Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective iterated function systems

Roberto De Leo roberto.deleo@howard.edu

Department of Mathematics, Howard University

March 2014

• P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n+1, Bull. Soc. Math. France, **1991**

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n + 1, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n + 1, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* {4,6|4}, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, **2009**

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n + 1, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* $\{4,6|4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, **2009**
- RdL, On a generalized Sierpinski fractal in $\mathbb{R}P^n$, arXiv:0804.1154, **2008**

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n + 1, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* $\{4,6|4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, **2009**
- RdL, On a generalized Sierpinski fractal in $\mathbb{R}P^n$, arXiv:0804.1154, **2008**
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité 2n + 1, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* $\{4,6|4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, **2009**
- RdL, On a generalized Sierpinski fractal in $\mathbb{R}P^n$, arXiv:0804.1154, **2008**
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012
- P. Arnoux, S. Starosta, Rauzy Gasket, in "Further Developments in Fractals and related fields: Mathematical Foundations and Connections", 2013

otivations Natural Questions Norms Asymptotics Present & Future

- P. Arnoux, G. Rauzy, *Représentations géométriques de suites de complexité* 2n + 1, Bull. Soc. Math. France, **1991**
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* {4,6|4}, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, **2009**
- RdL, On a generalized Sierpinski fractal in $\mathbb{R}P^n$, arXiv:0804.1154, **2008**
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012
- P. Arnoux, S. Starosta, Rauzy Gasket, in "Further Developments in Fractals and related fields: Mathematical Foundations and Connections", 2013
- A. Avila, P. Hubert, S. Skripchenko, On the Hausdorff dimension of the Rauzy Gasket, arXiv:1311.5361, 2013

The Semigroup *C*

The self-projective automorphisms ψ_1, ψ_2, ψ_3 are induced,w/resp to the frame $\{e_1, e_2, e_3\}$, by the linear maps

$$C_1 \qquad C_2 \qquad C_3$$

$$C = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle \subset SL_3(\mathbb{N})$$

The Semigroup *C*

The self-projective automorphisms ψ_1, ψ_2, ψ_3 are induced,w/resp to the frame $\{e_1, e_2, e_3\}$, by the linear maps

$$C = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle \subset SL_3(\mathbb{N})$$

Note that $\sigma(C_i) = \{1\}$, so $\|C_i^k\|$ grows polynomially

e.g.
$$C_1^k = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ k & 0 & 1 \end{pmatrix}$$

The self-projective automorphisms ψ_1, ψ_2, ψ_3 are induced,w/resp to the frame $\{e_1, e_2, e_3\}$, by the linear maps

$$C = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle \subset SL_3(\mathbb{N})$$

Note that $\sigma(C_i) = \{1\}$, so $\|C_i^k\|$ grows polynomially

e.g.
$$C_1^k = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ k & 0 & 1 \end{pmatrix}$$

While, for $i \neq j$, $\max_{\lambda \in \sigma(C_i C_j)} |\lambda| > 1$, so $||C_i C_j||^k$ grows exponentially

e.g.
$$C_1C_2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Norm Asymptotics in C – lexicographic order

Log-log plot of norms of elements of C in lexicographic order:

Norm Asymptotics in C – non-decreasing order

Log-log plot of norms of elements of ${\it C}$ in non-decreasing order:

Radii Asymptotics in the Apollonian Gasket A

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A:

Radii Asymptotics in the Apollonian Gasket A

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A:

Radii Asymptotics in the Apollonian Gasket A

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A:

The Semigroup *H*

The radii $^{-1}$ of circles in A grow like the norms of the *Hirst* matrices

$$H = \left\langle \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \right\rangle \subset SL_4(\mathbb{N})$$

¹e.g. see D. Boyd, *The sequence of radii of the Apollonian packing, Mathematics of Computation* **29**, 1982

²Kontorovich, Oh, *Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds*, J. of AMS **24**, 2011

The Semigroup $oldsymbol{H}$

The radii $^{-1}$ of circles in A grow like the norms of the *Hirst* matrices

$$H = \left\langle \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \right\rangle \subset SL_4(\mathbb{N})$$

In a series of papers in 70s D. Boyd¹ proved (geometrically) that $\lim_{r\to\infty}\frac{\log N_H(r)}{\log r}=d<\infty \text{ and } d=\dim_H A.$

¹e.g. see D. Boyd, *The sequence of radii of the Apollonian packing, Mathematics of Computation* **29**, 1982

²Kontorovich, Oh, *Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds*, J. of AMS **24**, 2011

The Semigroup H

The radii $^{-1}$ of circles in A grow like the norms of the Hirst matrices

$$H = \left\langle \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \right\rangle \subset SL_4(\mathbb{N})$$

In a series of papers in 70s D. Boyd¹ proved (geometrically) that $\log N_{\rm tr}(r)$

$$\lim_{r\to\infty}\frac{\log N_H(r)}{\log r}=d<\infty \text{ and } d=\dim_H A.$$

In 2011 Kontorovich & ${\sf Oh}^2$ proved (again geometrically) the stronger result $N_H(r) \asymp r^d$.

¹e.g. see D. Boyd, *The sequence of radii of the Apollonian packing, Mathematics of Computation* **29**, 1982

²Kontorovich, Oh, *Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds*, J. of AMS **24**, 2011

• Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim_{r\to\infty}\frac{\log N_C(r)}{\log r}$ really converges to some $s_C\in\mathbb{R}^+$?

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim_{r\to\infty}\frac{\log N_C(r)}{\log r}$ really converges to some $s_C\in\mathbb{R}^+$?
- If so, is there any simple/natural condition that grants that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r} \text{ converges to some } s_S\in\mathbb{R}^+ \text{ for semigroups } S$ of real or complex matrices (and that is satisfied by C)?

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim_{r \to \infty} \frac{\log N_C(r)}{\log r}$ really converges to some $s_C \in \mathbb{R}^+$?
- If so, is there any simple/natural condition that grants that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r} \text{ converges to some } s_S\in\mathbb{R}^+ \text{ for semigroups } S$ of real or complex matrices (and that is satisfied by C)?
- If so, is there any way to evaluate analytical bounds on s_S ?

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim_{r \to \infty} \frac{\log N_C(r)}{\log r}$ really converges to some $s_C \in \mathbb{R}^+$?
- If so, is there any simple/natural condition that grants that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r} \text{ converges to some } s_S\in\mathbb{R}^+ \text{ for semigroups } S \text{ of real or complex matrices (and that is satisfied by } C)?$
- If so, is there any way to evaluate analytical bounds on s_S ?
- Is this asymptotic behaviour somehow related to the Hausdorff dimension of the attractor of the real/complex self-projective IFS induced by S?

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim_{r \to \infty} \frac{\log N_C(r)}{\log r}$ really converges to some $s_C \in \mathbb{R}^+$?
- If so, is there any simple/natural condition that grants that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r} \text{ converges to some } s_S\in\mathbb{R}^+ \text{ for semigroups } S \text{ of real or complex matrices (and that is satisfied by } C)?$
- If so, is there any way to evaluate analytical bounds on s_S ?
- Is this asymptotic behaviour somehow related to the Hausdorff dimension of the attractor of the real/complex self-projective IFS induced by S?
- Is it true in general that $N_S(r) \simeq r^{s_S}$?

Main Results

Definition

A finitely generated semigroup $S = \langle A_1, \dots, A_m \rangle \subset SL_n(K)$, $K = \mathbb{R}, \mathbb{C}$, is *fast* if there is a c > 0 s.t.

$$||A_{IJK}|| \geq c||A_I|| ||A_{JK}||$$

for all multi-indices I, J, K, with $J = j_1 \dots j_k$ s.t. $j_1 \neq j_2 = \dots = j_k$.

Main Results

Definition

A finitely generated semigroup $S = \langle A_1, \dots, A_m \rangle \subset SL_n(K)$, $K = \mathbb{R}, \mathbb{C}$, is *fast* if there is a c > 0 s.t.

$$||A_{IJK}|| \geq c||A_I|| ||A_{JK}||$$

for all multi-indices I, J, K, with $J = j_1 \dots j_k$ s.t. $j_1 \neq j_2 = \dots = j_k$.

Theorem (RdL, 2012)

Let $S = \langle A_i \rangle$ be a free fast subsemigroup of $SL_n(K)$, $K = \mathbb{R}$, \mathbb{C} .

Then $\lim_{r \to \infty} \frac{\log N_S(r)}{\log r}$ converges to a finite $s_S > 0$. Moreover,

$$s_S = \sup_{s>0} \{s | \sum_I ||A_I||^{-s} = \infty\} = \inf_{s\geq 0} \{s | \sum_I ||A_I||^{-s} < \infty\}.$$

Motivations

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

Example

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$
$$\|A\| = \max |A_{ij}|$$

Example

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

$$\|A\| = \max |A_{ii}|$$

Then
$$A_JA_K=A_1A_2^k\begin{pmatrix} a&b\\c&d\end{pmatrix}=\begin{pmatrix} a+kc&b+kd\\a+(k+1)c&b+(k+1)d\end{pmatrix}$$

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

$$\|A\| = \max|A_{ij}|$$
 Then $A_J A_K = A_1 A_2^k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+kc & b+kd \\ a+(k+1)c & b+(k+1)d \end{pmatrix}$ so that $\|A_{JK}\| = \max\{a+(k+1)c,b+(k+1)d\}$ and

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

$$\|A\| = \max |A_{ii}|$$

Then
$$A_J A_K = A_1 A_2^k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+kc & b+kd \\ a+(k+1)c & b+(k+1)d \end{pmatrix}$$

so that
$$||A_{JK}|| = \max\{a + (k+1)c, b + (k+1)d\}$$
 and

$$||A_{IJK}|| \ge ||A_I|| \max\{a + kc, b + kd\} \ge \frac{k}{k+1} ||A_I|| ||A_{JK}|| \ge \frac{1}{2} ||A_I|| ||A_{JK}||$$

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

$$||A|| = \max |A_{ij}|$$

Then
$$A_J A_K = A_1 A_2^k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+kc & b+kd \\ a+(k+1)c & b+(k+1)d \end{pmatrix}$$

so that
$$\|A_{JK}\|=\max\{a+(k+1)c,b+(k+1)d\}$$
 and

$$||A_{IJK}|| \ge ||A_I|| \max\{a + kc, b + kd\} \ge \frac{k}{k+1} ||A_I|| ||A_{JK}|| \ge \frac{1}{2} ||A_I|| ||A_{JK}||$$

Hence
$$S$$
 is fast with $c = \frac{1}{2}$.

$$S = \left\langle A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset SL_2(\mathbb{N})$$

$$\|A\| = \max |A_{ii}|$$

Then
$$A_JA_K=A_1A_2^k\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} a+kc & b+kd \\ a+(k+1)c & b+(k+1)d \end{pmatrix}$$

so that $||A_{JK}|| = \max\{a + (k+1)c, b + (k+1)d\}$ and

$$||A_{IJK}|| \ge ||A_I|| \max\{a + kc, b + kd\} \ge \frac{k}{k+1} ||A_I|| ||A_{JK}|| \ge \frac{1}{2} ||A_I|| ||A_{JK}||$$

Hence
$$S$$
 is fast with $c = \frac{1}{2}$.

It can be proved similarly that C and H are parabolic fast gaskets.

Norms growth and Hausdorff dimension of IFS attractors

Theorem (RdL, 2012)

Let $\{A_1, \ldots, A_m\} \subset SL_2(K)$, $K = \mathbb{R}, \mathbb{C}$, and denote by $\psi_i \in PSL_2(K)$ the projective automorphism associated to f_i . Assume that the A_i are all hyperbolic and that there exists some proper open set $V \subset \mathbb{R}P^1$ (resp. $V \subset \mathbb{C}P^1$) invariant under the ψ_i such that, for some affine chart $\varphi : \mathbb{R}P^1 \to \mathbb{R}$ (resp. some complex affine chart $\varphi : \mathbb{C}P^1 \to \mathbb{C}$), the ψ_i :

- **1** are contractions on $\varphi(\overline{V})$ with respect to the Euclidean distance;
- **2** satisfy $0 < a \le |\psi_i'(v)| \le c < 1$ for all $1 \le i \le m$, $v \in V$ and some constants a, c;
- $\textbf{3} \ \ \textit{satisfy the open set condition} \ i \neq j \implies \psi_i(V) \cap \psi_j(V) = \varnothing.$

Let $R_{\mathbf{A}} = \bigcap_{k=1}^{\infty} \left(\bigcup_{|I|=k} \psi_I(V) \right)$ be the corresponding attractor. Then $2 \dim_H R_{\mathbf{A}} = s_{\mathbf{A}}$.

State of the art

• The property of a free semigroup $S\subset SL_n(K), K=\mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r}=s_S<\infty.$

State of the art

- The property of a free semigroup $S\subset SL_n(K), K=\mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim_{r\to\infty}\frac{\log N_S(r)}{\log r}=s_S<\infty.$
- We provided a constructive iterative algorithm to evaluate analytical upper and lower bounds for s_S with any degree of accuracy (logarithmic speed).

State of the art

• The property of a free semigroup $S \subset SL_n(K), K = \mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim_{r \to \infty} \frac{\log N_S(r)}{\log r} = s_S < \infty$.

Norms Asymptotics

- We provided a constructive iterative algorithm to evaluate analytical upper and lower bounds for s_S with any degree of accuracy (logarithmic speed).
- The exponent s_S completely determines the Hausdorff dimension of the attractor of the self-projective IFS induced by S for n=2.

• Under which conditions does $N_S(r) \asymp r^{s_S}$?

- Under which conditions does $N_S(r) \simeq r^{s_S}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_S ?

- Under which conditions does $N_S(r) \simeq r^{s_S}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_S ?
- Does s_S give any information on the Hausdorff dimension of R_S when n > 2?

- Under which conditions does $N_S(r) \simeq r^{s_S}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_{S} ?
- Does s_S give any information on the Hausdorff dimension of R_S when n > 2?

Conjecture (RdL, 2012)

$$(n+1)\dim_H R_S \ge ns_S$$

References

- D. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation 29, 1982
- Kontorovich, Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. of AMS 24, 2011
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron {4,6|4}, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012 (first half to appear on J. of Geometrical Analysis, second submitted to Experimental Mathematics)
- A. Avila, P. Hubert, S. Skripchenko, On the Hausdorff dimension of the Rauzy Gasket, arXiv:1311.5361, 2013

Thanks!