Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective iterated function systems

Roberto De Leo
roberto.deleo@howard.edu

Department of Mathematics, Howard University

March 2014

The Levitt-Yoccoz gasket

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, On a generalized Sierpinski fractal in $\mathbb{R} P^{n}$, arXiv:0804.1154, 2008

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, On a generalized Sierpinski fractal in $\mathbb{R} P^{n}$, arXiv:0804.1154, 2008
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, On a generalized Sierpinski fractal in \mathbb{R}^{n}, arXiv:0804.1154, 2008
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012
- P. Arnoux, S. Starosta, Rauzy Gasket, in "Further Developments in Fractals and related fields: Mathematical Foundations and Connections", 2013

The Levitt-Yoccoz gasket - references

- P. Arnoux, G. Rauzy, Représentations géométriques de suites de complexité $2 n+1$, Bull. Soc. Math. France, 1991
- G. Levitt, La dynamique des pseudogroupes de rotations, Inventiones Mathematicæ 113, 1993 (w/a proof of J.C. Yoccoz)
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, On a generalized Sierpinski fractal in $\mathbb{R} P^{n}$, arXiv:0804.1154, 2008
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012
- P. Arnoux, S. Starosta, Rauzy Gasket, in "Further Developments in Fractals and related fields: Mathematical Foundations and Connections", 2013
- A. Avila, P. Hubert, S. Skripchenko, On the Hausdorff dimension of the Rauzy Gasket, arXiv:1311.5361, 2013

The Semigroup C

The self-projective automorphisms $\psi_{1}, \psi_{2}, \psi_{3}$ are induced, $\mathrm{w} /$ resp to the frame $\left\{e_{1}, e_{2}, e_{3}\right\}$, by the linear maps

$$
C=\left\langle\left(\begin{array}{ccc}
C_{1} & C_{2} & C_{3} \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle \subset S L_{3}(\mathbb{N})
$$

The Semigroup C

The self-projective automorphisms $\psi_{1}, \psi_{2}, \psi_{3}$ are induced, $\mathrm{w} /$ resp to the frame $\left\{e_{1}, e_{2}, e_{3}\right\}$, by the linear maps

$$
C=\left\langle\left(\begin{array}{ccc}
C_{1} & C_{2} & C_{3} \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle \subset S L_{3}(\mathbb{N})
$$

Note that $\sigma\left(C_{i}\right)=\{1\}$,
so $\left\|C_{i}^{k}\right\|$ grows polynomially

$$
\text { e.g. } C_{1}^{k}=\left(\begin{array}{lll}
1 & 0 & 0 \\
k & 1 & 0 \\
k & 0 & 1
\end{array}\right)
$$

The Semigroup C

The self-projective automorphisms $\psi_{1}, \psi_{2}, \psi_{3}$ are induced, $\mathrm{w} /$ resp to the frame $\left\{e_{1}, e_{2}, e_{3}\right\}$, by the linear maps

$$
C=\left\langle\left(\begin{array}{lll}
C_{1} & C_{2} & C_{3} \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\right\rangle \subset S L_{3}(\mathbb{N})
$$

Note that $\sigma\left(C_{i}\right)=\{1\}$, so $\left\|C_{i}^{k}\right\|$ grows polynomially

$$
\text { e.g. } C_{1}^{k}=\left(\begin{array}{lll}
1 & 0 & 0 \\
k & 1 & 0 \\
k & 0 & 1
\end{array}\right)
$$

While, for $i \neq j, \max _{\lambda \in \sigma\left(C_{i} C_{j}\right)}|\lambda|>1$, so $\left\|C_{i} C_{j}\right\|^{k}$ grows exponentially

$$
\text { e.g. } C_{1} C_{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
1 & 2 & 1
\end{array}\right)
$$

Norm Asymptotics in C - lexicographic order

Log-log plot of norms of elements of C in lexicographic order:

Norm Asymptotics in C - non-decreasing order

Log-log plot of norms of elements of C in non-decreasing order:

Radii Asymptotics in the Apollonian Gasket \boldsymbol{A}

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A :

Radii Asymptotics in the Apollonian Gasket \boldsymbol{A}

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A :

Radii Asymptotics in the Apollonian Gasket \boldsymbol{A}

This behaviour is not uncommon, for example it is shared by the celebrated Apollonian gasket A :

The Semigroup H

The radii ${ }^{-1}$ of circles in A grow like the norms of the Hirst matrices

$$
\boldsymbol{H}=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 \\
1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)\right\rangle \subset S L_{4}(\mathbb{N})
$$

${ }^{1}$ e.g. see D. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation 29, 1982
${ }^{2}$ Kontorovich, Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. of AMS 24, 2011

The Semigroup H

The radii ${ }^{-1}$ of circles in A grow like the norms of the Hirst matrices
$\boldsymbol{H}=\left\langle\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1\end{array}\right),\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1\end{array}\right)\right\rangle \subset S L_{4}(\mathbb{N})$
In a series of papers in 70 s D. Boyd ${ }^{1}$ proved (geometrically) that

$$
\lim _{r \rightarrow \infty} \frac{\log N_{\boldsymbol{H}}(r)}{\log r}=d<\infty \text { and } d=\operatorname{dim}_{H} A
$$

[^0] hyperbolic 3-manifolds, J. of AMS 24, 2011

The Semigroup H

The radii ${ }^{-1}$ of circles in A grow like the norms of the Hirst matrices

$$
\boldsymbol{H}=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 2 \\
1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)\right\rangle \subset S L_{4}(\mathbb{N})
$$

In a series of papers in 70 s D. Boyd ${ }^{1}$ proved (geometrically) that

$$
\lim _{r \rightarrow \infty} \frac{\log N_{\boldsymbol{H}}(r)}{\log r}=d<\infty \text { and } d=\operatorname{dim}_{H} A
$$

In 2011 Kontorovich \& Oh^{2} proved (again geometrically) the stronger result $N_{\boldsymbol{H}}(r) \asymp r^{d}$.

[^1] hyperbolic 3-manifolds, J. of AMS 24, 2011

Natural Questions

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim _{r \rightarrow \infty} \frac{\log N_{C}(r)}{\log r}$ really converges to some $s_{C} \in \mathbb{R}^{+}$?

Natural Questions

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim _{r \rightarrow \infty} \frac{\log N_{C}(r)}{\log r}$ really converges to some $s_{C} \in \mathbb{R}^{+}$?
- If so, is there any simple/natural condition that grants that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}$ converges to some $s_{S} \in \mathbb{R}^{+}$for semigroups S of real or complex matrices (and that is satisfied by C)?

Natural Questions

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim _{r \rightarrow \infty} \frac{\log N_{C}(r)}{\log r}$ really converges to some $s_{C} \in \mathbb{R}^{+}$?
- If so, is there any simple/natural condition that grants that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}$ converges to some $s_{S} \in \mathbb{R}^{+}$for semigroups S of real or complex matrices (and that is satisfied by C)?
- If so, is there any way to evaluate analytical bounds on s_{s} ?

Natural Questions

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim _{r \rightarrow \infty} \frac{\log N_{C}(r)}{\log r}$ really converges to some $s_{C} \in \mathbb{R}^{+}$?
- If so, is there any simple/natural condition that grants that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}$ converges to some $s_{S} \in \mathbb{R}^{+}$for semigroups S of real or complex matrices (and that is satisfied by C)?
- If so, is there any way to evaluate analytical bounds on s_{s} ?
- Is this asymptotic behaviour somehow related to the Hausdorff dimension of the attractor of the real/complex self-projective IFS induced by S ?

Natural Questions

- Do really the norms in C grow exponentially as suggested by the numerics? Namely, does $\lim _{r \rightarrow \infty} \frac{\log N_{C}(r)}{\log r}$ really converges to some $s_{C} \in \mathbb{R}^{+}$?
- If so, is there any simple/natural condition that grants that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}$ converges to some $s_{S} \in \mathbb{R}^{+}$for semigroups S of real or complex matrices (and that is satisfied by C)?
- If so, is there any way to evaluate analytical bounds on s_{S} ?
- Is this asymptotic behaviour somehow related to the Hausdorff dimension of the attractor of the real/complex self-projective IFS induced by S ?
- Is it true in general that $N_{S}(r) \asymp r^{s_{s}}$?

Main Results

Definition

A finitely generated semigroup $S=\left\langle A_{1}, \ldots, A_{m}\right\rangle \subset S L_{n}(K)$, $K=\mathbb{R}, \mathbb{C}$, is fast if there is a $c>0$ s.t.

$$
\left\|A_{I J K}\right\| \geq c\left\|A_{I}\right\|\left\|A_{J K}\right\|
$$

for all multi-indices I, J, K, with $J=j_{1} \ldots j_{k}$ s.t. $j_{1} \neq j_{2}=\cdots=j_{k}$.

Main Results

Definition

A finitely generated semigroup $S=\left\langle A_{1}, \ldots, A_{m}\right\rangle \subset S L_{n}(K)$, $K=\mathbb{R}, \mathbb{C}$, is fast if there is a $c>0$ s.t.

$$
\left\|A_{I J K}\right\| \geq c\left\|A_{I}\right\|\left\|A_{J K}\right\|
$$

for all multi-indices I, J, K, with $J=j_{1} \ldots j_{k}$ s.t. $j_{1} \neq j_{2}=\cdots=j_{k}$.

Theorem (RdL, 2012)

Let $S=\left\langle A_{i}\right\rangle$ be a free fast subsemigroup of $S L_{n}(K), K=\mathbb{R}, \mathbb{C}$.
Then $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}$ converges to a finite $s_{S}>0$. Moreover,

$$
s_{S}=\sup _{s \geq 0}\left\{s \mid \sum_{I}\left\|A_{I}\right\|^{-s}=\infty\right\}=\inf _{s \geq 0}\left\{s \mid \sum_{I}\left\|A_{I}\right\|^{-s}<\infty\right\}
$$

Example

$$
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N})
$$

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right|
\end{gathered}
$$

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right|
\end{gathered}
$$

Then $A_{J} A_{K}=A_{1} A_{2}^{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+k c & b+k d \\ a+(k+1) c & b+(k+1) d\end{array}\right)$

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right|
\end{gathered}
$$

Then $A_{J} A_{K}=A_{1} A_{2}^{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+k c & b+k d \\ a+(k+1) c & b+(k+1) d\end{array}\right)$
so that $\left\|A_{J K}\right\|=\max \{a+(k+1) c, b+(k+1) d\}$ and

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right|
\end{gathered}
$$

Then $A_{J} A_{K}=A_{1} A_{2}^{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+k c & b+k d \\ a+(k+1) c & b+(k+1) d\end{array}\right)$
so that $\left\|A_{J K}\right\|=\max \{a+(k+1) c, b+(k+1) d\}$ and
$\left\|A_{I J K}\right\| \geq\left\|A_{I}\right\| \max \{a+k c, b+k d\} \geq \frac{k}{k+1}\left\|A_{I}\right\|\left\|A_{J K}\right\| \geq \frac{1}{2}\left\|A_{I}\right\|\left\|A_{J K}\right\|$

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right| \\
\text { Then } A_{J} A_{K}=A_{1} A_{2}^{k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+k c & b+k d \\
a+(k+1) c & b+(k+1) d
\end{array}\right) \\
\text { so that }\left\|A_{J K}\right\|=\max \{a+(k+1) c, b+(k+1) d\} \text { and } \\
\left\|A_{I K K}\right\| \geq\left\|A_{I}\right\| \max \{a+k c, b+k d\} \geq \frac{k}{k+1}\left\|A_{I}\right\|\left\|A_{J K}\right\| \geq \frac{1}{2}\left\|A_{I}\right\|\left\|A_{I K}\right\| \\
\text { Hence } S \text { is fast with } c=\frac{1}{2} .
\end{gathered}
$$

Example

$$
\begin{gathered}
S=\left\langle A_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), A_{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset S L_{2}(\mathbb{N}) \\
\|A\|=\max \left|A_{i j}\right|
\end{gathered}
$$

Then $A_{J} A_{K}=A_{1} A_{2}^{k}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+k c & b+k d \\ a+(k+1) c & b+(k+1) d\end{array}\right)$
so that $\left\|A_{J K}\right\|=\max \{a+(k+1) c, b+(k+1) d\}$ and
$\left\|A_{I J K}\right\| \geq\left\|A_{I}\right\| \max \{a+k c, b+k d\} \geq \frac{k}{k+1}\left\|A_{I}\right\|\left\|A_{J K}\right\| \geq \frac{1}{2}\left\|A_{I}\right\|\left\|A_{J K}\right\|$
Hence S is fast with $c=\frac{1}{2}$.
It can be proved similarly that \boldsymbol{C} and \boldsymbol{H} are parabolic fast gaskets.

Norms growth and Hausdorff dimension of IFS attractors

Theorem (RdL, 2012)

Let $\left\{A_{1}, \ldots, A_{m}\right\} \subset S L_{2}(K), K=\mathbb{R}, \mathbb{C}$, and denote by $\psi_{i} \in P S L_{2}(K)$ the projective automorphism associated to f_{i}. Assume that the A_{i} are all hyperbolic and that there exists some proper open set $V \subset \mathbb{R} P^{1}$ (resp. $V \subset \mathbb{C} P^{1}$) invariant under the ψ_{i} such that, for some affine chart $\varphi: \mathbb{R} P^{1} \rightarrow \mathbb{R}$ (resp. some complex affine chart $\varphi: \mathbb{C} P^{1} \rightarrow \mathbb{C}$), the ψ_{i} :
(1) are contractions on $\varphi(\bar{V})$ with respect to the Euclidean distance;
(2) satisfy $0<a \leq\left|\psi_{i}^{\prime}(v)\right| \leq c<1$ for all $1 \leq i \leq m, v \in V$ and some constants a, c;
(3) satisfy the open set condition $i \neq j \Longrightarrow \psi_{i}(V) \cap \psi_{j}(V)=\varnothing$. Let $R_{\mathbf{A}}=\cap_{k=1}^{\infty}\left(\cup_{|I|=k} \psi_{I}(V)\right)$ be the corresponding attractor. Then $2 \operatorname{dim}_{H} R_{\mathbf{A}}=s_{\mathbf{A}}$.

Example

a

C

b

d

State of the art

- The property of a free semigroup $S \subset S L_{n}(K), K=\mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}=s_{S}<\infty$.

State of the art

- The property of a free semigroup $S \subset S L_{n}(K), K=\mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}=s_{S}<\infty$.
- We provided a constructive iterative algorithm to evaluate analytical upper and lower bounds for s_{S} with any degree of accuracy (logarithmic speed).

State of the art

- The property of a free semigroup $S \subset S L_{n}(K), K=\mathbb{R}, \mathbb{C}$ of being fast is sufficient to grant that $\lim _{r \rightarrow \infty} \frac{\log N_{S}(r)}{\log r}=s_{S}<\infty$.
- We provided a constructive iterative algorithm to evaluate analytical upper and lower bounds for s_{S} with any degree of accuracy (logarithmic speed).
- The exponent s_{S} completely determines the Hausdorff dimension of the attractor of the self-projective IFS induced by S for $n=2$.

Open Questions

- Under which conditions does $N_{S}(r) \asymp r^{s_{s}}$?

Open Questions

- Under which conditions does $N_{S}(r) \asymp r^{s}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_{S} ?

Open Questions

- Under which conditions does $N_{S}(r) \asymp r^{s}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_{S} ?
- Does s_{S} give any information on the Hausdorff dimension of R_{S} when $n>2$?

Open Questions

- Under which conditions does $N_{S}(r) \asymp r^{s_{s}}$?
- Is it possible to improve the convergence of the algorithm which gives analytical bounds for s_{S} ?
- Does s_{S} give any information on the Hausdorff dimension of R_{S} when $n>2$?

Conjecture (RdL, 2012)

$(n+1) \operatorname{dim}_{H} R_{S} \geq n s_{S}$

References

- D. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation 29, 1982
- Kontorovich, Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. of AMS 24, 2011
- RdL, I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, arXiv:0804.1668, 2009
- RdL, Exponential growth of norms in semigroups of linear automorphisms and Hausdorff dimension of self-projective IFS, arXiv:1204.0250, 2012 (first half to appear on J. of Geometrical Analysis, second submitted to Experimental Mathematics)
- A. Avila, P. Hubert, S. Skripchenko, On the Hausdorff dimension of the Rauzy Gasket, arXiv:1311.5361, 2013

Thanks!

[^0]: ${ }^{1}$ e.g. see D. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation 29, 1982
 ${ }^{2}$ Kontorovich, Oh, Apollonian circle packings and closed horospheres on

[^1]: ${ }^{1}$ e.g. see D. Boyd, The sequence of radii of the Apollonian packing, Mathematics of Computation 29, 1982
 ${ }^{2}$ Kontorovich, Oh, Apollonian circle packings and closed horospheres on

