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1 – Statement of the problem I - Elementary geometry

Consider a 3-ply periodic surface in R
3

and cut it with a bundle of parallel planes.
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1 – Statement of the problem I - Elementary geometry

Consider a 3-ply periodic surface in R
3

and cut it with a bundle of parallel planes.

Q: what can be said about the asymptotics

of the open intersections?

(d)

(a) (b)

(c)
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2 – Statement of the problem II - Foliations of surfaces

i : M2
g → T

3

rk(i) = 3

rk(i) is the rank of

i∗ : H1(M
2
g, Z) → H1(T

3, Z)
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i : M2
g → T

3

rk(i) = 3

rk(i) is the rank of

i∗ : H1(M
2
g, Z) → H1(T

3, Z)

Ω = Ωxdx + Ωydy + Ωzdz

constant 1-form

ω = i∗Ω ∈ Ω1(M2
g)

is a closed 1-form
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2 – Statement of the problem II - Foliations of surfaces

i : M2
g → T

3

rk(i) = 3

rk(i) is the rank of

i∗ : H1(M
2
g, Z) → H1(T

3, Z)

Ω = Ωxdx + Ωydy + Ωzdz

constant 1-form

ω = i∗Ω ∈ Ω1(M2
g)

is a closed 1-form

Q: what can be said about asymptotics

of non-compact leaves of ω on M2
g?

For a generic closed 1-form ω non compact leaves are dense on the surface

for this restricted class the situation is actually totally reversed.
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Consider the Poisson structure

{pi, pj}Ω
= ǫijkpipjΩk

on T
3

Take a Hamiltonian

H : T
3 → R
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{pi, pj}Ω
= ǫijkpipjΩk

on T
3

Take a Hamiltonian

H : T
3 → R

{, }
Ω

has a Casimir f
Ω

= Ωxx + Ωyy + Ωzz, i.e. {f
Ω
, g}

Ω
= 0 ∀g ∈ C∞(T3)
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3 – Statement of the problem III - Multivalued Poisson dynamical syste ms

Consider the Poisson structure

{pi, pj}Ω
= ǫijkpipjΩk

on T
3

Take a Hamiltonian

H : T
3 → R

{, }
Ω

has a Casimir f
Ω

= Ωxx + Ωyy + Ωzz, i.e. {f
Ω
, g}

Ω
= 0 ∀g ∈ C∞(T3)

Trajectories therefore are defined by H = e0, f
Ω

= f0.

Note that f
Ω

is multivalued on T
3

but its differential df
Ω

= Ω is well defined.

A topological invariant arises from this dynamical system.
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4 – The topological invariant

Theorem [Dynnikov] Be H a generic real function on T
3.

Then there exist two continous functions e1,2 : RP 2 → R s.t.
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➠ open trajectories arise on Me = H−1(e) iff e ∈ [e1, e2];

➠ if e1(Ω) 6= e2(Ω) then every open trajectory fills some g-1 rk-2 component Ni of Me.

Critical points open orbits

B

Boundary  of  piece
(singular  closed  orbits)

Piece  consisting  of
open  orbits

Ω

All {N̂i} share the same hom class l = [N̂i] ∈ H2(T
3, Z)

l is the same for all e ∈ [e1(Ω), e2(Ω)]

and it invariant for small perturbations of Ω

The set Dl of all Ω sharing a top inv l is called “stability zone”

The inv. l is enough to describe the aymptotics of open orbits:

if Ω ∈ Dl then all open obits are str. asympt. to Ω × l.
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5 – The Stereographic Map

Theorem [Zorich,Dynnikov,DL]
Be SM(Me) the set of stability zones (stereographic map) at a generic energy e:

➠ SM(Me) is the disjoint union of finitely many open sets;

➠ the set of Ω who induce open orbits whose closure has genus > 1 is 0.

Be SM(H) =
⋃

SM(Me) the SM relative to the function H :

➠ either there is only 1 invariant l, and SM(H) = RP 2, or there are countably many and their

boundaries touch only in countably many points in a “fractal-like” way;

➠ Ω rational =⇒ Ω ∈ SM(H), in particular SM(H) = RP 2;

➠ if there is more than one label then there exist uncountably many “ergodic direction” and the closure of

the set of labels is equal to the set of zones boundaries plus the set of ergodic directions.
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6 – The Schwarz’s P-surface

cos(x) + cos(y) + cos(z) = 0
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6 – The Schwarz’s P-surface

cos(x) + cos(y) + cos(z) = 0

dbox ≃ 1.77
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8 – Conjectures

➠ The measure of the set of ergodic directions for a generic Hamiltonian is zero.

➠ The fractal dimension of the set of ergodic directions for a generic Hamiltonian

is strictly between 1 and 2.

➠ The size of stability zones is bounded by C
||l||3 for some constant C .
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9 – The regular skew polyhedron {4, 6 | 4}
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9 – The regular skew polyhedron {4, 6 | 4}

Minimal discrete surface

It is one of the three regular skew polyhedra

together with {6, 4 | 4} & {6, 6 | 3}

All critical points of a generic Ω on it

are of monkey saddle type
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10 – A (new?) class of cut-out fractals
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10 – A (new?) class of cut-out fractals
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b(lb, mb, nb)

c
(lc, mc, nc)
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c
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2. consider the triangle passing through them
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3. consider the point corresponding to the dir
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b + c

c + a

a + b

4. project this point to the three sides from a, b & c
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3. consider the point corresponding to the dir
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c + a

a + b

4. project this point to the three sides from a, b & c

5. consider the triangle with this proj. as vertices
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10 – A (new?) class of cut-out fractals

a(la, ma, na)

b(lb, mb, nb)

c
(lc, mc, nc)

1. choose three rational directions in RP 2

2. consider the triangle passing through them

a + b + c

3. consider the point corresponding to the dir

a + b + c

b + c

c + a

a + b

4. project this point to the three sides from a, b & c

5. consider the triangle with this proj. as vertices

6. cut it out & repeat recursively

on the remaing triangles
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In case of {4, 6 | 4} the initial vertices (in I quad.)
are (1, 0, 1), (0, 1, 1), (1, 1, 0)
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In case of {4, 6 | 4} the initial vertices (in I quad.)
are (1, 0, 1), (0, 1, 1), (1, 1, 0)
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(6, 4, 7)

In this picture we show a detail in [0, 1]2

of the 29524 triangles obtained at the 9th iter.
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of the 29524 triangles obtained at the 9th iter.

Running time to obtain the 797161 zones

obtained after the 12th iter. is ∼ 10min.
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In case of {4, 6 | 4} the initial vertices (in I quad.)
are (1, 0, 1), (0, 1, 1), (1, 1, 0)

(0, 0, 1)

(1, 1, 1)

(1, 2, 2)

(2, 1, 2)

(1, 3, 3)

(3, 1, 3)

(2, 3, 4)

(3, 2, 4)

(4, 6, 7)

(6, 4, 7)

In this picture we show a detail in [0, 1]2

of the 29524 triangles obtained at the 9th iter.

Running time to obtain the 797161 zones

obtained after the 12th iter. is ∼ 10min.

Note an important property:
the label of every zone, from level 2 on,

is the sum of the labels of the zones.
touching its vertices.
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The n-th label then has the form (Tn, Tn+2, Tn+3)

where Tn is a Tribonacci sequence,

i.e. Tn = Tn−1 + Tn−2 + Tn−3,

with initial conditions T0 = T1 = T2 = 1.

·
·
·

Tn Tn+2 Tn+3

Plane sections of {4, 6 | 4} Version 0.1 – 19 April 2007
I.A. Dynnikov,R. De Leo



Plane sections of {4, 6 | 4} 16

(0, 0, 1) (1, 0, 1)

(0, 1, 1)

(1, 1, 3)

1 1 3

(1, 3, 5)

1 3 5

(1, 5, 9)

1 5 9

3 9 17

5 17 31

9 31 57

17 57 105

The n-th label then has the form (Tn, Tn+2, Tn+3)

where Tn is a Tribonacci sequence,

i.e. Tn = Tn−1 + Tn−2 + Tn−3,

with initial conditions T0 = T1 = T2 = 1.

·
·
·

Tn Tn+2 Tn+3

If α, β, β̄ are the roots of

x3 = x2 + x + 1

then Tn = aαn + bβn + b̄β̄n

with α ≃ 1.84 > |β|

(Tribonacci const.)
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where Tn is a Tribonacci sequence,

i.e. Tn = Tn−1 + Tn−2 + Tn−3,

with initial conditions T0 = T1 = T2 = 1.

·
·
·

Tn Tn+2 Tn+3

If α, β, β̄ are the roots of

x3 = x2 + x + 1

then Tn = aαn + bβn + b̄β̄n

with α ≃ 1.84 > |β|

(Tribonacci const.)

−
→

1 α2 α3

fully irrational direction

does not belong to any zone or bd

so it must belong to the fractal
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11 – Numerical results
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11 – Numerical results
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12 – Conclusions and future developments

➠ The results for this particular case increased our hopes to prove eventually the conjectures for the

stereographic maps of generic hamiltonians.

➠ It is clear now that the structure of SMs of polyhedra are as rich as the ones of smooth surfaces, so it

makes sense to deepen the investigation among this class of surfaces.

➠ In particular we already started the numerical investigaton of the cubic polyhedron with all “screw

vertices” and we will start soon the study of fractals for 3-ply periodic polyhedra of higher genus.

➠ Moreover, we started the investigation of fractals who are not realized at a single energy level.
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