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Plan of the presentation:

• General results about isometric immersions
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Isometric
Embeddings
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The isometric immersions problem
Question. Given a Ck Riemannian metric
g = gαβ(x)dxα⊗dxβ on Mn, for which q and k ′ can we find
a (global or local) Ck ′ isometric immersion f : M→ Rq?

Namely, can we find q (global or local) functions
f a ∈ Ck ′(M) such that

δab ∂αf a(x)∂βf b(x) = gαβ(x)?

Remark: for n = 2 and q = 3, we can riarrange the
coordinates so that f (x ,y ,z) = (x ,y ,z(x ,y)) and the
equation above is equivalent to the following
Monge-Ampére type eq., known as Darboux equation:

det
(
∇α(∇βz)

)
= K (detg)(1−‖grad(z)‖2)

It turns out that the answer depends on the regularity.
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Local results: Analytical case

Can-Local Conjecture (Schlæfli (1873)1)
Every 2-dimensional analytical Riemannian manifold admits
analytical local isometric embeddings into R3.

Can-Local Theorem (Janet (1926)2, Cartan (1927)3)
Every n-dimensional analytical Riemannian manifold admits
analytical local isometric embedding into Rsn , sn = n(n + 1)/2.

1
L. Schaefli, “Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante”, Ann. di Mat., 5 (1873), 170-193

3
M. Janet, “Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen”, Annal. Soc. Polon.

Math., 5 (1926), 38-43
3

E. Cartan, “Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen”, Ann. Soc. Polon. Math.

, 6 (1927), 17
Slide 6/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Local results: Analytical case

Can-Local Conjecture (Schlæfli (1873)1)
Every 2-dimensional analytical Riemannian manifold admits
analytical local isometric embeddings into R3.

Can-Local Theorem (Janet (1926)2, Cartan (1927)3)
Every n-dimensional analytical Riemannian manifold admits
analytical local isometric embedding into Rsn , sn = n(n + 1)/2.

1
L. Schaefli, “Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante”, Ann. di Mat., 5 (1873), 170-193

3
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Local results: Smooth case

C∞-Local Conjecture (Schlæfli (1873)4)
Every 2-dimensional analytical Riemannian manifold admits
smooth local isometric embeddings into R3.

This problem is still open, e.g. see:
• Yau,“Problem Section, Seminar on Diff. Geom.”, Ann. of Math.

Studies 102, Princeton University Press (1982)
• Lin,“The local isometric embedding in R3 of 2-dim. Riem. mfds

with non-neg. curv”, J. of Diff. Geom. 21 (1985), 213-230
• Hong, Zuily, “Existence of C∞ local solutions for the

Monge-Ampére equation”, Inv. Math. 89 (1987), 645-661
• Han, Hong, “Isometric Embedding of Riemannian Manifolds in

Euclidean Spaces”, 2006, Math. Surv. and Monographs, AMS
• Han, “Isometric Embeddings of Surfaces in R3”, Recent

Developments in Geometry and Analysis (2012), 113-145
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Local results: General case
The following are corollary of global results of Nash and
Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))
Every C1 Riemannian n-manifold admits C1 local isometric
immersions into Rn+1.

Theorem (Nash (1956))
Every Cr Riemannian n-manifold admits Cr local isometric
immersions in Rq for q = (n + 1)(4n + 3sn) and r = 3,4, . . . ,∞.

Remark 1: the case r = 2 is still open.

Remark 2: Gromov improved the second result to
q = n2 + 10n + 3 for r = 3 and q = sn+2 for r ≥ 4.
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Local results: General case

Conjecture (Gromov (2015))
Every Cr parallelizable Riemannian n-manifold admits Cr local
isometric immersions into Rq for q = sn + 1 and
r = 1,2, · · · ,∞,an.

Conjecture (Gromov (2015))
Let f be a global analytical section of the bundle F (M) of
frames over the parallelizable n-manifold M. Then there exists
f ∈ Can(M,Rsn+1) such that f∗f is an orthonormal
(sn + 1)-frame in Rsn+1.
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Global results

C1 Theorem (Nash (1954))
Let g be a C0 Riemannian metric on Mn. Then there exist C1

isometries f : (M,g)→ R2n.

C∞ Theorem (Nash (1956))
Let g be a Cr Riemannian metric on Mn, r = 3,4, . . . ,∞. Then
there exist Cr isometries of (M,g) into Rq for q = 3sn + 4n if M
is compact and into q = (n + 1)(3sn + 4n) if M is open.

Can Theorem (Nash (1954))
Let g be a Can Riemannian metric on Mn. Then there exist Can

isometries f : (M,g)→ Rq for q = 3sn + 4n.
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Open Problems and Conjectures

Question
Do there exist Can or C∞ Riemannian n-manifolds admitting Cr

isometric immersions into Rq for some qr but no Can or C∞

isometric immersions for q ≤ (1 + cr )qr for some cr > 0?

Conjecture
If q > 0.36n2 + 1.36n, all C2 Riemannian n-manifolds admit
global isometric C2 immersions into Rq
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The Nash-Gromov
Implicit Function

Theorem
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Partial Differential Operators
Let F

πF−→ E a C∞-fibration and G
πG−→ E a vector bundle.

Let Γr F the Cr sections of F
πF−→ E and similarly for Γ0G.

Definition
A Ck PDO over F of order r with values in G is a map

Lr : Γr F → Γ0G

whose coeffs, in any coord system, are all Ck and whose value
on a section f ∈ Γr F at a point x ∈ E depends only on j rx f .

In coordinates (xα, f i) and (xα,ga), Lr writes as

Lr (f )(xα) = (Λa
r (xα, f i(xα),∂αf i(xα), . . . ,∂α1...αr f

i(xα)) .

where Λr = (Λa
r ) : J r F → G is some Ck map.
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Partial Differential Operators

Definition
Equiv., a Ck PDO over F of order r with values in G is a Ck map

Λr : J r F → G

The equation
Lr (f ) = φ

is then equivalent to

Λa
r (xα, f i(xα),∂f i

α(xα), . . . ,∂f i
α1...αr

(xα)) = φ
a(xα)
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Partial Differential Operators

Example
Consider F = G = M×R, so that J r (F) = J r (M,R).

Given a vector field ξ on M, the Lie derivative
Lξ : C1(M)' Γ1(F)→ C(M)' Γ0(G) is a PDO of order 1.
The corresponding map Λξ : J1(M,R)→M×R is defined as

Λξ(xα, f , fα) = ξ
α(x)fα .

The corresponding PDE

(j1f )∗Λξ = φ

is called cohomological equation. In coordinates writes as

ξ
α(x)∂αf (x) = φ(x)
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Partial Differential Operators

Example
Consider F = M×Rq and G = S0

2M, so that
J r (F) = J r (M,Rq).

The pull-back operator

DM,q : C1(M,Rq)' Γ1F → Γ0(S0
2M)

defined as DM,q(f ) = f ∗eq is also a PDO of order 1.
In coordinates

DM,q(f ) = δij∂αf i
∂βf j ,

so that the corresponding map ΛM,q : J1(M,Rq)→ S0
2M is

defined as
ΛM,q(xα, f , fα) = δij f

i
αf j

β
.
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Linearization of a PDO
The set Γr

f = Γr (f ∗(VF)) of Cr sections of VF = kerπF can be
thought as the tangent space at f of Γr F .

Indeed take a C1 curve ft ∈ Γr F with f0 = f and let
ηf (x0) = dft(x0)/dt|t=0.Then

Tx0πF (ηf (x0)) = Tx0πF

(
dft(x0)

dt

∣∣∣∣
t=0

)
=

=
d(πF ◦ ft)(x0)

dt

∣∣∣∣
t=0

=
dx0

dt

∣∣∣∣
t=0

= 0 ,

namely ηf ∈ Γr
f .
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Linearization of a PDO

Definition
The linearization of Lr at f is the linear PDO

`r ,f : Γr
f → Γ0G

defined by

`r ,f (η) =
d
dt

Lr (ft)

∣∣∣∣
t=0

The PDO
`r : Γr (VF)→ Γ0G ,

defined as `r (f ,η) = `r ,f (η), is the tangent map (or differential)
of Lr .
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Linearization of a PDO

Example
The Lie derivative Lξ is linear and so it is to be expected that its
differential `ξ is identical to it. Indeed

`ξ(f ,δf ) = δLξ(f ) = δ(ξ
α

∂αf ) = ξ
α

∂αδf

The isometric operator DM,q instead is quadratic and its
differential `M,q is

`M,q(f ,δf ) = δDM,q(f ) = δ(δij∂αf i
∂βf j) = 2δij∂αf i

∂βδf j
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Linearization of a PDO

Definition
We say that Lr is infinitesimally invertible of defect d ≥ r and
order s over some subset A ⊂ Γr F if there exist a family of
linear PDOs mf : ΓsG→ Γ0

f (VF) of some order s, with f ∈ A ,
satisfying the following properties:

1 A ⊂ ΓdF and A is defined by some open condition on JdF ;

2 the map m : A×ΓsG→ Γ0(VF) defined as
m(f ,ρ) = mf (ρ) is a PDO which is non-linear of order d in
the first argument.

3 `r (m(f ,ρ)) = ρ for every f ∈ Γr+dF and ρ ∈ Γr+sG.
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Linearization of a PDO

Example
The isometric operator DM,q : C1(M,Rq)→ S0

n(M) admits an
infinitesimal inverse of defect 2 and order 0 over the space of
free maps F 2(M,Rq).
Indeed we know that the linearized equation `M,q(f ) = δg can
be solved algebraically over the set of free maps. Let δff ,δg be
the solution closest to the origin in some metric and set
m(f ,δg) = δff ,δg . Clearly `M,q(m(f ,δg)) = δg.

Slide 21/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

The Implicit Function Theorem

Theorem (Nash, Gromov)
Let Lr be a Ck PDO of order r admitting an infinitesimal inverse
of order s and defect d over some subset A ⊂ Γr F and set
ŝ = max(d ,2r + s) + s + 1.
Then, for every f0 ∈ A ∩Γ∞F, there is a neighbourhood
U ⊂ ΓŝG of 0 such that, for every ρ ∈U∩Γs′G with s′ ≥ ŝ, the
equation Lr (f ) = Lr (f0) + ρ has a Cs′−s solution.

Corollary
Let Lr a PDO infinitesimally invertible over A ⊂ Γr F. Then the
restriction of Lr to A ∩Γ∞F is an open map.
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Application: Nash Theorem

Theorem (Nash)
If g0 = DM,q(f0) with f0 ∈ Free∞(M,Rq), then the Cs metric
g0 + g, s ≥ 3, can be realized by a Cs immersion f for every
C3-small enough g.

Indeed in this particular case r = 1, s = 0 and d = 2, so
that ŝ = max(d ,2r + s) + s + 1 = 3.

Hence the IFT theorem implies that,
for every f0 ∈ Free2(M,Rq)∩C∞(M,Rq) = Free∞(M,Rq),
there is a neighbourhood U ⊂ Γ3(S0

2M) of 0 such that, for
all g ∈U of class Cs′ , s′ ≥ 3, the equation f ∗eq = g0 + g has
a solution of class Cs′ .
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The h-Principle
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Partial Differential Relations
Let F

πF−→ E a C∞-fibration.

Definition
A Partial Differential Relation of order r is a subset R ⊂ J r F

A formal solution of R is a C0 section ϕ : E → J r F st ϕ(E)⊂ R
A “true” solution of R is a Cr section f : E → F st j rf (E)⊂ R
Sections of ϕ : E → J r F such that ϕ = j rf are called holonomic

Obstructions to the existence of solutions of a PDR (in
particular of a PDE) can be of topological or analytical
origin. In the first case not even formal solutions exist.
When formal solutions exist, analytical ones may or may
not exist.
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Partial Differential Relations

Example
Consider the case E = R2 (x ,y), F = R2×R (x ,y ,z) and
J1(R2,R) (x ,y ,z,px ,py ).
Given a vector field ξ = (ξx (x ,y),ξy (x ,y)) on R2, the 1st order
PDE Lξf = g is represented by the hypersurface
R = {ξx (x ,y)px + ξy (x ,y)py = g(x ,y)} ⊂ J1(R2,R)
If ξ is never zero, then there is no obstruction for its formal
solvability for any g ∈ C0(R2), e.g. take

ϕ(x ,y) =
(

x ,y ,z(x ,y),g(x ,y) ξx (x ,y)
‖ξ(x ,y)‖ ,g(x ,y)

ξy (x ,y)
‖ξ(x ,y)‖

)
Depending on the topology of the integral trajectories of ξ,
though, true solutions might not exist.
E.g. R = {2ypx + (1− y2)py = 1} admits no holonomical
C1 section, namely there is no C1 function f st
2y∂x f (x ,y) + (1− y2)∂y f (x ,y) = 1.
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Prolongations of PDRs

Definition
Given a PDR R of order r , its 1-prolongation is
R 1 = J1R ∩ J r+1F .

Its k -prolongation, recursively, is R k =
(
R k−1

)1
.

R is stable if R k+1→ R k is an affine subbundle of
Jk+1F → JkF for all k = 1, · · · ,
namely if dimR k+1

x is the same for all x ∈ R k and the fiber
depends continously on x .

Remark
Since the fibers of R k+1→ R are all contractible, if R is stable
then every section ϕ : E → R lifts to a section ϕ : E → R k

unique modulo homotopies.

Slide 27/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of PDRs

Definition
Given a PDR R of order r , its 1-prolongation is
R 1 = J1R ∩ J r+1F .
Its k -prolongation, recursively, is R k =

(
R k−1

)1
.

R is stable if R k+1→ R k is an affine subbundle of
Jk+1F → JkF for all k = 1, · · · ,
namely if dimR k+1

x is the same for all x ∈ R k and the fiber
depends continously on x .

Remark
Since the fibers of R k+1→ R are all contractible, if R is stable
then every section ϕ : E → R lifts to a section ϕ : E → R k

unique modulo homotopies.

Slide 27/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of PDRs

Definition
Given a PDR R of order r , its 1-prolongation is
R 1 = J1R ∩ J r+1F .
Its k -prolongation, recursively, is R k =

(
R k−1

)1
.

R is stable if R k+1→ R k is an affine subbundle of
Jk+1F → JkF for all k = 1, · · · ,

namely if dimR k+1
x is the same for all x ∈ R k and the fiber

depends continously on x .

Remark
Since the fibers of R k+1→ R are all contractible, if R is stable
then every section ϕ : E → R lifts to a section ϕ : E → R k

unique modulo homotopies.

Slide 27/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of PDRs

Definition
Given a PDR R of order r , its 1-prolongation is
R 1 = J1R ∩ J r+1F .
Its k -prolongation, recursively, is R k =

(
R k−1

)1
.

R is stable if R k+1→ R k is an affine subbundle of
Jk+1F → JkF for all k = 1, · · · ,
namely if dimR k+1

x is the same for all x ∈ R k and the fiber
depends continously on x .

Remark
Since the fibers of R k+1→ R are all contractible, if R is stable
then every section ϕ : E → R lifts to a section ϕ : E → R k

unique modulo homotopies.

Slide 27/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of PDRs

Definition
Given a PDR R of order r , its 1-prolongation is
R 1 = J1R ∩ J r+1F .
Its k -prolongation, recursively, is R k =

(
R k−1

)1
.

R is stable if R k+1→ R k is an affine subbundle of
Jk+1F → JkF for all k = 1, · · · ,
namely if dimR k+1

x is the same for all x ∈ R k and the fiber
depends continously on x .

Remark
Since the fibers of R k+1→ R are all contractible, if R is stable
then every section ϕ : E → R lifts to a section ϕ : E → R k

unique modulo homotopies.

Slide 27/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of the isometry PDR

Example
Consider the case E = Mn (xα), F = Mn×Rq (xα, f a) and
J1(Mn,Rq) (xα, f a,va

α).
The isometric PDR Ig is the closed subset of J1(Mn,Rq) of
codimension sn defined by the system
δabva

αvb
β

= gαβ(x).

Its 1-prolongation I 1
g is the closed subset of J2(Mn,Rq)

(xα, f a,va
α,v

a
αβ

) of codimension (n + 1)sn defined by the system

δabva
αvb

β
= gαβ(x)

δab(va
αµvb

β
+ va

αvb
βµ) = ∂µgαβ(x)

equivalent to
δabva

αvb
β

= gαβ(x),

δabva
αvb

βγ
= gαλ(x)Γλ

βγ
(x), Γλ

βγ
= 1

2gλµ (∂βgµγ + ∂γgµβ−∂µgβγ

)
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Prolongations of the isometry PDR

Example
Consider the case E = Mn (xα), F = Mn×Rq (xα, f a) and
J1(Mn,Rq) (xα, f a,va

α).
The isometric PDR Ig is the closed subset of J1(Mn,Rq) of
codimension sn defined by the system
δabva

αvb
β

= gαβ(x).
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Prolongations of the isometry PDR

Example
Its second prolongation I 2

g is the closed subset of J3(Mn,Rq)
(xα, f a,va

α,v
a
αβ
,va

αβγ
) of codimension sn+1 defined by the system

δabva
αvb

β
= gαβ(x)

δabva
αvb

βγ
= gαλ(x)Γλ

βγ
(x)

δab

(
va

αvb
βγµ + va

αµvb
βγ

)
= ∂µ

(
gαλ(x)Γλ

βγ
(x)
)

The last set of equations entails compatibility conditions

δab

[
va

αγv
b
βµ− va

αµvb
βγ

]
= ∂µ

[
gαλ(x)Γλ

βγ
(x)
]
−∂β

[
gαλ(x)Γλ

µγ(x)
]

that are non-trivial for n > 1, so I 2
g is not fibered over the whole

I 1
g (namely Ig is not stable!) unless n = 1.

Slide 29/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Prolongations of the isometry PDR

Example
Its second prolongation I 2

g is the closed subset of J3(Mn,Rq)
(xα, f a,va

α,v
a
αβ
,va

αβγ
) of codimension sn+1 defined by the system

δabva
αvb

β
= gαβ(x)

δabva
αvb

βγ
= gαλ(x)Γλ

βγ
(x)

δab

(
va

αvb
βγµ + va

αµvb
βγ

)
= ∂µ

(
gαλ(x)Γλ

βγ
(x)
)

The last set of equations entails compatibility conditions

δab

[
va

αγv
b
βµ− va

αµvb
βγ

]
= ∂µ

[
gαλ(x)Γλ

βγ
(x)
]
−∂β

[
gαλ(x)Γλ

µγ(x)
]

that are non-trivial for n > 1, so I 2
g is not fibered over the whole

I 1
g (namely Ig is not stable!) unless n = 1.

Slide 29/35 — Roberto De Leo — A quick survey of h-Principle



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

The h-Principle

Definition
We say that a PDR R of order r satisfies the h-Principle (for Cr

solutions) if every C0 section ϕ : E → R is homotopic to a
holonomic section j rf by a continuous homotopy of sections
ϕt : E → R , t ∈ [0,1].

We say that a PDR R of order r satisfies the h-Principle for
Cr+k solutions if every C0 section ϕ : E → R k is homotopic to a
holonomic section j r+kf by a continuous homotopy of sections
ϕt : E → R k , t ∈ [0,1].

We say that a PDR R of order r satisfies the h-Principle for C∞

(Can) solutions if R k is stable for some k ≥ 0 and every C0

section ϕ : E → R k is homotopic to a C∞ (Can) holonomic
section j r+kf by a continuous homotopy of sections
ϕt : E → R k , t ∈ [0,1].
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The h-Principle
The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.
This idea arose out of a series of several discoveries in
immersions theory:
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The h-Principle
The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.
This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Grauert 1957)
Let G be a complex Lie group with a complex analytic subgroup
H and consider a complex analytic fibration F → E with group
structure G and fiber G/H.

Then, if V Stein, every continous section of F → E can be
homotoped to a holomorphic one.

In Gromov’s language, the Cauchy-Riemann PDR
satisfies the Can h-princple (note that this (closed) PDR is
stable).
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The h-Principle
The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.
This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Hirsh 1959, 1961)
Let M, N be two smooth manifolds. Then every continuous
section of the bundle GL(TM,TN)→M can be homotoped to
the 1-jet of an immersion M→ N in the following two cases:

• Extra dimension: dimN > dimM;

• Critical Dimension: dimN = dimM and N is open.

In Gromov’s language, the immersion PDR satisfies the
C∞ h-princple (note that this PDR is open and, therefore,
stable).
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The h-Principle
The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.
This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Nash 1954, Kuiper 1955)
Every C1 immersion M→ Rq admits a C1 homotopy of
immersions to an isometric immersion.

In Gromov’s language, the immersion PDR satisfies the
C1 h-Principle (note that this PDR is not stable so these
solutions cannot be made more regular).
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Techniques to prove the h-Principle
The last two theorems provide two of the main
techniques used by Gromov to prove the validity of the
h-Principle for a PDR:

• Sheaves technique, based on the work of Smale and
Hirsch;

• Convex integration, based on the work of Nash and
Kuiper, especially useful in case of closed PDR;

• Removal of Singularities technique, developed by
Gromov and Eliashberg, especially useful in the
complex analytical or alebraic setting.
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h-Principle & Free maps

Theorem
Let Mn be a smooth manifold and F ⊂ J2(M,Rq) the free maps
PDR – namely in coordinates (xα, f a,va

α,v
a
αβ

) every fiber of F is

defined as rk
(

va
α,v

a
αβ

)
= sn.

Then every continuous section of F →M can be homotoped to
the 2-jet of a free map M→ Rq in the following two cases:

• Extra dimension: q > n + sn;

• Critical Dimension: q = n + sn and M is open.

Corollary
If M is a stably parallelizable n-manifold (e.g. any orientable
hypersurface of Rn+1), it admits a free map into Rn+sn+1.
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h-Principle & Free maps

Open Question
Do free maps of closed manifolds M, dimM ≥ 2, satisfy the
h-Principle for n + sn?

Does every parallelizable manifold (in particular the n-torus)
admit a free map into Rn+sn?
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h-Principle for Ck isometries, k ≥ 3.
Although the isometries PDR Ig is not stable for any
metric g, the PDR (F ∩ I 1

g )1 is stable for all metrics g.

Theorem
Let (Mn,g) be a Ck Riemannian manifold, k ≥ 5. Then free
isometric Ck immersions M→ Rq satisfy the h-Principle for
q ≥ sn+1.

Since F →M admits always a section for q ≥ 2n + sn, this
is equivalent to

Theorem
Let (Mn,g) be a Ck Riemannian manifold, k ≥ 5. Then M
admits a free isometric Ck immersion into Rq.
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