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The Levitt-Yoccoz gasket

[e2]
{e1,e5,e3} frame of R3.
The LY gasket is the attractor of the
Real Self-Projective Parabolic IFS {1, ¢, 3},
[e1 +2¢5] (26, + 3] where 91 ([e1]) = [e1],
P1([e2]) = [e2 +en],
[e1 + e2] le2+es]  Wi(les]) = [es +enl,

and similarly for ¢, ¢3.
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The Semigroup C

The self-projective automorphisms 1, P, 3
are induced,w/resp to the frame {e1,¢e2,e3}, by the linear maps

C1 Cy Cs
1 00 1 10 1 01
C:<110,010,011>C5L3(]N)
1 01 011 0 01
Note that 0_( ) _ {1} While, for i 3&] III(%XC) |/\| >1,
so ||CK|| grows polynomially so ||CiGj||* grows exponent|aIIy

100 110
e.g. CI{ =1k 10 eg. C1C=1(1 2 0
k 01 1 21
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Norm Asymptotics in C — lexicographic order

Log-log plot of norms of elements of C in lexicographic order:
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Norm Asymptotics in C — non-decreasing order

Log-log plot of norms of elements of C in non-decreasing order:
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Radii Asymptotics in the Apollonian Gasket A

This behaviour is not uncommon, for example it is shared
by the celebrated Apollonian gasket A:
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Radii Asymptotics in the Apollonian Gasket A

This behaviour is not uncommon, for example it is shared
by the celebrated Apollonian gasket A:

—log Ry
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The Semigroup H

f

1000\ /1000, /0100

0o100| [oo010] (0010
H_<1112’1112’1112>C5L4(N)

1101/ Mo11) Vo111

le.g. see D. Boyd, The sequence of radii of the Apollonian packing,
Mathematics of Computation 29, 1982
2Kontorovich, Oh, Apollonian circle packings and closed horospheres on

hyperbolic 3-manifolds, J. of AMS 24, 2011
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In a series of papers in 70s D. Boyd! proved (geometrically) that
limwzd<ooandd:dimHA.
r—oo  logr

In 2011 Kontorovich & Oh? proved (again geometrically)

the stronger result Ny (r) < r.

le.g. see D. Boyd, The sequence of radii of the Apollonian packing,
Mathematics of Computation 29, 1982
2Kontorovich, Oh, Apollonian circle packings and closed horospheres on

hyperbolic 3-manifolds, J. of AMS 24, 2011
8/16



Natural Questions

e Do really the norms in C grow exponentially as suggested by
. logNe¢(r
the numerics? Namely, does lim %ocr()

really converges
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. logNe¢(r
the numerics? Namely, does lim %ocr()

really converges
r—00

to some sc € R*?

e If so, is there any simple/natural condition that grants that
log N
lim 8 5\) s(r)
r—eo  logr
of real or complex matrices (and that is satisfied by C)?

converges to some ss € R™ for semigroups S

e If so, is there any way to evaluate analytical bounds on sg?

e |s this asymptotic behaviour somehow related to the Hausdorff

dimension of the attractor of the real/complex self-projective
IFS induced by S7

e Is it true in general that Ng(r) =< r%7?
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Main Results

A finitely generated semigroup S = (A1, ..., A,) C SL,(K),
K=1R,C, is fast if thereisa ¢ > 0 s.t.
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Main Results

Definition

A finitely generated semigroup S = (A1, ..., A,) C SL,(K),
K=1R,C, is fast if thereisa ¢ > 0 s.t.

[kl = el Arllf| Azl

for all multi-indices I, ], K, with [ =j1...jkst. j1 #jo =+ = ji.
Theorem (RdL, 2012)
Let S = (A;) be a free fast subsemigroup of SL,(K), K =R, C.

Then lim M

r—»00 ogr

ss = sup{s| Y_ 141 = o} = inf{s| Y l 4| < oo}.
= I

5>0 I

converges to a finite ss > 0. Moreover,
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S— <A1 _ G (1)> Ay = (é 1>> C SLy(IN)

|A]} = max | Ay

_ k(7 b _ atke b
Then AjAx = A1A5 <c d> - <a+ (k+1)c b+ (k+1)d

so that ||Ajx|| = max{a+ (k+1)c,b+ (k+1)d} and
k 1
|Agkll = ||Arl| max{a +kc, b+ kd} > mHAIHHAIKH > SllAilll[Axl]

1
Hence S is fast with ¢ = 5

It can be proved similarly that C and H are parabolic fast gaskets.
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Norms growth and Hausdorff dimension of IFS attractors

Theorem (RdL, 2012)
Let {A1,...,An} C SLy(K),K =R,C, and denote by
P; € PSLy(K) the projective automorphism associated to f;.
Assume that the A; are all hyperbolic and that there exists some
proper open set V. C RP! (resp. V.C CP!) invariant under the y;
such that, for some affine chart ¢ : RP! — R (resp. some complex
affine chart ¢ : CP! — C), the y;:
@ are contractions on ¢(V) with respect to the Euclidean
distance;
@ satisfy 0 < a < |¢/(v)| <c<1foralll1<i<m,veV and
some constants a, c;
© satisfy the open set condition i #j = ¢;(V) N (V) = @.
Let Ry = M2y (U=x¥1(V')) be the corresponding attractor.
Then 2dimpy Rp = Sa.
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Example
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State of the art

e The property of a free semigroup S C SL,(K),K =R, C of
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State of the art

e The property of a free semigroup S C SL,(K),K =R, C of
: . . . logNg(r
being fast is sufficient to grant that lim log Ns(r) =55 < ©00.
r—o0 ]ogr
e We provided a constructive iterative algorithm to evaluate
analytical upper and lower bounds for sg with any degree of

accuracy (logarithmic speed).

e The exponent ss completely determines the Hausdorff
dimension of the attractor of the self-projective IFS induced by
S forn = 2.
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Open Questions

e Under which conditions does Ng(r) < r®?

e |s it possible to improve the convergence of the algorithm
which gives analytical bounds for sg?

e Does sg give any information on the Hausdorff dimension of
Rg when n > 27
Conjecture (RdL, 2012)
(n+ 1) dimy Rg > nsg
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