Asymptotic growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective sets

Roberto De Leo ${ }^{1,2}$ roberto.deleo@ca.infn.it
${ }^{1}$ Dipartimento di Matematica
Università di Cagliari, Italy
${ }^{2}$ INFN, sez. di Cagliari, Italy

Alexandroff Readings, Moscow State University, May 21st

Main idea

In a seminal paper D. Sullivan ${ }^{1}$ related the Hausdorff dimension $\operatorname{dim}_{H} R_{\Gamma}$ of the limit set $R_{\Gamma} \subset \mathbb{C} P^{1}$ of a (geometrically finite) Kleinian (i.e. discrete) subgroup $\Gamma \subset P S L_{2}(\mathbb{C})$ to a critical exponent of Γ defined in the context of hyperbolic geometry.
${ }^{1}$ D. Sullivan, "Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups", Acta Mathematica 153 (1984)

Main idea

In a seminal paper D. Sullivan ${ }^{1}$ related the Hausdorff dimension $\operatorname{dim}_{H} R_{\Gamma}$ of the limit set $R_{\Gamma} \subset \mathbb{C} P^{1}$ of a (geometrically finite) Kleinian (i.e. discrete) subgroup $\Gamma \subset P S L_{2}(\mathrm{C})$ to a critical exponent of Γ defined in the context of hyperbolic geometry.

In the same spirit here we aim at relating (partly in form of conjecture) an exponent $s_{\boldsymbol{A}}$ associated to some subsemigroup \boldsymbol{A} of $S L_{n}^{ \pm}(\mathbb{R})$ or $S L_{n}(\mathbb{C})$ to the Hausdorff or Box dimensions of the limit set $R_{A} \subset K P^{n-1}, K=\mathbb{R}$ or \mathbb{C}, of the subsemigroup of $P S L_{n}^{ \pm}(\mathbb{R})$ or $P S L_{n}(\mathbb{C})$ naturally induced by \boldsymbol{A}.
${ }^{1}$ D. Sullivan, "Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups", Acta Mathematica 153 (1984)

Motivational Example 1

$$
\boldsymbol{C}_{3}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle \subset S L_{3}(\mathbb{N})
$$

Motivational Example 1

$$
\boldsymbol{C}_{3}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle \subset S L_{3}(\mathbb{N})
$$

Let $\Psi_{3} \subset \operatorname{Aut}\left(\mathbb{R} P^{2}\right)$ be the subsemigroup of projective automorphisms induced by \boldsymbol{C}_{3}

$$
\text { (i.e. } \psi_{C}([v])=[C(v)] \text { for all } v \in \mathbb{R}^{3}, C \in \boldsymbol{C}_{3} \text {) }
$$

and $T=$ proj. triangle w/vertices $[1: 0: 0],[0: 1: 0],[0: 0: 1]$.
$\Psi_{3}(T) \subset T$ but some $\psi \in \Psi_{3}(T)$ is only parabolic on T, i.e. Ψ_{3} is a parabolic Iterated Function System (IFS).

There is a unique compact set $\boldsymbol{C}_{3} \subset T \subset \mathbb{R} P^{2}$ invariant by Ψ_{3}.
Remark: By a conjecture of S.P. Novikov, $1<\operatorname{dim}_{H} \boldsymbol{C}_{3}<2$.

The set \boldsymbol{C}_{3}

Let $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$ a frame of \mathbb{R}^{3} A set diffeomorphic to \boldsymbol{C}_{3} in a triangle $T_{\mathcal{E}}=\left[e_{1}\right],\left[e_{2}\right],\left[e_{3}\right]$ can be obtained by removing from $T_{\mathcal{E}}$ the triangle $Z_{\mathcal{E}}$ with vertices $\left[e_{1}+e_{2}\right],\left[e_{2}+e_{3}\right],\left[e_{3}+e_{1}\right]$ and repeating recursively this process on the remaining triangles.

Left: approximation of \boldsymbol{C}_{3} at the 7th level of recursion in the triangle $T_{\mathcal{E}}$ with

$$
\begin{aligned}
& e_{1}=(1,0,1), \\
& e_{2}=(0,1,1), \\
& e_{3}=(0,0,1) .
\end{aligned}
$$

Asymptotics of norms of matrices in \boldsymbol{C}_{3}

Left: Log-log plot of norms of matrices in \boldsymbol{C}_{3} arranged in lexicographic order. The products with fastest growing norm are
$\left\|C_{i} C_{i+1} C_{i+2} \ldots C_{i+k}\right\| \asymp \phi_{3}^{k}, \phi_{3}$ Tribonacci constant; those with slowest growing norm are $\left\|C_{i}^{k}\right\| \asymp k$.

Asymptotics of norms of matrices in \boldsymbol{C}_{3}

Left: Log-log plot of norms of matrices in \boldsymbol{C}_{3} arranged in lexicographic order. The products with fastest growing norm are $\left\|C_{i} C_{i+1} C_{i+2} \ldots C_{i+k}\right\| \asymp \phi_{3}^{k}, \phi_{3}$ Tribonacci constant; those with slowest growing norm are $\left\|C_{i}^{k}\right\| \asymp k$.
Right: Log-log plot of function $N_{C_{3}}(r)=\#\left\{C \in \boldsymbol{C}_{3} \mid\|C\| \leq r\right\}$. $\log N_{C_{3}}\left(2^{k}\right) \simeq 0.967+2.444 k$

Asymptotics of norms of matrices in \boldsymbol{C}_{3}

Left: Log-log plot of norms of matrices in \boldsymbol{C}_{3} arranged in lexicographic order. The products with fastest growing norm are $\left\|C_{i} C_{i+1} C_{i+2} \ldots C_{i+k}\right\| \asymp \phi_{3}^{k}, \phi_{3}$ Tribonacci constant; those with slowest growing norm are $\left\|C_{i}^{k}\right\| \asymp k$.
Right: Log-log plot of function $N_{C_{3}}(r)=\#\left\{C \in \boldsymbol{C}_{3} \mid\|C\| \leq r\right\}$. $\log N_{C_{3}}\left(2^{k}\right) \simeq 0.967+2.444 k$
Q: is there a relation between $\operatorname{dim}_{H} \boldsymbol{C}_{3}$ and $\lim _{r \rightarrow \infty} \frac{\log N_{C_{3}}(r)}{\log r_{\equiv}}$?

Motivational Example 2: the Apollonian gasket \boldsymbol{A}_{3}

Let $T \subset \mathbb{C} P^{1}$ the curvilinar triangle above with vertices

$$
[-1: 1],[1: 1],[i: 1] .
$$

The Apollonian gasket is the unique compact subset of T invariant w/resp. to the semigroup of Klein transformations induced by the semigroup of matrices

$$
\boldsymbol{A}_{3}=\left\langle\left(\begin{array}{ll}
0 & i \\
i & 2
\end{array}\right), \frac{1}{2}\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right), \frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{C})
$$

Asymptotics of norms of matrices in \boldsymbol{A}_{3}

In a series of papers dated from 1971 to 1982 D.W. Boyd ultimately proved that $\lim _{r \rightarrow \infty} \frac{\log N_{\boldsymbol{H}_{3}}(r)}{\log r}=\operatorname{dim}_{H} \boldsymbol{A}_{3}$, where

$$
\boldsymbol{H}_{3}=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 \\
1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)\right\rangle \subset S L_{4}(\mathbb{N})
$$

Asymptotics of norms of matrices in \boldsymbol{A}_{3}

In a series of papers dated from 1971 to 1982 D.W. Boyd ultimately proved that $\lim _{r \rightarrow \infty} \frac{\log N_{H_{3}}(r)}{\log r}=\operatorname{dim}_{H} \boldsymbol{A}_{3}$, where

$$
\boldsymbol{H}_{3}=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 \\
1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)\right\rangle \subset S L_{4}(\mathbb{N})
$$

The corresponding log-log plots have the same qualitative behaviour as in the \boldsymbol{C}_{3} case:

$\operatorname{dim}_{H} R_{\boldsymbol{H}}=s_{\boldsymbol{H}} \simeq 1.30568673$

Asymptotics of norms of matrices in \boldsymbol{A}_{3}

Remark: the proofs relative to the asymptotic growth of norms in a semigroup (our first 3 main results) are based on Boyd's clever arguments introduced for the Apollonian gaskets.

We only claim credit for cleaning them of all particular references to that concrete case and generalizing them in order to apply them to a much more general setting and then for applying this to self-projective sets.

Asymptotics of norms of matrices in \boldsymbol{A}_{3}

Remark: the proofs relative to the asymptotic growth of norms in a semigroup (our first 3 main results) are based on Boyd's clever arguments introduced for the Apollonian gaskets.

We only claim credit for cleaning them of all particular references to that concrete case and generalizing them in order to apply them to a much more general setting and then for applying this to self-projective sets.

Based on what we shall shortly show, we claim that the Hausdorff dimension of the Apollonian gasket can also be extracted from the semigroup \boldsymbol{A}_{3} :

Conjecture: $\lim _{r \rightarrow \infty} \frac{\log N_{\boldsymbol{A}_{3}}(r)}{\log r}=2 \operatorname{dim}_{H} \boldsymbol{A}_{3}$

Motivational Example 3: the Sierpinski gasket S_{3}

Let T be the triangle above. The Sierpinski gasket can be seen, as a real self-projective fractal, as the unique compact set in $T \subset \mathbb{R} P^{2}$ invariant with respect to the semigroup of projective automorphisms induced by

$$
\mathrm{S}_{3}^{\mathbb{R}}=\alpha\left\langle\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\right\rangle \subset S L_{3}\left(\mathbb{R}^{+}\right) .
$$

Motivational Example 3: the Sierpinski gasket S_{3}

Similarly, as a complex self-projective fractal, the Sierpinski gasket can be seen as the unique compact set in $T \subset \mathbb{C} P^{1}$ invariant with respect to the (Kleinian) semigroup of complex projective automorphisms induced by

$$
S_{3}^{C}=\alpha\left\langle\left(\begin{array}{ll}
1 & i \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{rr}
1 & -1 \\
0 & 2
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{C})
$$

Motivational Example 3: the Sierpinski gasket S_{3}

Similarly, as a complex self-projective fractal, the Sierpinski gasket can be seen as the unique compact set in $T \subset \mathbb{C} P^{1}$
invariant with respect to the (Kleinian) semigroup of complex projective automorphisms induced by

$$
S_{3}^{C}=\alpha\left\langle\left(\begin{array}{ll}
1 & i \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right),\left(\begin{array}{rr}
1 & -1 \\
0 & 2
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{C})
$$

In this particular case it is easy to show that

$$
\lim _{r \rightarrow \infty} \frac{\log N_{\mathrm{S}_{3}^{\mathrm{R}}}(r)}{\log r}=\frac{3}{2} \operatorname{dim}_{H} \mathrm{~S}_{3}, \quad \lim _{r \rightarrow \infty} \frac{\log N_{\mathrm{S}_{3}^{\mathrm{C}}}(r)}{\log r}=2 \operatorname{dim}_{H} \mathrm{~S}_{3} .
$$

Main Problem

Let $S \subset M_{n}(K), K=\mathbb{R}$ or \mathbb{C}, a finitely generated free subsemigroup of matrices, $N_{S}(r)=\#\{A \in S \mid\|A\| \leq r\}$ for any norm $\|\cdot\|$ and Ψ_{S} the induced semigroup of projective automorphisms of $K P^{n-1}$.
Let $R_{S} \subset K P^{n-1}$ be the limit set of Ψ_{S}.

Main Problem

Let $S \subset M_{n}(K), K=\mathbb{R}$ or \mathbb{C}, a finitely generated free subsemigroup of matrices, $N_{S}(r)=\#\{A \in S \mid\|A\| \leq r\}$ for any norm $\|\cdot\|$ and Ψ_{S} the induced semigroup of projective automorphisms of $K P^{n-1}$.
Let $R_{S} \subset K P^{n-1}$ be the limit set of Ψ_{S}.
Question 1: under which conditions the limit

$$
s=\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}
$$

exists and it is finite?

Main Problem

Let $S \subset M_{n}(K), K=\mathbb{R}$ or \mathbb{C}, a finitely generated free subsemigroup of matrices, $N_{S}(r)=\#\{A \in S \mid\|A\| \leq r\}$ for any norm $\|\cdot\|$ and Ψ_{S} the induced semigroup of projective automorphisms of $K P^{n-1}$.
Let $R_{S} \subset K P^{n-1}$ be the limit set of Ψ_{S}.
Question 1: under which conditions the limit

$$
s=\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}
$$

exists and it is finite?
Question 2: is there any relation between s and $\operatorname{dim}_{H} R_{S}$?

Gasket of matrices

Definition

Denote by \mathcal{I}^{m} the semigroup of multi-indices $I=i_{1} \ldots i_{k}$, $i_{j}=1, \ldots, m$, with the natural product

$$
I \cdot J=i_{1} \ldots i_{k} \cdot j_{1} \ldots j_{\ell}=i_{1} \ldots i_{k} j_{1} \ldots j_{\ell}
$$

We include in \mathcal{I}^{m} the neuter element 0 , i.e. $0 \cdot I=I \cdot 0=I$.
A gasket is a semigroup homomorphism $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$, $\mathcal{A}(0)=1_{n}$, such that $N_{\mathcal{A}}(r)$ is finite for every $r \geq 0$.

Gasket of matrices

Definition

Denote by \mathcal{I}^{m} the semigroup of multi-indices $I=i_{1} \ldots i_{k}$, $i_{j}=1, \ldots, m$, with the natural product

$$
I \cdot J=i_{1} \ldots i_{k} \cdot j_{1} \ldots j_{\ell}=i_{1} \ldots i_{k} j_{1} \ldots j_{\ell}
$$

We include in \mathcal{I}^{m} the neuter element 0 , i.e. $0 \cdot I=I \cdot 0=I$.
A gasket is a semigroup homomorphism $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$, $\mathcal{A}(0)=1_{n}$, such that $N_{\mathcal{A}}(r)$ is finite for every $r \geq 0$.

We write $A_{i}=\mathcal{A}(i), \quad A_{I}=\mathcal{A}(I)=A_{i_{1}} \cdot A_{i_{2}} \cdots A_{i_{k}}, k=|I|$. We say that \mathcal{A} is generated by the $A_{i}, i=1, \ldots m$.

Gasket of matrices

Definition

Denote by \mathcal{I}^{m} the semigroup of multi-indices $I=i_{1} \ldots i_{k}$, $i_{j}=1, \ldots, m$, with the natural product

$$
I \cdot J=i_{1} \ldots i_{k} \cdot j_{1} \ldots j_{\ell}=i_{1} \ldots i_{k} j_{1} \ldots j_{\ell}
$$

We include in \mathcal{I}^{m} the neuter element 0 , i.e. $0 \cdot I=I \cdot 0=I$.
A gasket is a semigroup homomorphism $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$, $\mathcal{A}(0)=1_{n}$, such that $N_{\mathcal{A}}(r)$ is finite for every $r \geq 0$.

We write $A_{i}=\mathcal{A}(i), \quad A_{I}=\mathcal{A}(I)=A_{i_{1}} \cdot A_{i_{2}} \cdots A_{i_{k}}, k=|I|$.
We say that \mathcal{A} is generated by the $A_{i}, i=1, \ldots m$.
Remark: when \mathcal{A} is injective then $\mathcal{A}\left(\mathcal{I}^{m}\right)=S \cup\left\{1_{n}\right\}$, where S is a free subsemigroup of $M_{n}(K)$.

Examples of gaskets

Consider $\boldsymbol{C}_{2}=\left\langle\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$. It's easy to show that

$$
\alpha k \leq\left\|A_{1}\right\| \leq \beta \phi_{2}^{k}, k=\left\lvert\, \|, \phi_{2}=\frac{1+\sqrt{5}}{2}\right.
$$

Hence \boldsymbol{C}_{2} is a gasket. More generally, every free subsemigroup of $M_{n}(Z), Z=\mathbb{Z}$ or $\mathbb{Z}[i]$, is a gasket since only finitely elements of $M_{n}(Z)$ lie inside the ball of radius r.

Examples of gaskets

Consider $\boldsymbol{C}_{2}=\left\langle\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$. It's easy to show that

$$
\alpha k \leq\left\|A_{l}\right\| \leq \beta \phi_{2}^{k}, k=\left\lvert\, \|, \phi_{2}=\frac{1+\sqrt{5}}{2}\right.
$$

Hence \boldsymbol{C}_{2} is a gasket. More generally, every free subsemigroup of $M_{n}(Z), Z=\mathbb{Z}$ or $\mathbb{Z}[i]$, is a gasket since only finitely elements of $M_{n}(Z)$ lie inside the ball of radius r.
On the contrary, no homomorphism $\mathcal{A}: \mathcal{I}^{2} \rightarrow M_{n}(K)$ with $A_{1}=A_{2}^{-1}$ is a gasket, e.g. because there are infinitely many multi-indices $/$ s.t. $A_{l}=1_{n}$.

Gasket of matrices

Definition

We denote by $\mathcal{J}^{m} \subset \mathcal{I}^{m}$ the set of multiindices $J=i_{1} i_{2} \ldots i_{2}$, with $i_{1} \neq i_{2}$.
We say that a gasket is fast if there esists a $c>0$ s.t.

$$
\left\|A_{I K}\right\| \geq c\left\|A_{l}\right\|\left\|A_{K}\right\|, \text { for every } I \in \mathcal{I}^{m}, K \in \mathcal{J}^{m} \cdot \mathcal{I}^{m}
$$

We call

$$
c_{\boldsymbol{A}}=\inf _{\substack{I \in \mathcal{I}^{m} \\ K \in \mathcal{J}^{m} \cdot \mathcal{I}^{m}}} \frac{\left\|A_{I K}\right\|}{\left\|A_{l}\right\|\left\|A_{K}\right\|}
$$

the coefficient of the gasket.

Examples of fast gaskets

$$
\begin{aligned}
& c_{2}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \text { is fast with coeff. } c=1 / 2 \text { since } \\
& C_{12 \prime}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+c & b+d \\
a+2 c & b+2 d
\end{array}\right) \\
& \text { and so }\left\|M C_{12 \prime}\right\| \geq \frac{1}{2}\|M\|\left\|C_{12 /}\right\| \text { for every } M \in S L_{2}(\mathbb{N}) .
\end{aligned}
$$

Examples of fast gaskets

$$
\begin{aligned}
& C_{2}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \text { is fast with coeff. } c=1 / 2 \text { since } \\
& C_{12 \prime}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+c & b+d \\
a+2 c & b+2 d
\end{array}\right) \\
& \text { and so }\left\|M C_{12 \prime}\right\| \geq \frac{1}{2}\|M\|\left\|C_{12 \prime}\right\| \text { for every } M \in S L_{2}(\mathbb{N}) .
\end{aligned}
$$

On the contrary, the gasket generated by $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $A_{2}=A_{1}$ is not fast since $\left\|A_{1}^{k^{\prime}} A_{2} A_{1}^{k}\right\|=1+k+k^{\prime}$.

Zeta Function of a gasket

Definition

The zeta function of \mathcal{A} is the series

$$
\zeta_{\mathcal{A}}(s)=\sum_{l \in \mathcal{I}^{m}} \frac{1}{\left\|A_{l}\right\|^{s}}
$$

We call exponent of \mathcal{A} the number $s_{\mathcal{A}}$ defined as follows:

$$
s_{\mathcal{A}}=\sup _{s \geq 0}\left\{s \mid \zeta_{\mathcal{A}}(s)=\infty\right\}
$$

Note that, if $s_{\mathcal{A}}<\infty$, we also have that

$$
s_{\mathcal{A}}=\inf _{s \geq 0}\left\{s \mid \zeta_{\mathcal{A}}(s)<\infty\right\}
$$

Main Result 1

Theorem (Exponent of a fast gasket)

Let $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$ be a fast gasket with exponent $s_{\mathcal{A}}$.
Then $0<s_{\mathcal{A}}<\infty$.

Remark

The theorem is constructive in the sense that in the proof are built explicitly two sequences of functions $f_{\mathcal{A}, k}(s) \leq g_{\mathcal{A}, k}(s)$ such that, for all k from some \bar{k} on, $s_{\mathcal{A}} \in\left[g_{\mathcal{A}, k}^{-1}(1), f_{\mathcal{A}, k}^{-1}(1)\right]$ and $\left|f_{\mathcal{A}, k}^{-1}(1)-g_{\mathcal{A}, k}^{-1}(1)\right| \leq \alpha \log k$ for some $\alpha>0$.
These sequences can be used effectively to evaluate analytical bounds for the exponents of a few semigroups.

Main Result 2

Theorem (Alternate characterization of a gasket's exponent)

Let $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$ be a gasket with $s_{\mathcal{A}}<\infty$. Then the function

$$
\xi_{\mathcal{A}}(s)=\lim _{k \rightarrow \infty}\left[\sum_{|| |=k}\left\|A_{l}\right\|^{-s}\right]^{\frac{1}{k}}
$$

is a well defined log-convex positive strictly decreasing function and satisfies the following properties:
(1) $\xi_{\mathcal{A}}(0)=m$;
(2) $\xi_{\mathcal{A}}(s)>1$ for $s<s_{\mathcal{A}}$;
(3) $\xi_{\mathcal{A}}\left(s_{\mathcal{A}}\right)=1$;
(1) $\xi_{\mathcal{A}}(s)<1$ for $s>s_{\mathcal{A}}$ if \mathcal{A} is a hyperbolic gasket;
(6) $\xi_{\mathcal{A}}(s)=1$ for $s>s_{\mathcal{A}}$ if \mathcal{A} is a fast parabolic gasket.

Main Result 3

Theorem (Exponential growth of norms)

Let $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$ be a gasket with $s_{\mathcal{A}}<\infty$. Then

$$
\lim _{k \rightarrow \infty} \frac{\log N_{\mathcal{A}}(k)}{\log k}=s_{\mathcal{A}}
$$

Main Result 3

Theorem (Exponential growth of norms)

Let $\mathcal{A}: \mathcal{I}^{m} \rightarrow M_{n}(K)$ be a gasket with $s_{\mathcal{A}}<\infty$. Then

$$
\lim _{k \rightarrow \infty} \frac{\log N_{\mathcal{A}}(k)}{\log k}=s_{\mathcal{A}} .
$$

Question

Recently Kontorovich and Oh ${ }^{\text {a }}$ showed that, in case of the Apollonian gasket, $N(k)$ is strongly asymptotic to k^{s}, namely $N(k) \asymp k^{s}$ for all $k \in \mathbb{N}$.
It is natural to ask the following question: is $N_{\mathcal{A}}(k)$ strongly asymptotic to $k^{s_{\mathcal{A}}}$ for every gasket \mathcal{A} with a finite exponent or is some extra condition necessary?
${ }^{a}$ A. Kontorovich, H. Oh, "Apollonian circle packings and closed horospheres on hyperbolic 3 manifolds", J. of Am. Math. Soc. 24 (2011)

Main Result 4

Theorem (Residual sets of semigroups of $P S L_{2}^{ \pm}(K), K=\mathbb{R}, \mathrm{C}$)

Let $f_{1}, \ldots, f_{m}: K^{2} \rightarrow K^{2}$ be such that the induced maps $\psi_{i} \in P S L_{2}^{ \pm}(K)$ satisfy the open set condition with respect to some proper subset $V \subset K P^{1}$, namely

$$
\bigcup_{i=1}^{m} \psi_{i}(V) \subset V, \quad \psi_{i}(V) \cap \psi_{j}(V)=\varnothing, i \neq j
$$

Assume that, in some affine chart $\varphi: K P^{1} \rightarrow K$, the ψ_{i} are contractions on $\varphi(\bar{V})$ with respect to the Euclidean distance. Let $R_{A}=\cap_{k=1}^{\infty}\left(\cup_{|l|=k} \psi_{l}(V)\right)$ be the corresponding residual set. Then $s_{\boldsymbol{A}}=2 \operatorname{dim}_{\boldsymbol{H}} R_{\boldsymbol{A}}$.

Example

Consider the semigroup F freely generated by

$$
F_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), F_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) .
$$

F induces the subsemigroup $\Psi_{F} \subset P S L_{2}(\mathbb{R})$ generated by

$$
\psi_{1}(\varphi)=\frac{\varphi+1}{\varphi}, \psi_{2}(\varphi)=\frac{2 \varphi+1}{\varphi}
$$

Example

Consider the semigroup F freely generated by

$$
F_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), F_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) .
$$

F induces the subsemigroup $\Psi_{F} \subset P S L_{2}(\mathbb{R})$ generated by

$$
\psi_{1}(\varphi)=\frac{\varphi+1}{\varphi}, \psi_{2}(\varphi)=\frac{2 \varphi+1}{\varphi},
$$

A direct computation shows that F is fast, that Ψ_{F} satisfies the open set condition within the segment $V=\left[\frac{1+\sqrt{3}}{2}, 1+\sqrt{3}\right]$ and that the generators $\psi_{1,2}$ are contractions on V, so that $s_{F}=2 \operatorname{dim}_{H} R_{\Psi_{F}}$.

Example

Consider the semigroup F freely generated by

$$
F_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), F_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right) .
$$

F induces the subsemigroup $\Psi_{F} \subset P S L_{2}(\mathbb{R})$ generated by

$$
\psi_{1}(\varphi)=\frac{\varphi+1}{\varphi}, \psi_{2}(\varphi)=\frac{2 \varphi+1}{\varphi},
$$

A direct computation shows that F is fast, that Ψ_{F} satisfies the open set condition within the segment $V=\left[\frac{1+\sqrt{3}}{2}, 1+\sqrt{3}\right]$ and that the generators $\psi_{1,2}$ are contractions on V, so that $s_{F}=2 \operatorname{dim}_{H} R_{\Psi_{F}}$.
A numerical estimate, obtained by evaluating $N_{F}(r)$ for $r=2^{k}$,
$k=1, \ldots, 28$, gives $s_{F} \simeq 1.062$, from which the well-known $\operatorname{dim}_{H} R_{\Psi_{F}} \simeq 0.531$
(see Falconer, Fractal Geometry, Example 9.8).

Complex projective Sierpinski gaskets

Definition

Let f_{1}, f_{2}, f_{3} be volume-pres. linear autom. of C^{2} with real spectrum and distinct eig. and let $\psi_{1}, \psi_{2}, \psi_{3} \in P S L_{2}(\mathbb{C})$ be their corr. proj. automorphisms. Let $\left[e_{i}\right] \in \mathbb{C} P^{1}$ be a fixed point for ψ_{i} corresponding to the largest eigenvalue $\lambda \geq 1$ of f_{i}. We say that the semigroup F gen. by the f_{i} is a compl. proj. Sierp. gasket if:
(c) $\left[f_{i}\left(e_{j}\right)\right]=\left[f_{j}\left(e_{i}\right)\right]$ for every i, j with $i \neq j$;
(2) the circle Γ_{k} passing through $\left[e_{i}\right],\left[e_{j}\right]$ (i, j, k is a perm. of $1,2,3)$ and $\left[f_{i}\left(e_{j}\right)\right]$ is inv. under both f_{i} and $f_{j}, i \neq j$;
(3) $\left[f_{k}\left(e_{i}\right)\right]$ and $\left[f_{k}\left(e_{j}\right)\right]$ belong to the same connected component of $\mathbb{C} P^{1} \backslash \Gamma_{k}$ for every perm. (i, j, k);
(9) the Γ_{k} do not intersect in the interior of the curvilinear triangle $T_{A} \subset \mathbb{C} P^{1}$ having as vertices the $\left[e_{i}\right]$ and as sides the segments of the Γ_{k} with vertices the points $\left[e_{i}\right]$ and $\left[e_{j}\right]$ containing the point $\left[f_{i}\left(e_{j}\right)\right]$.

Complex projective Sierpinski gaskets

Proposition

Let $f_{1}, f_{2}, f_{3}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be volume-preserving linear automorphisms with real spectrum having resp. $e_{1}=(1,1), e_{2}=(i, 1), e_{3}=(-1,1)$ as eigenvectors corresp. to the largest module's eigenvalue and assume that

$$
\left\{\begin{array}{l}
\psi_{1}\left(\left[e_{3}\right]\right)=\psi_{3}\left(\left[e_{1}\right]\right)=u+i v, \\
\psi_{2}\left(\left[e_{1}\right]\right)=\psi_{1}\left(\left[e_{2}\right]\right)=i s, \\
\psi_{3}\left(\left[e_{2}\right]\right)=\psi_{2}\left(\left[e_{3}\right]\right)=-u+i v .
\end{array}\right.
$$

A necessary condition for f_{1}, f_{2}, f_{3} to generate a Sierpinski gasket symmetric with respect to the imaginary axes, namely s.t. $f_{1}(z)=\overline{f_{2}(-\bar{z})}$ and $f_{3}(z)=\overline{f_{3}(-\bar{z})}$, is that $\psi_{1}\left(\left[e_{3}\right]\right) \in \Gamma$, where Γ is the circle $x^{2}+y^{2}-x\left(1-s^{2}\right)-s^{2}=0$. For $s=0$ the condition is sufficient for $u \in[1 / 5, \alpha]$, where $\alpha \simeq 0.651$.

Examples of Symm. Complex proj. Sierpinski gaskets

$$
u=16 / 25, s_{A} \simeq 2.88
$$

$u=9 / 25, s_{A} \simeq 2.88$

$$
u=1 / 2, s_{A}=2 \log _{2} 3
$$

$$
\begin{gathered}
A \\
A \\
A \Delta A \\
A
\end{gathered}
$$

$$
u=1 / 5, s_{\boldsymbol{A}} \simeq 2.61
$$

All corr. gaskets are fast and, except for the Apollonian gasket, the corr. IFS are hyperbolic, so that $\operatorname{dim}_{H} \boldsymbol{A}=s_{A} / 2$.

Real projective Sierpinski gaskets

Definition

Let $\boldsymbol{F}=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ be a free semigroup of volume-preserving linear automorphisms of \mathbb{R}^{n} with real spectrum and $\psi_{1}, \ldots, \psi_{n} \in P S L_{n}(\mathbb{R})$ the induced projective automorphisms of $\mathbb{R} P^{n-1}$.
Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ be a n-frame of \mathbb{R}^{n} and $\mathcal{E}^{*}=\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ its dual frame. We say that \boldsymbol{F} is a real projective Sierpinski gasket over \mathcal{E} if the following conditions are satisfied:
(1) $f_{i}=A_{i j}^{k} e_{k} \otimes \varepsilon^{j}$ with $A_{i j}^{k} \geq 0$;
(2) $f_{i}\left(e_{i}\right)=\lambda_{i} e_{i}$, with $\lambda_{i}=\max _{1 \leq j \leq n}\left\{A_{i j}^{j}\right\}$;
(3) $f_{i}\left(e_{j}\right)=\alpha e_{i}+\beta e_{j}$ with $\alpha, \beta>0$;
(4) $\psi_{i}\left(\left[e_{j}\right]\right)=\psi_{j}\left(\left[e_{i}\right]\right), i, j=1, \ldots, n$.

Simple real projective Sierpinski gaskets

Definition

We say that a real projective Sierpinski gasket (RPSG) $\boldsymbol{F}=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is simple when each f_{i} either has only one eigenvalue (first kind) or has exactly two eigenvalues and the eigenspace corresponding to the larger one is 1-dimensional (second kind).

Lemma

The dual semigroup F^{*} of a simple RPSG is a simple RPSG.

Proposition

Every simple RPSG is a fast gasket.

Examples of simple real projective Sierpinski gaskets

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ a frame of \mathbb{R}^{n}.
The semigroups $\boldsymbol{C}_{n}^{\alpha}$ generated by $\alpha^{-1 / n} f_{i}$, with

$$
f_{i}\left(e_{i}\right)=\alpha e_{i}, f_{i}\left(e_{j}\right)=e_{i}+e_{j}
$$

are all simple and so in particular they are all fast and therefore have finite exponent.
They are hyperbolic IFS for $\alpha \in(1,4)$ and parabolic for $\alpha=1,4$.

Examples of simple real projective Sierpinski gaskets

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ a frame of \mathbb{R}^{n}.
The semigroups $\boldsymbol{C}_{n}^{\alpha}$ generated by $\alpha^{-1 / n} f_{i}$, with

$$
f_{i}\left(e_{i}\right)=\alpha e_{i}, f_{i}\left(e_{j}\right)=e_{i}+e_{j}
$$

are all simple and so in particular they are all fast and therefore have finite exponent.
They are hyperbolic IFS for $\alpha \in(1,4)$ and parabolic for $\alpha=1,4$.
For $\alpha=1, n=3$, we get our first motivational example and for $n>3$ its natural multidimensional generalizations.

Examples of simple real projective Sierpinski gaskets

Let $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ a frame of \mathbb{R}^{n}.
The semigroups $\boldsymbol{C}_{n}^{\alpha}$ generated by $\alpha^{-1 / n} f_{i}$, with

$$
f_{i}\left(e_{i}\right)=\alpha e_{i}, f_{i}\left(e_{j}\right)=e_{i}+e_{j}
$$

are all simple and so in particular they are all fast and therefore have finite exponent.
They are hyperbolic IFS for $\alpha \in(1,4)$ and parabolic for $\alpha=1,4$.
For $\alpha=1, n=3$, we get our first motivational example and for $n>3$ its natural multidimensional generalizations.

For $\alpha=2, n=3$, we get the Sierpinski gasket and for $n>3$ its natural multidimensional generalizations.

Examples of simple RPGS with $n=3$

Examples of simple RPGS with $n=4$

$\alpha=2$

$\alpha=1$

A Conjecture on simple RPSG

The problem of determining the Hausdorff dimension of even just self-affine sets is known to be a hard one.
Fundamental contributions to this field are due to K. Falconer².
As far as we know nothing is known in case of real self-projective sets for $n \geq 2$.
Based on a few analytical results in particular cases and on numerical experiments we formulate the following conjecture about the set's Box dimension:

Conjecture

Let $\mathcal{A}: \mathcal{I}^{n} \rightarrow M_{n}(\mathbb{R}), n \geq 3$, be a simple RPSG.
Then $n \operatorname{dim}_{B} R_{A} \geq(n-1) s_{A}$.
${ }^{2}$ K.J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Phil. Soc. 103 (1988)

References

- M. Barnsley, A. Vince, "Real projective iterated function systems", Journal of Geometric Analysis (2010)
- D.W. Boyd, "The residual set dimension of the Apollonian packing", Mathematika 20 (1973)
- D.W. Boyd, "The sequence of radii od the Apollonian packing", Mathematics of Computation 39 (1982)
- R. De Leo, I.A. Dynnikov, "Geometry of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$ ", Geometriae Dedicata 138 (2009)
- R. De Leo, "Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS", arXiv:1204.0250
- K.J. Falconer, B. Lammering, "Fractal properties of generalized Sierpinski triangles", Fractals 6 (1998)
- A. Kontorovich, H. Oh, "Apollonian circle packings and closed horospheres on hyperbolic 3 manifolds", J. of Am. Math. Soc. 24 (2011)
- S.P. Novikov, "I. Classical and Modern Topology. II. Topological phenomena in real world physics.", Modern Birkhauser Classics, vol. GAFA 2000, arXiv:math-ph/0004012.

