Serre fibration case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Etementary example

Bibliography
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$.
(4) Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If M^{n} is compact, the restr. \mathcal{D}
is a Serre fibration for $q>s_{n}+2 n+3$

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$

A Serre fibration case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$.
(4) Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If $M n$ is compact, the restr. D
is a Serre fibration for $q \geq s_{n}+2 n+3$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$

A Serre fibration case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
fdea of the proof: inv. of linear PDOs
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$.
(4) Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If M^{n} is compact, the restr. \mathcal{D}
is a Serre fibration for $q>s_{n}+2 n+3$

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$

A Serre fibration case

Infinitesimal invertibility R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$.
(4) Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If M^{n} is compact, the restr. $\mathcal{D}:$ Free $^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is a Serre fibration for $q \geq s_{n}+2 n+3$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$.

A Serre fibration case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs
(1) $M^{n}=$ smooth n-dimensional manifold
(2) $\mathcal{G}^{\infty}\left(M^{n}\right)=$ smooth Riemannian metrics on M^{n}
(3) $\mathcal{D}: \operatorname{Imm}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is the pull-back map $\mathcal{D}(f)=f^{*}\left(e u c_{q}\right)$.
(4) Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)=$ smooth maps $f: M^{n} \rightarrow \mathbb{R}^{q}$ s.t. the $q \times\left(n+s_{n}\right)$ matrix $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta} f^{i}\right)$ is full rk at every pt.

Theorem (Nash, Gromov)

If M^{n} is compact, the restr. $\mathcal{D}:$ Free $^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is a Serre fibration for $q \geq s_{n}+2 n+3$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n+1$.

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary

 exampleBibliography proof. inv. o

An Open map case

Theorem (Nash, Gromov)

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is open over an open dense subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$.

Remark: the dense set \mathcal{F} above is precisely $\operatorname{Free}{ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ This set is dense in $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$ by transversality arguments and is empty for $q<s_{n}+n$

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n-\sqrt{n / 2}$.

An Open map case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (Nash, Gromov)

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is open over an open dense subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$.

Remark: the dense set \mathcal{F} above is precisely $\operatorname{Free}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$. This set is dense in $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$ by transversality arguments and is empty for $q<s_{n}+n$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n-\sqrt{n / 2}$

An Open map case

Infinitesimal invertibility
R. De Leo

General Setting

Main Result

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (Nash, Gromov)

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is open over an open dense subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$.

Remark: the dense set \mathcal{F} above is precisely $\operatorname{Free}^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$. This set is dense in $C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+2 n$ by transversality arguments and is empty for $q<s_{n}+n$.

Conjecture (Gromov)

The condition above can be weakened to $q \geq s_{n}+n-\sqrt{n / 2}$.

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Main Result

Conjecture (Gromov, 1986 (see also Bull. of AMS, 54:2, 2017))

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is an open map over an open dense (weaker version: non-empty) subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+n-\sqrt{n / 2}$.

Theorem (RdL, 2017)

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is an open map over a non-empty open subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+n-\sqrt{n / 2}+1 / 2$.

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Main Result

Conjecture (Gromov, 1986 (see also Bull. of AMS, 54:2, 2017))

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is an open map over an open dense (weaker version: non-empty) subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+n-\sqrt{n / 2}$.

Theorem (RdL, 2017)

The pull-back map $\mathcal{D}: C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \mathcal{G}^{\infty}\left(M^{n}\right)$ is an open map over a non-empty open subset $\mathcal{F} \subset C^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$ for all $q \geq s_{n}+n-\sqrt{n / 2}+1 / 2$.

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition of Partial Differential Operator

(1) $F \rightarrow E, G \rightarrow E$ fiber bundles
(2) $J^{r} F \rightarrow E=$ bundle of r-jets of sections of $F \rightarrow E$

Definition

By a PDO of order r over F with values in G we mean a map $\mathcal{L}_{T}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ such that $\left.\mathcal{L}_{r}(f)\right|_{r}=\left(j_{x}^{r} f\right)^{*} \Lambda_{r}$ for some bundle morphism $\Lambda_{r}: J^{r} F \rightarrow G$.

Definition of Partial Differential Operator

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
(1) $F \rightarrow E, G \rightarrow E$ fiber bundles
(2) $J^{r} F \rightarrow E=$ bundle of r-jets of sections of $F \rightarrow E$ (3) $\Gamma^{r} F=C^{r}$ sect's of $F \rightarrow E, \Gamma^{0} G=C^{0}$ sect's of $G \rightarrow E$

Definition

By a PDO of order r over F with values in G we mean a map $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ such that $\left.\mathcal{L}_{r}(f)\right|_{r}=\left(j_{r}^{r} f\right)^{*} \Lambda_{r}$ for some bundle morphism Λ_{r} In coords $\left(x^{\alpha}\right)$ on $E,\left(x^{\alpha}, y^{i}\right)$ on F and $\left(x^{\alpha}, z^{a}\right)$ on G,

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary

 exampleBibliography
?

Definition of Partial Differential Operator

(1) $F \rightarrow E, G \rightarrow E$ fiber bundles
(2) $J^{r} F \rightarrow E=$ bundle of r-jets of sections of $F \rightarrow E$
(3) $\Gamma^{r} F=C^{r}$ sect's of $F \rightarrow E, \Gamma^{0} G=C^{0}$ sect's of $G \rightarrow E$

Definition

By a PDO of order r over F with values in G we mean a map $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ such that $\left.\mathcal{L}_{r}(f)\right|_{r}=\left(j_{r}^{r} f\right)^{*} \Lambda_{r}$ for some bundle morphism Λ_{r}

In coords $\left(x^{\alpha}\right)$ on $E,\left(x^{\alpha}, y^{2}\right)$ on F and $\left(x^{\alpha}, z^{a}\right)$ on G,

Definition of Partial Differential Operator

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
(1) $F \rightarrow E, G \rightarrow E$ fiber bundles
(2) $J^{r} F \rightarrow E=$ bundle of r-jets of sections of $F \rightarrow E$
(3) $\Gamma^{r} F=C^{r}$ sect's of $F \rightarrow E, \Gamma^{0} G=C^{0}$ sect's of $G \rightarrow E$

Definition

By a PDO of order r over F with values in G we mean a map $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ such that $\left.\mathcal{L}_{r}(f)\right|_{x}=\left(j_{x}^{r} f\right)^{*} \Lambda_{r}$ for some bundle morphism $\Lambda_{r}: J^{r} F \rightarrow G$.

In coords $\left(x^{\alpha}\right)$ on $E,\left(x^{\alpha}, y^{i}\right)$ on F and $\left(x^{\alpha}, z^{a}\right)$ on G,

Definition of Partial Differential Operator

Infinitesimal invertibility
R. De Leo

General

 SettingMain Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs
(1) $F \rightarrow E, G \rightarrow E$ fiber bundles
(2) $J^{r} F \rightarrow E=$ bundle of r-jets of sections of $F \rightarrow E$
(3) $\Gamma^{r} F=C^{r}$ sect's of $F \rightarrow E, \Gamma^{0} G=C^{0}$ sect's of $G \rightarrow E$

Definition

By a PDO of order r over F with values in G we mean a map $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ such that $\left.\mathcal{L}_{r}(f)\right|_{x}=\left(j_{x}^{r} f\right)^{*} \Lambda_{r}$ for some bundle morphism $\Lambda_{r}: J^{r} F \rightarrow G$.

In coords $\left(x^{\alpha}\right)$ on $E,\left(x^{\alpha}, y^{i}\right)$ on F and $\left(x^{\alpha}, z^{a}\right)$ on G,

$$
\left.\mathcal{L}_{r}(f)\right|_{x}=\left(x^{\alpha}, \Lambda^{a}\left(x^{\alpha},\left.\partial_{\alpha_{1}} f^{i}\right|_{x}, \ldots,\left.\partial_{\alpha_{1} \ldots \alpha_{r}} f^{i}\right|_{x}\right)\right)
$$

An example of PDO

$$
E=M^{n}
$$

$F=M^{n} \times \mathbb{R}^{q}$
$G=S_{2}^{0}\left(M^{n}\right)$ - symmetric $(0,2)$ tensors over M^{n}
The pull-back operator \mathcal{D} is the 1st order quadratic PDO
$\mathcal{D}: \Gamma^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}\left(M^{n}\right)\right)$
given in coords by
$\mathcal{D}(f)=\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j} d x^{\alpha} \otimes d x^{\beta}$
The corresponding bundle morphism
$\Delta: J^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq J^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow S_{2}^{0}\left(M^{n}\right)$
is given in coords by

$$
\Delta\left(x^{\alpha}, y^{i}, y_{\alpha}^{i}\right)=\left(x^{\alpha}, \delta_{i j} y_{\alpha}^{i} y_{\beta}^{j}\right)
$$

An example of PDO

$$
\begin{aligned}
& E=M^{n} \\
& F=M^{n} \times \mathbb{R}^{q}
\end{aligned}
$$

$G=S_{2}^{0}\left(M^{n}\right)$ - symmetric $(0,2)$ tensors over M^{n}
The pull-back operator \mathcal{D} is the 1st order quadratic PDO

The corresponding bundle morphism
$\Delta: J^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq J^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow S_{2}^{0}\left(M^{n}\right)$
is given in coords by

$$
\Delta\left(x^{\alpha}, y^{i}, y_{\alpha}^{i}\right)=\left(x^{\alpha}, \delta_{i j} y_{\alpha}^{i} y_{\beta}^{j}\right)
$$

An example of PDO

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

$$
E=M^{n}
$$

$$
F=M^{n} \times \mathbb{R}^{q}
$$

$$
G=S_{2}^{0}\left(M^{n}\right)-\text { symmetric }(0,2) \text { tensors over } M^{n}
$$

The pull-back operator \mathcal{D} is the 1 st order quadratic PDO
$\mathcal{D}: \Gamma^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}\left(M^{n}\right)\right)$
given in coords by
$\mathcal{D}(f)=\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j} d x^{\alpha} \otimes d x^{\beta}$
The corresponding bundle morphism
$\Delta: J^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq J^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow S_{2}^{0}\left(M^{n}\right)$
is given in coords by
$\Delta\left(x^{\alpha}, y^{i}, y_{\alpha}^{i}\right)=\left(x^{\alpha}, \delta_{i j} y_{\alpha}^{i} y_{\beta}^{j}\right)$

An example of PDO

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

$$
\begin{aligned}
& E=M^{n} \\
& F=M^{n} \times \mathbb{R}^{q} \\
& G=S_{2}^{0}\left(M^{n}\right)-\text { symmetric }(0,2) \text { tensors over } M^{n}
\end{aligned}
$$

The pull-back operator \mathcal{D} is the 1st order quadratic PDO

given in coords by

The corresponding bundle morphism

is given in coords by

An example of PDO

```
Infinitesimal
invertibility
R. De Leo
General
Setting
Main Result
PDOs & IFT
Idea of the
proof: inv. of
linear PDOs
Elementary
example
Bibliography
\(E=M^{n}\)
\(F=M^{n} \times \mathbb{R}^{q}\)
\(G=S_{2}^{0}\left(M^{n}\right)\) - symmetric \((0,2)\) tensors over \(M^{n}\)
The pull-back operator \(\mathcal{D}\) is the 1 st order quadratic PDO
\(\mathcal{D}: \Gamma^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}\left(M^{n}\right)\right)\)
given in coords by
\(\mathcal{D}(f)=\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j} d x^{\alpha} \otimes d x^{\beta}\)
The corresponding bundle morphism
```



```
is given in coords by
```


An example of PDO

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
$E=M^{n}$
$F=M^{n} \times \mathbb{R}^{q}$
$G=S_{2}^{0}\left(M^{n}\right)$ - symmetric $(0,2)$ tensors over M^{n}
The pull-back operator \mathcal{D} is the 1st order quadratic PDO

$$
\mathcal{D}: \Gamma^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}\left(M^{n}\right)\right)
$$

given in coords by

$$
\mathcal{D}(f)=\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j} d x^{\alpha} \otimes d x^{\beta}
$$

The corresponding bundle morphism
$\Delta: J^{1}\left(M^{n} \times \mathbb{R}^{q}\right) \simeq J^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow S_{2}^{0}\left(M^{n}\right)$
is given in coords by
$\Delta\left(x^{\alpha}, y^{i}, y_{\alpha}^{i}\right)=\left(x^{\alpha}, \delta_{i j} y_{\alpha}^{i} y_{\beta}^{j}\right)$

Definition of Linearization

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography
$V F=$ vertical tangent vectors of $T F \rightarrow T E$
Given a C^{r} section $f: E \rightarrow F$, set $\Gamma_{f}^{r}=\Gamma^{r}\left(f^{*}(V F)\right)$.

Definition

The linearization of $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ at $f \in \Gamma^{r}(F)$ is the linear PDO of order r

$$
\ell_{r, f}: \Gamma_{f}^{r} \rightarrow \Gamma^{0} G
$$

defined by

$$
\ell_{r, f}(\eta)=\left.\frac{d}{d t} \mathcal{L}_{r}\left(f_{t}\right)\right|_{t=0}
$$

where f_{t} is any curve of sections s.t. $d f /\left.d t\right|_{t=0}=\eta$.

An example of Linearization

Infinitesimal
invertibility
R. De Leo

General

Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

In case of the pull-back map, its linearization

$$
d_{r, f}: C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}\left(M^{n}\right)\right)
$$

is given in coordinates by

$$
d_{r, f}(\eta)=2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}
$$

Definition of Infinitesimal invertibility

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition

A PDO \mathcal{L}_{r} is infinitesimally invertible over $\mathcal{A} \subset \Gamma^{r} F$ if there is a family of linear PDOs of order s

$$
\mathcal{E}_{f}: \Gamma^{s}(G) \rightarrow \Gamma_{f}^{0}, f \in \mathcal{A}
$$

such that:
(1) $\mathcal{A} \subset \Gamma^{d}(F)$ for some $d \geq r$;
(2) the map $\mathcal{E}: \mathcal{A} \times \Gamma^{s}(G) \rightarrow \Gamma^{0}(V F)$ is of order d in the first variable and s in the second;
(3) $\ell_{r}\left(\mathcal{E}_{f}(g)\right)=g$ for all $f \in \mathcal{A} \cap \Gamma^{r+d} F$ and $g \in \Gamma^{s+d} G$.

Definition of Infinitesimal invertibility

Infinitesimal
invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition

A PDO \mathcal{L}_{r} is infinitesimally invertible over $\mathcal{A} \subset \Gamma^{r} F$ if there is a family of linear PDOs of order s

$$
\mathcal{E}_{f}: \Gamma^{s}(G) \rightarrow \Gamma_{f}^{0}, f \in \mathcal{A}
$$

such that:
(1) $\mathcal{A} \subset \Gamma^{d}(F)$ for some $d \geq r$;
(2) the $\operatorname{map} \mathcal{E}: \mathcal{A} \times \Gamma^{s}(G) \rightarrow \Gamma^{0}(V F)$ is of order d in the first variable and s in the second;
(3) $0\left(\mathcal{E}_{r}(g)\right)=g$ for all $f \in \Lambda \cap \Gamma^{r+d} \rho$ and $g \in \Gamma^{s+d} G$.

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition of Infinitesimal invertibility

Definition

A PDO \mathcal{L}_{r} is infinitesimally invertible over $\mathcal{A} \subset \Gamma^{r} F$ if there is a family of linear PDOs of order s

$$
\mathcal{E}_{f}: \Gamma^{s}(G) \rightarrow \Gamma_{f}^{0}, f \in \mathcal{A}
$$

such that:
(1) $\mathcal{A} \subset \Gamma^{d}(F)$ for some $d \geq r$;
(2) the map $\mathcal{E}: \mathcal{A} \times \Gamma^{s}(G) \rightarrow \Gamma^{0}(V F)$ is of order d in the first variable and s in the second;

Definition of Infinitesimal invertibility

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition

A PDO \mathcal{L}_{r} is infinitesimally invertible over $\mathcal{A} \subset \Gamma^{r} F$ if there is a family of linear PDOs of order s

$$
\mathcal{E}_{f}: \Gamma^{s}(G) \rightarrow \Gamma_{f}^{0}, f \in \mathcal{A}
$$

such that:
(1) $\mathcal{A} \subset \Gamma^{d}(F)$ for some $d \geq r$;
(2) the map $\mathcal{E}: \mathcal{A} \times \Gamma^{s}(G) \rightarrow \Gamma^{0}(V F)$ is of order d in the first variable and s in the second;
(3) $\ell_{r}\left(\mathcal{E}_{f}(g)\right)=g$ for all $f \in \mathcal{A} \cap \Gamma^{r+d} F$ and $g \in \Gamma^{s+d} G$.

An example of Infinitesimal invertibility

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The pull-back operator $\mathcal{D}: C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}(M)\right)$ admits an infinitesimal inverse of defect $d=2$ and order $s=0$ (i.e. algebraic!) over $\mathcal{A}=\operatorname{Free}^{2}\left(M^{n}, \mathbb{R}^{q}\right) \subset C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$. Indeed, the $q \times s_{n}$ system
thanks to the obvious $\partial_{\beta}\left(\partial_{\alpha} f^{i} \eta^{j}\right)=\partial_{\alpha \beta}^{2} f^{i} \eta^{j}+\partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}$, is implied by the $q \times\left(n+s_{n}\right)$ system

An example of Infinitesimal invertibility

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The pull-back operator $\mathcal{D}: C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}(M)\right)$ admits an infinitesimal inverse of defect $d=2$ and order $s=0$ (i.e. algebraic!) over $\mathcal{A}=\operatorname{Free}^{2}\left(M^{n}, \mathbb{R}^{q}\right) \subset C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$. Indeed, the $q \times s_{n}$ system

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}=\gamma_{\alpha \beta},
$$

thanks to the obvious $\partial_{\beta}\left(\partial_{\alpha} f^{i} \eta^{j}\right)=\partial_{\alpha \beta}^{2} f^{i} \eta^{j}+\partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}$, is implied by the $q \times\left(n+s_{n}\right)$ system
that can be solved algebraically for every $f \in \operatorname{Free}{ }^{2}\left(M^{n}, \mathbb{R}^{q}\right)$

An example of Infinitesimal invertibility

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

The pull-back operator $\mathcal{D}: C^{1}\left(M^{n}, \mathbb{R}^{q}\right) \rightarrow \Gamma^{0}\left(S_{2}^{0}(M)\right)$ admits an infinitesimal inverse of defect $d=2$ and order $s=0$ (i.e. algebraic!) over $\mathcal{A}=\operatorname{Free}^{2}\left(M^{n}, \mathbb{R}^{q}\right) \subset C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$. Indeed, the $q \times s_{n}$ system

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}=\gamma_{\alpha \beta},
$$

thanks to the obvious $\partial_{\beta}\left(\partial_{\alpha} f^{i} \eta^{j}\right)=\partial_{\alpha \beta}^{2} f^{i} \eta^{j}+\partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}$, is implied by the $q \times\left(n+s_{n}\right)$ system

$$
\begin{align*}
\delta_{i j} \partial_{\alpha} f^{i} \eta^{j} & =0 \\
2 \delta_{i j} \partial_{\alpha \beta}^{2} f^{i} \eta^{j} & =-\gamma_{\alpha \beta} \tag{1}
\end{align*}
$$

that can be solved algebraically for every $f \in \operatorname{Free}^{2}\left(M^{n}, \mathbb{R}^{q}\right)$.

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The Implicit Function Theorem

Theorem (Nash, Gromov, 1986)

If a PDO $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ admits an infinitesimal inversion of order s and defect d over $\mathcal{A} \subset \Gamma^{d} F$, then the restriction of \mathcal{L}_{r} to $\mathcal{A}^{\infty}=\mathcal{A} \cap \Gamma^{\infty} E$ is an open map.

Corollary (Nash, Gromov)

The pull-back operator \mathcal{D} is open over Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$
Remark: in particular the corollary implies that \mathcal{D} is open over a dense open set when $q \geq s_{n}+2 n$ and is void when $q<s_{n}+n$.

The Implicit Function Theorem

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (Nash, Gromov, 1986)
If a PDO $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ admits an infinitesimal inversion of order s and defect d over $\mathcal{A} \subset \Gamma^{d} F$, then the restriction of \mathcal{L}_{r} to $\mathcal{A}^{\infty}=\mathcal{A} \cap \Gamma^{\infty} E$ is an open map.

Corollary (Nash, Gromov)

The pull-back operator \mathcal{D} is open over Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$.
Remark: in particular the corollary implies that \mathcal{D} is open over a dense open set when $q \geq s_{n}+2 n$ and is void when $q<s_{n}+n$

The Implicit Function Theorem

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Theorem (Nash, Gromov, 1986)
If a PDO $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ admits an infinitesimal inversion of order s and defect d over $\mathcal{A} \subset \Gamma^{d} F$, then the restriction of \mathcal{L}_{r} to $\mathcal{A}^{\infty}=\mathcal{A} \cap \Gamma^{\infty} E$ is an open map.

Corollary (Nash, Gromov)

The pull-back operator \mathcal{D} is open over Free ${ }^{\infty}\left(M^{n}, \mathbb{R}^{q}\right)$.
Remark: in particular the corollary implies that \mathcal{D} is open over a dense open set when $q \geq s_{n}+2 n$ and is void when $q<s_{n}+n$.

The problem

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
POs \& IFT
Idea of the proof: inv. of linear PROs

Elementary example

Bibliography

We want to show that \mathcal{D} is infinitesimally invertible on some nonempty open subset \mathcal{F} of $C^{1}\left(M^{n}, \mathbb{R}^{q}\right)$ even when free maps cannot arise $\left(q<s_{n}+n\right)$.

Going back to the $q \times s_{n}$ system
its solutions are given by the union of all solutions of

for all possible 1-forms $h=h_{\alpha} d x^{\alpha}$ over M^{n}

The problem

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

We want to show that \mathcal{D} is infinitesimally invertible on some non-empty open subset \mathcal{F} of $C^{1}\left(M^{n}, \mathbb{R}^{q}\right)$ even when free maps cannot arise $\left(q<s_{n}+n\right)$.

Going back to the $q \times s_{n}$ system

$$
2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \eta^{j}=\gamma_{\alpha \beta},
$$

its solutions are given by the union of all solutions of

$$
\begin{align*}
\delta_{i j} \partial_{\alpha} f_{0}^{i} \eta^{j} & =h_{\alpha} \\
2 \delta_{i j} \partial_{\alpha \beta}^{2} f_{0}^{i} \eta^{j} & =\partial_{\alpha} h_{\beta}+\partial_{\beta} h_{\alpha}-\gamma_{\alpha \beta} \tag{2}
\end{align*}
$$

for all possible 1-forms $h=h_{\alpha} d x^{\alpha}$ over M^{n}.

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Full 2-rank maps

Definition

Let $D^{2} f=\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$. We say that an immersion $f \in C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$ has full 2-rank if $r k D^{2} f$ is maximal at every point.

Hence if $q \geq s_{n}+n$ a full 2-rank map is just a Free map.
When $q<s_{n}+n$, it is an immersion whose 1st and 2 nd derivatives span a q-dimensional space at every point.

In other words, the vectors $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$ satisfy at every point $m=s_{n}+n-q$ non-trivial linear relations
 entries of $D^{2} f$

Full 2-rank maps

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Definition

Let $D^{2} f=\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$. We say that an immersion $f \in C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$ has full 2-rank if $r k D^{2} f$ is maximal at every point.

Hence if $q \geq s_{n}+n$ a full 2-rank map is just a Free map.
When $q<s_{n}+n$, it is an immersion whose 1st and 2nd derivatives span a q-dimensional space at every point.

In other words, the vectors $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$ satisfy at every point $m=s_{n}+n-q$ non-trivial linear relations
where the coefficients λ can be chosen as polynomials in the entries of $D^{2} f$.

Full 2-rank maps

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Definition

Let $D^{2} f=\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$. We say that an immersion $f \in C^{2}\left(M^{n}, \mathbb{R}^{q}\right)$ has full 2-rank if $r k D^{2} f$ is maximal at every point.

Hence if $q \geq s_{n}+n$ a full 2-rank map is just a Free map.
When $q<s_{n}+n$, it is an immersion whose 1st and 2nd derivatives span a q-dimensional space at every point.
In other words, the vectors $\left(\partial_{\alpha} f^{i}, \partial_{\alpha \beta}^{2} f^{i}\right)$ satisfy at every point $m=s_{n}+n-q$ non-trivial linear relations

$$
\lambda_{a}^{\alpha} \partial_{\alpha} f+\sum_{\alpha \leq \beta} \lambda_{a}^{\alpha \beta} \partial_{\alpha \beta}^{2} f=0, \quad a=1, \ldots, m
$$

where the coefficients λ can be chosen as polynomials in the entries of $D^{2} f$.

Full 2-rank maps

Infinitesimal invertibility
R. De Leo

General

Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Hence the linear algebraic system (in the q variables η^{j})

$$
\begin{align*}
\delta_{i j} \partial_{\alpha} f_{0}^{i} \eta^{j} & =h_{\alpha} \\
2 \delta_{i j} \partial_{\alpha \beta}^{2} f_{0}^{i} \eta^{j} & =\partial_{\alpha} h_{\beta}+\partial_{\beta} h_{\alpha}-\gamma_{\alpha \beta} \tag{3}
\end{align*}
$$

is solvable iff so is the linear PDE system (in the n vars h_{α})

$$
\lambda_{a}^{\alpha} h_{\alpha}+\sum_{\alpha \leq \beta} \lambda_{a}^{\alpha \beta}\left(\partial_{\alpha} h_{\beta}+\partial_{\beta} h_{\alpha}-\gamma_{\alpha \beta}\right)=0, \quad a=1, \ldots, m
$$

(recall that the 1st \& 2nd derivatives of f are inside the λ)

Linear Partial Differential Operators

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

> In order to solve the system, we follow Gromov's suggestion to modify his proof about the generic surjectivity of linear PDOs.

Definition

Let $F \rightarrow E$ and $G \rightarrow E$ be two vector bundles resp. of dimension q and a^{\prime}. A PDO of order $r, \mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$, is linear if $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$ for some vector bundle morphism $\Lambda_{r}: J^{r}(F) \rightarrow G$

Theorem

If $q>q^{\prime}$, a generic linear $P D O \mathcal{L}_{T}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ is surjective.
Gromov proof is very general and can be easily adapted to more particular cases, including the PDE in the λ coefficients when f has full 2-rank.

Linear Partial Differential Operators

Infinitesimal invertibility R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

In order to solve the system, we follow Gromov's suggestion to modify his proof about the generic surjectivity of linear PDOs.

Definition

Let $F \rightarrow E$ and $G \rightarrow E$ be two vector bundles resp. of dimension q and q^{\prime}. A PDO of order $r, \mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$, is linear if $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$ for some vector bundle morphism $\Lambda_{r}: J^{r}(F) \rightarrow G$.

Theorem

If $q>q^{\prime}$, a generic linear $P D O \mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ is surjective.
Gromov proof is very general and can be easily adapted to more particular cases, including the PDE in the λ coefficients when f has full 2-rank.

Linear Partial Differential Operators

Infinitesimal invertibility R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

In order to solve the system, we follow Gromov's suggestion to modify his proof about the generic surjectivity of linear PDOs.

Definition

Let $F \rightarrow E$ and $G \rightarrow E$ be two vector bundles resp. of dimension q and q^{\prime}. A PDO of order $r, \mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$, is linear if $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$ for some vector bundle morphism $\Lambda_{r}: J^{r}(F) \rightarrow G$.

Theorem

If $q>q^{\prime}$, a generic linear PDO $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ is surjective.
Gromov proof is very general and can be easily adapted to
more particular cases, including the PDE in the λ coefficients when f has full 2-rank.

Linear Partial Differential Operators

Infinitesimal invertibility

Main Result

In order to solve the system，we follow Gromov＇s suggestion to modify his proof about the generic surjectivity of linear PDOs．

Definition

Let $F \rightarrow E$ and $G \rightarrow E$ be two vector bundles resp．of dimension q and q^{\prime} ．A PDO of order $r, \mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ ，is linear if $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$ for some vector bundle morphism $\Lambda_{r}: J^{r}(F) \rightarrow G$ ．

Theorem

If $q>q^{\prime}$ ，a generic linear PDO $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ is surjective．
Gromov proof is very general and can be easily adapted to more particular cases，including the PDE in the λ coefficients when f has full 2－rank．

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The main idea of Gromov to solve a linear PDE system

$$
\mathcal{L}_{r}(f)=g
$$

of q^{\prime} equations in q variables, $q>q^{\prime}$, is that a right inverse for \mathcal{L}_{r} can be found algebraically.

Definition

Let \mathcal{H} be an open subset of $J^{r+s}\left(\operatorname{Hom}\left(J^{r}(F), G\right)\right)$
A \mathcal{H}-universal right inverse for a linear PDO of order r
with $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$, is a PDO

$$
\mathcal{M}_{s}: \Gamma^{\infty} \mathcal{H} \times \Gamma^{\infty} G \rightarrow \Gamma^{\infty} F,
$$

of order $r+s$ in the 1st component and s in the 2 nd, such that

$$
\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, g\right)\right)=g, \text { for all } g \in \Gamma^{\infty} G .
$$

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The main idea of Gromov to solve a linear PDE system

$$
\mathcal{L}_{r}(f)=g
$$

of q^{\prime} equations in q variables, $q>q^{\prime}$, is that a right inverse for \mathcal{L}_{r} can be found algebraically.

Definition

Let \mathcal{H} be an open subset of $J^{r+s}\left(\operatorname{Hom}\left(J^{r}(F), G\right)\right)$. A \mathcal{H}-universal right inverse for a linear PDO of order r
with $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$, is a PDO
of order $r+s$ in the 1 st component and s in the 2 nd, such that

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The main idea of Gromov to solve a linear PDE system

$$
\mathcal{L}_{r}(f)=g
$$

of q^{\prime} equations in q variables, $q>q^{\prime}$, is that a right inverse for \mathcal{L}_{r} can be found algebraically.

Definition

Let \mathcal{H} be an open subset of $J^{r+s}\left(\operatorname{Hom}\left(J^{r}(F), G\right)\right)$.
A \mathcal{H}-universal right inverse for a linear PDO of order r

$$
\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G
$$

with $\mathcal{L}_{r}(f)=\left(j^{r} f\right)^{*} \Lambda_{r}$, is a PDO

$$
\mathcal{M}_{s}: \Gamma^{\infty} \mathcal{H} \times \Gamma^{\infty} G \rightarrow \Gamma^{\infty} F
$$

of order $r+s$ in the 1st component and s in the 2 nd, such that

$$
\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, g\right)\right)=g, \text { for all } g \in \Gamma^{\infty} G .
$$

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General

 SettingMain Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Clearly the existence of a \mathcal{H}-universal inverse $\mathcal{M}_{s}: \Gamma^{\infty} \mathcal{H} \times \Gamma^{\infty} G \rightarrow \Gamma^{\infty} F$ for operators $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ implies that any \mathcal{L}_{r} with $\Lambda_{r}(E) \subset \mathcal{H}$ is surjective.
The equation $\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d$ is a linear PDE system of
order r in the coefficients of \mathcal{M}
The crucial observation of Gromov is the existence of an idempotent antihomomorphism (formal adjunction)
given in coordinated by

where is the transpose of $\Lambda_{i}^{a A}$

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Clearly the existence of a \mathcal{H}-universal inverse $\mathcal{M}_{s}: \Gamma^{\infty} \mathcal{H} \times \Gamma^{\infty} G \rightarrow \Gamma^{\infty} F$ for operators $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ implies that any \mathcal{L}_{r} with $\Lambda_{r}(E) \subset \mathcal{H}$ is surjective. The equation $\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d$ is a linear PDE system of order r in the coefficients of \mathcal{M}_{s}.
The crucial observation of Gromov is the existence of an idempotent antihomomorphism (formal adjunction)
given in coordinated by

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Clearly the existence of a \mathcal{H}-universal inverse $\mathcal{M}_{s}: \Gamma^{\infty} \mathcal{H} \times \Gamma^{\infty} G \rightarrow \Gamma^{\infty} F$ for operators $\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G$ implies that any \mathcal{L}_{r} with $\Lambda_{r}(E) \subset \mathcal{H}$ is surjective.
The equation $\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d$ is a linear PDE system of order r in the coefficients of \mathcal{M}_{s}.
The crucial observation of Gromov is the existence of an idempotent antihomomorphism (formal adjunction)

$$
{ }^{*}: J^{r}\left(\operatorname{Hom}\left(J^{r} F, G\right)\right) \rightarrow \operatorname{Hom}\left(J^{r} G, F\right)
$$

given in coordinated by

$$
\mathcal{L}_{r}^{*}(g)=\left(\sum_{|A| \leq r} \bar{\Lambda}_{a}^{i A} \partial_{A} g^{a}\right) \stackrel{\text { def }}{=}\left(\sum_{|A| \leq r}(-1)^{|A|} \partial_{A}\left[\left(\overline{\Lambda_{a}^{i}}\right)^{A} g^{a}\right]\right)
$$

where ${\overline{\Lambda_{a}^{i}}}^{A}$ is the transpose of $\Lambda_{i}^{a A}$.

Algebraic inversion of linear PDE systems

HOWARD
UNIVERSITY

Infinitesimal invertibility
R. De Leo

General

 SettingMain Result
PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Hence

$$
\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d
$$

is solvable iff so is

$$
\mathcal{M}_{s}^{*}\left(\mathcal{L}_{r}^{*}\left(\mathcal{M}_{s}^{*}, \cdot\right)\right)=i d
$$

The latter, though, is not anymore a PDO but rather an algebraic system and therefore one does not need anything more complex than transversality and combinatorial arguments to prove its solvability.

Remark: counterintuitively, the solutions of $\mathcal{L}_{r}(f)=g$ obtained this ways are written in terms of the derivatives of the coefficients of \mathcal{L}_{T} rather than of their integrals!

Algebraic inversion of linear PDE systems

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Hence

$$
\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d
$$

is solvable iff so is

$$
\mathcal{M}_{s}^{*}\left(\mathcal{L}_{r}^{*}\left(\mathcal{M}_{s}^{*}, \cdot\right)\right)=i d
$$

The latter, though, is not anymore a PDO but rather an algebraic system and therefore one does not need anything more complex than transversality and combinatorial arguments to prove its solvability.

Remark: counterintuitively, the solutions of $\mathcal{L}_{r}(f)=g$ obtained this ways are written in terms of the derivatives of the coefficients of \mathcal{L}_{r} rather than of their integrals!

Algebraic inversion of linear PDE systems

Infinitesimal invertibility

Hence

$$
\mathcal{L}_{r}\left(\mathcal{M}_{s}\left(\mathcal{L}_{r}, \cdot\right)\right)=i d
$$

is solvable iff so is

$$
\mathcal{M}_{s}^{*}\left(\mathcal{L}_{r}^{*}\left(\mathcal{M}_{s}^{*}, \cdot\right)\right)=i d
$$

The latter, though, is not anymore a PDO but rather an algebraic system and therefore one does not need anything more complex than transversality and combinatorial arguments to prove its solvability.

Remark: counterintuitively, the solutions of $\mathcal{L}_{r}(f)=g$ obtained this ways are written in terms of the derivatives of the coefficients of \mathcal{L}_{r} rather than of their integrals!

A linear 1st order Ordinary Differential Operator

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Consider the case $E=\mathbb{R}, n=1, q=2, q^{\prime}=1$ and a general linear PDO of order 1 , namely here

$$
F=\mathbb{R} \times \mathbb{R}^{2}, G=\mathbb{R} \times \mathbb{R}, J^{1} F=\mathbb{R} \times T \mathbb{R}^{2}
$$

and

is defined by
$\mathcal{L}\left(x^{(t)}, y^{(t)}\right)=a(t) x(t)+b(t) y(t)+c(t) x^{\prime}(t)+d(t) y^{\prime}(t)$
Then the equation $\mathcal{L}(x(t), y(t))=g(t)$
is the underdetermined linear 1 st order ODE in 2 vars

A linear 1st order Ordinary Differential Operator

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Consider the case $E=\mathbb{R}, n=1, q=2, q^{\prime}=1$ and a general linear PDO of order 1, namely here

$$
F=\mathbb{R} \times \mathbb{R}^{2}, G=\mathbb{R} \times \mathbb{R}, J^{1} F=\mathbb{R} \times T \mathbb{R}^{2}
$$

and

$$
\mathcal{L}: \Gamma^{1} F \simeq C^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right) \rightarrow \Gamma^{0} G \simeq C^{0}(\mathbb{R})
$$

is defined by
$\mathcal{L}(x(t), y(t))=a(t) x(t)+b(t) y(t)+c(t) x^{\prime}(t)+d(t) y^{\prime}(t)$.
Then the equation $\mathcal{L}(x(t), y(t))=g(t)$
is the underdetermined linear 1st order ODE in 2 vars

A linear 1st order Ordinary Differential Operator

Infinitesimal invertibility
R. De Leo

General

Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Consider the case $E=\mathbb{R}, n=1, q=2, q^{\prime}=1$ and a general linear PDO of order 1 , namely here

$$
F=\mathbb{R} \times \mathbb{R}^{2}, G=\mathbb{R} \times \mathbb{R}, J^{1} F=\mathbb{R} \times T \mathbb{R}^{2}
$$

and

$$
\mathcal{L}: \Gamma^{1} F \simeq C^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right) \rightarrow \Gamma^{0} G \simeq C^{0}(\mathbb{R})
$$

is defined by
$\mathcal{L}(x(t), y(t))=a(t) x(t)+b(t) y(t)+c(t) x^{\prime}(t)+d(t) y^{\prime}(t)$.
Then the equation $\mathcal{L}(x(t), y(t))=g(t)$
is the underdetermined linear 1st order ODE in 2 vars

$$
a x+b y+c x^{\prime}+d y^{\prime}=g
$$

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

A right inverse of \mathcal{L} of order 0

The the morphism

$$
\Lambda: J^{1} F \simeq \mathbb{R} \times T \mathbb{R}^{2} \rightarrow G \simeq \mathbb{R} \times \mathbb{R}
$$

associated to \mathcal{L} is defined by

$$
\Lambda\left(t, x, y, v_{x}, v_{y}\right)=\left(t, a x+b y+c v_{x}+d v_{y}\right) .
$$

Consider now the open subset $\mathcal{H} \subset J^{1}\left(\operatorname{Hom}\left(J^{1} F, G\right)\right)=J^{1}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
of all morphisms Λ such that $a d-b c+c d^{\prime}-c^{\prime} d \neq 0$ for all t
Then there exist a \mathcal{H}-universal right inverse of order 0

namely every operator \mathcal{L} such that $j^{1} \Lambda(\mathbb{R}) \subset \mathcal{H}$ is surjective.

A right inverse of \mathcal{L} of order 0

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The the morphism

$$
\Lambda: J^{1} F \simeq \mathbb{R} \times T \mathbb{R}^{2} \rightarrow G \simeq \mathbb{R} \times \mathbb{R}
$$

associated to \mathcal{L} is defined by

$$
\Lambda\left(t, x, y, v_{x}, v_{y}\right)=\left(t, a x+b y+c v_{x}+d v_{y}\right)
$$

Consider now the open subset $\mathcal{H} \subset J^{1}\left(\operatorname{Hom}\left(J^{1} F, G\right)\right)=J^{1}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$ of all morphisms Λ such that $a d-b c+c d^{\prime}-c^{\prime} d \neq 0$ for all t.

Then there exist a \mathcal{H}-universal right inverse of order 0

A right inverse of \mathcal{L} of order 0

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The the morphism

$$
\Lambda: J^{1} F \simeq \mathbb{R} \times T \mathbb{R}^{2} \rightarrow G \simeq \mathbb{R} \times \mathbb{R}
$$

associated to \mathcal{L} is defined by

$$
\Lambda\left(t, x, y, v_{x}, v_{y}\right)=\left(t, a x+b y+c v_{x}+d v_{y}\right)
$$

Consider now the open subset $\mathcal{H} \subset J^{1}\left(\operatorname{Hom}\left(J^{1} F, G\right)\right)=J^{1}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$ of all morphisms Λ such that $a d-b c+c d^{\prime}-c^{\prime} d \neq 0$ for all t.

Then there exist a \mathcal{H}-universal right inverse of order 0

$$
\mathcal{M}_{0} g=\binom{u(t)}{v(t)} g
$$

namely every operator \mathcal{L} such that $j^{1} \Lambda(\mathbb{R}) \subset \mathcal{H}$ is surjective.

Finding the coefficients of the 0 -order inverse

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Indeed

$$
\mathcal{L}^{*}(g)=\binom{a}{b} g-\frac{d}{d t}\left[\binom{c}{d} g\right]=\binom{a g-c g^{\prime}-c^{\prime} g}{b g-d g^{\prime}-d^{\prime} g}
$$

and we look for a 0-order left inverse

Hence we need to find two functions $u(t)$ and $v(t)$ so that

Finding the coefficients of the 0 -order inverse

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Indeed

$$
\mathcal{L}^{*}(g)=\binom{a}{b} g-\frac{d}{d t}\left[\binom{c}{d} g\right]=\binom{a g-c g^{\prime}-c^{\prime} g}{b g-d g^{\prime}-d^{\prime} g}
$$

and we look for a 0-order left inverse
$\mathcal{M}_{0}^{*}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}u(t) & v(t)\end{array}\right)\binom{x(t)}{y(t)}$ of \mathcal{L}^{*}, namely
$\left(\begin{array}{ll}u & v\end{array}\right)\binom{a g-c g^{\prime}-c^{\prime} g}{b g-d g^{\prime}-d^{\prime} g}=\left(u a-u c^{\prime}+v b-v d^{\prime}\right) g-(u c+v d) g^{\prime}=g$.
Hence we need to find two functions $u(t)$ and $v(t)$ so that

Finding the coefficients of the 0 -order inverse

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

Indeed

$$
\mathcal{L}^{*}(g)=\binom{a}{b} g-\frac{d}{d t}\left[\binom{c}{d} g\right]=\binom{a g-c g^{\prime}-c^{\prime} g}{b g-d g^{\prime}-d^{\prime} g}
$$

and we look for a 0 -order left inverse
$\mathcal{M}_{0}^{*}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}u(t) & v(t)\end{array}\right)\binom{x(t)}{y(t)}$ of \mathcal{L}^{*}, namely
$\left(\begin{array}{ll}u & v\end{array}\right)\binom{a g-c g^{\prime}-c^{\prime} g}{b g-d g^{\prime}-d^{\prime} g}=\left(u a-u c^{\prime}+v b-v d^{\prime}\right) g-(u c+v d) g^{\prime}=g$.
Hence we need to find two functions $u(t)$ and $v(t)$ so that

$$
\begin{aligned}
u a-u c^{\prime}+v b-v d^{\prime} & =1 \\
u c+v d & =0
\end{aligned}
$$

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The (formal) unique solution of this system

$$
u=\frac{d}{a d-b c+c d^{\prime}-c^{\prime} d}, \quad v=-\frac{c}{a d-b c+c d^{\prime}-c^{\prime} d}
$$

is well-defined exactly for all \mathcal{L} s.t. $j^{1} \Lambda(\mathbb{R}) \subset \mathcal{H}$.
The solution provided by this method to
is

Remark: the complement of \mathcal{H} has codimension 1 and so $j^{1} \Lambda(\mathbb{R}) \not \subset \mathcal{H}$ for a generic Λ. Hence we just proved the invertibility of an open non-empty set of linear 1st order differential operators

A \mathcal{H}-universal inverse

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The (formal) unique solution of this system

$$
u=\frac{d}{a d-b c+c d^{\prime}-c^{\prime} d}, \quad v=-\frac{c}{a d-b c+c d^{\prime}-c^{\prime} d}
$$

is well-defined exactly for all \mathcal{L} s.t. $j^{1} \Lambda(\mathbb{R}) \subset \mathcal{H}$.
The solution provided by this method to
is

$$
a x+b y+c x^{\prime}+d y^{\prime}=g
$$

$$
x(t)=\frac{d g}{a d-b c+c d^{\prime}-c^{\prime} d}, \quad y(t)=-\frac{c g}{a d-b c+c d^{\prime}-c^{\prime} d}
$$

Remark: the complement of \mathcal{H} has codimension 1 and so $j^{1} \Lambda(\mathbb{R}) \not \subset \mathcal{H}$ for a generic Λ. Hence we just proved the invertibility of an open non-empty set of linear 1st order differential operators

A \mathcal{H}-universal inverse

Infinitesimal invertibility
R. De Leo

General Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

The (formal) unique solution of this system

$$
u=\frac{d}{a d-b c+c d^{\prime}-c^{\prime} d}, \quad v=-\frac{c}{a d-b c+c d^{\prime}-c^{\prime} d}
$$

is well-defined exactly for all \mathcal{L} s.t. $j^{1} \Lambda(\mathbb{R}) \subset \mathcal{H}$.
The solution provided by this method to
is

$$
a x+b y+c x^{\prime}+d y^{\prime}=g
$$

$$
x(t)=\frac{d g}{a d-b c+c d^{\prime}-c^{\prime} d}, \quad y(t)=-\frac{c g}{a d-b c+c d^{\prime}-c^{\prime} d}
$$

Remark: the complement of \mathcal{H} has codimension 1 and so $j^{1} \Lambda(\mathbb{R}) \not \subset \mathcal{H}$ for a generic Λ. Hence we just proved the invertibility of an open non-empty set of linear 1st order differential operators $C^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right) \rightarrow C^{0}(\mathbb{R})$.

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General
Setting
Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

To find an open dense \mathcal{H} with a \mathcal{H}-universal inverse we must consider higher order operators, starting with of order 1 :

$$
\mathcal{M}_{1}^{*}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}
u(t) & v(t)
\end{array}\right)\binom{x(t)}{y(t)}+\left(\begin{array}{ll}
z(t) & w(t)
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)}
$$

This time, $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g$ has a term in g, one in g^{\prime} and one in $g^{\prime \prime}$,
so $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g=g$ gives 3 polynomial homogeneous equations
(with coefficients in $j^{2} \Lambda$) in the 4 components of \mathcal{M}_{1}^{*}.

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

To find an open dense \mathcal{H} with a \mathcal{H}-universal inverse we must consider higher order operators, starting with of order 1 :

$$
\mathcal{M}_{1}^{*}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}
u(t) & v(t)
\end{array}\right)\binom{x(t)}{y(t)}+\left(\begin{array}{ll}
z(t) & w(t)
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)}
$$

This time, $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g$ has a term in g, one in g^{\prime} and one in $g^{\prime \prime}$,
so $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g=g$ gives 3 polynomial homogeneous equations
(with coefficients in $j^{2} \Lambda$) in the 4 components of \mathcal{M}_{1}^{*}

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result PDOs \& IFT

Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

To find an open dense \mathcal{H} with a \mathcal{H}-universal inverse we must consider higher order operators, starting with of order 1 :

$$
\mathcal{M}_{1}^{*}\binom{x(t)}{y(t)}=\left(\begin{array}{ll}
u(t) & v(t)
\end{array}\right)\binom{x(t)}{y(t)}+\left(\begin{array}{ll}
z(t) & w(t)
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)}
$$

This time, $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g$ has a term in g, one in g^{\prime} and one in $g^{\prime \prime}$, so $\mathcal{M}_{1}^{*} \mathcal{L}^{*} g=g$ gives 3 polynomial homogeneous equations (with coefficients in $j^{2} \Lambda$) in the 4 components of \mathcal{M}_{1}^{*}.

Looking for a dense \mathcal{H}

Infinitesimal
invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

This way one can find two independent solutions, respectively with polynomial denominators p and q in the coordinates of the fibers of $J^{2}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
and define the two subbundles
$\mathcal{H}_{1}=\{p \neq 0\}$ and $\mathcal{H}_{2}=\{q \neq 0\}$
so that sections Λ s.t. $j^{2} \Lambda \subset \mathcal{H}_{1}$ or $j^{2} \Lambda \subset \mathcal{H}_{2}$ admit a universal left inverse.

Since left inverses can be "joined" through a partition of unity, we can build \mathcal{H}-universal left/right inverses with $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$

The complement of γt is the set $\{p=0$ and $q=0\}$, whose codimension is 2 , so $j^{2} \Lambda(\mathbb{R}) \subset \mathcal{H}$ for generic Λ.

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

This way one can find two independent solutions, respectively with polynomial denominators p and q in the coordinates of the fibers of $J^{2}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
and define the two subbundles
$\mathcal{H}_{1}=\{p \neq 0\}$ and $\mathcal{H}_{2}=\{q \neq 0\}$
so that sections Λ s.t. $j^{2} \Lambda \subset \mathcal{H}_{1}$ or $j^{2} \Lambda \subset \mathcal{H}_{2}$ admit a universal left inverse.

Since left inverses can be "joined" through a partition of unity, we can build \mathcal{H}-universal left/right inverses with $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$

The complement of \mathcal{H} is the set $\{p=0$ and $q=0\}$, whose codimension is 2 , so $j^{2} \Lambda(\mathbb{R}) \subset \mathcal{H}$ for generic Λ.

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General

Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

This way one can find two independent solutions, respectively with polynomial denominators p and q in the coordinates of the fibers of $J^{2}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
and define the two subbundles

$$
\mathcal{H}_{1}=\{p \neq 0\} \text { and } \mathcal{H}_{2}=\{q \neq 0\}
$$

so that sections Λ s.t. $j^{2} \Lambda \subset \mathcal{H}_{1}$ or $j^{2} \Lambda \subset \mathcal{H}_{2}$ admit a universal left inverse.

Since left inverses can be "joined" through a partition of unity, we can build \mathcal{H}-universal left/right inverses with $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$

The complement of $\psi \mathcal{l}$ is the set $\{p=0$ and $q=0\}$, whose codimension is 2 , so $j^{2} \Lambda(\mathbb{R}) \subset \mathcal{H}$ for generic Λ.

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

This way one can find two independent solutions, respectively with polynomial denominators p and q in the coordinates of the fibers of $J^{2}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
and define the two subbundles

$$
\mathcal{H}_{1}=\{p \neq 0\} \text { and } \mathcal{H}_{2}=\{q \neq 0\}
$$

so that sections Λ s.t. $j^{2} \Lambda \subset \mathcal{H}_{1}$ or $j^{2} \Lambda \subset \mathcal{H}_{2}$ admit a universal left inverse.

Since left inverses can be "joined" through a partition of unity, we can build \mathcal{H}-universal left/right inverses with $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$.

The complement of \mathcal{H} is the set $\{p=0$ and $q=0\}$, whose codimension is 2 , so $j^{2} \Lambda(\mathbb{R}) \subset \mathcal{H}$ for generic Λ.

Looking for a dense \mathcal{H}

Infinitesimal invertibility
R. De Leo

General Setting

Main Result
PDOs \& IFT
Idea of the proof: inv. of linear PDOs

Elementary example

Bibliography

This way one can find two independent solutions, respectively with polynomial denominators p and q in the coordinates of the fibers of $J^{2}\left(\mathbb{R} \times T^{*} \mathbb{R}^{2}\right)$
and define the two subbundles
$\mathcal{H}_{1}=\{p \neq 0\}$ and $\mathcal{H}_{2}=\{q \neq 0\}$
so that sections Λ s.t. $j^{2} \Lambda \subset \mathcal{H}_{1}$ or $j^{2} \Lambda \subset \mathcal{H}_{2}$
admit a universal left inverse.
Since left inverses can be "joined" through a partition of unity, we can build \mathcal{H}-universal left/right inverses with $\mathcal{H}=\mathcal{H}_{1} \cup \mathcal{H}_{2}$.

The complement of \mathcal{H} is the set $\{p=0$ and $q=0\}$, whose codimension is 2 , so $j^{2} \Lambda(\mathbb{R}) \subset \mathcal{H}$ for generic Λ.

Bibliography

Infinitesimal invertibility
(1) J. Nash, "The imbedding problem for Riemannian manifolds", Annals of Mathematics, 63:1 (1956)
(2) M. Gromov, "Partial Differential Relations", Springer, 1986

3 M. Gromov, "Geometric, algebraic and analytic descendants of Nash isometric embedding theorems", Bull. of AMS, 54:2 (2017)
(4) G. D'Ambra and A. Loi, "Non-free isometric immersions of Riemannian manifolds", Geometriae Dedicata, 127 (2007)
5 R. De Leo, "A note on non-free isometric immersions", Russian Mathematical Surveys, 65 (2010)
(6) R. De Leo, "Proof of a Gromov conjecture on the infinitesimal invertibility of the metric inducing operators", https://arxiv.org/abs/1711.01709

Thanks!

