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A few historical remarks

QuasiPeriodic functions in one variable were introduced in
literature by the Latvian mathematician P. Bohl in 1893.

The term is due to the French astronomer E. Esclangon in
1904.

The first big works on the topic are due to H. Bohr (stronger
soccer player than his brother Niels!) that founded and
developed the theory of Almost Periodic Functions in several
works since 1925.

The first to consider AP functions in Rn, n > 1, was S.
Bochner in 1927.

In 1935 Bochner and Von Neumann generalized AP functions
to arbitrary measurable groups (no topology needed).
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Almost Periodic Functions

Definition

AP (Rk) is the closure, in L∞(Rk), of the subalgebra generated
by all functions eλ(x) = ei〈λ,x〉, λ ∈ (Rk)∗.

The Bohr-Fourier coefficients of f ∈ AP (Rk) are the

fλ = lim
T→∞

1
(2T )k

∫
[−T,T ]k

e−i〈λ,x〉f(x)dx , λ ∈ (Rk)∗

The Bohr-Fourier spectrum of f is the free abelian group

σf = 〈λ ∈ (Rk)∗ | fλ 6= 0〉
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A characterization of APFs

A function f ∈ L∞(Rn) is almost continuous if and only if for
every ε > 0 it has a relatively dense set Pε ⊂ Rn of
“ε-periods”, namely of vectors τ ∈ Rn such that

ess sup
x∈Rn

|f(x+ τ)− f(x)| ≤ ε

[Recall that relatively dense means that the set has no gaps of
arbitrary diameter]

E.g. in case of a periodic function with period τ it is enough to
choose P = {0,±τ,±2τ, . . . }.
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Quasiperiodic Functions

Analytical Definition

A f ∈ AP (Rk) is called quasiperiodic if σf is finitely generated.

Geometrical Definition

Let πn : Rn → Tn = Rn/Zn be the canonical projection from
the n-Euclidean space to the n-torus.

Then f ∈ L∞(Rk) is quasiperiodic if

f = F ◦ πn ◦ ψ

for some F ∈ L∞(Tn) and an affine embedding ψ : Rk → Rn,

namely if f is the restriction of a n-periodic function F
to a k-plane ψ(Rk) ⊂ Rn.
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Quasiperiods

When f is quasiperiodic, the number of generators of σf is
called the number of quasiperiods of f .

E.g. f(x) = cos(2πx) + cos(2
√

2πx) + cos(2(1 +
√

2)πx)
is a quasiperiodic function in 1 variable with 2 quasiperiods

since σf = 〈1,
√

2, 1 +
√

2〉

while
g(x, y) = cos(2πx) + cos(2πy) + cos(2π(

√
2x+

√
3y +

√
5))

is a quasiperiodic function in 2 variables with 3 quasiperiods.

since σg = 〈(1, 0), (0, 1), (
√

2,
√

3)〉.
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Quasiperiodic Functions in one variable:
Hamiltonian systems [Liouville]

Since XIX century, quasiperiodic functions in one variable
appeared naturally in the theory of completely integrable
Hamiltonian systems.

E.g. it is well known that, by the Liouville’s theorem,
when a Hamiltonian system with n degrees of freedom
has n independent pairwise first integrals,
if their common level set is compact,
then the solutions of the equations of motion
are quasiperiodic functions of time with at most n quasiperiods.

[e.g. V.I. Arnold & S.P. Novikov (eds.), Dyn. Sys. IV, Springer, 2001]
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Quasiperiodic Functions in more than one variable:
completely integrable PDEs [Novikov]

S.P. Novikov was the first to find concrete cases where arise
quasiperiodic functions with more than one variables.
In Seventies, he discovered that many completely integrable
PDEs admit quasiperiodic functions in k variables, with k > 1.
For example, the KdV eq. ut = 6uux + uxxx admits solutions
u : R2 → R of the form

u(x, t)a,b,c = F (xa + tb + c) ,

where a, b, c ∈ Rn, F : Tn → R is a n-periodic function that
can be written in terms of theta-function of a hyperelliptic
Riemann surface of genus n and a, b are the vectors of periods
of some Abelian differential of the second kind on that surface.

This u(x, t)a,b,c is a quasiperiodic function in 2 variables with
at most n quasiperiods.

[e.g. V.I. Arnold & S.P. Novikov (eds.), Dyn. Sys. IV, Springer, 2001]
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Quasiperiodic Functions in more than one variable:
Quasicrystals [Novikov]

Quasicrystals tilings of Rk are a collection of a countable
collection of closed polytopes whose union is the whole Rk,
whose pairwise intersection is either empty or an entire
subpolytope and s.t., modulo translations, there is only a finite
number of them.

They were discovered in nature in Eighties by D. Schechtman,
Nobel prize in 2011 for this discovery, and are stricly related to
QP functions in the following way:

Let P1, . . . , PN be these polytopes and consider any piecewise
continuous function constant on the interior of each Pi.
Then f is quasiperiodic.

[LeTu, Piunikin, Sadov, The geometry of quasicrystals, Russian

Mathematical Surveys 48:1, 1993]

[V.I. Arnold, Huygens and Barrow, Newton and Hooke, Birkhauser

1990]
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Example of (almost) quasycrystal

Section of
∑5

i=1 cos(2πxi) = 0 through the 2-plane spanned by
the real and imaginary part of (e2πi/5, . . . , e2π5i/5).
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Quasiperiodic Functions in more than one variable:
Poisson Dynamics [Novikov]

Consider the Poisson manifold (T3, {}B) where, in coords
(p1, p2, p3) for T3,

{pi, pj}B = εijkB
k

for some constant 1-form B = Bkdpk.

Since we are in odd dimension, necessarily this Poisson braket
has (at least) one Casimir (i.e. a function that commutes with
any other function). This Casimir is the (multivalued!) function

b(p) = Bkpk + b0 .

Note that db = B but B is not exact (in T3) because b(p) is
not single-valued. It is easy to check that {, }B is
non-degenerate on every plane b(p) = const, namely there are
no other Casimirs.
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Quasiperiodic Functions in more than one variable:
Poisson Dynamics [Novikov]

While, for a general Hamiltonian H ∈ C∞(T3), there is no
hope to find explicitly the solutions (pi(t)) to the Poisson
equation

ṗ = {p,H(p)}B ,

describing the image of such solutions, namely their orbits, it is
trivial: they are the intersections of level surfaces of H with
planes perpendicular to B.

In other words, they are the level sets of quasiperiodic functions
in two variables and (at most) three quasiperiods, namely the
restrictions of H to planes perpendicular to B.
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Magnetoresistance in normal metals

Novikov noticed that the previous problem actually comes from
Solid State Physics: in the semiclassical model, electrons’
quasi-momenta are periodic and the equations of motion, in
case of a constant magnetic field B, are given by

ṗ =
e

c
∇ε×B ,

where ε is the Fermi Energy function.

Note that, in coordinates, this is exactly the same system of
equations of the Poisson bracket in the previous slide with
H = ε.
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Magnetoresistance in normal metals

It was pointed out by Lifshitz, Azbel and Kaganov in Fifties
that, in the semiclassical approximation, the qualitative
behavior of the magnetoresistance depends on the topology of
the level sets of the restriction of ε to planes perpendicular to
B, namely:

1 it saturates if only closed level sets arise;

2 it grows monotonically with the intensity of B if open
orbits arise.

In other words, the topology of these level sets is observable.

15 / 28



Quasiperiodic
Functions

R. De Leo

Prehistory

Definitions

QPFs in
Analysis,
Geometry &
Dyn. Systems

QPFs in R2

with 3
quasiperiods

Magnetoresistance in normal metals

This prediction, and threfore a strong confirmation of the
effectiveness of the semiclassical approximation, was soon
found experimentally by Pippard in Copper and by Gaidukov
and Alekseevski in Silver, Gold and several other metals.

Next picture, by Gaidukov (1960), shows RP 2 as a disc (with
opposite bd pts identified). The shaded regions are filled by
directions of the magnetic field giving rise to asymptotics of the
magnetoresistance that correspond, in the semiclassical
approximation, to the presence of open orbits for the
quasimomenta. The unshaded area correspond to all closed
orbits.
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Magnetoresistance in normal metals

The interest in this topic faded after a decade since no way was
found to answer the following questions:

1 Why are the B giving rise to open orbits sorted in
“islands”?

2 Is this the generic picture to be expected?

3 Is there any difference between B belonging to different
islands?

4 How to predict the distribution of the islands from the
Fermi Energy function ε?
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The close-to-rational case [Zorich, 1983]
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The close-to-rational case [Zorich, 1983]

Only (i) and (ii)
involve open orbits
and are compatible
with the boundary
conditions. Since
(i) is not stable
by small pertur-
bations, (ii) is
the only relevant
saddle type for
this problem.
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The close-to-rational case [Zorich, 1983]

Hence open orbits
are contained in
components of
the Fermi Sur-
face with genus
1. Since loops
homotopic to zero
are stable by small
perturbations, this
is true also for all
directions close to
rational!
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The close-to-rational case [Zorich, 1983]

These 2-tori fil-
led by open orbits
have all the sa-
me homology class
(modulo sign) in
H2(T3,Z) ' Z3.
This is a hidden
quantum first inte-
gral of the system
and it complete-
ly describes the
asymptotics of the
open orbits.
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Same holds in the generic case [Dynnikov, 1992]
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Structure of level sets of QPFs on R2 with 3
quasiperiods

Let f(x, y) = F (x, y, αx+ βy + γ), where F (x, y, z) is
periodic in x, y, z and B = (α, β,−1). Assume that B is
generic, namely that 1, α, β are rationally independent.
What can we say about the level sets of f?

First, open level sets of f do arise only for a closed interval of
values [lF (B), uF (B)] that depends continuously on B.

Moreover, in the most interesting case, the topological first
integral is defined for an open dense set of directions B ∈ RP 2

sorted in disjoint “islands” D` that are labeled by different
elements ` ∈ H2(T3,Z) and meet transversally to each other
like in the Sierpinsky gasket fractal.

If B ∈ D`, then all non-singular open orbits are strongly
asymptotic to a straight line with direction “B × `”.
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Example:
F (x, y, z) = cos(2πx) + cos(2πy) + cos(2πz)
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Comparison with Au experimental data

Fermi Surface of Au
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Comparison with Au experimental data

Experimental data for Au’s magnetoresistance
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Numerical data for Au’s magnetoresistance
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Comparison with Au experimental data

Matching of the experimental and numerical data
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