Asymptotics of plane sections

of the regular skew polyhedron $\{4,6 \mid 4\}$.

I.A. Dynnikov

Dept. of Mechanics and Mathematics, Moscow State University
R. De Leo

Dept. of Physics, U. of Cagliari \& Nat.Inst. for Nucl. Phys., Cagliari
19 April 2007

1 - Statement of the problem I - Elementary geometry 3
2 - Statement of the problem II - Foliations of surfaces 4
3 - Statement of the problem III - Multivalued Poisson dynamical systems 5
4 - The topological invariant 6
5 - The Stereographic Map 7
6 - The Schwarz's P-surface 8
7 - The regular skew polyhedron $\{6,4 \mid 4\}$ 9
8 - Conjectures 11
9 - The regular skew polyhedron $\{4,6 \mid 4\}$ 12
10 - A (new?) class of cut-out fractals 13
11 - Numerical results 17
12 - Conclusions and future developments 18
13 - Bibliography 19

1 - Statement of the problem I-Elementary geometry

1 - Statement of the problem I - Elementary geometry

Consider a 3-ply periodic surface in \mathbb{R}^{3}

1 - Statement of the problem I - Elementary geometry

Consider a 3-ply periodic surface in \mathbb{R}^{3}

and cut it with a bundle of parallel planes.

1 - Statement of the problem I - Elementary geometry

Consider a 3-ply periodic surface in \mathbb{R}^{3}

and cut it with a bundle of parallel planes.

Q: what can be said about the asymptotics of the open intersections?

(d)

2 - Statement of the problem II - Foliations of surfaces

2 - Statement of the problem II - Foliations of surfaces

$$
\begin{gathered}
i: \mathcal{M}_{g}^{2} \rightarrow \mathbb{T}^{3} \\
\operatorname{rk}(i)=3
\end{gathered}
$$

$$
\begin{gathered}
\text { rk }(i) \text { is the rank of } \\
i_{*}: H_{1}\left(\mathcal{M}_{g}^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathbb{T}^{3}, \mathbb{Z}\right)
\end{gathered}
$$

2 - Statement of the problem II - Foliations of surfaces

$$
\begin{gathered}
i: \mathcal{M}_{g}^{2} \rightarrow \mathbb{T}^{3} \\
\operatorname{rk}(i)=3
\end{gathered}
$$

> rk (i) is the rank of
> $i_{*}: H_{1}\left(\mathcal{M}_{g}^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$

$$
\begin{gathered}
\Omega=\Omega_{x} d x+\Omega_{y} d y+\Omega_{z} d z \\
\text { constant 1-form }
\end{gathered}
$$

$\omega=i^{*} \Omega \in \Omega^{1}\left(\mathcal{M}_{g}^{2}\right)$ is a closed 1 -form

2 - Statement of the problem II - Foliations of surfaces

$$
\begin{gathered}
i: \mathcal{M}_{g}^{2} \rightarrow \mathbb{T}^{3} \\
\operatorname{rk}(i)=3
\end{gathered}
$$

$$
\begin{gathered}
\text { rk }(i) \text { is the rank of } \\
i_{*}: H_{1}\left(\mathcal{M}_{g}^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(\mathbb{T}^{3}, \mathbb{Z}\right)
\end{gathered}
$$

$$
\Omega=\Omega_{x} d x+\Omega_{y} d y+\Omega_{z} d z
$$

$$
\omega=i^{*} \Omega \in \Omega^{1}\left(\mathcal{M}_{g}^{2}\right)
$$

is a closed 1-form

Q: what can be said about asymptotics

$$
\text { of non-compact leaves of } \omega \text { on } \mathcal{M}_{g}^{2} ?
$$

For a generic closed 1-form ω non compact leaves are dense on the surface for this restricted class the situation is actually totally reversed.

[^0]
3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{gathered}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} \\
\text { on } \mathbb{T}^{3}
\end{gathered}
$$

Take a Hamiltonian

$$
H: \mathbb{T}^{3} \rightarrow \mathbb{R}
$$

3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{array}{cr}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} & \text { Take a Hamiltonian } \\
\text { on } \mathbb{T}^{3} & H: \mathbb{T}^{3} \rightarrow \mathbb{R}
\end{array}
$$

$\{,\}_{\Omega}$ has a Casimir $f_{\Omega}=\Omega_{x} x+\Omega_{y} y+\Omega_{z} z$, i.e. $\left\{f_{\Omega}, g\right\}_{\Omega}=0 \quad \forall g \in C^{\infty}\left(\mathbb{T}^{3}\right)$

3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{array}{cr}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} & \text { Take a Hamiltonian } \\
\text { on } \mathbb{T}^{3} & H: \mathbb{T}^{3} \rightarrow \mathbb{R}
\end{array}
$$

$\{,\}_{\Omega}$ has a Casimir $f_{\Omega}=\Omega_{x} x+\Omega_{y} y+\Omega_{z} z$, i.e. $\left\{f_{\Omega}, g\right\}_{\Omega}=0 \quad \forall g \in C^{\infty}\left(\mathbb{T}^{3}\right)$

Trajectories therefore are defined by $H=e_{0}, f_{\Omega}=f_{0}$.

3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{array}{cc}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} & \text { Take a Hamiltonian } \\
\text { on } \mathbb{T}^{3} & H: \mathbb{T}^{3} \rightarrow \mathbb{R}
\end{array}
$$

$\{,\}_{\Omega}$ has a Casimir $f_{\Omega}=\Omega_{x} x+\Omega_{y} y+\Omega_{z} z$, i.e. $\left\{f_{\Omega}, g\right\}_{\Omega}=0 \quad \forall g \in C^{\infty}\left(\mathbb{T}^{3}\right)$

Trajectories therefore are defined by $H=e_{0}, f_{\Omega}=f_{0}$.

Note that f_{Ω} is multivalued on \mathbb{T}^{3}

3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{gathered}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} \\
\text { on } \mathbb{T}^{3}
\end{gathered}
$$

Take a Hamiltonian

$$
H: \mathbb{T}^{3} \rightarrow \mathbb{R}
$$

$\{,\}_{\Omega}$ has a Casimir $f_{\Omega}=\Omega_{x} x+\Omega_{y} y+\Omega_{z} z$, i.e. $\left\{f_{\Omega}, g\right\}_{\Omega}=0 \quad \forall g \in C^{\infty}\left(\mathbb{T}^{3}\right)$

Trajectories therefore are defined by $H=e_{0}, f_{\Omega}=f_{0}$.

Note that f_{Ω} is multivalued on \mathbb{T}^{3} but its differential $d f_{\Omega}=\Omega$ is well defined.

3 - Statement of the problem III - Multivalued Poisson dynamical systems

Consider the Poisson structure

$$
\begin{gathered}
\left\{p_{i}, p_{j}\right\}_{\Omega}=\epsilon_{i j k} p_{i} p_{j} \Omega_{k} \\
\text { on } \mathbb{T}^{3}
\end{gathered}
$$

Take a Hamiltonian

$$
H: \mathbb{T}^{3} \rightarrow \mathbb{R}
$$

$\{,\}_{\Omega}$ has a Casimir $f_{\Omega}=\Omega_{x} x+\Omega_{y} y+\Omega_{z} z$, i.e. $\left\{f_{\Omega}, g\right\}_{\Omega}=0 \quad \forall g \in C^{\infty}\left(\mathbb{T}^{3}\right)$

Trajectories therefore are defined by $H=e_{0}, f_{\Omega}=f_{0}$.

> Note that f_{Ω} is multivalued on \mathbb{T}^{3} but its differential $d f_{\Omega}=\Omega$ is well defined.

A topological invariant arises from this dynamical system.

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}. Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
|ㅔㄴ $e_{1} \leq e_{2}$;

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
In' $e_{1} \leq e_{2}$;
${ }^{\text {IIILI }}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
In' $e_{1} \leq e_{2}$;
${ }^{\text {nIILt}}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
In' if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
N|IT $e_{1} \leq e_{2}$;
${ }^{\text {IIILT}}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
${ }^{\text {nIIIT}}$ if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.

All $\left\{\hat{\mathcal{N}}_{i}\right\}$ share the same hom class $l=\left[\hat{\mathcal{N}}_{i}\right] \in H_{2}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
N|IT $e_{1} \leq e_{2}$;
${ }^{\text {IIILT}}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
${ }^{\text {nIIIT}}$ if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.

All $\left\{\hat{\mathcal{N}}_{i}\right\}$ share the same hom class $l=\left[\hat{\mathcal{N}}_{i}\right] \in H_{2}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$
l is the same for all $e \in\left[e_{1}(\Omega), e_{2}(\Omega)\right]$

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
N|IT $e_{1} \leq e_{2}$;
${ }^{\text {IIILT}}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
${ }^{\text {Int }}$ if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.

All $\left\{\hat{\mathcal{N}}_{i}\right\}$ share the same hom class $l=\left[\hat{\mathcal{N}}_{i}\right] \in H_{2}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$
l is the same for all $e \in\left[e_{1}(\Omega), e_{2}(\Omega)\right]$ and it invariant for small perturbations of Ω

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
N|IT $e_{1} \leq e_{2}$;
${ }^{n} 1$ Int open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
${ }^{\text {Int }}$ if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.
All $\left\{\hat{\mathcal{N}}_{i}\right\}$ share the same hom class $l=\left[\hat{\mathcal{N}}_{i}\right] \in H_{2}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$
l is the same for all $e \in\left[e_{1}(\Omega), e_{2}(\Omega)\right]$
and it invariant for small perturbations of Ω
The set D_{l} of all Ω sharing a top inv l is called "stability zone"

4 - The topological invariant

Theorem [Dynnikov] Be H a generic real function on \mathbb{T}^{3}.
Then there exist two continous functions $e_{1,2}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ s.t.
N|IT $e_{1} \leq e_{2}$;
${ }^{\text {IIILT}}$ open trajectories arise on $\mathcal{M}_{e}=H^{-1}(e)$ iff $e \in\left[e_{1}, e_{2}\right]$;
${ }^{\text {Int }}$ if $e_{1}(\Omega) \neq e_{2}(\Omega)$ then every open trajectory fills some g-1 rk-2 component \mathcal{N}_{i} of \mathcal{M}_{e}.

All $\left\{\hat{\mathcal{N}}_{i}\right\}$ share the same hom class $l=\left[\hat{\mathcal{N}}_{i}\right] \in H_{2}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$
l is the same for all $e \in\left[e_{1}(\Omega), e_{2}(\Omega)\right]$
and it invariant for small perturbations of Ω
The set D_{l} of all Ω sharing a top inv l is called "stability zone"
The inv. l is enough to describe the aymptotics of open orbits: critical points
 if $\Omega \in D_{l}$ then all open obits are str. asympt. to $\Omega \times l$.

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
NM $\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \mathrm{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
${ }^{\prime \prime} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;
IUN the set of Ω who induce open orbits whose closure has genus >1 is 0 .

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \mathrm{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
${ }^{\prime \prime} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;
Int the set of Ω who induce open orbits whose closure has genus >1 is 0 .
$\operatorname{Be} \operatorname{SM}(H)=\bigcup \mathrm{SM}\left(\mathcal{M}_{e}\right)$ the SM relative to the function H :

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
${ }^{\prime \prime} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;
IUN the set of Ω who induce open orbits whose closure has genus >1 is 0 .
$\operatorname{Be} \operatorname{SM}(H)=\bigcup \mathrm{SM}\left(\mathcal{M}_{e}\right)$ the SM relative to the function H :
NIIT either there is only 1 invariant l, and $\operatorname{SM}(H)=\mathbb{R} P^{2}$, or there are countably many and their boundaries touch only in countably many points in a "fractal-like" way;

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

$\operatorname{Be} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
${ }^{\prime \prime} \operatorname{SM}\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;
Int the set of Ω who induce open orbits whose closure has genus >1 is 0 .
$\operatorname{Be} \operatorname{SM}(H)=\bigcup \mathrm{SM}\left(\mathcal{M}_{e}\right)$ the SM relative to the function H :
NIIT either there is only 1 invariant l, and $\operatorname{SM}(H)=\mathbb{R} P^{2}$, or there are countably many and their boundaries touch only in countably many points in a "fractal-like" way;
"III Ω rational $\Longrightarrow \Omega \in \mathrm{SM}(H)$, in particular $\overline{\mathrm{SM}(H)}=\mathbb{R} P^{2}$;

5 - The Stereographic Map

Theorem [Zorich,Dynnikov,DL]

Be $\operatorname{SM}\left(\mathcal{M}_{e}\right)$ the set of stability zones (stereographic map) at a generic energy e :
$\operatorname{SM}\left(\mathcal{M}_{e}\right)$ is the disjoint union of finitely many open sets;
the set of Ω who induce open orbits whose closure has genus >1 is 0 .
$\operatorname{Be} \operatorname{SM}(H)=\bigcup \operatorname{SM}\left(\mathcal{M}_{e}\right)$ the SM relative to the function $H:$
either there is only 1 invariant l, and $\operatorname{SM}(H)=\mathbb{R} P^{2}$, or there are countably many and their boundaries touch only in countably many points in a "fractal-like" way;
${ }^{\text {IIIIL }} \Omega$ rational $\Longrightarrow \Omega \in \mathrm{SM}(H)$, in particular $\overline{\mathrm{SM}(H)}=\mathbb{R} P^{2}$;
IIII if there is more than one label then there exist uncountably many "ergodic direction" and the closure of the set of labels is equal to the set of zones boundaries plus the set of ergodic directions.

$$
\begin{aligned}
& \text { 6- The Schwarz's P-surface } \\
& \cos (x)+\cos (y)+\cos (z)=0
\end{aligned}
$$

6 - The Schwarz's P-surface
$\cos (x)+\cos (y)+\cos (z)=0$

6 - The Schwarz's P-surface
 $\cos (x)+\cos (y)+\cos (z)=0$

6 - The Schwarz's P-surface
 $\cos (x)+\cos (y)+\cos (z)=0$

6 - The Schwarz's P-surface
 $\cos (x)+\cos (y)+\cos (z)=0$

6 - The Schwarz's P-surface
 $\cos (x)+\cos (y)+\cos (z)=0$

6 - The Schwarz's P-surface
 $\cos (x)+\cos (y)+\cos (z)=0$


```
7 - The regular skew polyhedron \(\{6,4 \mid 4\}\)
```

```
7 - The regular skew polyhedron \(\{6,4 \mid 4\}\)
```


7 - The regular skew polyhedron $\{6,4 \mid 4\}$

7 - The regular skew polyhedron $\{6,4 \mid 4\}$

7 - The regular skew polyhedron $\{6,4 \mid 4\}$

8 - Conjectures

IIII The measure of the set of ergodic directions for a generic Hamiltonian is zero.

NIILT The fractal dimension of the set of ergodic directions for a generic Hamiltonian is strictly between 1 and 2 .

NIII The size of stability zones is bounded by $\frac{C}{\|l\|^{3}}$ for some constant C.

```
9 - The regular skew polyhedron \(\{4,6 \mid 4\}\)
```


9-The regular skew polyhedron $\{4,6 \mid 4\}$

9 - The regular skew polyhedron $\{4,6 \mid 4\}$

Minimal discrete surface

9 - The regular skew polyhedron $\{4,6 \mid 4\}$

Minimal discrete surface

It is one of the three regular skew polyhedra together with $\{6,4 \mid 4\} \&\{6,6 \mid 3\}$

9 - The regular skew polyhedron $\{4,6 \mid 4\}$

Minimal discrete surface

It is one of the three regular skew polyhedra together with $\{6,4 \mid 4\}$ \& $\{6,6 \mid 3\}$

All critical points of a generic Ω on it are of monkey saddle type

$10-\mathrm{A}$ (new?) class of cut-out fractals

10 - A (new?) class of cut-out fractals

$$
a\left(l_{a}, m_{a}, n_{a}\right)
$$

-

1. choose three rational directions in $\mathbb{R} P^{2}$

$$
\begin{gathered}
\cdot c \\
\left(l_{c}, m_{c}, n_{c}\right)
\end{gathered}
$$

$$
b\left(l_{b}, m_{b}, n_{b}\right)
$$

10 - A (new?) class of cut-out fractals

2. consider the triangle passing through them
$b\left(l_{b}, m_{b}, n_{b}\right)$

10 - A (new?) class of cut-out fractals

10 - A (new?) class of cut-out fractals

$$
a\left(l_{a}, m_{a}, n_{a}\right)
$$

1. choose three rational directions in $\mathbb{R} P^{2}$
2. consider the triangle passing through them
3. consider the point corresponding to the dir $a+b+c$
4. project this point to the three sides from $a, b \& c$

10 - A (new?) class of cut-out fractals

$$
a\left(l_{a}, m_{a}, n_{a}\right)
$$

1. choose three rational directions in $\mathbb{R} P^{2}$
2. consider the triangle passing through them
3. consider the point corresponding to the dir $a+b+c$
4. project this point to the three sides from $a, b \& c$
5. consider the triangle with this proj. as vertices
$b\left(l_{b}, m_{b}, n_{b}\right)$

10 - A (new?) class of cut-out fractals

$$
a\left(l_{a}, m_{a}, n_{a}\right) \quad \text { 1. choose three rational directions in } \mathbb{R} P^{2}
$$

2. consider the triangle passing through them
3. consider the point corresponding to the dir $a+b+c$
4. project this point to the three sides from $a, b \& c$
5. consider the triangle with this proj. as vertices
6. cut it out \& repeat recursively
$b\left(l_{b}, m_{b}, n_{b}\right)$ on the remaing triangles

In case of $\{4,6 \mid 4\}$ the initial vertices (in I quad.) are $(1,0,1),(0,1,1),(1,1,0)$

In case of $\{4,6 \mid 4\}$ the initial vertices (in I quad.) are $(1,0,1),(0,1,1),(1,1,0)$
In this picture we show a detail in $[0,1]^{2}$ of the 29524 triangles obtained at the 9th iter.

In case of $\{4,6 \mid 4\}$ the initial vertices (in I quad.) are $(1,0,1),(0,1,1),(1,1,0)$
In this picture we show a detail in $[0,1]^{2}$ of the 29524 triangles obtained at the 9th iter.

Running time to obtain the 797161 zones obtained after the 12 th iter. is $\sim 10 \mathrm{~min}$.

In case of $\{4,6 \mid 4\}$ the initial vertices (in I quad.) are $(1,0,1),(0,1,1),(1,1,0)$
In this picture we show a detail in $[0,1]^{2}$ of the 29524 triangles obtained at the 9th iter.

Running time to obtain the 797161 zones obtained after the 12 th iter. is $\sim 10 \mathrm{~min}$.

Note an important property: the label of every zone, from level 2 on, is the sum of the labels of the zones. touching its vertices.
$(0,1,1)$
$(0,0,1)$
$(1,0,1)$
(0, 1, 1)

$$
1 \quad 1 \quad 3
$$

$(0,0,1)$
$(1,0,1)$
$(0,1,1)$

1	1	3
1	3	5

$(0,0,1)$
$(1,0,1)$
$(0,1,1)$

$(0,1,1)$

$(0,1,1)$

$(0,1,1)$

$(0,1,1)$
The n-th label then has the form $\left(T_{n}, T_{n+2}, T_{n+3}\right)$ where T_{n} is a Tribonacci sequence,
i.e. $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$, with initial conditions $T_{0}=T_{1}=T_{2}=1$.

1	1	3
1	3	5
1	5	9
3	9	17
5	17	31
9	31	57
17	57	105
	\cdot	
	\cdot	
T_{n}	T_{n+2}	T_{n+3}

$(0,0,1)$
$(1,0,1)$
$(0,1,1)$
The n-th label then has the form $\left(T_{n}, T_{n+2}, T_{n+3}\right)$ where T_{n} is a Tribonacci sequence,
i.e. $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$, with initial conditions $T_{0}=T_{1}=T_{2}=1$.

If $\alpha, \beta, \bar{\beta}$ are the roots of

$$
x^{3}=x^{2}+x+1
$$

then $T_{n}=a \alpha^{n}+b \beta^{n}+\bar{b} \bar{\beta}^{n}$

1	1	3
1	3	5
1	5	9
3	9	17
5	17	31
9	31	57
17	57	105

(Tribonacci const.)

$$
T_{n} T_{n+2} T_{n+3}
$$

$(0,1,1)$
The n-th label then has the form $\left(T_{n}, T_{n+2}, T_{n+3}\right)$ where T_{n} is a Tribonacci sequence,
i.e. $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$, with initial conditions $T_{0}=T_{1}=T_{2}=1$.

If $\alpha, \beta, \bar{\beta}$ are the roots of $x^{3}=x^{2}+x+1$ then $T_{n}=a \alpha^{n}+b \beta^{n}+\bar{b} \bar{\beta}^{n}$

1	1	3
1	3	5
1	5	9
3	9	17
5	17	31
9	31	57
17	57	105

(Tribonacci const.)

$$
\begin{array}{ccc}
T_{n} & T_{n+2} & T_{n+3} \\
& \downarrow & \\
& \alpha_{1} & \alpha^{2}
\end{array} \alpha^{3}
$$

fully irrational direction

$$
(0,0,1)
$$

$$
(1,0,1)
$$ does not belong to any zone or bd so it must belong to the fractal

11 - Numerical results

11 - Numerical results

$$
11 \text { - Numerical results }
$$

11 - Numerical results

11 - Numerical results

$d_{b o x} \simeq 1.8$

12 - Conclusions and future developments

nul The results for this particular case increased our hopes to prove eventually the conjectures for the stereographic maps of generic hamiltonians.

U11+ It is clear now that the structure of SMs of polyhedra are as rich as the ones of smooth surfaces, so it makes sense to deepen the investigation among this class of surfaces.
|nIt In particular we already started the numerical investigaton of the cubic polyhedron with all "screw vertices" and we will start soon the study of fractals for 3-ply periodic polyhedra of higher genus.

InIt Moreover, we started the investigation of fractals who are not realized at a single energy level.

13 - Bibliography

Inlm S.P. Novikov, Hamiltonian formalism and a multivalued analog of Morse theory, Usp. Mat. Nauk, 37:5 (1982), 3-49

InI A.V. Zorich, A problem of Novikov on the semiclassical motion of electrons in a uniform almost rational magnetic field, Usp. Mat. Nauk (RMS), 39:5 (1984), 235-236

IIII I.A. Dynnikov, The geometry of stability regiones in Novikov's problem on the semiclassical motion of an electron, RMS, 54:1 (1999), 21-60
${ }^{\text {IIIIL }}$ R. De Leo, Numerical Analysis of the Novikov Problem of a Normal Metal in a Strong Magnetic Field, SIAM Journal on Applied Dynamical Systems, 2:4 (2003), 517-545, http://epubs.siam.org/sam-bin/dbq/article/40664

IIII R. De Leo, Topology of plane sections of periodic polyhedra with an application to the Truncated Octahedron, Experimental Mathematics 15:1 (2006), 109-125 math.DG/0502219

Inm S.P. Novikov, A.Ya.Maltsev Topology, Quasiperiodic functions and the Transport phenomena, in "Topology, Quasiperiodic Functions, and the Transport Phenomena" arXiv:cond-mat/0312710v1

[^0]: 3 - Statement of the problem III - Multivalued Poisson dynamical systems

