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The first part of the talk will deal with global cohomological equations
associated with smooth vector fields in the plane

[motivated by recent work of S.P. Novikov on compact surfaces].
In the second part I will outline some investigations [in collaboration with
T. Gramchev (U. of Cagliari)] on global solvability issues of some vector

fields of the above type which are not surjective in C∞.
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Broad Statement of the Problem

Ingredients:

M smooth manifold with coordinates (xα), α = 1, · · · ,m
ξ = (ξα) smooth vector field on M

Φt
ξ : M → M flow of ξ, i.e. ξp =

d

dt
Φt

ξ(p)
∣∣∣
t=0

, ∀p ∈ M

ξ can be seen as a 1st-order linear Partial Diff. Op. on C∞(M)

Lξf(p) :=
d

dt
f(Φt

ξ(p))
∣∣∣
t=0

= ξα ∂f

∂xα
(p)

Question: how to characterize the image of Lξ? And how does
it depend on the topology of its integral trajectories of ξ?
Remark: The same question can be posed after replacing

C∞(M) with other functional spaces [e.g. by allowing weak
derivatives] and ξ with Ψ-differential 1-st order linear operators.
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Cohomological Equation

This problem is equivalent to characterizing the functions g
for which it is solvable the so-called Cohomological Equation

Lξf = g

It is well-known that the solvability of the CE is locally trivial
since, by the method of characteristics, if γ is some curve

everywhere transversal to ξ’s flow, then

f(p) = F (pγ) +

∫ tp,γ

0
g

(
Φt

ξ(p)
)

dt

where F is any function defined on γ, pγ the (unique) point of
γ s.t. pγ and p belong to the same leaf of Fξ and tp,γ is the
time needed to travel between these two points under Φt

ξ.

4 / 19
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Cohomological Equation

This f provides a global solution iff γ covers M under Φt
ξ:

Theorem (Duistermaat & Hormander, 1972)

Let M be an open manifold. Then Lξ(C
∞(M)) = C∞(M)

iff ξ admits a global transversal, i.e. iff Fξ ' R.

The global solvability of the CE was recently investigated for
compact surfaces by S.P. Novikov in case of smooth functions:

S.P. Novikov, “Dynamical Systems and Differential Forms. Low

Dimensional Hamiltonian Systems”, arXiv:math/0701461v3

and by G. Forni in case of Sobolev spaces of weakly diff.
functions which are zero in some nbhd of the zeros of ξ:

G. Forni, “Solutions of the cohomological equation for area-preserving

flows on compact surfaces of higher genus”, Ann. of Math. 2:2 (1997)
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Cohomological Equation

Theorem (Novikov, 2007)

Let M be a compact surface of genus ≥ 2. Then, for a generic
ξ ∈ X(M) Hamiltonian w/respect to some symplectic
structure, the operator Lξ : C∞(M) → C∞(M) has an
infinite-dimensional cokernel.

Theorem (Forni, 1995)

Let M be a compact surface of genus ≥ 2. Then there exists
an integer l s.t., for a generic ξ ∈ X(M) Hamiltonian with
respect to some symplectic structure and with set of zeros Σ
and for any s > l, there exists a finite number of ξ-invariant
distributions Dk ∈ H−s(M) s.t. the image of the operator
Lξ : As = {h ∈ Hs(M)|supp h ⊂ M \ Σ} → Hs−l(M)
coincides with the intersection of the kernels of the Dk. 6 / 19
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Specific Statement of the Problem

We are interested in the particular case M = R2

when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the
disjoint union of such trajectories. We will use Fξ to indicate
this foliation.

7 / 19



On the
cohomological
equation in
the plane
for regular

vector fields

R. De Leo

General
Setting

The problem
in the plane

Recent
Results

Specific Statement of the Problem

We are interested in the particular case M = R2

when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the
disjoint union of such trajectories. We will use Fξ to indicate
this foliation.

7 / 19



On the
cohomological
equation in
the plane
for regular

vector fields

R. De Leo

General
Setting

The problem
in the plane

Recent
Results

Specific Statement of the Problem

We are interested in the particular case M = R2

when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the
disjoint union of such trajectories. We will use Fξ to indicate
this foliation.

7 / 19



On the
cohomological
equation in
the plane
for regular

vector fields

R. De Leo

General
Setting

The problem
in the plane

Recent
Results

Specific Statement of the Problem

We are interested in the particular case M = R2

when ξ is a vector field without zeros.

Definition

If ξ has no zero we call it a regular vector field. Analog. we call
a smooth function f regular if its differential df is never zero.

Even with these strong restriction,
the problem is still rich and non-trivial.

Definition

The set of integral trajectories of ξ foliates the plane as the
disjoint union of such trajectories. We will use Fξ to indicate
this foliation.

7 / 19



On the
cohomological
equation in
the plane
for regular

vector fields

R. De Leo

General
Setting

The problem
in the plane

Recent
Results

Motivations

General Motivations

• ξ and (g + 1)ξ have smoothly conjugate flows iff
g ∈ Lξ(C

∞(M)) [Katok];

• a metric g (dt)2 on the leaves of Fξ arises as the pull-back
smooth function f : M → R iff g ∈ Lξ(C

∞(M)) [RDL,
A. Loi & G. D’Ambra, preprint];

Motivations Specific to the plane

• ξ is a regular Hamiltonian vector field for some symplectic
structure [i.e. there exists a volume form Ω on the plane
s.t. LξΩ = 0] iff ker Lξ contains regular functions, i.e. iff
Fξ’s leaves are the level sets of a regular function.

• investigating this problem, Wazewsky showed that there
are linear 1st-order linear PDEs Lξf = 0 with no
non-trivial solutions.

8 / 19
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References on Regular Foliations on R2

A few references:
• H. Whitney, Regular families of curves, Annals of Math., 34:2, 1933,

244-270

• T. Wazewsky, Sur un probleme de caractere integral relatif a l’equation
dz/dx + Q(x, y)dz/dy = 0, Mathematica Cluj, 8, 1934, 103-116

• E. Kamke, Uber die partielle Differentialgleichung
f(x, y)dz/dx + g(x, y)dz/dy = h(x, y). II, Math. Z., 42, 1936, 287-300

• W. Kaplan, Regular curve-families filling the plane, Duke Math. J., 7:1,
1940, 154-185

• L. Markus, Global structure of ordinary differential equations on the
plane, Trans. of the AMS, 76:1, 1954, 127-148

• A. Hafliger & G. Reeb, Varietés (non separées) a une dimension et
structures feuilletées du plan, Enseignement Math., 3, 1957, 107-125

• J.L. Weiner, First integrals for a direction field on a simply connected
plane domain, Pac. J. of Math., 132:1, 1988, 195-208

• L. Mazzi and M. Sabatini, On the existence of global first integrals in the
plane, Ann. di Mat. Pura ed Appl., IV, 1993, 143-160
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Fundamental Results

Definition

A function f is a 1-st integral for ξ if Lξf = 0 and f is regular.

Theorem (Wazewski 1934)

There exists a ξ ∈ Xr(R2) with no C1 1st-Integral.

Theorem (Kamke 1936)

Every restriction to some bounded open domain of a regular
plane foliation has a C∞ 1st-Integral.

Theorem (Kaplan 1940)

Every regular plane foliation has a C0 1st-Integral.

10 / 19
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Solvability and Smooth Structure of leaf space

Theorem (Hafliger & Reeb, 1957)

The leaf space Fξ of ξ ∈ Xr(R2) is a possibly non-Hausdorff
2nd-countable simply-connected oriented 1-dimensional smooth
manifold and viceversa.

Theorem (Hafliger & Reeb, 1957)

The non-Hausdorff manifolds above admit more than one
inequivalent smooth structure and only one of them admits
regular functions.

Theorem (Hafliger & Reeb, 1957)

ξ ∈ Xr(R2) is Hamiltonian [with resp. to some symplectic
form] iff C∞(Fξ) contains regular functions.

11 / 19
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Paradigmatic example: the Y space

The simplest non-Hausdorff 1-dim mfd is the letter Y.

Think of it as the quotient of the disjoint union of two lines
r1,2 under the equivalence relation x ∼ y iff x = y, x < 0.

Then a smooth struct. on Y is given by a pair of charts
ϕ1,2 : R → r1,2 s.t. the coordinate changes ϕ−1

1 ϕ2 and ϕ−1
2 ϕ1

are smooth diffeomorphisms of (−∞, 0) in itself.

Two inequiv. structures:
• ϕ1(t) = t, ϕ2(t) = t. Here the function f : Y → R defined

in coordinates as f1(t) := f(ϕ1(t)) = t,
f2(t) := f(ϕ2(t)) = t, is regular.

• ϕ1(t) = t, ϕ2(t) = t3. Here no regular function exists!
Indeed f2(t) = f1(ϕ

−1
1 ϕ2(t)) so that

d

dt
f2(t)

∣∣∣
t=0

=

[
d

dt
f1(t

3) · 3t2
]

t=0

= 0

12 / 19
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1 ϕ2 and ϕ−1
2 ϕ1

are smooth diffeomorphisms of (−∞, 0) in itself.

Two inequiv. structures:
• ϕ1(t) = t, ϕ2(t) = t. Here the function f : Y → R defined

in coordinates as f1(t) := f(ϕ1(t)) = t,
f2(t) := f(ϕ2(t)) = t, is regular.

• ϕ1(t) = t, ϕ2(t) = t3. Here no regular function exists!
Indeed f2(t) = f1(ϕ

−1
1 ϕ2(t)) so that

d

dt
f2(t)

∣∣∣
t=0

=

[
d

dt
f1(t

3) · 3t2
]

t=0

= 0
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Generic regular vector fields

[Preprint sooon available on the ArXives]

Theorem (-, 2009)

If ξ is a generic regular vector field on the plane, then the only
smooth functions belonging to ker Lξ are the constants.

Theorem (-, 2009)

For every ξ ∈ Xr(R2) the partial differential inequality Lξf > 0
admits smooth solutions.

Theorem (-, 2009)

If ξ ∈ Xr(R2) is generic then Lξ has an infinite-dimensional
cokernel. The same holds if ξ is generic Hamiltonian.

13 / 19
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Solvability of Lξf = g: a worked out example

(jointly with T. Gramchev)
We are investigating concrete conditions
for the global solvability of Lξf = g when

ξ = (p(y), q(y))

Here p and q are a generic pair of polynomials
[in particular they do not get zero at the same point].

We present here in detail the particular case

ξ = (2y, 1− y2)

The leaves of Fξ (i.e. the characteristics of ξ) are given by
dx

dy
=

2y

1− y2
, i.e. x(y) = ln |1− y2|+ c.

[same topology as Y]

14 / 19
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Solvability of Lξf = g: a worked out example

In fact Fξ can be seen as the level sets of F (x, y) = (1− y2)ex

So Lξf = 0 has non-trivial global solutions
but, for example, Lξf = c, c 6= 0, does not.

However it has the L1
loc(R2) weak (distributional) solution

f(x, y) =
c

2
ln

∣∣∣1 + y

1− y

∣∣∣
15 / 19
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Solvability of Lξf = g: a worked out example

More in detail, using the method of characteristics
for Lξf = g, we write formally

f(x, y) =

∫ y

0

g(x + 1
2 ln

∣∣∣ 1−s2

1−y2

∣∣∣, s)
1− s2

ds

= G+g(x, y) + G−g(x, y)

where

G±g(x, y) =
1

2

∫ y

0

g(x + 1
2 ln

∣∣∣ 1−s2

1−y2

∣∣∣, s)
1± s

ds

16 / 19
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Solvability of Lξf = g: a worked out example

Then G±g(x, y) = 1
2

∫ y
0

g(x+ 1
2

ln

∣∣∣ 1−s
1−y

∣∣∣+ 1
2

ln

∣∣∣ 1+s
1+y

∣∣∣,s)
1±s ds

Assume now gαβ(x, y) = xαyβ. Hence

G±gαβ(x, y) =
1

2

∫ y

0

[
x +

1

2
ln

∣∣∣1− s

1− y

∣∣∣ +
1

2
ln

∣∣∣1 + s

1 + y

∣∣∣]α sβ

1± s
ds

[applying the multinomial formula]

= ±
∑

γ∈Z3
+,|γ|=α

κγxγ1

∫ y

0
lnγ2

∣∣∣1− s

1− y

∣∣∣ lnγ3

∣∣∣1 + s

1 + y

∣∣∣ sβ d

[
ln

∣∣∣1± s

1± y

∣∣∣]
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Solvability of Lξf = g: a worked out example

All terms inside the integral are locally integrable
close to s = ±1, so

G±gαβ(x, y) =
∑

σ1+σ2≤α+1

ρσ(x) [ln |1− y|]σ1 [ln |1 + y|]σ2

where ρσ(x), |σ| ≤ α + 1, are polynomials.

Since
∣∣∣ ln |z|

∣∣∣k near z = 0 is L1 for every k > 0,

we have shown that f is a well-defined L1
loc(R2) function

when g is a polynomial.

Similarly, we can show that f is a well-defined L1
loc(R2)

function when g is subexponential in x.

18 / 19
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Conclusions

The investigation of the solvability of the linear 1st-order PDE

ξxfx + ξyfy = g

with ξ regular proved to be a rich and worth studying subject
when the topology of the leaves [i.e. integral trajectories]

of ξ have a non-trivial topology
[so that one cannot apply the Duistermaat-Hormander thm].

Our next move will be finding conditions for its solvability for
more functional spaces and consider the case

when ξ is a Ψ-differential operator.
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