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Plan of the presentation:

e General results about isometric immersions
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Plan of the presentation:

e General results about isometric immersions

e The Nash-Gromov Implicit Function Theorem

e Inducing structures on manifolds
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Main Sources

e D. Spring, “The golden age of immersion theory in topology:
1959-1973”, http://arxiv.org/abs/math/0307127 (2003)

e M. Gromoyv, V. Rokhlin, “Embeddings and immersions in
Riemannian geometry”, Russian Mathematical Surveys, 25:5 (1970)
e M. Gromoyv, “Partial Differential Relations”, Springer, 1983

e M. Gromoyv, “Geometric, Algebraic and Analytic Descendants of
Nash Isometric Embedding Theorems”, 2015,
http://www.ihes.fr/~gromov/PDF/nash-copy-0Oct9.pdf

e R. De Leo, ”A note on non-free isometric immersions”, Russian
Math Surveys, 63:3 (2010)

e G. D’Ambra, R. De Leo, A. Loi, “Partially isometric immersions and
free maps”, Geometriae Dedicata, 151:1 (2011)

o R. De Leo, “On some geometrical and analytical problems arising

from the theory of Isometric Immersion”, 2011,
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The isometric immersions problem

Question. Given a C¥ Riemannian metric
9= gap(x) X*® dx® on M", for which g and k' can we find
a (global or local) C¥ isometric immersion f : M — R9?
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The isometric immersions problem

Question. Given a C¥ Riemannian metric
9= gap(x) X*® dx® on M", for which g and k' can we find
a (global or local) C¥ isometric immersion f : M — R9?

Namely, can we find g (global or local) functions
fa € CX' (M) such that

826 0uf?(x) Ipf*(x) = gap(x)?
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

The isometric immersions problem

Question. Given a C¥ Riemannian metric
9= gap(x) X*® dx® on M", for which g and k' can we find
a (global or local) C¥ isometric immersion f : M — R9?

Namely, can we find g (global or local) functions
fa € CX' (M) such that

826 0uf?(x) Ipf*(x) = gap(x)?

Remark: for n=2 and g = 3, we can riarrange the
coordinates so that f(x,y,z) = (x,y,z(x,y)) and the
equation above is equivalent to the following
Monge-Ampére type eq., known as Darboux equation:

det (Vo (Vp2)) = K(detg)(1 - [|grad(z)||*)
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The isometric immersions problem

Question. Given a C¥ Riemannian metric

9= gap(x) X*® dxP on M", for which g and k’ can we find
a (global or local) C¥ isometric immersion f : M — R9?

Namely, can we find g (global or local) functions
fa € CX' (M) such that
dab o f2(X) anb(X) = Gop(x)?

Remark: for n=2 and g = 3, we can riarrange the
coordinates so that f(x,y,z) = (x,y,z(x,y)) and the
equation above is equivalent to the following
Monge-Ampére type eq., known as Darboux equation:

det (Vo (Vp2)) = K(detg)(1 - [|grad(z)||*)

It turns out that the answer depends on the regularity. o
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Local results: Analytical case

C3-Local Conjecture (Schlzefli (1873)")

Every 2-dimensional analytical Riemannian manifold admits
analytical local isometric embeddings into R3.

f L. Schaefli, “Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante”, Ann. di Mat., 5 (1873), 170-193

3M. Janet, “Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen”, Annal. Soc. Polon.

Math., 5 (1926), 38-43
3E. Cartan, “Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen”, Ann. Soc. Polon. Math.
16 (1927), 17 ®
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Local results: Analytical case

C3-Local Conjecture (Schlzefli (1873)")

Every 2-dimensional analytical Riemannian manifold admits
analytical local isometric embeddings into R3.

C3"-Local Theorem (Janet (1926)2, Cartan (1927)3)

Every n-dimensional analytical Riemannian manifold admits
analytical local isometric embedding into R*", s, = n(n+1)/2.

f L. Schaefli, “Nota alla memoria del Sig. Beltrami sugli spazi di curvatura costante”, Ann. di Mat., 5 (1873), 170-193

3M. Janet, “Sur la possibilité de plonger un espace Riemannien donné dans une espace Euclidiéen”, Annal. Soc. Polon.

Math., 5 (1926), 38-43
3E. Cartan, “Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen”, Ann. Soc. Polon. Math.
,6(1927), 17 =
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Local results: Smooth case

C*-Local Conjecture (Schlzefli (1873)%)

Every 2-dimensional analytical Riemannian manifold admits
smooth local isometric embeddings into R3.
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Local results: Smooth case

C*-Local Conjecture (Schlzefli (1873)%)

Every 2-dimensional analytical Riemannian manifold admits
smooth local isometric embeddings into R3.

This problem is still open, e.g. see:
® Yau,”Problem Section, Seminar on Diff. Geom.”, Ann. of Math.

Studies 102, Princeton University Press (1982)

e Lin,“The local isometric embedding in R3 of 2-dim. Riem. mfds
with non-neg. curv”, J. of Diff. Geom. 21 (1985), 213-230

e Hong, Zuily, “Existence of C* local solutions for the
Monge-Ampére equation”, Inv. Math. 89 (1987), 645-661

e Han, Hong, “Isometric Embedding of Riemannian Manifolds in
Euclidean Spaces”, 2006, Math. Surv. and Monographs, AMS

e Han, “Isometric Embeddings of Surfaces in R3”, Recent
Developments in Geometry and Analysis (2012), 113-145
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Local results: General case

The following are corollary of global results of Nash and
Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C' Riemannian n-manifold admits C' local isometric
immersions into R™1.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Local results: General case

The following are corollary of global results of Nash and
Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C' Riemannian n-manifold admits C' local isometric
immersions into R™1.

Theorem (Nash (1956))

Every C" Riemannian n-manifold admits C" local isometric
immersions in R9 forq = (n+1)(4n+3sp) andr =3,4,. .. .
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Local results: General case

The following are corollary of global results of Nash and
Kuiper that we are going to present shortly:

Theorem (Nash (1954), Kuiper (1955))

Every C' Riemannian n-manifold admits C' local isometric
immersions into R™1.

Theorem (Nash (1956))
Every C" Riemannian n-manifold admits C" local isometric

immersions in R9 forq = (n+1)(4n+3sp) andr =3,4,. .. .

Remark 1: the case r = 2 is still open.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Local results: General case

The following are corollary of global results of Nash and
Kuiper that we are going to present shortly:
Theorem (Nash (1954), Kuiper (1955))

Every C' Riemannian n-manifold admits C' local isometric
immersions into R™1.

Theorem (Nash (1956))

Every C" Riemannian n-manifold admits C" local isometric
immersions in R9 forq = (n+1)(4n+3sp) andr =3,4,. .. .

Remark 1: the case r = 2 is still open.

Remark 2: Gromov improved the second result to
qg=n?+10n+3for r=3and g = s, for r > 4. 2
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Local results: General case

Conjecture (Gromov (2015))

Every C" parallelizable Riemannian n-manifold admits C" local
isometric immersions into RY forq = s, +1 and
r=1,2,--- ,00,an.
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Local results: General case

Conjecture (Gromov (2015))

Every C" parallelizable Riemannian n-manifold admits C" local
isometric immersions into RY forq = s, +1 and
r=1,2,--- ,00,an.

Conjecture (Gromov (2015))

Let f be a global analytical section of the bundle F (M) of
frames over the parallelizable n-manifold M. Then there exists
f € C3(M,RS"™1) such that f.f is an orthonormal
(sn+1)-frame in RS+,
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Global results

C' Theorem (Nash (1954))

Let g be a C° Riemannian metric on M". Then there exist C'
isometries f : (M,g) — R?".
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Global results

C' Theorem (Nash (1954))

Let g be a C° Riemannian metric on M". Then there exist C'
isometries f : (M,g) — R?".

C* Theorem (Nash (1956))

Let g be a C" Riemannian metricon M", r =3,4,... . Then
there exist C" isometries of (M, g) into R9 for g = 3s,+4n if M
is compact and into q = (n+1)(3s,+4n) if M is open.
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Global results

C' Theorem (Nash (1954))

Let g be a C° Riemannian metric on M". Then there exist C'
isometries f : (M,g) — R?".

C* Theorem (Nash (1956))

Let g be a C" Riemannian metricon M", r =3,4,... . Then
there exist C" isometries of (M, g) into R9 for g = 3s,+4n if M
is compact and into q = (n+1)(3s,+4n) if M is open.

C?" Theorem (Nash (1954))

Let g be a C?" Riemannian metric on M". Then there exist C?"
isometries f : (M, g) — RY for g = 3s,+ 4n.

DEPARTMENT OF MATHEMATICS

Py
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Open Problems and Conjectures

Question

Do there exist C" or C* Riemannian n-manifolds admitting C"
isometric immersions into R9 for some g, but no C3" or C*
isometric immersions for g < (1 + ¢;)q, for some ¢, >07?
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Open Problems and Conjectures

Question

Do there exist C" or C* Riemannian n-manifolds admitting C"
isometric immersions into R9 for some g, but no C3" or C*
isometric immersions for g < (1 + ¢;)q, for some ¢, >07?

Conjecture

If g > 0.36n? +1.36n, all C?> Riemannian n-manifolds admit
global isometric C?> immersions into R9
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Partial Differential Operators

Let F %5 E a C*-fibration and G —S E a vector bundle.
Let " F the C" sections of F - E and similarly for °G.
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Partial Differential Operators

Let F %5 E a C*-fibration and G —S E a vector bundle.
Let " F the C" sections of F - E and similarly for °G.

Definition
A C¥ PDO over F of order r with values in G is a map

L T'F—=T°G

whose coeffs, in any coord system, are all C¥ and whose value
on a section f € ["F at a point x € E depends only on j; f.
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Partial Differential Operators

Let F %5 E a C*-fibration and G —S E a vector bundle.
Let " F the C" sections of F - E and similarly for °G.

Definition
A C¥ PDO over F of order r with values in G is a map

L T'F—=T°G

whose coeffs, in any coord system, are all C¥ and whose value
on a section f € ["F at a point x € E depends only on j; f.

In coordinates (x%, f') and (x%, g?), L, writes as

L(1)(x*) = (N3(x®, F(x*), 36t (x¥), ... Dety...co, P (X*)).

where A, = (A2) : J'F — G is some C¥ map.
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Partial Differential Operators

Equiv., a C* PDO over F of order r with values in G is a C* map

A JF—G
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Partial Differential Operators

Definition
Equiv., a C* PDO over F of order r with values in G is a C* map

A:JF—G
The equation

L) =9

is then equivalent to

AZ(x, 11(x%),015(X%), ... O, (x*)) = 0%(x*)
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Partial Differential Operators

Consider F = G= M xR, so that J'(F) = J"(M,R).

®
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Partial Differential Operators

Example

Consider F = G= M xR, so that J'(F) = J"(M,R).
Given a vector field § on M, the Lie derivative

Le : C'(M) ~T"(F) — C(M) ~T°(G) is a PDO of order 1.
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Partial Differential Operators

Example

Consider F = G= M xR, so that J'(F) = J"(M,R).

Given a vector field § on M, the Lie derivative

Le : C'(M) ~T"(F) — C(M) ~T°(G) is a PDO of order 1.
The corresponding map A : J'(M,R) — M x R is defined as

Ne(x*, f, fa) = E%(X)fo. -
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Partial Differential Operators

Example

Consider F = G= M xR, so that J'(F) = J"(M,R).

Given a vector field § on M, the Lie derivative

Le : C'(M) ~T"(F) — C(M) ~T°(G) is a PDO of order 1.
The corresponding map A : J'(M,R) — M x R is defined as

Ne(x%, £, fo) = E4() .
The corresponding PDE
(')A =0
is called cohomological equation. In coordinates writes as

E(x)daf(x) = 0(x)
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Partial Differential Operators

Consider F = M x R9 and G = SIM, so that
J'(F) = J'(M,R9).

®
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Partial Differential Operators

Example

Consider F = M x R9 and G = SYM, so that
J"(F) = J'(M,RR9). The pull-back operator

Dug: C'(MRY) ~T'F — 1°(SIMm)

defined as Dy q(f) = f*eq is also a PDO of order 1.
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Partial Differential Operators

Example
Consider F = M x R9 and G = SYM, so that
J"(F) = J'(M,RR9). The pull-back operator

Dug: C'(M,RI) ~T'F —T°(SIM)

defined as Dy q(f) = f*eq is also a PDO of order 1.

In coordinates -
Q)M,q(f) = S,jaaf’aﬁf/ ,

so that the corresponding map Ay q : J'(M,R%) — SIM is
defined as -
Aug(X*, 1, fa) = it fy.
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Linearization of a PDO

The set ['; =T"(f*(VF)) of C" sections of VF = kerntr can be
thought as the tangent space at f of ['"F.
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Linearization of a PDO

The set ['; =T"(f*(VF)) of C" sections of VF = kerntr can be
thought as the tangent space at f of ['"F.

Indeed take a C' curve f; € ["F with fy = f and let
Nt(x) = dfi(x0)/dlt|=o-
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Linearization of a PDO
The set ['; =T"(f*(VF)) of C" sections of VF = kerntr can be
thought as the tangent space at f of ['"F.

Indeed take a C' curve f; € ["F with fy = f and let
N#(xo0) = dfi(x0)/dt|=o.Then

dfy( X
Tame(na)) = Tute () ) =
t=0
_dmeof)ix)|  _dno|
dt = Otl—

namely 1y € I'7.
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Linearization of a PDO

The linearization of L, at f is the linear PDO
bre:TE—T0G

defined by

9 )

lrr(m) = dt
t=0
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Linearization of a PDO

Definition
The linearization of L, at f is the linear PDO

bre: T TG

defined by

9 )

lrr(m) = dt
t=0

The PDO
6 T"(VF) = TG,

defined as ¢,(f,m) = £, ¢(n), is the tangent map (or differential)
of L,.
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Linearization of a PDO

The Lie derivative L is linear and so it is to be expected that its
differential /¢ is identical to it. Indeed

Ce(£,8F) = 8L (1) = S(E%f) = E%9edF
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Linearization of a PDO

Example

The Lie derivative L is linear and so it is to be expected that its
differential /¢ is identical to it. Indeed

Ce(£,8F) = 8L (1) = S(E%f) = E%9edF

The isometric operator Dy 4 instead is quadratic and its
differential £ q is

Ung(f,8F) = 8Dy q(f) = 8(8;0f'9pF) = 28041 pdF
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Linearization of a PDO

Definition

We say that L, is infinitesimally invertible of defect d > r and
order s over some subset 4 C I'"F if there exist a family of
linear PDOs my : G — ['Y(VF) of some order s, with f € 4,
satisfying the following properties:
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Linearization of a PDO

Definition
We say that L, is infinitesimally invertible of defect d > r and
order s over some subset 4 C I'"F if there exist a family of
linear PDOs my : G — ['Y(VF) of some order s, with f € 4,
satisfying the following properties:

©® 4 C I'F and 4 is defined by some open condition on J9F;
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Linearization of a PDO

Definition
We say that L, is infinitesimally invertible of defect d > r and
order s over some subset 4 C I'"F if there exist a family of
linear PDOs my : G — ['Y(VF) of some order s, with f € 4,
satisfying the following properties:
©® 4 C I'F and 4 is defined by some open condition on J9F;
® the map m: A x [°G — °(VF) defined as
m(f,p) = ms(p) is a PDO which is non-linear of order d in
the first argument.
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Linearization of a PDO

Definition
We say that L, is infinitesimally invertible of defect d > r and
order s over some subset 4 C I'"F if there exist a family of
linear PDOs my : G — ['Y(VF) of some order s, with f € 4,
satisfying the following properties:
©® 4 C I'F and 4 is defined by some open condition on J9F;
® the map m: A x [°G — °(VF) defined as
m(f,p) = ms(p) is a PDO which is non-linear of order d in
the first argument.
© (. (m(f,p)) =p forevery fE"9F and p € [5G,
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Linearization of a PDO

The isometric operator Dy q : C'(M,R9) — S3(M) admits an
infinitesimal inverse of defect 2 and order 0 over the space of
free maps F2(M,RY).

Indeed we know that the linearized equation £y q(f) = 8g can
be solved algebraically over the set of free maps. Let Sffygg be
the solution closest to the origin in some metric and set
m(f,8g) = 8f; 54. Clearly £y 4(m(f,8g)) = dg.

Slide 21/35 — Roberto De Leo — A quick survey of h-Principle



HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

The Implicit Function Theorem

Theorem (Nash, Gromov)

Let L, be a CX PDO of order r admitting an infinitesimal inverse
of order s and defect d over some subset 4 C " F and set
§=max(d,2r+s)+s+1.

Then, for every fy € ANTF, there is a neighbourhood

U C [5G of 0 such that, for every p € UN rs'G with s’ > 8, the
equation £,(f) = L,(fy) +p has a C°~* solution.
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The Implicit Function Theorem

Theorem (Nash, Gromov)

Let L, be a CX PDO of order r admitting an infinitesimal inverse
of order s and defect d over some subset 4 C " F and set
§=max(d,2r+s)+s+1.

Then, for every fy € ANTF, there is a neighbourhood

U C [5G of 0 such that, for every p € UN rs'G with s’ > 8, the
equation £,(f) = L,(fy) +p has a C°~* solution.

Corollary

Let L, a PDO infinitesimally invertible over 4 C I'"F. Then the
restriction of L, to ANT*F is an open map.
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Application: Nash Theorem

Theorem (Nash)

If 9o = D o(fo) with fy € Free™(M,R9), then the C° metric
go+9g, s> 3, can be realized by a C° immersion f for every
C3-small enough g.

Indeed in this particular case r=1,s=0and d =2, so
that § =max(d,2r+s)+s+1=3.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Application: Nash Theorem

Theorem (Nash)

If 9o = D o(fo) with fy € Free™(M,R9), then the C° metric
go+9g, s> 3, can be realized by a C° immersion f for every
C3-small enough g.

Indeed in this particular case r=1,s=0and d =2, so
that $ =max(d,2r+s)+s+1=3.

Hence the IFT theorem implies that,

for every fy € Free?(M,R9) N C*(M,RY) = Free™(M,RY),
there is a neighbourhood U C (SIM) of 0 such that, for
all g € U of class C¥, s’ > 3, the equation f*e; = go + g has
a solution of class C¥'.
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The h-Principle
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Partial Differential Relations

Let F %5 E a C*-fibration.

A Partial Differential Relation of order r is a subset R C J'F

Slide 25/35 — Roberto De Leo — A quick survey of h-Principle



HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Partial Differential Relations

Let F %5 E a C*-fibration.

A Partial Differential Relation of order r is a subset R C J'F
A formal solution of R is a C° section ¢ : E — J'F st o(E) C R
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Partial Differential Relations

Let F %5 E a C*-fibration.

Definition

A Partial Differential Relation of order r is a subset R C J'F

A formal solution of R is a C° section ¢ : E — J'F st o(E) C R
A “true” solution of R is a C” section f: E — F st j'f(E) C R
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Partial Differential Relations

Let F %5 E a C*-fibration.

Definition

A Partial Differential Relation of order r is a subset R C J'F

A formal solution of R is a C° section ¢ : E — J'F st o(E) C R
A “true” solution of R is a C” section f: E — F st j'f(E) C R
Sections of ¢ : E — J'F such that ¢ = j'f are called holonomic

Obstructions to the existence of solutions of a PDR (in
particular of a PDE) can be of topological or analytical
origin. In the first case not even formal solutions exist.
When formal solutions exist, analytical ones may or may
not exist.
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Partial Differential Relations

Example

Consider the case E = R? (x,y), F=R? xR (x,y,z) and

J1 (R2,R) (Xayazapxapy)-

Given a vector field & = (&x(x, y),&y(x,y)) on R, the 1st order
PDE L¢f = g is represented by the hypersurface

K. - {&X(Xay)px +§y(x7}/)py - g(va)} C J1 (szR)

If § is never zero, then there is no obstruction for its formal

solvability for any g € C°(IR?), e.g. take

o(x,y) = <x,y7z(x,}’); a(x,y) fg&%ﬂ ,a(x,y) H%((xxyy))u)

Depending on the topology of the integral trajectories of &,
though, true solutions might not exist.

E.g. R = {2ypx+ (1 — y?)p, = 1} admits no holonomical
C' section, namely there is no C' function f st
2y0xf(x,y) + (1= y?)9yf(x,y) = 1.
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Prolongations of PDRs

Given a PDR R of order r, its 1-prolongation is
K1 _ J1RﬂJr+1F.
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Prolongations of PDRs

Definition

Given a PDR R of order r, its 1-prolongation is
K1 _ J1RﬂJr+1F.

lts k-prolongation, recursively, is R < = (il{k‘1)1.
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Prolongations of PDRs

Definition

Given a PDR R of order r, its 1-prolongation is
K1 _ J1KﬂJr+1F.

lts k-prolongation, recursively, is R = (R 1)
R is stable if R — R ¥ is an affine subbundle of
JHF S JFforallk=1,---,

1
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Prolongations of PDRs

Definition

Given a PDR R of order r, its 1-prolongation is
K1 _ J1KﬂJr+1F.

lts k-prolongation, recursively, is R = (R 1)
R is stable if R — R ¥ is an affine subbundle of
JHF S JFforallk=1,---,

namely if dim R £ is the same for all x € R ¥ and the fiber
depends continously on x.

1
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Prolongations of PDRs

Definition

Given a PDR R of order r, its 1-prolongation is
K1 _ J1KﬂJr+1F.

lts k-prolongation, recursively, is R = (R 1)
R is stable if R — R ¥ is an affine subbundle of
JHF S JFforallk=1,---,

namely if dim R £ is the same for all x € R ¥ and the fiber
depends continously on x.

1

Remark

Since the fibers of R ¥ — R _are all contractible, if R_is stable
then every section ¢ : E — R_lifts to a section ¢ : E — Rk
unique modulo homotopies.

@
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Prolongations of the isometry PDR

Example

Consider the case E = M" (x*), F = M" xR9 (x%,f?) and
J1(M",R9) (%, 12, v2)

The isometric PDR I, is the closed subset of J'(M",RY) of
codimension s, defined by the system

SangVéD = gocB(X)-
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Prolongations of the isometry PDR

Example

Consider the case E = M" (x*), F = M" x R9 (x*, f?) and
JHM" RI) (x*, 3, v3).

The isometric PDR I, is the closed subset of J'(M",RY) of
codimension s, defined by the system

Sabvgvé’ = Gop(X).

Its 1-prolongation I, is the closed subset of J*(M",RY)

(x*, f2, v, vgﬁ) of codimension (n+ 1)s,, defined by the system

dabVe Vé) = gocB(X)

Sab(vgﬂvé’ + vgvé’#) = 0, op(X)
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Prolongations of the isometry PDR

Example

Consider the case E = M" (x*), F = M" x R9 (x*, f?) and
JHM" RI) (x*, 3, v3).

The isometric PDR I, is the closed subset of J'(M",RY) of
codimension s, defined by the system

Sabvgvé’ = Gop(X).

Its 1-prolongation I, is the closed subset of J*(M",RY)

(x*, f2, v, vgﬁ) of codimension (n+ 1)s,, defined by the system

dabVe Vé) = g(xB(X)

Sab(vguvé’ - vgvé’#) = 0uGap(X)
equivalent to

Sabvévé) = gocB(X)s

BabV ng = o (x )rfiy(x ), r%’y = %QM (9pGury + 9vgup — uGpy) ,_
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Prolongations of the isometry PDR

Example

Its second prolongation /7 is the closed subset of J*(M",RY)
(x*, fa, v, vgﬁ, Vgﬁv) of codimension s, defined by the system
5abV§V§ = QOLB(X)

BapVave, = 9 (X)T, (X)

32t (vgvé’w + Vg8 ) =y <gax(x)r7B‘Y(x)>

=)
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Prolongations of the isometry PDR

Example

Its second prolongation /7 is the closed subset of J*(M",RY)

(x*, fa, v, vgﬁ, Vgﬁv) of codimension s, defined by the system

dabVe Vé) = 9op (x)
62b Vg Vé)y - g(X)\(X) r%’y(x)

dab (VSVE)W + Vou V€ ) = dy <goc7»(x)r%y(x)>

The last set of equations entails compatibility conditions

Sab | ViV, — vauv8,| = |9 (T, ()| = 3p | gua ()T ()]
that are non-trivial for n > 1, so Ig2 is not fibered over the whole
I (namely I is not stable!) unless n= 1.
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The h-Principle

Definition

We say that a PDR R _of order r satisfies the h-Principle (for C”
solutions) if every C° section @ : E — R_is homotopic to a
holonomic section j'f by a continuous homotopy of sections
¢t E— R, te[0,1].
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The h-Principle

Definition

We say that a PDR R _of order r satisfies the h-Principle (for C”
solutions) if every C° section @ : E — R_is homotopic to a
holonomic section j'f by a continuous homotopy of sections

¢ E— R, te]0,1].

We say that a PDR R _of order r satisfies the h-Principle for

C' ™k solutions if every C° section ¢ : E — R ¥ is homotopic to a
holonomic section j"tf by a continuous homotopy of sections
¢t E— RK te[0,1].
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The h-Principle

Definition

We say that a PDR R _of order r satisfies the h-Principle (for C”
solutions) if every C° section @ : E — R_is homotopic to a
holonomic section j'f by a continuous homotopy of sections

¢ E— R, te]0,1].

We say that a PDR R _of order r satisfies the h-Principle for

C' ™k solutions if every C° section ¢ : E — R ¥ is homotopic to a
holonomic section j"tf by a continuous homotopy of sections
¢t E— RK te[0,1].

We say that a PDR Z_of order r satisfies the h-Principle for C*

(C?) solutions if R ¥ is stable for some k > 0 and every C°

section @ : E — R ¥ is homotopic to a C* (C?") holonomic

section j"Tf by a continuous homotopy of sections =)
¢ E— R te[o,1]. 2l
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The h-Principle

The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.

This idea arose out of a series of several discoveries in
immersions theory:
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The h-Principle

The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.

This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Grauert 1957)

Let G be a complex Lie group with a complex analytic subgroup
H and consider a complex analytic fibration F — E with group
structure G and fiber G/ H.

Then, if V Stein, every continous section of F — E can be
homotoped to a holomorphic one.

In Gromov’s language, the Cauchy-Riemann PDR _‘
satisfies the C?" h-princple (note that this (closed) PDR is C‘)

A\

stable). -~
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The h-Principle

The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.

This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Hirsh 1959, 1961)

Let M, N be two smooth manifolds. Then every continuous
section of the bundle GL(TM, TN) — M can be homotoped to
the 1-jet of an immersion M — N in the following two cases:

e Extra dimension: dim N > dim M;

e Critical Dimension: dim N = dim M and N is open.

In Gromov’s language, the immersion PDR satisfies the
C” h-princple (note that this PDR is open and, therefore,
stable).
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The h-Principle

The idea of the h-Principle is that, “if there is enough
space”, formal solutions can be deformed into true
(holonomical) solutions.

This idea arose out of a series of several discoveries in
immersions theory:

Theorem (Nash 1954, Kuiper 1955)

Every C' immersion M — R9 admits a C' homotopy of
immersions to an isometric immersion.

In Gromov’s language, the immersion PDR satisfies the
C' h-Principle (note that this PDR is not stable so these
solutions cannot be made more regular).
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Techniques to prove the h-Principle

The last two theorems provide two of the main
techniques used by Gromov to prove the validity of the
h-Principle for a PDR:

e Sheaves technigue, based on the work of Smale and
Hirsch;
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Techniques to prove the h-Principle

The last two theorems provide two of the main
techniques used by Gromov to prove the validity of the
h-Principle for a PDR:

e Sheaves technigue, based on the work of Smale and
Hirsch;

e Convex integration, based on the work of Nash and
Kuiper, especially useful in case of closed PDR;
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Techniques to prove the h-Principle

The last two theorems provide two of the main
techniques used by Gromov to prove the validity of the
h-Principle for a PDR:

e Sheaves technigue, based on the work of Smale and
Hirsch;

e Convex integration, based on the work of Nash and
Kuiper, especially useful in case of closed PDR;

* Removal of Singularities technique, developed by
Gromov and Eliashberg, especially useful in the
complex analytical or alebraic setting.
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h-Principle & Free maps

Theorem

Let M" be a smooth manifold and F C J?(M,R9) the free maps
PDR — namely in coordinates (x*, 2, vZ,v2.) every fiber of F is

o (xB
defined as rk (vg, vgB) = sp.
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h-Principle & Free maps

Theorem

Let M" be a smooth manifold and F C J?(M,R9) the free maps
PDR — namely in coordinates (x*, f2, vZ, vgﬁ) every fiber of F is

defined as rk (vg, VéB) = sp.
Then every continuous section of F — M can be homotoped to
the 2-jet of a free map M — RY in the following two cases:

e Extra dimension: q > n+ Sp;

e Critical Dimension: g = n+ s, and M is open.
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h-Principle & Free maps

Theorem

Let M" be a smooth manifold and F C J?(M,R9) the free maps

PDR — namely in coordinates (x*, f2, vZ, vgﬁ) every fiber of F is

defined as rk (vg, VéB) = sp.
Then every continuous section of F — M can be homotoped to
the 2-jet of a free map M — RY in the following two cases:

e Extra dimension: q > n+ sp;

e Critical Dimension: g = n+ s, and M is open.

Corollary
If M is a stably parallelizable n-manifold (e.g. any orientable

hypersurface of R"), it admits a free map into R +1,
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h-Principle & Free maps

Open Question

Do free maps of closed manifolds M, dim M > 2, satisfy the
h-Principle for n+ s, ?

Does every parallelizable manifold (in particular the n-torus)
admit a free map into RS0 ?
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h-Principle for C* isometries, k > 3.

Although the isometries PDR I, is not stable for any
metric g, the PDR (# N 1,)" is stable for all metrics g.

Theorem

Let (M",g) be a C* Riemannian manifold, k > 5. Then free
isometric C* immersions M — RY satisfy the h-Principle for

q = Spt1.
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h-Principle for C* isometries, k > 3.

Although the isometries PDR I, is not stable for any
metric g, the PDR (# N 1;)" is stable for all metrics g.

Theorem

Let (M",g) be a C* Riemannian manifold, k > 5. Then free
isometric C* immersions M — RY satisfy the h-Principle for

q = Spt1.

Since ¥ — M admits always a section for g > 2n—+ s, this
is equivalent to

Theorem

Let (M",g) be a C* Riemannian manifold, k > 5. Then M
admits a free isometric CX immersion into R9.
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