

A quick survey of h-Principle and isometric embeddings

Roberto De Leo Department of Mathematics

March 26, 2016 Slide 1/35

Plan of the presentation:

• General results about isometric immersions

Plan of the presentation:

• General results about isometric immersions

• The Nash-Gromov Implicit Function Theorem

Plan of the presentation:

• General results about isometric immersions

• The Nash-Gromov Implicit Function Theorem

Inducing structures on manifolds

Main Sources

- D. Spring, "The golden age of immersion theory in topology: 1959-1973", http://arxiv.org/abs/math/0307127 (2003)
- M. Gromov, V. Rokhlin, "Embeddings and immersions in Riemannian geometry", Russian Mathematical Surveys, 25:5 (1970)
- M. Gromov, "Partial Differential Relations", Springer, 1983
- M. Gromov, "Geometric, Algebraic and Analytic Descendants of Nash Isometric Embedding Theorems", 2015,

http://www.ihes.fr/~gromov/PDF/nash-copy-Oct9.pdf

- R. De Leo, "A note on non-free isometric immersions", Russian Math Surveys, 63:3 (2010)
- G. D'Ambra, R. De Leo, A. Loi, "Partially isometric immersions and free maps", Geometriae Dedicata, 151:1 (2011)
- R. De Leo, "On some geometrical and analytical problems arising from the theory of Isometric Immersion", 2011,

Side 3/35 - Rockeyeberg-Acuidesy-energy 4- fingeres unica it / 584/1/PhD RobertoDe Leo odf

Isometric Embeddings

Question. Given a C^k Riemannian metric $g = g_{\alpha\beta}(x) dx^{\alpha} \otimes dx^{\beta}$ on M^n , for which q and k' can we find a (global or local) $C^{k'}$ isometric immersion $f : M \to \mathbb{R}^q$?

Question. Given a C^k Riemannian metric $g = g_{\alpha\beta}(x) dx^{\alpha} \otimes dx^{\beta}$ on M^n , for which q and k' can we find a (global or local) $C^{k'}$ isometric immersion $f : M \to \mathbb{R}^q$?

Namely, can we find q (global or local) functions $f^a \in C^{k'}(M)$ such that

 $\delta_{ab}\partial_{\alpha}f^{a}(x)\partial_{\beta}f^{b}(x)=g_{\alpha\beta}(x)?$

Question. Given a C^k Riemannian metric $g = g_{\alpha\beta}(x) dx^{\alpha} \otimes dx^{\beta}$ on M^n , for which q and k' can we find a (global or local) $C^{k'}$ isometric immersion $f : M \to \mathbb{R}^q$?

Namely, can we find q (global or local) functions $f^a \in C^{k'}(M)$ such that

 $\delta_{ab}\partial_{\alpha}f^{a}(x)\partial_{\beta}f^{b}(x) = g_{\alpha\beta}(x)?$

Remark: for n = 2 and q = 3, we can riarrange the coordinates so that f(x, y, z) = (x, y, z(x, y)) and the equation above is equivalent to the following Monge-Ampére type eq., known as Darboux equation:

 $det \left(\nabla_{\alpha} (\nabla_{\beta} z) \right) = \mathcal{K}(det g) (1 - \|grad(z)\|^2)$

Question. Given a C^k Riemannian metric $g = g_{\alpha\beta}(x) dx^{\alpha} \otimes dx^{\beta}$ on M^n , for which q and k' can we find a (global or local) $C^{k'}$ isometric immersion $f : M \to \mathbb{R}^q$?

Namely, can we find q (global or local) functions $f^a \in C^{k'}(M)$ such that

 $\delta_{ab}\partial_{\alpha}f^{a}(x)\partial_{\beta}f^{b}(x) = g_{\alpha\beta}(x)?$

Remark: for n = 2 and q = 3, we can riarrange the coordinates so that f(x, y, z) = (x, y, z(x, y)) and the equation above is equivalent to the following Monge-Ampére type eq., known as Darboux equation:

 $det \left(\nabla_{\alpha} (\nabla_{\beta} z) \right) = K(det g)(1 - \|grad(z)\|^2)$

It turns out that the answer depends on the regularity.

Local results: Analytical case

C^{an}-Local Conjecture (Schlæfli (1873)¹)

Every 2-dimensional analytical Riemannian manifold admits analytical local isometric embeddings into \mathbb{R}^3 .

L. Schaefli, "Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante", Ann. di Mat., 5 (1873), 170-193

³ M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidéen", Annal. Soc. Polon. Math., 5 (1926), 38-43

³ E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen", Ann. Soc. Polon. Math. . 6 (1927), 17

Local results: Analytical case

C^{an}-Local Conjecture (Schlæfli (1873)¹)

Every 2-dimensional analytical Riemannian manifold admits analytical local isometric embeddings into \mathbb{R}^3 .

C^{an} -Local Theorem (Janet (1926)², Cartan (1927)³)

Every n-dimensional analytical Riemannian manifold admits analytical local isometric embedding into \mathbb{R}^{s_n} , $s_n = n(n+1)/2$.

- L. Schaefli, "Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante", Ann. di Mat., 5 (1873), 170-193
- ³ M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen", Annal. Soc. Polon. Math., 5 (1926), 38-43

³ E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen", Ann. Soc. Polon. Math., 6 (1927), 17

Local results: Smooth case

C^{∞} -Local Conjecture (Schlæfli (1873)⁴)

Every 2-dimensional analytical Riemannian manifold admits smooth local isometric embeddings into \mathbb{R}^3 .

Local results: Smooth case

C^{∞} -Local Conjecture (Schlæfli (1873)⁴)

Every 2-dimensional analytical Riemannian manifold admits smooth local isometric embeddings into \mathbb{R}^3 .

This problem is still open, e.g. see:

- Yau, "Problem Section, Seminar on Diff. Geom.", Ann. of Math. Studies 102, Princeton University Press (1982)
- Lin, "The local isometric embedding in \mathbb{R}^3 of 2-dim. Riem. mfds with non-neg. curv", J. of Diff. Geom. 21 (1985), 213-230
- Hong, Zuily, "Existence of *C*[∞] local solutions for the Monge-Ampére equation", Inv. Math. 89 (1987), 645-661
- Han, Hong, "Isometric Embedding of Riemannian Manifolds in Euclidean Spaces", 2006, Math. Surv. and Monographs, AMS
- Han, "Isometric Embeddings of Surfaces in ℝ³", Recent Developments in Geometry and Analysis (2012), 113-145

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^1 Riemannian n-manifold admits C^1 local isometric immersions into \mathbb{R}^{n+1} .

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^1 Riemannian n-manifold admits C^1 local isometric immersions into \mathbb{R}^{n+1} .

Theorem (Nash (1956))

Every C^r Riemannian n-manifold admits C^r local isometric immersions in \mathbb{R}^q for $q = (n+1)(4n+3s_n)$ and $r = 3, 4, \dots, \infty$.

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^1 Riemannian n-manifold admits C^1 local isometric immersions into \mathbb{R}^{n+1} .

Theorem (Nash (1956))

Every C^r Riemannian n-manifold admits C^r local isometric immersions in \mathbb{R}^q for $q = (n+1)(4n+3s_n)$ and $r = 3, 4, \dots, \infty$.

Remark 1: the case r = 2 is still open.

The following are corollary of global results of Nash and Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C^1 Riemannian n-manifold admits C^1 local isometric immersions into \mathbb{R}^{n+1} .

Theorem (Nash (1956))

Every C^r Riemannian n-manifold admits C^r local isometric immersions in \mathbb{R}^q for $q = (n+1)(4n+3s_n)$ and $r = 3, 4, \dots, \infty$.

Remark 1: the case r = 2 is still open.

Remark 2: Gromov improved the second result to $q = n^2 + 10n + 3$ for r = 3 and $q = s_{n+2}$ for $r \ge 4$.

Conjecture (Gromov (2015))

Every C^r parallelizable Riemannian n-manifold admits C^r local isometric immersions into \mathbb{R}^q for $q = s_n + 1$ and $r = 1, 2, \dots, \infty$, an.

Conjecture (Gromov (2015))

Every C^r parallelizable Riemannian n-manifold admits C^r local isometric immersions into \mathbb{R}^q for $q = s_n + 1$ and $r = 1, 2, \dots, \infty, an$.

Conjecture (Gromov (2015))

Let *f* be a global analytical section of the bundle $\mathcal{F}(M)$ of frames over the parallelizable *n*-manifold *M*. Then there exists $f \in C^{an}(M, \mathbb{R}^{s_n+1})$ such that f_*f is an orthonormal (s_n+1) -frame in \mathbb{R}^{s_n+1} .

Global results

*C*¹ Theorem (Nash (1954))

Let g be a C^0 Riemannian metric on M^n . Then there exist C^1 isometries $f: (M,g) \to \mathbb{R}^{2n}$.

Global results

*C*¹ Theorem (Nash (1954))

Let g be a C^0 Riemannian metric on M^n . Then there exist C^1 isometries $f: (M,g) \to \mathbb{R}^{2n}$.

C^{∞} Theorem (Nash (1956))

Let g be a C^r Riemannian metric on M^n , $r = 3, 4, ..., \infty$. Then there exist C^r isometries of (M,g) into \mathbb{R}^q for $q = 3s_n + 4n$ if Mis compact and into $q = (n+1)(3s_n+4n)$ if M is open.

Global results

*C*¹ Theorem (Nash (1954))

Let g be a C^0 Riemannian metric on M^n . Then there exist C^1 isometries $f: (M,g) \to \mathbb{R}^{2n}$.

C^{∞} Theorem (Nash (1956))

Let g be a C^r Riemannian metric on M^n , $r = 3, 4, ..., \infty$. Then there exist C^r isometries of (M,g) into \mathbb{R}^q for $q = 3s_n + 4n$ if Mis compact and into $q = (n+1)(3s_n+4n)$ if M is open.

C^{an} Theorem (Nash (1954))

Let g be a C^{an} Riemannian metric on M^n . Then there exist C^{an} isometries $f: (M,g) \to \mathbb{R}^q$ for $q = 3s_n + 4n$.

Open Problems and Conjectures

Question

Do there exist C^{an} or C^{∞} Riemannian n-manifolds admitting C^{r} isometric immersions into \mathbb{R}^{q} for some q_{r} but no C^{an} or C^{∞} isometric immersions for $q \leq (1 + c_{r})q_{r}$ for some $c_{r} > 0$?

Open Problems and Conjectures

Question

Do there exist C^{an} or C^{∞} Riemannian n-manifolds admitting C^{r} isometric immersions into \mathbb{R}^{q} for some q_{r} but no C^{an} or C^{∞} isometric immersions for $q \leq (1 + c_{r})q_{r}$ for some $c_{r} > 0$?

Conjecture

If $q > 0.36n^2 + 1.36n$, all C² Riemannian n-manifolds admit global isometric C² immersions into \mathbb{R}^q

The Nash-Gromov Implicit Function Theorem

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration and $G \xrightarrow{\pi_G} E$ a vector bundle. Let $\Gamma^r F$ the C^r sections of $F \xrightarrow{\pi_F} E$ and similarly for $\Gamma^0 G$.

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration and $G \xrightarrow{\pi_G} E$ a vector bundle. Let $\Gamma^r F$ the C^r sections of $F \xrightarrow{\pi_F} E$ and similarly for $\Gamma^0 G$.

Definition

A C^k PDO over F of order r with values in G is a map

 $\mathcal{L}_r: \Gamma^r F \to \Gamma^0 G$

whose coeffs, in any coord system, are all C^k and whose value on a section $f \in \Gamma^r F$ at a point $x \in E$ depends only on $j_x^r f$.

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration and $G \xrightarrow{\pi_G} E$ a vector bundle. Let $\Gamma^r F$ the C^r sections of $F \xrightarrow{\pi_F} E$ and similarly for $\Gamma^0 G$.

Definition

A C^k PDO over F of order r with values in G is a map

 $\mathcal{L}_r: \Gamma^r F \to \Gamma^0 G$

whose coeffs, in any coord system, are all C^k and whose value on a section $f \in \Gamma^r F$ at a point $x \in E$ depends only on $j_x^r f$.

In coordinates (x^{α}, f^{i}) and (x^{α}, g^{a}) , \mathcal{L}_{r} writes as

 $\mathcal{L}_r(f)(x^{\alpha}) = (\Lambda_r^a(x^{\alpha}, f^i(x^{\alpha}), \partial_{\alpha}f^i(x^{\alpha}), \dots, \partial_{\alpha_1 \dots \alpha_r}f^i(x^{\alpha})).$

where $\Lambda_r = (\Lambda_r^a) : J^r F \to G$ is some C^k map.

Definition

Equiv., a C^k PDO over F of order r with values in G is a C^k map

 $\Lambda_r: J^r F \to G$

Definition

Equiv., a C^k PDO over F of order r with values in G is a C^k map

 $\Lambda_r: J^r F \to G$

The equation

$$\mathcal{L}_r(f) = \phi$$

is then equivalent to

 $\Lambda^{a}_{r}(x^{\alpha}, f^{i}(x^{\alpha}), \partial f^{i}_{\alpha}(x^{\alpha}), \dots, \partial f^{i}_{\alpha_{1}\dots\alpha_{r}}(x^{\alpha})) = \phi^{a}(x^{\alpha})$

Example

Consider $F = G = M \times \mathbb{R}$, so that $J^{r}(F) = J^{r}(M, \mathbb{R})$.

Example

Consider $F = G = M \times \mathbb{R}$, so that $J'(F) = J'(M, \mathbb{R})$. Given a vector field ξ on M, the Lie derivative $L_{\xi} : C^{1}(M) \simeq \Gamma^{1}(F) \to C(M) \simeq \Gamma^{0}(G)$ is a PDO of order 1.

Example

Consider $F = G = M \times \mathbb{R}$, so that $J'(F) = J'(M, \mathbb{R})$. Given a vector field ξ on M, the Lie derivative $L_{\xi} : C^{1}(M) \simeq \Gamma^{1}(F) \to C(M) \simeq \Gamma^{0}(G)$ is a PDO of order 1. The corresponding map $\Lambda_{\xi} : J^{1}(M, \mathbb{R}) \to M \times \mathbb{R}$ is defined as

 $\Lambda_{\xi}(x^{\alpha}, f, f_{\alpha}) = \xi^{\alpha}(x) f_{\alpha}.$

Example

Consider $F = G = M \times \mathbb{R}$, so that $J^r(F) = J^r(M, \mathbb{R})$. Given a vector field ξ on M, the Lie derivative $L_{\xi} : C^1(M) \simeq \Gamma^1(F) \to C(M) \simeq \Gamma^0(G)$ is a PDO of order 1. The corresponding map $\Lambda_{\xi} : J^1(M, \mathbb{R}) \to M \times \mathbb{R}$ is defined as

$$\Lambda_{\xi}(x^{\alpha}, f, f_{\alpha}) = \xi^{\alpha}(x) f_{\alpha}.$$

The corresponding PDE

 $(j^1 f)^* \Lambda_{\xi} = \phi$

is called cohomological equation. In coordinates writes as

$$\xi^{\alpha}(x)\partial_{\alpha}f(x)=\phi(x)$$

Example

Consider $F = M \times \mathbb{R}^q$ and $G = S_2^0 M$, so that $J^r(F) = J^r(M, \mathbb{R}^q)$.

Partial Differential Operators

Example

Consider $F = M \times \mathbb{R}^q$ and $G = S_2^0 M$, so that $J^r(F) = J^r(M, \mathbb{R}^q)$. The pull-back operator

$$\mathcal{D}_{M,q}: \mathcal{C}^1(M,\mathbb{R}^q)\simeq \Gamma^1\mathcal{F} o \Gamma^0(\mathcal{S}^0_2M)$$

defined as $\mathcal{D}_{M,q}(f) = f^* e_q$ is also a PDO of order 1.

Partial Differential Operators

Example

Consider $F = M \times \mathbb{R}^q$ and $G = S_2^0 M$, so that $J^r(F) = J^r(M, \mathbb{R}^q)$. The pull-back operator

$$\mathcal{D}_{M,q}: \mathcal{C}^1(M,\mathbb{R}^q)\simeq \Gamma^1\mathcal{F} o \Gamma^0(\mathcal{S}^0_2M)$$

defined as $\mathcal{D}_{M,q}(f) = f^* e_q$ is also a PDO of order 1. In coordinates

 $\mathcal{D}_{M,q}(f) = \delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}f^{j},$

so that the corresponding map $\Lambda_{M,q}: J^1(M,\mathbb{R}^q) \to S_2^0 M$ is defined as

$$\Lambda_{M,q}(x^{\alpha},f,f_{\alpha})=\delta_{ij}f_{\alpha}^{i}f_{\beta}^{j}.$$

The set $\Gamma_f' = \Gamma'(f^*(VF))$ of C' sections of $VF = \ker \pi_F$ can be thought as the tangent space at f of $\Gamma' F$.

The set $\Gamma'_f = \Gamma'(f^*(VF))$ of C' sections of $VF = \ker \pi_F$ can be thought as the tangent space at f of $\Gamma'F$.

Indeed take a C^1 curve $f_t \in \Gamma^r F$ with $f_0 = f$ and let $\eta_f(x_0) = df_t(x_0)/dt|_{t=0}$.

The set $\Gamma_f^r = \Gamma^r(f^*(VF))$ of C^r sections of $VF = \ker \pi_F$ can be thought as the tangent space at f of $\Gamma^r F$.

Indeed take a C^1 curve $f_t \in \Gamma^r F$ with $f_0 = f$ and let $\eta_f(x_0) = df_t(x_0)/dt|_{t=0}$. Then

$$T_{x_0}\pi_F(\eta_f(x_0)) = T_{x_0}\pi_F\left(\frac{df_t(x_0)}{dt}\Big|_{t=0}\right) =$$
$$= \frac{d(\pi_F \circ f_t)(x_0)}{dt}\Big|_{t=0} = \frac{dx_0}{dt}\Big|_{t=0} = 0,$$
elv $\eta_f \in \Gamma'_t.$

nam

Definition

The linearization of \mathcal{L}_r at f is the linear PDO

 $\ell_{r,f}:\Gamma_f^r\to\Gamma^0 G$

defined by

$$\ell_{r,f}(\eta) = \frac{d}{dt} \mathcal{L}_r(f_t) \Big|_{t=0}$$

Definition

The linearization of \mathcal{L}_r at f is the linear PDO

 $\ell_{r,f}:\Gamma_f^r\to\Gamma^0 G$

defined by

$$\ell_{r,f}(\eta) = \frac{d}{dt} \mathcal{L}_r(f_t) \bigg|_{t=0}$$

The PDO

 $\ell_r: \Gamma^r(VF) \to \Gamma^0G,$

defined as $\ell_r(f,\eta) = \ell_{r,f}(\eta)$, is the *tangent map* (or *differential*) of \mathcal{L}_r .

Example

The Lie derivative L_{ξ} is linear and so it is to be expected that its differential ℓ_{ξ} is identical to it. Indeed

$$\ell_{\xi}(f,\delta f) = \delta L_{\xi}(f) = \delta(\xi^{\alpha}\partial_{\alpha}f) = \xi^{\alpha}\partial_{\alpha}\delta f$$

Example

The Lie derivative L_{ξ} is linear and so it is to be expected that its differential ℓ_{ξ} is identical to it. Indeed

$$\ell_{\xi}(f,\delta f) = \delta L_{\xi}(f) = \delta(\xi^{\alpha}\partial_{\alpha}f) = \xi^{\alpha}\partial_{\alpha}\delta f$$

The isometric operator $\mathcal{D}_{M,q}$ instead is quadratic and its differential $\ell_{M,q}$ is

 $\ell_{M,q}(f,\delta f) = \delta \mathcal{D}_{M,q}(f) = \delta(\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}f^{j}) = 2\delta_{ij}\partial_{\alpha}f^{i}\partial_{\beta}\delta f^{j}$

Definition

We say that \mathcal{L}_r is *infinitesimally invertible* of defect $d \ge r$ and order *s* over some subset $\mathcal{A} \subset \Gamma^r F$ if there exist a family of *linear* PDOs $m_f : \Gamma^s G \to \Gamma_f^0(VF)$ of some order *s*, with $f \in \mathcal{A}$, satisfying the following properties:

Definition

We say that \mathcal{L}_r is *infinitesimally invertible* of defect $d \ge r$ and order *s* over some subset $\mathcal{A} \subset \Gamma^r F$ if there exist a family of *linear* PDOs $m_f : \Gamma^s G \to \Gamma^0_f(VF)$ of some order *s*, with $f \in \mathcal{A}$, satisfying the following properties:

1 $\mathcal{A} \subset \Gamma^d F$ and \mathcal{A} is defined by some open condition on $J^d F$;

Definition

We say that \mathcal{L}_r is *infinitesimally invertible* of defect $d \ge r$ and order *s* over some subset $\mathcal{A} \subset \Gamma^r F$ if there exist a family of *linear* PDOs $m_f : \Gamma^s G \to \Gamma^0_f(VF)$ of some order *s*, with $f \in \mathcal{A}$, satisfying the following properties:

 A ⊂ Γ^d F and A is defined by some open condition on J^d F;
the map m : A × Γ^sG → Γ⁰(VF) defined as m(f, ρ) = m_f(ρ) is a PDO which is non-linear of order d in the first argument.

Definition

We say that \mathcal{L}_r is *infinitesimally invertible* of defect $d \ge r$ and order *s* over some subset $\mathcal{A} \subset \Gamma^r F$ if there exist a family of *linear* PDOs $m_f : \Gamma^s G \to \Gamma^0_f(VF)$ of some order *s*, with $f \in \mathcal{A}$, satisfying the following properties:

1 $\mathcal{A} \subset \Gamma^d F$ and \mathcal{A} is defined by some open condition on $J^d F$;

- 2 the map m : A × Γ^sG → Γ⁰(VF) defined as m(f, ρ) = m_f(ρ) is a PDO which is non-linear of order d in the first argument.
- **3** $\ell_r(m(f,\rho)) = \rho$ for every $f \in \Gamma^{r+d}F$ and $\rho \in \Gamma^{r+s}G$.

Example

The isometric operator $\mathcal{D}_{M,q} : C^1(M, \mathbb{R}^q) \to S^0_n(M)$ admits an infinitesimal inverse of defect 2 and order 0 over the space of free maps $F^2(M, \mathbb{R}^q)$. Indeed we know that the linearized equation $\ell_{M,q}(f) = \delta g$ can be solved *algebraically* over the set of free maps. Let $\delta f_{f,\delta g}$ be the solution closest to the origin in some metric and set $m(f, \delta g) = \delta f_{f,\delta g}$. Clearly $\ell_{M,q}(m(f,\delta g)) = \delta g$.

The Implicit Function Theorem

Theorem (Nash, Gromov)

Let \mathcal{L}_r be a C^k PDO of order r admitting an infinitesimal inverse of order s and defect d over some subset $\mathcal{A} \subset \Gamma^r F$ and set $\hat{s} = \max(d, 2r + s) + s + 1$. Then, for every $f_0 \in \mathcal{A} \cap \Gamma^{\infty} F$, there is a neighbourhood $\mathcal{U} \subset \Gamma^{\hat{s}} G$ of 0 such that, for every $\rho \in \mathcal{U} \cap \Gamma^{s'} G$ with $s' \ge \hat{s}$, the equation $\mathcal{L}_r(f) = \mathcal{L}_r(f_0) + \rho$ has a $C^{s'-s}$ solution.

The Implicit Function Theorem

Theorem (Nash, Gromov)

Let \mathcal{L}_r be a C^k PDO of order r admitting an infinitesimal inverse of order s and defect d over some subset $\mathcal{A} \subset \Gamma^r F$ and set $\hat{s} = \max(d, 2r + s) + s + 1$. Then, for every $f_0 \in \mathcal{A} \cap \Gamma^{\infty} F$, there is a neighbourhood $\mathcal{U} \subset \Gamma^{\hat{s}} G$ of 0 such that, for every $\rho \in \mathcal{U} \cap \Gamma^{s'} G$ with $s' \ge \hat{s}$, the equation $\mathcal{L}_r(f) = \mathcal{L}_r(f_0) + \rho$ has a $C^{s'-s}$ solution.

Corollary

Let \mathcal{L}_r a PDO infinitesimally invertible over $\mathcal{A} \subset \Gamma^r F$. Then the restriction of \mathcal{L}_r to $\mathcal{A} \cap \Gamma^{\infty} F$ is an open map.

Application: Nash Theorem

Theorem (Nash)

If $g_0 = \mathcal{D}_{M,q}(f_0)$ with $f_0 \in Free^{\infty}(M, \mathbb{R}^q)$, then the C^s metric $g_0 + g$, $s \ge 3$, can be realized by a C^s immersion f for every C^3 -small enough g.

Indeed in this particular case r = 1, s = 0 and d = 2, so that $\hat{s} = \max(d, 2r + s) + s + 1 = 3$.

Application: Nash Theorem

Theorem (Nash)

If $g_0 = \mathcal{D}_{M,q}(f_0)$ with $f_0 \in Free^{\infty}(M, \mathbb{R}^q)$, then the C^s metric $g_0 + g$, $s \ge 3$, can be realized by a C^s immersion f for every C^3 -small enough g.

Indeed in this particular case r = 1, s = 0 and d = 2, so that $\hat{s} = \max(d, 2r + s) + s + 1 = 3$.

Hence the IFT theorem implies that, for every $f_0 \in Free^2(M, \mathbb{R}^q) \cap C^{\infty}(M, \mathbb{R}^q) = Free^{\infty}(M, \mathbb{R}^q)$, there is a neighbourhood $\mathcal{U} \subset \Gamma^3(S_2^0M)$ of 0 such that, for all $g \in \mathcal{U}$ of class $C^{s'}$, $s' \geq 3$, the equation $f^*e_q = g_0 + g$ has a solution of class $C^{s'}$.

The h-Principle

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration.

Definition

A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^r F$

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration.

Definition

A Partial Differential Relation of order r is a subset $\mathcal{R} \subset J^r F$

A formal solution of \mathcal{R} is a C^0 section $\varphi : E \to J^r F$ st $\varphi(E) \subset \mathcal{R}$

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration.

Definition

A Partial Differential Relation of order *r* is a subset $\mathcal{R} \subset J^r F$ A formal solution of \mathcal{R} is a C^0 section $\varphi : E \to J^r F$ st $\varphi(E) \subset \mathcal{R}$ A "true" solution of \mathcal{R} is a C^r section $f : E \to F$ st $j^r f(E) \subset \mathcal{R}$

Let $F \xrightarrow{\pi_F} E$ a C^{∞} -fibration.

Definition

A Partial Differential Relation of order *r* is a subset $\mathcal{R} \subset J^r F$ A formal solution of \mathcal{R} is a C^0 section $\varphi : E \to J^r F$ st $\varphi(E) \subset \mathcal{R}$ A "true" solution of \mathcal{R} is a C^r section $f : E \to F$ st $j^r f(E) \subset \mathcal{R}$ Sections of $\varphi : E \to J^r F$ such that $\varphi = j^r f$ are called holonomic

Obstructions to the existence of solutions of a PDR (in particular of a PDE) can be of *topological* or *analytical* origin. In the first case not even *formal* solutions exist. When formal solutions exist, analytical ones may or may not exist.

Example

Consider the case $E = \mathbb{R}^2(x, y)$, $F = \mathbb{R}^2 \times \mathbb{R}(x, y, z)$ and $J^1(\mathbb{R}^2,\mathbb{R})$ (x,y,z,p_x,p_y) . Given a vector field $\xi = (\xi_x(x, y), \xi_y(x, y))$ on \mathbb{R}^2 , the 1st order PDE $L_{\xi}f = g$ is represented by the hypersurface $\mathcal{R} = \{\xi_x(x,y)\rho_x + \xi_y(x,y)\rho_y = g(x,y)\} \subset J^1(\mathbb{R}^2,\mathbb{R})$ If ξ is never zero, then there is no obstruction for its formal solvability for any $g \in C^0(\mathbb{R}^2)$, e.g. take $\varphi(x,y) = \left(x, y, z(x,y), g(x,y) \frac{\xi_x(x,y)}{\|\xi(x,y)\|}, g(x,y) \frac{\xi_y(x,y)}{\|\xi(x,y)\|}\right)$ Depending on the topology of the integral trajectories of ξ , though, true solutions might not exist. E.g. $\Re = \{2yp_x + (1 - y^2)p_y = 1\}$ admits no holonomical C^1 section, namely there is no C^1 function f st $2y\partial_x f(x,y) + (1-y^2)\partial_y f(x,y) = 1.$

Definition

Given a PDR \mathcal{R} of order *r*, its 1-prolongation is $\mathcal{R}^1 = J^1 \mathcal{R} \cap J^{r+1} F$.

Definition

Given a PDR \mathcal{R} of order *r*, its 1-prolongation is $\mathcal{R}^1 = J^1 \mathcal{R} \cap J^{r+1} F$.

Its *k*-prolongation, recursively, is $\mathcal{R}^{k} = (\mathcal{R}^{k-1})^{1}$.

Definition

Given a PDR \mathcal{R} of order r, its 1-prolongation is $\mathcal{R}^1 = J^1 \mathcal{R} \cap J^{r+1} F$. Its *k*-prolongation, recursively, is $\mathcal{R}^k = (\mathcal{R}^{k-1})^1$.

 \mathcal{R} is stable if $\mathcal{R}^{k+1} \to \mathcal{R}^k$ is an affine subbundle of $J^{k+1}F \to J^kF$ for all $k = 1, \cdots$,

Definition

Given a PDR \mathcal{R} of order *r*, its 1-prolongation is $\mathcal{R}^1 = J^1 \mathcal{R} \cap J^{r+1} F$.

Its *k*-prolongation, recursively, is $\mathcal{R}^{k} = (\mathcal{R}^{k-1})^{\mathsf{I}}$. \mathcal{R} is stable if $\mathcal{R}^{k+1} \to \mathcal{R}^{k}$ is an affine subbundle of $J^{k+1}F \to J^{k}F$ for all $k = 1, \cdots$, namely if dim \mathcal{R}_{x}^{k+1} is the same for all $x \in \mathcal{R}^{k}$ and the fiber depends continously on *x*.

Definition

Given a PDR \mathcal{R} of order *r*, its 1-prolongation is $\mathcal{R}^1 = J^1 \mathcal{R} \cap J^{r+1} F$.

Its *k*-prolongation, recursively, is $\mathcal{R}^{k} = (\mathcal{R}^{k-1})^{t}$. \mathcal{R} is stable if $\mathcal{R}^{k+1} \to \mathcal{R}^{k}$ is an affine subbundle of $J^{k+1}F \to J^{k}F$ for all $k = 1, \cdots$, namely if dim \mathcal{R}_{x}^{k+1} is the same for all $x \in \mathcal{R}^{k}$ and the fiber depends continously on *x*.

Remark

Since the fibers of $\mathcal{R}^{k+1} \to \mathcal{R}$ are all contractible, if \mathcal{R} is stable then every section $\varphi : E \to \mathcal{R}$ lifts to a section $\varphi : E \to \mathcal{R}^k$ unique modulo homotopies.

Example

Consider the case $E = M^n(x^{\alpha})$, $F = M^n \times \mathbb{R}^q(x^{\alpha}, f^a)$ and $J^1(M^n, \mathbb{R}^q)(x^{\alpha}, f^a, v^a_{\alpha})$. The isometric PDR I_g is the closed subset of $J^1(M^n, \mathbb{R}^q)$ of codimension s_n defined by the system $\delta_{ab}v^a_{\alpha}v^b_{\beta} = g_{\alpha\beta}(x)$.

Example

Consider the case $E = M^n(x^{\alpha})$, $F = M^n \times \mathbb{R}^q(x^{\alpha}, f^a)$ and $J^1(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^a, v^a_{\alpha})$. The isometric PDR I_q is the closed subset of $J^1(M^n, \mathbb{R}^q)$ of codimension s_n defined by the system $\delta_{ab}v^a_{\alpha}v^b_{\beta} = g_{\alpha\beta}(x).$ Its 1-prolongation I_q^1 is the closed subset of $J^2(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^{a}, v^{a}_{\alpha}, v^{a}_{\alpha\beta})$ of codimension $(n+1)s_{n}$ defined by the system $\delta_{ab}v^a_{\alpha}v^b_{\beta} = g_{\alpha\beta}(x)$ $\delta_{ab}(v^a_{\alpha\mu}v^b_{\beta}+v^a_{\alpha}v^b_{\beta\mu})=\partial_{\mu}g_{\alpha\beta}(x)$

Example

Consider the case $E = M^n(x^{\alpha})$, $F = M^n \times \mathbb{R}^q(x^{\alpha}, f^a)$ and $J^1(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^a, v^a_{\alpha})$. The isometric PDR I_q is the closed subset of $J^1(M^n, \mathbb{R}^q)$ of codimension s_n defined by the system $\delta_{ab}v^a_{\alpha}v^b_{\beta}=g_{\alpha\beta}(x).$ Its 1-prolongation I_a^1 is the closed subset of $J^2(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^{a}, v^{a}_{\alpha}, v^{a}_{\alpha\beta})$ of codimension $(n+1)s_{n}$ defined by the system $\delta_{ab} v^a_{\alpha} v^b_{\beta} = g_{\alpha\beta}(x)$ $\delta_{ab}(v^a_{lpha\mu}v^b_eta+v^a_lpha v^b_{eta\mu})=\partial_\mu g_{lphaeta}(x)$ equivalent to $\delta_{ab}v^a_{\alpha}v^b_{\beta}=g_{\alpha\beta}(x),$ $\delta_{ab} v^a_{\alpha} v^b_{\beta\gamma} = g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\beta\gamma}(x), \ \Gamma^{\lambda}_{\beta\gamma} = \frac{1}{2} g^{\lambda\mu} \left(\partial_{\beta} g_{\mu\gamma} + \partial_{\gamma} g_{\mu\beta} - \partial_{\mu} g_{\beta\gamma} \right)$

Example

Its second prolongation I_g^2 is the closed subset of $J^3(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^a, v^a_{\alpha}, v^a_{\alpha\beta}, v^a_{\alpha\beta\gamma})$ of codimension s_{n+1} defined by the system $\delta_{ab} v^a_{\alpha} v^b_{\beta} = g_{\alpha\beta}(x)$ $\delta_{ab} v^a_{\alpha} v^b_{\beta\gamma} = g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\beta\gamma}(x)$ $\delta_{ab} \left(v^a_{\alpha} v^b_{\beta\gamma\mu} + v^a_{\alpha\mu} v^b_{\beta\gamma} \right) = \partial_{\mu} \left(g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\beta\gamma}(x) \right)$

Example

Its second prolongation I^2_{α} is the closed subset of $J^3(M^n, \mathbb{R}^q)$ $(x^{\alpha}, f^{a}, v^{a}_{\alpha}, v^{a}_{\alpha\beta}, v^{a}_{\alpha\beta\gamma})$ of codimension s_{n+1} defined by the system $\delta_{ab} v^a_{\alpha} v^b_{\beta} = g_{\alpha\beta}(x)$ $\delta_{ab} v^a_{\alpha} v^b_{\beta\gamma} = g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\beta\gamma}(x)$ $\delta_{ab}\left(v_{\alpha}^{a}v_{\beta\gamma\mu}^{b}+v_{\alpha\mu}^{a}v_{\beta\gamma}^{b}\right)=\partial_{\mu}\left(g_{\alpha\lambda}(x)\Gamma_{\beta\gamma}^{\lambda}(x)\right)$ The last set of equations entails compatibility conditions $\delta_{ab} \left[v^{a}_{\alpha\gamma} v^{b}_{\beta\mu} - v^{a}_{\alpha\mu} v^{b}_{\beta\gamma} \right] = \partial_{\mu} \left[g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\beta\gamma}(x) \right] - \partial_{\beta} \left[g_{\alpha\lambda}(x) \Gamma^{\lambda}_{\mu\gamma}(x) \right]$ that are non-trivial for n > 1, so I_a^2 is not fibered over the whole I_a^1 (namely I_a is not stable!) unless n = 1.

The h-Principle

Definition

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle (for C^r solutions) if every C^0 section $\varphi : E \to \mathcal{R}$ is homotopic to a holonomic section $j^r f$ by a continuous homotopy of sections $\varphi_t : E \to \mathcal{R}, t \in [0, 1].$

The h-Principle

Definition

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle (for C^r solutions) if every C^0 section $\varphi : E \to \mathcal{R}$ is homotopic to a holonomic section $j^r f$ by a continuous homotopy of sections $\varphi_t : E \to \mathcal{R}, t \in [0, 1].$

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle for C^{r+k} solutions if every C^0 section $\varphi : E \to \mathcal{R}^k$ is homotopic to a holonomic section $j^{r+k}f$ by a continuous homotopy of sections $\varphi_t : E \to \mathcal{R}^k$, $t \in [0, 1]$.

Definition

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle (for C^r solutions) if every C^0 section $\varphi : E \to \mathcal{R}$ is homotopic to a holonomic section $j^r f$ by a continuous homotopy of sections $\varphi_t : E \to \mathcal{R}, t \in [0, 1].$

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle for C^{r+k} solutions if every C^0 section $\varphi : E \to \mathcal{R}^k$ is homotopic to a holonomic section $j^{r+k}f$ by a continuous homotopy of sections $\varphi_t : E \to \mathcal{R}^k$, $t \in [0, 1]$.

We say that a PDR \mathcal{R} of order *r* satisfies the h-Principle for C^{∞} (C^{an}) solutions if \mathcal{R}^{k} is stable for some $k \geq 0$ and every C^{0} section $\varphi : E \to \mathcal{R}^{k}$ is homotopic to a C^{∞} (C^{an}) holonomic section $j^{r+k}f$ by a continuous homotopy of sections $\varphi_{t} : E \to \mathcal{R}^{k}$, $t \in [0, 1]$.

The idea of the h-Principle is that, "if there is enough space", *formal solutions* can be deformed into *true* (*holonomical*) *solutions*.

This idea arose out of a series of several discoveries in immersions theory:

The idea of the h-Principle is that, "if there is enough space", *formal solutions* can be deformed into *true* (*holonomical*) *solutions*.

This idea arose out of a series of several discoveries in immersions theory:

Theorem (Grauert 1957)

Let G be a complex Lie group with a complex analytic subgroup H and consider a complex analytic fibration $F \rightarrow E$ with group structure G and fiber G/H.

Then, if V Stein, every continous section of $F \rightarrow E$ can be homotoped to a holomorphic one.

In Gromov's language, the Cauchy-Riemann PDR satisfies the *C*^{an} h-princple (note that this (closed) PDR is *stable*).

Slide 31/35 - Roberto De Leo - A quick survey of h-Principle

The idea of the h-Principle is that, "if there is enough space", *formal solutions* can be deformed into *true* (*holonomical*) *solutions*.

This idea arose out of a series of several discoveries in immersions theory:

Theorem (Hirsh 1959, 1961)

Let *M*, *N* be two smooth manifolds. Then every continuous section of the bundle $GL(TM, TN) \rightarrow M$ can be homotoped to the 1-jet of an immersion $M \rightarrow N$ in the following two cases:

- *Extra dimension:* dim *N* > dim *M*;
- Critical Dimension: dim N = dim M and N is open.

In Gromov's language, the immersion PDR satisfies the C^{∞} h-princple (note that this PDR is open and, therefore, *stable*).

The idea of the h-Principle is that, "if there is enough space", *formal solutions* can be deformed into *true* (*holonomical*) *solutions*.

This idea arose out of a series of several discoveries in immersions theory:

Theorem (Nash 1954, Kuiper 1955)

Every C^1 immersion $M \to \mathbb{R}^q$ admits a C^1 homotopy of immersions to an isometric immersion.

In Gromov's language, the immersion PDR satisfies the C^1 h-Principle (note that this PDR is not stable so these solutions cannot be made more regular).

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

• *Sheaves technique,* based on the work of Smale and Hirsch;

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

- *Sheaves technique,* based on the work of Smale and Hirsch;
- *Convex integration,* based on the work of Nash and Kuiper, especially useful in case of closed PDR;

Techniques to prove the h-Principle

The last two theorems provide two of the main techniques used by Gromov to prove the validity of the h-Principle for a PDR:

- *Sheaves technique,* based on the work of Smale and Hirsch;
- *Convex integration,* based on the work of Nash and Kuiper, especially useful in case of closed PDR;
- *Removal of Singularities technique,* developed by Gromov and Eliashberg, especially useful in the complex analytical or alebraic setting.

Theorem

Let M^n be a smooth manifold and $\mathcal{F} \subset J^2(M, \mathbb{R}^q)$ the free maps PDR – namely in coordinates $(x^{\alpha}, f^a, v^a_{\alpha}, v^a_{\alpha\beta})$ every fiber of \mathcal{F} is defined as $rk\left(v^a_{\alpha}, v^a_{\alpha\beta}\right) = s_n$.

Theorem

Let M^n be a smooth manifold and $\mathcal{F} \subset J^2(M, \mathbb{R}^q)$ the free maps PDR – namely in coordinates $(x^{\alpha}, f^a, v^a_{\alpha}, v^a_{\alpha\beta})$ every fiber of \mathcal{F} is defined as $rk\left(v^a_{\alpha}, v^a_{\alpha\beta}\right) = s_n$.

Then every continuous section of $\mathcal{F} \to M$ can be homotoped to the 2-jet of a free map $M \to \mathbb{R}^q$ in the following two cases:

- Extra dimension: $q > n + s_n$;
- Critical Dimension: $q = n + s_n$ and M is open.

Theorem

Let M^n be a smooth manifold and $\mathcal{F} \subset J^2(M, \mathbb{R}^q)$ the free maps PDR – namely in coordinates $(x^{\alpha}, f^a, v^a_{\alpha}, v^a_{\alpha\beta})$ every fiber of \mathcal{F} is defined as $rk\left(v^a_{\alpha}, v^a_{\alpha\beta}\right) = s_n$.

Then every continuous section of $\mathcal{F} \to M$ can be homotoped to the 2-jet of a free map $M \to \mathbb{R}^q$ in the following two cases:

- Extra dimension: $q > n + s_n$;
- Critical Dimension: $q = n + s_n$ and M is open.

Corollary

If *M* is a stably parallelizable *n*-manifold (e.g. any orientable hypersurface of \mathbb{R}^{n+1}), it admits a free map into \mathbb{R}^{n+s_n+1} .

Open Question

Do free maps of closed manifolds M, dim $M \ge 2$, satisfy the h-Principle for $n + s_n$?

Does every parallelizable manifold (in particular the n-torus) admit a free map into \mathbb{R}^{n+s_n} ?

h-Principle for C^k isometries, $k \ge 3$.

Although the isometries PDR I_g is not stable for any metric g, the PDR $(\mathcal{F} \cap I_q^1)^1$ is stable for all metrics g.

Theorem

Let (M^n, g) be a C^k Riemannian manifold, $k \ge 5$. Then free isometric C^k immersions $M \to \mathbb{R}^q$ satisfy the h-Principle for $q \ge s_{n+1}$.

h-Principle for C^k isometries, $k \ge 3$.

Although the isometries PDR I_g is not stable for any metric g, the PDR $(\mathcal{F} \cap I_g^1)^1$ is stable for all metrics g.

Theorem

Let (M^n, g) be a C^k Riemannian manifold, $k \ge 5$. Then free isometric C^k immersions $M \to \mathbb{R}^q$ satisfy the h-Principle for $q \ge s_{n+1}$.

Since $\mathcal{F} \to M$ admits always a section for $q \ge 2n + s_n$, this is equivalent to

Theorem

Let (M^n, g) be a C^k Riemannian manifold, $k \ge 5$. Then M admits a free isometric C^k immersion into \mathbb{R}^q .

