A quick survey of h-Principle and isometric embeddings

Roberto De Leo

Department of Mathematics

Plan of the presentation:

- General results about isometric immersions

Plan of the presentation:

- General results about isometric immersions
- The Nash-Gromov Implicit Function Theorem

Plan of the presentation:

- General results about isometric immersions
- The Nash-Gromov Implicit Function Theorem
- Inducing structures on manifolds

Main Sources

- D. Spring, "The golden age of immersion theory in topology: 1959-1973", http://arxiv.org/abs/math/0307127 (2003)
- M. Gromov, V. Rokhlin, "Embeddings and immersions in Riemannian geometry", Russian Mathematical Surveys, 25:5 (1970)
- M. Gromov, "Partial Differential Relations", Springer, 1983
- M. Gromov, "Geometric, Algebraic and Analytic Descendants of Nash Isometric Embedding Theorems", 2015, http://www.ihes.fr/~gromov/PDF/nash-copy-Oct9.pdf
- R. De Leo, "A note on non-free isometric immersions", Russian Math Surveys, 63:3 (2010)
- G. D'Ambra, R. De Leo, A. Loi, "Partially isometric immersions and free maps", Geometriae Dedicata, 151:1 (2011)
- R. De Leo, "On some geometrical and analytical problems arising from the theory of Isometric Immersion", 2011,

Isometric

Embeddings

The isometric immersions problem

Question. Given a C^{k} Riemannian metric
$g=g_{\alpha \beta}(x) d x^{\alpha} \otimes d x^{\beta}$ on M^{n}, for which q and k^{\prime} can we find a (global or local) $C^{k^{\prime}}$ isometric immersion $f: M \rightarrow \mathbb{R}^{q}$?

The isometric immersions problem

Question. Given a C^{k} Riemannian metric
$g=g_{\alpha \beta}(x) d x^{\alpha} \otimes d x^{\beta}$ on M^{n}, for which q and k^{\prime} can we find a (global or local) $C^{k^{\prime}}$ isometric immersion $f: M \rightarrow \mathbb{R}^{q}$?

Namely, can we find q (global or local) functions $f^{a} \in C^{k^{\prime}}(M)$ such that

$$
\delta_{a b} \partial_{\alpha} f^{a}(x) \partial_{\beta} f^{b}(x)=g_{\alpha \beta}(x) ?
$$

The isometric immersions problem

Question. Given a C^{k} Riemannian metric $g=g_{\alpha \beta}(x) d x^{\alpha} \otimes d x^{\beta}$ on M^{n}, for which q and k^{\prime} can we find a (global or local) $C^{k^{\prime}}$ isometric immersion $f: M \rightarrow \mathbb{R}^{q}$?

Namely, can we find q (global or local) functions $f^{a} \in C^{k^{\prime}}(M)$ such that

$$
\delta_{a b} \partial_{\alpha} f^{a}(x) \partial_{\beta} f^{b}(x)=g_{\alpha \beta}(x) ?
$$

Remark: for $n=2$ and $q=3$, we can riarrange the coordinates so that $f(x, y, z)=(x, y, z(x, y))$ and the equation above is equivalent to the following
Monge-Ampére type eq., known as Darboux equation:

$$
\operatorname{det}\left(\nabla_{\alpha}\left(\nabla_{\beta} z\right)\right)=K(\operatorname{det} g)\left(1-\|\operatorname{grad}(z)\|^{2}\right)
$$

The isometric immersions problem

Question. Given a C^{k} Riemannian metric $g=g_{\alpha \beta}(x) d x^{\alpha} \otimes d x^{\beta}$ on M^{n}, for which q and k^{\prime} can we find a (global or local) $C^{k^{\prime}}$ isometric immersion $f: M \rightarrow \mathbb{R}^{q}$?

Namely, can we find q (global or local) functions $f^{a} \in C^{k^{\prime}}(M)$ such that

$$
\delta_{a b} \partial_{\alpha} f^{a}(x) \partial_{\beta} f^{b}(x)=g_{\alpha \beta}(x) ?
$$

Remark: for $n=2$ and $q=3$, we can riarrange the coordinates so that $f(x, y, z)=(x, y, z(x, y))$ and the equation above is equivalent to the following
Monge-Ampére type eq., known as Darboux equation:

$$
\operatorname{det}\left(\nabla_{\alpha}\left(\nabla_{\beta} z\right)\right)=K(\operatorname{det} g)\left(1-\|\operatorname{grad}(z)\|^{2}\right)
$$

It turns out that the answer depends on the regularity.

Local results: Analytical case

$C^{\text {an }}$-Local Conjecture (Schlæfli (1873) ${ }^{1}$)

Every 2-dimensional analytical Riemannian manifold admits analytical local isometric embeddings into \mathbb{R}^{3}.

[^0]
Local results: Analytical case

$C^{\text {an }}$-Local Conjecture (Schlæfli $\left.(1873)^{1}\right)$

Every 2-dimensional analytical Riemannian manifold admits analytical local isometric embeddings into \mathbb{R}^{3}.

$C^{\text {an }}$-Local Theorem (Janet $(1926)^{2}$, Cartan $\left.(1927)^{3}\right)$

Every n-dimensional analytical Riemannian manifold admits analytical local isometric embedding into $\mathbb{R}^{s_{n}}, s_{n}=n(n+1) / 2$.

[^1]
Local results: Smooth case

C^{∞}-Local Conjecture (Schlæfli $(1873)^{4}$)

Every 2-dimensional analytical Riemannian manifold admits smooth local isometric embeddings into \mathbb{R}^{3}.

Local results: Smooth case

C^{∞}-Local Conjecture (Schlæfil $(1873)^{4}$)

Every 2-dimensional analytical Riemannian manifold admits smooth local isometric embeddings into \mathbb{R}^{3}.

This problem is still open, e.g. see:

- Yau, "Problem Section, Seminar on Diff. Geom.", Ann. of Math. Studies 102, Princeton University Press (1982)
- Lin,"The local isometric embedding in \mathbb{R}^{3} of 2-dim. Riem. mfds with non-neg. curv", J. of Diff. Geom. 21 (1985), 213-230
- Hong, Zuily, "Existence of C^{∞} local solutions for the Monge-Ampére equation", Inv. Math. 89 (1987), 645-661
- Han, Hong, "Isometric Embedding of Riemannian Manifolds in Euclidean Spaces", 2006, Math. Surv. and Monographs, AMS
- Han, "Isometric Embeddings of Surfaces in $\mathbb{R}^{3 "}$, Recent Developments in Geometry and Analysis (2012), 113-145

Local results: General case

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^{1} Riemannian n-manifold admits C^{1} local isometric immersions into \mathbb{R}^{n+1}.

Local results: General case

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^{1} Riemannian n-manifold admits C^{1} local isometric immersions into \mathbb{R}^{n+1}.

Theorem (Nash (1956))

Every C^{r} Riemannian n-manifold admits C^{r} local isometric immersions in \mathbb{R}^{q} for $q=(n+1)\left(4 n+3 s_{n}\right)$ and $r=3,4, \ldots, \infty$.

Local results: General case

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^{1} Riemannian n-manifold admits C^{1} local isometric immersions into \mathbb{R}^{n+1}.

Theorem (Nash (1956))

Every C^{r} Riemannian n-manifold admits C^{r} local isometric immersions in \mathbb{R}^{q} for $q=(n+1)\left(4 n+3 s_{n}\right)$ and $r=3,4, \ldots, \infty$.

Remark 1: the case $r=2$ is still open.

Local results: General case

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^{1} Riemannian n-manifold admits C^{1} local isometric immersions into \mathbb{R}^{n+1}.

Theorem (Nash (1956))

Every C^{r} Riemannian n-manifold admits C^{r} local isometric immersions in \mathbb{R}^{q} for $q=(n+1)\left(4 n+3 s_{n}\right)$ and $r=3,4, \ldots, \infty$.

Remark 1: the case $r=2$ is still open.
Remark 2: Gromov improved the second result to $q=n^{2}+10 n+3$ for $r=3$ and $q=s_{n+2}$ for $r \geq 4$.

Local results: General case

Conjecture (Gromov (2015))

Every C^{r} parallelizable Riemannian n-manifold admits C^{r} local isometric immersions into \mathbb{R}^{q} for $q=s_{n}+1$ and
$r=1,2, \cdots, \infty, a n$.

Local results: General case

Conjecture (Gromov (2015))

Every C^{r} parallelizable Riemannian n-manifold admits C^{r} local isometric immersions into \mathbb{R}^{q} for $q=s_{n}+1$ and
$r=1,2, \cdots, \infty, a n$.

Conjecture (Gromov (2015))

Let f be a global analytical section of the bundle $\mathcal{F}(M)$ of frames over the parallelizable n-manifold M. Then there exists $f \in C^{\text {an }}\left(M, \mathbb{R}^{s_{n}+1}\right)$ such that $f_{*} f$ is an orthonormal $\left(s_{n}+1\right)$-frame in $\mathbb{R}^{s_{n}+1}$.

Global results

C^{1} Theorem (Nash (1954))
Let g be a C^{0} Riemannian metric on M^{n}. Then there exist C^{1} isometries $f:(M, g) \rightarrow \mathbb{R}^{2 n}$.

Global results

C^{1} Theorem (Nash (1954))

Let g be a C^{0} Riemannian metric on M^{n}. Then there exist C^{1} isometries $f:(M, g) \rightarrow \mathbb{R}^{2 n}$.

C^{∞} Theorem (Nash (1956))

Let g be a C^{r} Riemannian metric on $M^{n}, r=3,4, \ldots, \infty$. Then there exist C^{r} isometries of (M, g) into \mathbb{R}^{q} for $q=3 s_{n}+4 n$ if M is compact and into $q=(n+1)\left(3 s_{n}+4 n\right)$ if M is open.

Global results

C^{1} Theorem (Nash (1954))

Let g be a C^{0} Riemannian metric on M^{n}. Then there exist C^{1} isometries $f:(M, g) \rightarrow \mathbb{R}^{2 n}$.

C^{∞} Theorem (Nash (1956))

Let g be a C^{r} Riemannian metric on $M^{n}, r=3,4, \ldots, \infty$. Then there exist C^{r} isometries of (M, g) into \mathbb{R}^{q} for $q=3 s_{n}+4 n$ if M is compact and into $q=(n+1)\left(3 s_{n}+4 n\right)$ if M is open.

$C^{\text {an }}$ Theorem (Nash (1954))

Let g be a $C^{\text {an }}$ Riemannian metric on M^{n}. Then there exist $C^{\text {an }}$ isometries $f:(M, g) \rightarrow \mathbb{R}^{q}$ for $q=3 s_{n}+4 n$.

Open Problems and Conjectures

Question

Do there exist $C^{a n}$ or C^{∞} Riemannian n-manifolds admitting C^{r} isometric immersions into \mathbb{R}^{q} for some q_{r} but no $C^{a n}$ or C^{∞} isometric immersions for $q \leq\left(1+c_{r}\right) q_{r}$ for some $c_{r}>0$?

Open Problems and Conjectures

Question

Do there exist $C^{a n}$ or C^{∞} Riemannian n-manifolds admitting C^{r} isometric immersions into \mathbb{R}^{q} for some q_{r} but no $C^{\text {an }}$ or C^{∞} isometric immersions for $q \leq\left(1+c_{r}\right) q_{r}$ for some $c_{r}>0$?

Conjecture

If $q>0.36 n^{2}+1.36 n$, all C^{2} Riemannian n-manifolds admit global isometric C^{2} immersions into \mathbb{R}^{q}

The Nash-Gromov Implicit Function

Theorem

Partial Differential Operators

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration and $G \xrightarrow{\pi_{G}} E$ a vector bundle. Let $\Gamma^{r} F$ the C^{r} sections of $F \xrightarrow{\pi_{F}} E$ and similarly for $\Gamma^{0} G$.

Partial Differential Operators

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration and $G \xrightarrow{\pi_{G}} E$ a vector bundle. Let $\Gamma^{r} F$ the C^{r} sections of $F \xrightarrow{\pi_{F}} E$ and similarly for $\Gamma^{0} G$.

Definition

A C^{k} PDO over F of order r with values in G is a map

$$
\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G
$$

whose coeffs, in any coord system, are all C^{k} and whose value on a section $f \in \Gamma^{r} F$ at a point $x \in E$ depends only on $j_{x}^{r} f$.

Partial Differential Operators

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration and $G \xrightarrow{\pi_{G}} E$ a vector bundle. Let $\Gamma^{r} F$ the C^{r} sections of $F \xrightarrow{\pi_{F}} E$ and similarly for $\Gamma^{0} G$.

Definition

A C^{k} PDO over F of order r with values in G is a map

$$
\mathcal{L}_{r}: \Gamma^{r} F \rightarrow \Gamma^{0} G
$$

whose coeffs, in any coord system, are all C^{k} and whose value on a section $f \in \Gamma^{r} F$ at a point $x \in E$ depends only on $j_{x}^{r} f$.

In coordinates $\left(x^{\alpha}, f^{i}\right)$ and $\left(x^{\alpha}, g^{\alpha}\right), \iota_{r}$ writes as

$$
\mathcal{L}_{r}(f)\left(x^{\alpha}\right)=\left(\Lambda_{r}^{a}\left(x^{\alpha}, f^{i}\left(x^{\alpha}\right), \partial_{\alpha} f^{i}\left(x^{\alpha}\right), \ldots, \partial_{\alpha_{1} \ldots \alpha_{r}} f^{i}\left(x^{\alpha}\right)\right) .\right.
$$

where $\Lambda_{r}=\left(\Lambda_{r}^{a}\right): J^{r} F \rightarrow G$ is some C^{k} map.

Partial Differential Operators

Definition

Equiv., a C^{k} PDO over F of order r with values in G is a C^{k} map

$$
\Lambda_{r}: J^{r} F \rightarrow G
$$

Partial Differential Operators

Definition
Equiv., a C^{k} PDO over F of order r with values in G is a C^{k} map

$$
\Lambda_{r}: J^{r} F \rightarrow G
$$

The equation

$$
\mathcal{L}_{r}(f)=\phi
$$

is then equivalent to

$$
\Lambda_{r}^{a}\left(x^{\alpha}, f^{i}\left(x^{\alpha}\right), \partial f_{\alpha}^{i}\left(x^{\alpha}\right), \ldots, \partial f_{\alpha_{1} \ldots \alpha_{r}}^{i}\left(x^{\alpha}\right)\right)=\phi^{a}\left(x^{\alpha}\right)
$$

Partial Differential Operators

Example

Consider $F=G=M \times \mathbb{R}$, so that $J^{r}(F)=J^{r}(M, \mathbb{R})$.

Partial Differential Operators

Example

Consider $F=G=M \times \mathbb{R}$, so that $J^{r}(F)=J^{r}(M, \mathbb{R})$. Given a vector field ξ on M, the Lie derivative $L_{\xi}: C^{1}(M) \simeq \Gamma^{1}(F) \rightarrow C(M) \simeq \Gamma^{0}(G)$ is a PDO of order 1 .

Partial Differential Operators

Example

Consider $F=G=M \times \mathbb{R}$, so that $J^{r}(F)=J^{r}(M, \mathbb{R})$.
Given a vector field ξ on M, the Lie derivative
$L_{\xi}: C^{1}(M) \simeq \Gamma^{1}(F) \rightarrow C(M) \simeq \Gamma^{0}(G)$ is a PDO of order 1 .
The corresponding map $\Lambda_{\xi}: J^{1}(M, \mathbb{R}) \rightarrow M \times \mathbb{R}$ is defined as

$$
\Lambda_{\xi}\left(x^{\alpha}, f, f_{\alpha}\right)=\xi^{\alpha}(x) f_{\alpha} .
$$

Partial Differential Operators

Example

Consider $F=G=M \times \mathbb{R}$, so that $J^{r}(F)=J^{r}(M, \mathbb{R})$.
Given a vector field ξ on M, the Lie derivative
$L_{\xi}: C^{1}(M) \simeq \Gamma^{1}(F) \rightarrow C(M) \simeq \Gamma^{0}(G)$ is a PDO of order 1 .
The corresponding map $\Lambda_{\xi}: J^{1}(M, \mathbb{R}) \rightarrow M \times \mathbb{R}$ is defined as

$$
\Lambda_{\xi}\left(x^{\alpha}, f, f_{\alpha}\right)=\xi^{\alpha}(x) f_{\alpha} .
$$

The corresponding PDE

$$
\left(j^{1} f\right)^{*} \Lambda_{\xi}=\phi
$$

is called cohomological equation. In coordinates writes as

$$
\xi^{\alpha}(x) \partial_{\alpha} f(x)=\phi(x)
$$

Partial Differential Operators

Example

Consider $F=M \times \mathbb{R}^{q}$ and $G=S_{2}^{0} M$, so that $J^{r}(F)=J^{r}\left(M, \mathbb{R}^{q}\right)$.

Partial Differential Operators

Example

Consider $F=M \times \mathbb{R}^{q}$ and $G=S_{2}^{0} M$, so that $J^{r}(F)=J^{r}\left(M, \mathbb{R}^{q}\right)$. The pull-back operator

$$
\mathcal{D}_{M, q}: C^{1}\left(M, \mathbb{R}^{q}\right) \simeq \Gamma^{1} F \rightarrow \Gamma^{0}\left(S_{2}^{0} M\right)
$$

defined as $\mathcal{D}_{M, q}(f)=f^{*} e_{q}$ is also a PDO of order 1 .

Partial Differential Operators

Example

Consider $F=M \times \mathbb{R}^{q}$ and $G=S_{2}^{0} M$, so that $J^{r}(F)=J^{r}\left(M, \mathbb{R}^{q}\right)$. The pull-back operator

$$
\mathcal{D}_{M, q}: C^{1}\left(M, \mathbb{R}^{q}\right) \simeq \Gamma^{1} F \rightarrow \Gamma^{0}\left(S_{2}^{0} M\right)
$$

defined as $\mathcal{D}_{M, q}(f)=f^{*} e_{q}$ is also a PDO of order 1 . In coordinates

$$
\mathcal{D}_{M, q}(f)=\delta_{i j} \partial_{\alpha} f^{\prime} \partial_{\beta} f^{\prime j},
$$

so that the corresponding map $\Lambda_{M, q}: J^{1}\left(M, \mathbb{R}^{q}\right) \rightarrow S_{2}^{0} M$ is defined as

$$
\Lambda_{M, q}\left(x^{\alpha}, f, f_{\alpha}\right)=\delta_{i j} f_{\alpha}^{i} f_{\beta}^{j} .
$$

Linearization of a PDO

The set $\Gamma_{f}^{r}=\Gamma^{r}\left(f^{*}(V F)\right)$ of C^{r} sections of $V F=k e r \pi_{F}$ can be thought as the tangent space at f of $\Gamma^{r} F$.

Linearization of a PDO

The set $\Gamma_{f}^{r}=\Gamma^{r}\left(f^{*}(V F)\right)$ of C^{r} sections of $V F=k e r \pi_{F}$ can be thought as the tangent space at f of $\Gamma^{r} F$.

Indeed take a C^{1} curve $f_{t} \in \Gamma^{r} F$ with $f_{0}=f$ and let $\eta_{f}\left(x_{0}\right)=d f_{t}\left(x_{0}\right) /\left.d t\right|_{t=0}$.

Linearization of a PDO

The set $\Gamma_{f}^{r}=\Gamma^{r}\left(f^{*}(V F)\right)$ of C^{r} sections of $V F=k e r \pi_{F}$ can be thought as the tangent space at f of $\Gamma^{r} F$.

Indeed take a C^{1} curve $f_{t} \in \Gamma^{r} F$ with $f_{0}=f$ and let $\eta_{f}\left(x_{0}\right)=d f_{t}\left(x_{0}\right) /\left.d t\right|_{t=0}$.Then

$$
\begin{gathered}
T_{x_{0}} \pi_{F}\left(\eta_{f}\left(x_{0}\right)\right)=T_{x_{0}} \pi_{F}\left(\left.\frac{d f_{t}\left(x_{0}\right)}{d t}\right|_{t=0}\right)= \\
=\left.\frac{d\left(\pi_{F} \circ f_{t}\right)\left(x_{0}\right)}{d t}\right|_{t=0}=\left.\frac{d x_{0}}{d t}\right|_{t=0}=0
\end{gathered}
$$

namely $\eta_{f} \in \Gamma_{f}^{r}$.

Linearization of a PDO

Definition

The linearization of \mathcal{L}_{r} at f is the linear PDO

$$
\ell_{r, f}: \Gamma_{f}^{r} \rightarrow \Gamma^{0} G
$$

defined by

$$
\ell_{r, f}(\eta)=\left.\frac{d}{d t} L_{r}\left(f_{t}\right)\right|_{t=0}
$$

Linearization of a PDO

Definition

The linearization of \mathcal{L}_{r} at f is the linear PDO

$$
\ell_{r, f}: \Gamma_{f}^{r} \rightarrow \Gamma^{0} G
$$

defined by

$$
\ell_{r, f}(\eta)=\left.\frac{d}{d t} \mathcal{L}_{r}\left(f_{t}\right)\right|_{t=0}
$$

The PDO

$$
\ell_{r}: \Gamma^{r}(V F) \rightarrow \Gamma^{0} G,
$$

defined as $\ell_{r}(f, \eta)=\ell_{r, f}(\eta)$, is the tangent map (or differential) of \mathcal{L}_{r}.

Linearization of a PDO

Example

The Lie derivative L_{ξ} is linear and so it is to be expected that its differential ℓ_{ξ} is identical to it. Indeed

$$
\ell_{\xi}(f, \delta f)=\delta L_{\xi}(f)=\delta\left(\xi^{\alpha} \partial_{\alpha} f\right)=\xi^{\alpha} \partial_{\alpha} \delta f
$$

Linearization of a PDO

Example

The Lie derivative L_{ξ} is linear and so it is to be expected that its differential ℓ_{ξ} is identical to it. Indeed

$$
\ell_{\xi}(f, \delta f)=\delta L_{\xi}(f)=\delta\left(\xi^{\alpha} \partial_{\alpha} f\right)=\xi^{\alpha} \partial_{\alpha} \delta f
$$

The isometric operator $\mathcal{D}_{M, q}$ instead is quadratic and its differential $\ell_{M, q}$ is

$$
\ell_{M, q}(f, \delta f)=\delta \mathcal{D}_{M, q}(f)=\delta\left(\delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} f^{j}\right)=2 \delta_{i j} \partial_{\alpha} f^{i} \partial_{\beta} \delta f^{j}
$$

Linearization of a PDO

Definition
We say that \mathcal{L}_{r} is infinitesimally invertible of defect $d \geq r$ and order s over some subset $\mathscr{A} \subset \Gamma^{r} F$ if there exist a family of linear PDOs $m_{f}: \Gamma^{s} G \rightarrow \Gamma_{f}^{0}(V F)$ of some order s, with $f \in \mathcal{A}$, satisfying the following properties:

Linearization of a PDO

Definition

We say that \mathcal{L}_{r} is infinitesimally invertible of defect $d \geq r$ and order s over some subset $\mathscr{A} \subset \Gamma^{r} F$ if there exist a family of linear PDOs $m_{f}: \Gamma^{s} G \rightarrow \Gamma_{f}^{0}(V F)$ of some order s, with $f \in \mathcal{A}$, satisfying the following properties:
(1) $\mathcal{A} \subset \Gamma^{d} F$ and \mathcal{A} is defined by some open condition on $J^{d} F$;

Linearization of a PDO

Definition

We say that \mathcal{L}_{r} is infinitesimally invertible of defect $d \geq r$ and order s over some subset $\mathcal{A} \subset \Gamma^{r} F$ if there exist a family of linear PDOs $m_{f}: \Gamma^{s} G \rightarrow \Gamma_{f}^{0}(V F)$ of some order s, with $f \in \mathcal{A}$, satisfying the following properties:
(1) $\mathcal{A} \subset \Gamma^{d} F$ and \mathscr{A} is defined by some open condition on $J^{d} F$;
(2) the map $m: \mathcal{A} \times \Gamma^{s} G \rightarrow \Gamma^{0}(V F)$ defined as $m(f, \rho)=m_{f}(\rho)$ is a PDO which is non-linear of order d in the first argument.

Linearization of a PDO

Definition

We say that \mathcal{L}_{r} is infinitesimally invertible of defect $d \geq r$ and order s over some subset $\mathcal{A} \subset \Gamma^{r} F$ if there exist a family of linear PDOs $m_{f}: \Gamma^{s} G \rightarrow \Gamma_{f}^{0}(V F)$ of some order s, with $f \in \mathcal{A}$, satisfying the following properties:
(1) $\mathcal{A} \subset \Gamma^{d} F$ and \mathcal{A} is defined by some open condition on $J^{d} F$;
(2) the map $m: \mathcal{A} \times \Gamma^{s} G \rightarrow \Gamma^{0}(V F)$ defined as $m(f, \rho)=m_{f}(\rho)$ is a PDO which is non-linear of order d in the first argument.
(3) $\ell_{r}(m(f, \rho))=\rho$ for every $f \in \Gamma^{r+d} F$ and $\rho \in \Gamma^{r+s} G$.

Linearization of a PDO

Example

The isometric operator $\mathcal{D}_{M, q}: C^{1}\left(M, \mathbb{R}^{q}\right) \rightarrow S_{n}^{0}(M)$ admits an infinitesimal inverse of defect 2 and order 0 over the space of free maps $F^{2}\left(M, \mathbb{R}^{q}\right)$.
Indeed we know that the linearized equation $\ell_{M, q}(f)=\delta g$ can be solved algebraically over the set of free maps. Let $\delta f_{f, \delta g}$ be the solution closest to the origin in some metric and set $m(f, \delta g)=\delta f_{f, \delta g}$. Clearly $\ell_{M, q}(m(f, \delta g))=\delta g$.

The Implicit Function Theorem

Theorem (Nash, Gromov)

Let \mathcal{L}_{r} be a $C^{k} P D O$ of order r admitting an infinitesimal inverse of order s and defect d over some subset $\mathcal{A} \subset \Gamma^{r} F$ and set $\hat{s}=\max (d, 2 r+s)+s+1$.
Then, for every $f_{0} \in \mathcal{A} \cap \Gamma^{\infty} F$, there is a neighbourhood $\mathcal{U} \subset \Gamma^{\hat{s}} G$ of 0 such that, for every $\rho \in \mathcal{U} \cap \Gamma^{s^{\prime}} G$ with $s^{\prime} \geq \hat{s}$, the equation $\mathcal{L}_{r}(f)=\mathcal{L}_{r}\left(f_{0}\right)+\rho$ has a $C^{s^{\prime}-s}$ solution.

The Implicit Function Theorem

Theorem (Nash, Gromov)

Let \mathcal{L}_{r} be a C^{k} PDO of order r admitting an infinitesimal inverse of order s and defect d over some subset $\mathcal{A} \subset \Gamma^{r} F$ and set $\hat{s}=\max (d, 2 r+s)+s+1$.
Then, for every $f_{0} \in \mathcal{A} \cap \Gamma^{\infty} F$, there is a neighbourhood $\mathcal{U} \subset \Gamma^{\hat{s}} G$ of 0 such that, for every $\rho \in \mathcal{U} \cap \Gamma^{s^{\prime}} G$ with $s^{\prime} \geq \hat{s}$, the equation $\mathcal{L}_{r}(f)=\mathcal{L}_{r}\left(f_{0}\right)+\rho$ has a $C^{c^{\prime}-s}$ solution.

Corollary

Let \mathcal{L}_{r} a PDO infinitesimally invertible over $\mathcal{A} \subset \Gamma^{r} F$. Then the restriction of \mathcal{L}_{r} to $\mathcal{A} \cap \Gamma^{\infty} \mathrm{F}$ is an open map.

Application: Nash Theorem

Theorem (Nash)
If $g_{0}=\mathcal{D}_{M, q}\left(f_{0}\right)$ with $f_{0} \in \operatorname{Free}^{\infty}\left(M, \mathbb{R}^{q}\right)$, then the C^{s} metric $g_{0}+g, s \geq 3$, can be realized by a C^{s} immersion f for every C^{3}-small enough g.

Indeed in this particular case $r=1, s=0$ and $d=2$, so that $\hat{s}=\max (d, 2 r+s)+s+1=3$.

Application: Nash Theorem

Theorem (Nash)
If $g_{0}=\mathcal{D}_{M, q}\left(f_{0}\right)$ with $f_{0} \in \operatorname{Free}{ }^{\infty}\left(M, \mathbb{R}^{q}\right)$, then the C^{s} metric $g_{0}+g, s \geq 3$, can be realized by a C^{s} immersion f for every C^{3}-small enough g.

Indeed in this particular case $r=1, s=0$ and $d=2$, so that $\hat{s}=\max (d, 2 r+s)+s+1=3$.

Hence the IFT theorem implies that, for every $f_{0} \in \operatorname{Free}^{2}\left(M, \mathbb{R}^{q}\right) \cap C^{\infty}\left(M, \mathbb{R}^{q}\right)=\operatorname{Fre}{ }^{\infty}\left(M, \mathbb{R}^{q}\right)$, there is a neighbourhood $\mathcal{U} \subset \Gamma^{3}\left(S_{2}^{0} M\right)$ of 0 such that, for all $g \in \mathcal{U}$ of class $C^{s^{\prime}}, s^{\prime} \geq 3$, the equation $f^{*} e_{q}=g_{0}+g$ has a solution of class $C^{s^{\prime}}$.

The h-Principle

Partial Differential Relations

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration.
Definition
A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^{r} F$

Partial Differential Relations

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration.
Definition
A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^{r} F$
A formal solution of \mathcal{R} is a C^{0} section $\varphi: E \rightarrow J^{r} F$ st $\varphi(E) \subset \mathcal{R}$

Partial Differential Relations

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration.
Definition
A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^{r} F$
A formal solution of \mathcal{R} is a C^{0} section $\varphi: E \rightarrow J^{r} F$ st $\varphi(E) \subset \mathcal{R}$
A "true" solution of \mathcal{R} is a C^{r} section $f: E \rightarrow F$ st $j^{r} f(E) \subset \mathcal{R}$

Partial Differential Relations

Let $F \xrightarrow{\pi_{F}} E$ a C^{∞}-fibration.
Definition
A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^{r} F$ A formal solution of \mathcal{R} is a C^{0} section $\varphi: E \rightarrow J^{r} F$ st $\varphi(E) \subset \mathcal{R}$ A "true" solution of \mathcal{R} is a C^{r} section $f: E \rightarrow F$ st $j^{r} f(E) \subset \mathcal{R}$ Sections of $\varphi: E \rightarrow J^{r} F$ such that $\varphi=j^{r} f$ are called holonomic

Obstructions to the existence of solutions of a PDR (in particular of a PDE) can be of topological or analytical origin. In the first case not even formal solutions exist. When formal solutions exist, analytical ones may or may not exist.

Partial Differential Relations

Example

Consider the case $E=\mathbb{R}^{2}(x, y), F=\mathbb{R}^{2} \times \mathbb{R}(x, y, z)$ and $J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)\left(x, y, z, p_{x}, p_{y}\right)$.
Given a vector field $\xi=\left(\xi_{x}(x, y), \xi_{y}(x, y)\right)$ on \mathbb{R}^{2}, the 1 st order PDE $L_{\xi} f=g$ is represented by the hypersurface
$\mathcal{R}=\left\{\xi_{x}(x, y) p_{x}+\xi_{y}(x, y) p_{y}=g(x, y)\right\} \subset J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$
If ξ is never zero, then there is no obstruction for its formal solvability for any $g \in C^{0}\left(\mathbb{R}^{2}\right)$, e.g. take $\varphi(x, y)=\left(x, y, z(x, y), g(x, y) \frac{\xi_{\chi}(x, y)}{\|\xi(x, y)\|}, g(x, y) \frac{\xi_{y}(x, y)}{\|\xi(x, y)\|}\right)$
Depending on the topology of the integral trajectories of ξ, though, true solutions might not exist.
E.g. $\mathcal{R}=\left\{2 y p_{x}+\left(1-y^{2}\right) p_{y}=1\right\}$ admits no holonomical C^{1} section, namely there is no C^{1} function f st
$2 y \partial_{x} f(x, y)+\left(1-y^{2}\right) \partial_{y} f(x, y)=1$.

Prolongations of PDRs

Definition
Given a PDR \mathcal{R} of order r, its 1 -prolongation is $\mathcal{R}^{1}=J^{1} \mathcal{R} \cap J^{r+1} F$.

Prolongations of PDRs

Definition

Given a PDR \mathcal{R} of order r, its 1 -prolongation is $\mathcal{R}^{1}=J^{1} \mathcal{R} \cap J^{r+1} F$.
Its k-prolongation, recursively, is $\mathcal{R}^{k}=\left(\mathcal{R}^{k-1}\right)^{1}$.

Prolongations of PDRs

Definition

Given a PDR \mathcal{R} of order r, its 1 -prolongation is $\mathcal{R}^{1}=J^{1} \mathcal{R} \cap J^{r+1} F$.
Its k-prolongation, recursively, is $\mathcal{R}^{k}=\left(\mathcal{R}^{k-1}\right)^{1}$. \mathcal{R} is stable if $\mathcal{R}^{k+1} \rightarrow \mathcal{R}^{k}$ is an affine subbundle of $J^{k+1} F \rightarrow J^{k} F$ for all $k=1, \cdots$,

Prolongations of PDRs

Definition

Given a PDR \mathcal{R} of order r, its 1 -prolongation is $\mathcal{R}^{1}=J^{1} \mathcal{R} \cap J^{r+1} F$.
Its k-prolongation, recursively, is $\mathcal{R}^{k}=\left(\mathcal{R}^{k-1}\right)^{1}$.
\mathcal{R} is stable if $\mathcal{R}^{k+1} \rightarrow \mathcal{R}^{k}$ is an affine subbundle of
$J^{k+1} F \rightarrow J^{k} F$ for all $k=1, \cdots$,
namely if $\operatorname{dim} \mathcal{R}_{x}^{k+1}$ is the same for all $x \in \mathcal{R}^{k}$ and the fiber depends continously on x.

Prolongations of PDRs

Definition

Given a PDR \mathcal{R} of order r, its 1-prolongation is $\mathcal{R}^{1}=J^{1} \mathcal{R} \cap J^{r+1} F$.
Its k-prolongation, recursively, is $\mathcal{R}^{k}=\left(\mathcal{R}^{k-1}\right)^{1}$.
\mathcal{R} is stable if $\mathcal{R}^{k+1} \rightarrow \mathcal{R}^{k}$ is an affine subbundle of
$J^{k+1} F \rightarrow J^{k} F$ for all $k=1, \cdots$,
namely if $\operatorname{dim} \mathcal{R}_{x}^{k+1}$ is the same for all $x \in \mathcal{R}^{k}$ and the fiber depends continously on x.

Remark

Since the fibers of $\mathcal{R}^{k+1} \rightarrow \mathcal{R}$ are all contractible, if \mathcal{R} is stable then every section $\varphi: E \rightarrow \mathcal{R}$ lifts to a section $\varphi: E \rightarrow \mathcal{R}^{k}$ unique modulo homotopies.

Prolongations of the isometry PDR

Example

Consider the case $E=M^{n}\left(x^{\alpha}\right), F=M^{n} \times \mathbb{R}^{q}\left(x^{\alpha}, f^{a}\right)$ and $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)\left(x^{\alpha}, f^{a}, v_{\alpha}^{\alpha}\right)$.
The isometric PDR I_{g} is the closed subset of $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)$ of codimension s_{n} defined by the system $\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$.

Prolongations of the isometry PDR

Example

Consider the case $E=M^{n}\left(x^{\alpha}\right), F=M^{n} \times \mathbb{R}^{q}\left(x^{\alpha}, f^{a}\right)$ and $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}\right)$.
The isometric PDR I_{g} is the closed subset of $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)$ of codimension s_{n} defined by the system
$\delta_{a b} v_{\alpha}^{a} \nu_{\beta}^{b}=g_{\alpha \beta}(x)$.
Its 1-prolongation I_{g}^{1} is the closed subset of $J^{2}\left(M^{n}, \mathbb{R}^{q}\right)$
$\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)$ of codimension $(n+1) s_{n}$ defined by the system
$\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$
$\delta_{a b}\left(v_{\alpha \mu}^{a} v_{\beta}^{b}+v_{\alpha}^{a} v_{\beta \mu}^{b}\right)=\partial_{\mu} g_{\alpha \beta}(x)$

Prolongations of the isometry PDR

Example

Consider the case $E=M^{n}\left(x^{\alpha}\right), F=M^{n} \times \mathbb{R}^{q}\left(x^{\alpha}, f^{a}\right)$ and $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}\right)$.
The isometric PDR I_{g} is the closed subset of $J^{1}\left(M^{n}, \mathbb{R}^{q}\right)$ of codimension s_{n} defined by the system
$\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$.
Its 1-prolongation I_{g}^{1} is the closed subset of $J^{2}\left(M^{n}, \mathbb{R}^{q}\right)$
$\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)$ of codimension $(n+1) s_{n}$ defined by the system
$\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$
$\delta_{a b}\left(v_{\alpha \mu}^{a} \nu_{\beta}^{b}+v_{\alpha}^{a} \nu_{\beta \mu}^{b}\right)=\partial_{\mu} g_{\alpha \beta}(x)$
equivalent to

$$
\begin{aligned}
& \delta_{a b} v_{\alpha}^{a} \nu_{\beta}^{b}=g_{\alpha \beta}(x), \\
& \delta_{a b} v_{\alpha}^{2} v_{\beta \gamma}^{b}=g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x), \Gamma_{\beta \gamma}^{\lambda}=\frac{1}{2} g^{\lambda \mu}\left(\partial_{\beta} g_{\mu \gamma}+\partial_{\gamma} g_{\mu \beta}-\partial_{\mu} g_{\beta \gamma}\right)
\end{aligned}
$$

Prolongations of the isometry PDR

Example

Its second prolongation I_{g}^{2} is the closed subset of $J^{3}\left(M^{n}, \mathbb{R}^{q}\right)$
$\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}, v_{\alpha \beta \gamma}^{a}\right)$ of codimension s_{n+1} defined by the system
$\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$
$\delta_{a b} v_{\alpha}^{a} v_{\beta \gamma}^{b}=g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x)$
$\delta_{a b}\left(v_{\alpha}^{a} v_{\beta \gamma \mu}^{b}+v_{\alpha \mu}^{a} v_{\beta \gamma}^{b}\right)=\partial_{\mu}\left(g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x)\right)$

Prolongations of the isometry PDR

Example

Its second prolongation I_{g}^{2} is the closed subset of $J^{3}\left(M^{n}, \mathbb{R}^{q}\right)$ $\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}, v_{\alpha \beta \gamma}^{a}\right)$ of codimension s_{n+1} defined by the system $\delta_{a b} v_{\alpha}^{a} v_{\beta}^{b}=g_{\alpha \beta}(x)$
$\delta_{a b} v_{\alpha}^{a} v_{\beta \gamma}^{b}=g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x)$
$\delta_{a b}\left(v_{\alpha}^{a} v_{\beta \gamma \mu}^{b}+v_{\alpha \mu}^{a} v_{\beta \gamma}^{b}\right)=\partial_{\mu}\left(g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x)\right)$
The last set of equations entails compatibility conditions $\delta_{a b}\left[v_{\alpha \gamma}^{a} v_{\beta \mu}^{b}-v_{\alpha \mu}^{a} v_{\beta \gamma}^{b}\right]=\partial_{\mu}\left[g_{\alpha \lambda}(x) \Gamma_{\beta \gamma}^{\lambda}(x)\right]-\partial_{\beta}\left[g_{\alpha \lambda}(x) \Gamma_{\mu \gamma}^{\lambda}(x)\right]$ that are non-trivial for $n>1$, so I_{g}^{2} is not fibered over the whole I_{g}^{1} (namely I_{g} is not stable!) unless $n=1$.

The h-Principle

Definition

We say that a PDR \mathcal{R} of order r satisfies the h-Principle (for C^{r} solutions) if every C^{0} section $\varphi: E \rightarrow \mathcal{R}$ is homotopic to a holonomic section $j^{r} f$ by a continuous homotopy of sections $\varphi_{t}: E \rightarrow \mathcal{R}, t \in[0,1]$.

The h-Principle

Definition

We say that a PDR \mathcal{R} of order r satisfies the h-Principle (for C^{r} solutions) if every C^{0} section $\varphi: E \rightarrow \mathcal{R}$ is homotopic to a holonomic section $j^{r} f$ by a continuous homotopy of sections $\varphi_{t}: E \rightarrow \mathcal{R}, t \in[0,1]$.

We say that a PDR \mathcal{R} of order r satisfies the h -Principle for C^{r+k} solutions if every C^{0} section $\varphi: E \rightarrow \mathcal{R}^{k}$ is homotopic to a holonomic section $j^{r+k_{f}}$ by a continuous homotopy of sections $\varphi_{t}: E \rightarrow \mathcal{R}^{k}, t \in[0,1]$.

The h-Principle

Definition

We say that a PDR \mathcal{R} of order r satisfies the h-Principle (for C^{r} solutions) if every C^{0} section $\varphi: E \rightarrow \mathcal{R}$ is homotopic to a holonomic section $j^{r} f$ by a continuous homotopy of sections $\varphi_{t}: E \rightarrow \mathcal{R}, t \in[0,1]$.

We say that a PDR \mathcal{R} of order r satisfies the h -Principle for C^{r+k} solutions if every C^{0} section $\varphi: E \rightarrow \mathcal{R}^{k}$ is homotopic to a holonomic section $j^{r+k_{f}}$ by a continuous homotopy of sections $\varphi_{t}: E \rightarrow \mathcal{R}^{k}, t \in[0,1]$.

We say that a PDR \mathcal{R} of order r satisfies the h-Principle for C^{∞} $\left(C^{a n}\right.$) solutions if \mathcal{R}^{k} is stable for some $k \geq 0$ and every C^{0} section $\varphi: E \rightarrow \mathcal{R}^{k}$ is homotopic to a $C^{\infty}\left(C^{a n}\right)$ holonomic section $j^{r+k} f$ by a continuous homotopy of sections
$\varphi_{t}: E \rightarrow \mathcal{R}^{k}, t \in[0,1]$.

The h-Principle

The idea of the h-Principle is that, "if there is enough space", formal solutions can be deformed into true (holonomical) solutions.
This idea arose out of a series of several discoveries in immersions theory:

The h-Principle

The idea of the h-Principle is that, "if there is enough space", formal solutions can be deformed into true (holonomical) solutions.
This idea arose out of a series of several discoveries in immersions theory:

Theorem (Grauert 1957)

Let G be a complex Lie group with a complex analytic subgroup H and consider a complex analytic fibration $F \rightarrow E$ with group structure G and fiber G / H.
Then, if V Stein, every continous section of $F \rightarrow E$ can be homotoped to a holomorphic one.

In Gromov's language, the Cauchy-Riemann PDR satisfies the $C^{a n}$ h-princple (note that this (closed) PDR is stable).

The h-Principle

The idea of the h-Principle is that, "if there is enough space", formal solutions can be deformed into true (holonomical) solutions.
This idea arose out of a series of several discoveries in immersions theory:

Theorem (Hirsh 1959, 1961)

Let M, N be two smooth manifolds. Then every continuous section of the bundle $G L(T M, T N) \rightarrow M$ can be homotoped to the 1 -jet of an immersion $M \rightarrow N$ in the following two cases:

- Extra dimension: $\operatorname{dim} N>\operatorname{dim} M$;
- Critical Dimension: $\operatorname{dim} N=\operatorname{dim} M$ and N is open.

In Gromov's language, the immersion PDR satisfies the C^{∞} h-princple (note that this PDR is open and, therefore, stable).

The h-Principle

The idea of the h-Principle is that, "if there is enough space", formal solutions can be deformed into true (holonomical) solutions.
This idea arose out of a series of several discoveries in immersions theory:

Theorem (Nash 1954, Kuiper 1955)

Every C^{1} immersion $M \rightarrow \mathbb{R}^{q}$ admits a C^{1} homotopy of immersions to an isometric immersion.

In Gromov's language, the immersion PDR satisfies the C^{1} h-Principle (note that this PDR is not stable so these solutions cannot be made more regular).

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

- Sheaves technique, based on the work of Smale and Hirsch;

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

- Sheaves technique, based on the work of Smale and Hirsch;
- Convex integration, based on the work of Nash and Kuiper, especially useful in case of closed PDR;

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

- Sheaves technique, based on the work of Smale and Hirsch;
- Convex integration, based on the work of Nash and Kuiper, especially useful in case of closed PDR;
- Removal of Singularities technique, developed by Gromov and Eliashberg, especially useful in the complex analytical or alebraic setting.

h-Principle \& Free maps

Theorem

Let M^{n} be a smooth manifold and $\mathcal{F} \subset J^{2}\left(M, \mathbb{R}^{q}\right)$ the free maps $P D R$ - namely in coordinates $\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)$ every fiber of \mathcal{F} is defined as $r k\left(v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)=s_{n}$.

h-Principle \& Free maps

Theorem

Let M^{n} be a smooth manifold and $\mathcal{F} \subset J^{2}\left(M, \mathbb{R}^{q}\right)$ the free maps PDR - namely in coordinates $\left(x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)$ every fiber of \mathcal{F} is defined as rk $\left(v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)=s_{n}$.

Then every continuous section of $\mathcal{F} \rightarrow M$ can be homotoped to the 2-jet of a free map $M \rightarrow \mathbb{R}^{q}$ in the following two cases:

- Extra dimension: $q>n+s_{n}$;
- Critical Dimension: $q=n+s_{n}$ and M is open.

h-Principle \& Free maps

Theorem

Let M^{n} be a smooth manifold and $\mathcal{F} \subset J^{2}\left(M, \mathbb{R}^{q}\right)$ the free maps PDR - namely in coordinates ($x^{\alpha}, f^{a}, v_{\alpha}^{a}, v_{\alpha \beta}^{\alpha}$) every fiber of \mathcal{F} is defined as $r k\left(v_{\alpha}^{a}, v_{\alpha \beta}^{a}\right)=s_{n}$.
Then every continuous section of $\mathcal{F} \rightarrow M$ can be homotoped to the 2-jet of a free map $M \rightarrow \mathbb{R}^{q}$ in the following two cases:

- Extra dimension: $q>n+s_{n}$;
- Critical Dimension: $q=n+s_{n}$ and M is open.

Corollary

If M is a stably parallelizable n-manifold (e.g. any orientable hypersurface of \mathbb{R}^{n+1}), it admits a free map into $\mathbb{R}^{n+s_{n}+1}$.

h-Principle \& Free maps

Open Question

Do free maps of closed manifolds $M, \operatorname{dim} M \geq 2$, satisfy the h-Principle for $n+s_{n}$?

Does every parallelizable manifold (in particular the n-torus) admit a free map into $\mathbb{R}^{n+s_{n}}$?

h-Principle for C^{k} isometries, $k \geq 3$.

Although the isometries PDR I_{g} is not stable for any metric g, the $\operatorname{PDR}\left(\mathcal{F} \cap I_{g}^{1}\right)^{1}$ is stable for all metrics g.

Theorem

Let $\left(M^{n}, g\right)$ be a C^{k} Riemannian manifold, $k \geq 5$. Then free isometric C^{k} immersions $M \rightarrow \mathbb{R}^{q}$ satisfy the h-Principle for $q \geq s_{n+1}$.

h-Principle for C^{k} isometries, $k \geq 3$.

Although the isometries $\operatorname{PDR} I_{g}$ is not stable for any metric g, the PDR $\left(\mathcal{F} \cap I_{g}^{1}\right)^{1}$ is stable for all metrics g.

Theorem

Let $\left(M^{n}, g\right)$ be a C^{k} Riemannian manifold, $k \geq 5$. Then free isometric C^{k} immersions $M \rightarrow \mathbb{R}^{q}$ satisfy the h-Principle for $q \geq s_{n+1}$.

Since $\mathcal{F} \rightarrow M$ admits always a section for $q \geq 2 n+s_{n}$, this is equivalent to

Theorem

Let $\left(M^{n}, g\right)$ be a C^{k} Riemannian manifold, $k \geq 5$. Then M admits a free isometric C^{k} immersion into \mathbb{R}^{q}.

[^0]: ${ }^{1}$ L. Schaefli, "Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante", Ann. di Mat., 5 (1873), 170-193
 $3^{\text {M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen", Annal. Soc. Polon. }}$ Math., 5 (1926), 38-43
 $3^{\text {E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen", Ann. Soc. Polon. Math. }}$, 6 (1927), 17

[^1]: ${ }^{1}$ L. Schaefli, "Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante", Ann. di Mat., 5 (1873), 170-193
 ${ }^{3}$ M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen", Annal. Soc. Polon. Math., 5 (1926), 38-43
 $3_{\text {E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen", Ann. Soc. Polon. Math. }}^{\text {den }}$. 6 (1927), 17

