

A quick survey of Hamiltonian systems from a Dynamical Systems point of view

Roberto De Leo Department of Mathematics

November 22, 2014 Slide 1/121

Plan of the presentation:

General properties of Hamiltonian systems
 geodesics equations, Maupertuis principle, generating functions,
 Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations
 between classical and quantum mechanics, optics, non-Hausdorff
 manifolds, Completely Integrable Systems, KAM

Plan of the presentation:

- General properties of Hamiltonian systems
 geodesics equations, Maupertuis principle, generating functions,
 Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations
 between classical and quantum mechanics, optics, non-Hausdorff
 manifolds, Completely Integrable Systems, KAM
- Poissonian dynamical systems Poisson braket, odd-dimensional Hamiltonian systems, relations with quantum mechanics

Plan of the presentation:

- General properties of Hamiltonian systems
 geodesics equations, Maupertuis principle, generating functions,
 Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations
 between classical and quantum mechanics, optics, non-Hausdorff
 manifolds, Completely Integrable Systems, KAM
- Poissonian dynamical systems Poisson braket, odd-dimensional Hamiltonian systems, relations with quantum mechanics
- Systems with symmetries

Noether's theorem, symplectic reduction, momentum map, Atiyah-Sternberg theorem

Main Sources

• V.I. Arnold, "Mathematical Methods of Classical Mechanics", GTM 60, Springer, 1989

• B. Dubrovin, A. Fomenko, S.P. Novikov, "Modern Geometry", GTM 93, Springer, 1992

• R. Abraham & J.E. Marsden, "Foundations of Mechanics", Addison-Wesley, 1978

- J.M. Sourieau, "Structure of Dynamical Systems", Springer, 1997
- V. Guillemin & S. Sternberg, "Symplectic techniques in Physics", CUP, 1984
- V. Guillemin & S. Sternberg, "Semi-classical analysis", Int. Press, 2011
- W. Thirring, "Classical Mathematical Physics", Springer, 1992
- G. Esposito, G. Marmo, S. Sudarshan, "From Classical to Quantum Mechanics", CUP, 2004

• A. Cannas da Silva, "Lectures on Symplectic Geometry", LNM 1764, Springer, 2006

Introduction

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

Definition

A Dynamical System on a smooth manifold M^n of dimension n and a smooth vector field $\xi \in \mathfrak{X}(M)$.

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

Definition

A Dynamical System on a smooth manifold M^n of dimension n and a smooth vector field $\xi \in \mathfrak{X}(M)$.

Definition

The Flow ϕ_{ξ}^{t} of ξ is a smooth map $\phi_{\xi} : \mathbb{R} \times M \to M$ s.t.

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

Definition

A Dynamical System on a smooth manifold M^n of dimension n and a smooth vector field $\xi \in \mathfrak{X}(M)$.

Definition

The *Flow*
$$\phi_{\xi}^{t}$$
 of ξ is a smooth map $\phi_{\xi} : \mathbb{R} \times M \to M$ s.t.
• $\phi_{\xi}^{0} = id_{M}$;

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

Definition

A Dynamical System on a smooth manifold M^n of dimension n and a smooth vector field $\xi \in \mathfrak{X}(M)$.

Definition

The Flow ϕ_{ξ}^{t} of ξ is a smooth map $\phi_{\xi} : \mathbb{R} \times M \to M$ s.t. **1** $\phi_{\xi}^{0} = \mathrm{id}_{M}$; **2** $\frac{d}{dt}\phi_{\xi}^{t}(x) = \xi(\phi_{\xi}^{t}(x));$

The concept of *Dynamical System* can vary a considerably, depending on the degree of abstraction one aims at.

Definition

A Dynamical System on a smooth manifold M^n of dimension n and a smooth vector field $\xi \in \mathfrak{X}(M)$.

Definition

The *Flow*
$$\phi_{\xi}^{t}$$
 of ξ is a smooth map $\phi_{\xi} : \mathbb{R} \times M \to M$ s.t.
1 $\phi_{\xi}^{0} = \mathrm{id}_{M}$;
2 $\frac{d}{dt}\phi_{\xi}^{t}(x) = \xi(\phi_{\xi}^{t}(x));$
3 $\phi_{\xi}^{t}\phi_{\xi}^{s} = \phi_{\xi}^{t+s}$ when all three maps are defined.

Find as much as possible on the flow of ξ .

Find as much as possible on the flow of ξ .

When a non-degenerate (0,2) tensor $h = h_{\alpha\beta} dx^{\alpha} \otimes dx^{\beta}$ is defined on *M*, then we define $i_{\xi_H} h = dH$, i.e. have a map

$$egin{array}{rcl} C^\infty(M) & o & \mathfrak{X}(M) \ H & \mapsto & \xi_H = h^{lphaeta}\partial_lpha H\partial_eta \end{array}$$

where $h_{\alpha\beta}h^{\beta\gamma} = \delta^{\gamma}_{\alpha}$.

Find as much as possible on the flow of ξ .

When a non-degenerate (0,2) tensor $h = h_{\alpha\beta} dx^{\alpha} \otimes dx^{\beta}$ is defined on *M*, then we define $i_{\xi_H} h = dH$, i.e. have a map

$$egin{array}{rcl} C^\infty(M) & o & \mathfrak{X}(M) \ H & \mapsto & \xi_H = h^{lphaeta}\partial_lpha H\partial_eta \end{array}$$

where $h_{\alpha\beta}h^{\beta\gamma} = \delta^{\gamma}_{\alpha}$.

In these systems, we can specialize the definition of DS:

Definition

A *Dynamical system* on the manifold (M, h) is given by a smooth function $H \in C^{\infty}(M)$.

Find as much as possible on the flow of ξ .

When a non-degenerate (0,2) tensor $h = h_{\alpha\beta} dx^{\alpha} \otimes dx^{\beta}$ is defined on *M*, then we define $i_{\xi_H} h = dH$, i.e. have a map

$$egin{array}{rcl} C^\infty(M) & o & \mathfrak{X}(M) \ H & \mapsto & \xi_H = h^{lphaeta}\partial_lpha H\partial_eta \end{array}$$

where $h_{\alpha\beta}h^{\beta\gamma} = \delta^{\gamma}_{\alpha}$.

In these systems, we can specialize the definition of DS:

Definition

A *Dynamical system* on the manifold (M, h) is given by a smooth function $H \in C^{\infty}(M)$.

Main goal

Find as much as possible on the flow of ξ_H .

Here *h* is symmetrical and ξ_H is known as the *gradient* of *H*

$$L_{\xi_H}H(x) \stackrel{\text{def}}{=} \left. \frac{d}{dt} H(\phi_{\xi}^t(x)) \right|_{t=0}$$

Here *h* is symmetrical and ξ_H is known as the *gradient* of *H*

$$L_{\xi_{H}}H(x) \stackrel{\text{def}}{=} \frac{d}{dt}H(\phi_{\xi}^{t}(x))\Big|_{t=0}$$

$$= \left[\frac{d}{dt} \phi_{\xi}^{t}(x) \Big|_{t=0} \right]^{\alpha} \partial_{\alpha} H(x) = h^{\alpha\beta} \partial_{\beta} H(x) \partial_{\alpha} H(x) = \|\xi_{H}(x)\|^{2} \ge 0$$

Here *h* is symmetrical and ξ_H is known as the *gradient* of *H*

$$L_{\xi_{H}}H(x) \stackrel{\text{def}}{=} \frac{d}{dt}H(\phi_{\xi}^{t}(x))\Big|_{t=0}$$

$$= \left[\frac{d}{dt} \phi_{\xi}^{t}(x) \Big|_{t=0} \right]^{\alpha} \partial_{\alpha} H(x) = h^{\alpha\beta} \partial_{\beta} H(x) \partial_{\alpha} H(x) = \|\xi_{H}(x)\|^{2} \ge 0$$

This means that the flow lines of ξ_H are everywhere transversal to the level curves of *H* at every non-critical point.

Here *h* is symmetrical and ξ_H is known as the *gradient* of *H*

$$L_{\xi_{H}}H(x) \stackrel{\text{def}}{=} \frac{d}{dt}H(\phi_{\xi}^{t}(x))\Big|_{t=0}$$

$$= \left[\frac{d}{dt} \phi_{\xi}^{t}(x) \Big|_{t=0} \right]^{\alpha} \partial_{\alpha} H(x) = h^{\alpha\beta} \partial_{\beta} H(x) \partial_{\alpha} H(x) = \|\xi_{H}(x)\|^{2} \ge 0$$

This means that the flow lines of $\xi_{\textsc{H}}$ are everywhere transversal

to the level curves of H at every non-critical point.

It turns out thought that the dynamics is much richer when *h* is antisymmetric.

Hamiltonian

Systems

A Hamiltonian system on the symplectic manifold (M^{2n}, ω) is given by a smooth function $H \in C^{\infty}(M)$.

A Hamiltonian system on the symplectic manifold (M^{2n}, ω) is given by a smooth function $H \in C^{\infty}(M)$.

By definition $i_{\xi_H}\omega = dH$. In this case

$$L_{\xi_H}H(x)=\omega(\xi_H,\xi_H)=0\,,$$

i.e. ξ_H is tangent to the level sets of *H* at every point.

A Hamiltonian system on the symplectic manifold (M^{2n}, ω) is given by a smooth function $H \in C^{\infty}(M)$.

By definition $i_{\xi_H}\omega = dH$. In this case

$$L_{\xi_H}H(x)=\omega(\xi_H,\xi_H)=0\,,$$

i.e. ξ_H is tangent to the level sets of H at every point. Moreover,

$$L_{\xi_H}\omega = i_{\xi_H}d\omega + d(i_{\xi_H}\omega) = d(dH) = 0$$
,

namely the flow is *symplectic*, i.e. $\phi_{\xi_H}^t \in Sp(M, \omega) \ \forall t$.

A Hamiltonian system on the symplectic manifold (M^{2n}, ω) is given by a smooth function $H \in C^{\infty}(M)$.

By definition $i_{\xi_H}\omega = dH$. In this case

$$L_{\xi_H}H(x)=\omega(\xi_H,\xi_H)=0\,,$$

i.e. ξ_H is tangent to the level sets of H at every point. Moreover,

$$L_{\xi_H}\omega = i_{\xi_H}d\omega + d(i_{\xi_H}\omega) = d(dH) = 0$$
,

namely the flow is *symplectic*, i.e. $\phi_{\xi_H}^t \in Sp(M, \omega) \ \forall t$.

Locally we have coordinates $(q^1, \ldots, q^n, p_1, \ldots, p_n)$ where $\omega = dq^{\alpha} \wedge dp_{\alpha}$ (Darboux Theorem), so that

$$\xi_{H} = \frac{\partial H}{\partial p_{\alpha}} \frac{\partial}{\partial q^{\alpha}} - \frac{\partial H}{\partial q^{\alpha}} \frac{\partial}{\partial p_{\alpha}} = \frac{\partial H}{\partial p_{\alpha}} \partial_{\alpha} - \frac{\partial H}{\partial q^{\alpha}} \partial^{\alpha}$$

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Hamiltonian: $H(q, p) = \frac{1}{2}(p^2 + q^2)$

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Hamiltonian: $H(q, p) = \frac{1}{2}(p^2 + q^2)$

Hamiltonian vector field: $\xi_H = p \partial_q - q \partial_p$.

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Hamiltonian: $H(q,p) = \frac{1}{2}(p^2 + q^2)$

Hamiltonian vector field: $\xi_H = p \partial_q - q \partial_p$.

Equations of motion:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Hamiltonian: $H(q,p) = \frac{1}{2}(p^2 + q^2)$

Hamiltonian vector field: $\xi_H = p \partial_q - q \partial_p$.

Equations of motion:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$

Flow:
$$\phi_H^t = e^{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^t} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \in Sp(\mathbb{R}^2, dq \wedge dp)$$

Manifold: $(\mathbb{R}^2, \omega = dq \wedge dp).$

Hamiltonian: $H(q,p) = \frac{1}{2}(p^2 + q^2)$

Hamiltonian vector field: $\xi_H = p \partial_q - q \partial_p$.

Equations of motion:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}$$

Flow:
$$\phi_H^t = e^{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^t} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \in Sp(\mathbb{R}^2, dq \wedge dp)$$

This is the qualitative behviour of Hamiltonian orbits in 2 dimensions close to a stable equilibrium point.

Manifold: $(T^*M, \omega = dq^{\alpha} \wedge dp_{\alpha}, g = g_{\alpha\beta}dq^{\alpha} \otimes dq^{\beta}).$

Manifold: $(T^*M, \omega = dq^{\alpha} \wedge dp_{\alpha}, g = g_{\alpha\beta}dq^{\alpha} \otimes dq^{\beta}).$

Hamiltonian: $H(q,p) = \frac{m}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q)$

 $\text{Manifold:} \ (\textit{T}^*\textit{M}, \omega = \textit{dq}^{\alpha} \land \textit{dp}_{\alpha}, \textit{g} = \textit{g}_{\alpha\beta}\textit{dq}^{\alpha} \otimes \textit{dq}^{\beta}).$

Hamiltonian: $H(q,p) = \frac{m}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q)$

Hamiltonian vector field: $\xi_{H} = g^{\alpha\beta} p_{\beta} \partial_{\alpha} - \left(\frac{m}{2} \partial_{\alpha} g^{\mu\nu} p_{\mu} p_{\nu} + \partial_{\alpha} V \right) \partial^{\alpha}$

Manifold: $(T^*M, \omega = dq^{\alpha} \wedge dp_{\alpha}, g = g_{\alpha\beta}dq^{\alpha} \otimes dq^{\beta}).$

Hamiltonian: $H(q,p) = \frac{m}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q)$

Hamiltonian vector field: $\xi_{H} = g^{\alpha\beta} \rho_{\beta} \partial_{\alpha} - \left(\frac{m}{2} \partial_{\alpha} g^{\mu\nu} \rho_{\mu} \rho_{\nu} + \partial_{\alpha} V \right) \partial^{\alpha}$

Equations of motion:

$$\begin{pmatrix} \dot{q}^{\alpha} \\ \dot{p}_{\alpha} \end{pmatrix} = \begin{pmatrix} g^{\alpha\beta} p_{\beta} \\ -\frac{m}{2} \partial_{\alpha} g^{\mu\nu} p_{\mu} p_{\nu} - \partial_{\alpha} V \end{pmatrix}$$

Manifold: $(T^*M, \omega = dq^{\alpha} \wedge dp_{\alpha}, g = g_{\alpha\beta}dq^{\alpha} \otimes dq^{\beta}).$

Hamiltonian: $H(q,p) = \frac{m}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q)$

Hamiltonian vector field: $\xi_{H} = g^{\alpha\beta} \rho_{\beta} \partial_{\alpha} - \left(\frac{m}{2} \partial_{\alpha} g^{\mu\nu} \rho_{\mu} \rho_{\nu} + \partial_{\alpha} V\right) \partial^{\alpha}$

Equations of motion:

$$\begin{pmatrix} \dot{q}^{\alpha} \\ \dot{p}_{\alpha} \end{pmatrix} = \begin{pmatrix} g^{\alpha\beta} p_{\beta} \\ -\frac{m}{2} \partial_{\alpha} g^{\mu\nu} p_{\mu} p_{\nu} - \partial_{\alpha} V \end{pmatrix}$$

In case $V \equiv 0$, m = 1, we get the equation of geodesics: $d/dt(g_{\alpha\beta}\dot{q}^{\alpha}) + \frac{1}{2}\partial_{\alpha}g^{\mu\nu}g_{\lambda\mu}g_{\rho\nu}\dot{q}^{\lambda}\dot{q}^{\rho} = 0$

Example: motion under a potential in \mathbb{R}^2 Here $H = \frac{1}{2}p^2 + V(q)$ and $\xi_H(q,p) = p\partial_q - V'(q)\partial_p$.

Example: motion under a potential in \mathbb{R}^2

Here $H = \frac{1}{2}p^2 + V(q)$ and $\xi_H(q,p) = p\partial_q - V'(q)\partial_p$.

In particular, all critical points of ξ_H lie on the *q* axis and we get centers for V'' > 0 and saddles for V'' < 0 (e.g. see Arn 2.4C):

Example: motion under a potential in \mathbb{R}^2

Here
$$H = \frac{1}{2}p^2 + V(q)$$
 and $\xi_H(q,p) = p\partial_q - V'(q)\partial_p$.

In particular, all critical points of ξ_H lie on the *q* axis and we get centers for V'' > 0 and saddles for V'' < 0 (e.g. see Arn 2.4C):

e

Locally

Hamiltonian

Slide 14/121 — Roberto De Leo — A quick survey of Hamiltonian systems

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi}\omega \text{ is exact}\}$ and

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi} \omega \text{ is exact} \}$ and

 $\mathfrak{X}_{\textit{loc Ham}}(\textit{M}) = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{i}_{\xi} \omega \text{ is closed} \} = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{L}_{\xi} \omega = 0 \}$

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi}\omega \text{ is exact}\}$ and

 $\mathfrak{X}_{\textit{loc Ham}}(\textit{M}) = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{i}_{\xi} \omega \text{ is closed} \} = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{L}_{\xi} \omega = 0 \}$

Equivalently, ξ is locally Hamiltonian if $\xi(M) \subset TM$ is Lagrangian with respect to $\omega = d\dot{q}^{\alpha} \wedge dp_{\alpha} + dq^{\alpha} \wedge d\dot{p}_{\alpha}$

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi}\omega \text{ is exact}\}$ and

 $\mathfrak{X}_{\textit{loc Ham}}(\textit{M}) = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{i}_{\xi} \omega \text{ is closed} \} = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, \textit{L}_{\xi} \omega = 0 \}$

Equivalently, ξ is locally Hamiltonian if $\xi(M) \subset TM$ is Lagrangian with respect to $\omega = d\dot{q}^{\alpha} \wedge dp_{\alpha} + dq^{\alpha} \wedge d\dot{p}_{\alpha}$

Both $\mathfrak{X}_{Ham}(M)$ and $\mathfrak{X}_{loc Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$. Note: $\xi_H = h^{\alpha\beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of H!

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi}\omega \text{ is exact}\}$ and

 $\mathfrak{X}_{\textit{loc Ham}}(\textit{M}) = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, i_{\xi}\omega \text{ is closed}\} = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, L_{\xi}\omega = 0\}$

Equivalently, ξ is locally Hamiltonian if $\xi(M) \subset TM$ is Lagrangian with respect to $\omega = d\dot{q}^{\alpha} \wedge dp_{\alpha} + dq^{\alpha} \wedge d\dot{p}_{\alpha}$

Both $\mathfrak{X}_{Ham}(M)$ and $\mathfrak{X}_{loc Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$.

Note: $\xi_H = h^{\alpha\beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of *H*!

This means that the "Hamiltonian machinery" works even when ξ is just *locally* Hamiltonian. In this case, the corresponding *H* is a *multivalued* function.

Given (M, ω) , $\mathfrak{X}_{Ham}(M) = \{\xi \in \mathfrak{X}(M) | i_{\xi}\omega \text{ is exact}\}$ and

 $\mathfrak{X}_{\textit{loc Ham}}(\textit{M}) = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, i_{\xi}\omega \text{ is closed}\} = \{\xi \in \mathfrak{X}(\textit{M}) \, | \, L_{\xi}\omega = 0\}$

Equivalently, ξ is locally Hamiltonian if $\xi(M) \subset TM$ is Lagrangian with respect to $\omega = d\dot{q}^{\alpha} \wedge dp_{\alpha} + dq^{\alpha} \wedge d\dot{p}_{\alpha}$

Both $\mathfrak{X}_{Ham}(M)$ and $\mathfrak{X}_{loc Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$.

Note: $\xi_H = h^{\alpha\beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of *H*!

This means that the "Hamiltonian machinery" works even when ξ is just *locally* Hamiltonian. In this case, the corresponding *H* is a *multivalued* function.

Such systems have not been studied much so far, mainly because they do not arise from the framework of classical mechanics.

Consider $(\mathbb{T}^2, \omega = dq \wedge dp)$ and $\eta = dp$.

Consider $(\mathbb{T}^2, \omega = dq \wedge dp)$ and $\eta = dp$.

Clearly η is not exact, so the vector field $\xi_{\eta} = \partial_q$ such that

$$i_{\xi_{\eta}}\omega = \eta$$

is only *locally* Hamiltonian.

Consider $(\mathbb{T}^2, \omega = dq \wedge dp)$ and $\eta = dp$.

Clearly η is not exact, so the vector field $\xi_{\eta} = \partial_q$ such that

$$i_{\xi_{\eta}}\omega = \eta$$

is only locally Hamiltonian.

Nevertheless, it can be considered as the differential of the *multivalued* function H(q, p) = p.

Consider $(\mathbb{T}^2, \omega = dq \wedge dp)$ and $\eta = dp$.

Clearly η is not exact, so the vector field $\xi_{\eta} = \partial_q$ such that

$$i_{\xi_{\eta}}\omega = \eta$$

is only *locally* Hamiltonian.

Nevertheless, it can be considered as the differential of the *multivalued* function H(q, p) = p.

The corresponding equations of motion are

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and the corresponding flow is made of translations: $\phi_{\eta}^{t}(q,p) = (q+t,p).$

Consider $(\mathbb{T}^2, \omega = dq \wedge dp)$ and $\eta = dp$.

Clearly η is not exact, so the vector field $\xi_{\eta} = \partial_q$ such that

$$i_{\xi_{\eta}}\omega = \eta$$

is only *locally* Hamiltonian.

Nevertheless, it can be considered as the differential of the *multivalued* function H(q, p) = p.

The corresponding equations of motion are

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and the corresponding flow is made of translations:

$$\phi^t_{\eta}(q,p) = (q+t,p).$$

A sign that ξ_{η} is not Hamiltonian is that its orbits, i.e. the level sets of *H*, are topologically non-trivial.

Definition

A regular 1-dim. foliation \mathcal{F} of \mathbb{R}^2 is Hamiltonian if its leaves are the level sets of a regular smooth function H, i.e. if $\mathcal{F} = \{dH = 0\}$, i.e. if $\mathcal{T}_x \mathcal{F} = \operatorname{span}\{\xi_H(x)\}$ for all $x \in \mathbb{R}^2$.

¹Haefliger & Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

Definition

A regular 1-dim. foliation \mathcal{F} of \mathbb{R}^2 is Hamiltonian if its leaves are the level sets of a regular smooth function H, i.e. if $\mathcal{F} = \{dH = 0\}$, i.e. if $\mathcal{T}_x \mathcal{F} = \operatorname{span}\{\xi_H(x)\}$ for all $x \in \mathbb{R}^2$.

Remark: \mathcal{F} is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure¹.

¹Haefliger & Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

Definition

A regular 1-dim. foliation \mathcal{F} of \mathbb{R}^2 is Hamiltonian if its leaves are the level sets of a regular smooth function H, i.e. if $\mathcal{F} = \{dH = 0\}$, i.e. if $\mathcal{T}_x \mathcal{F} = \operatorname{span}\{\xi_H(x)\}$ for all $x \in \mathbb{R}^2$.

Remark: \mathcal{F} is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure¹.

In this concrete case, for example, $C^k(\mathcal{F})$ can be defined as the set of $C^k(\mathbb{R}^2)$ functions that are constant on the leaves of \mathcal{F} , i.e. ker L_{ξ_H} .

¹Haefliger & Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

Definition

A regular 1-dim. foliation \mathcal{F} of \mathbb{R}^2 is Hamiltonian if its leaves are the level sets of a regular smooth function H, i.e. if $\mathcal{F} = \{dH = 0\}$, i.e. if $\mathcal{T}_x \mathcal{F} = \operatorname{span}\{\xi_H(x)\}$ for all $x \in \mathbb{R}^2$.

Remark: \mathcal{F} is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure¹.

In this concrete case, for example, $C^k(\mathcal{F})$ can be defined as the set of $C^k(\mathbb{R}^2)$ functions that are constant on the leaves of \mathcal{F} , i.e. ker L_{ξ_H} .

Of course, though, fundamental properties such as the existence of a partition of unity do not hold in non-Hausdorff spaces!

¹Haefliger & Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

Theorem (Haefliger, Reeb 1957)

 \mathcal{F} is Hamiltonian iff $C^1(\mathcal{F})$ contains regular functions.

Theorem (Haefliger, Reeb 1957)

 \mathcal{F} is Hamiltonian iff $C^1(\mathcal{F})$ contains regular functions.

This is the exception rather than the rule. It turns out, for example, that there exist foliations such that $C^1(\mathcal{F})$ contains only constant functions! (see the article by Haefliger and Reeb and the references therein).

Theorem (Haefliger, Reeb 1957)

 \mathcal{F} is Hamiltonian iff $C^1(\mathcal{F})$ contains regular functions.

This is the exception rather than the rule. It turns out, for example, that there exist foliations such that $C^1(\mathcal{F})$ contains only constant functions! (see the article by Haefliger and Reeb and the references therein).

Incidentally, we have an interesting related property:

Theorem (Haefliger, Reeb 1957)

On non-Hausdorff smooth manifolds of every dimension there are infinitely many inequivalent smooth structures.

Example: a non-Hamiltonian foliation of \mathbb{R}^2

Consider $(\mathbb{R}^2, dq \wedge dp)$ and $\eta = (1 - p^2)dq + 2(1 - 2p)dp$. Its leaves are shown below:

Clearly $\mathcal{F}_{\eta} = \{\eta = 0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Clearly $\mathcal{F}_{\eta} = \{\eta = 0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Correspondigly, the vector field $\xi_{\eta} = 2(2p-1)\partial_q + (1-p^2)\partial_p$ is regular and everywhere tangent to \mathcal{F}_{η} but ker $\mathcal{L}_{\xi_{\eta}}$ is generated by

$$H(q,p) = (p+1)^3(p-1)e^q$$

whose differential vanishes on the leaf p = -1.

Clearly $\mathcal{F}_{\eta} = \{\eta = 0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Correspondigly, the vector field $\xi_{\eta} = 2(2p-1)\partial_q + (1-p^2)\partial_p$ is regular and everywhere tangent to \mathcal{F}_{η} but ker $\mathcal{L}_{\xi_{\eta}}$ is generated by

$$H(q,p) = (p+1)^3(p-1)e^q$$

whose differential vanishes on the leaf p = -1.

Hence the derivative of every function of

$$C^{1}(\mathcal{F}_{\eta}) = \{ f \circ H \, | \, f \in C^{1}(\mathbb{R}) \}$$

is null in that point.

In coordinates, consider on

$$\mathcal{F}_{\eta} \simeq Y = \mathbb{R} \sqcup \mathbb{R} / \{x \sim y \text{ if } x = y \text{ and } x < 0\}$$

the two charts $\psi, \phi : (-\varepsilon, \varepsilon) \to Y$ s.t. $\psi(w)$ is the leaf of η passing through (0, -1 - w) and $\phi(z)$ is the on passing through (0, z + 1).

In coordinates, consider on

$$\mathcal{F}_{\eta} \simeq Y = \mathbb{R} \sqcup \mathbb{R} / \{x \sim y \text{ if } x = y \text{ and } x < 0\}$$

the two charts $\psi, \phi : (-\varepsilon, \varepsilon) \to Y$ s.t. $\psi(w)$ is the leaf of η passing through (0, -1 - w) and $\phi(z)$ is the on passing through (0, z + 1).

Since *w* and *z* are the coords of the same leaf iff H(0, -1 - w) = H(0, z + 1), the coords change is given by

$$w^{3}(1+w) = z(z+2)^{3}$$

which reduces to $z \simeq w^3$ close enough to 0.

In coordinates, consider on

$$\mathcal{F}_{\eta} \simeq Y = \mathbb{R} \sqcup \mathbb{R} / \{x \sim y \text{ if } x = y \text{ and } x < 0\}$$

the two charts $\psi, \phi : (-\varepsilon, \varepsilon) \to Y$ s.t. $\psi(w)$ is the leaf of η passing through (0, -1 - w) and $\phi(z)$ is the on passing through (0, z + 1).

Since *w* and *z* are the coords of the same leaf iff H(0, -1 - w) = H(0, z + 1), the coords change is given by

$$w^{3}(1+w) = z(z+2)^{3}$$

which reduces to $z \simeq w^3$ close enough to 0.

Given $f \in C^1(\mathcal{F}_{\eta})$, then its representatives in coordinates are $f_{\Psi}(w) = f(\Psi(w))$ and $f_{\varphi}(z) = f(\varphi(z))$. Then $f_{\Psi}(w) = f_{\varphi} \circ \varphi^{-1} \circ \Psi(w) = f_{\varphi}(w^3)$

and

$$f'_{\psi}(w)|_{w=0} = 3w^2 f_{\phi}(w^3)|_{w=0} = 0.$$

While in the example of the torus the vector field was only locally Hamiltonian for *topological* (C^0) reasons, here it depends on the *smooth* (C^1) structure:

Theorem (DL, 2014)

There exists a continuous function G such that (H, G) is locally injective and \mathcal{F}_{η} is Hamiltonian with respect to the (inequivalent) smooth structure on the plane given by the charts (H, G) at every point.

Related Literature

• S.P. Novikov, *The Hamiltonian formalism and a many-valued analogue of Morse theory*, Uspekhi Mat. Nauk , 1982, 37:5, 3-49.

• S.P. Novikov, *The Semiclassical Electron in a Magnetic Field and Lattice. Some Problems of the Low Dimensional Periodic Topology*, Geometric and Functional Analysis, 1995, 5:2, 434-444.

• S.P. Novikov, *Topology of the Generic Hamiltonian Foliations on the Riemann Surface.*, Moscow Math. Journal, 2005, 5:3 (70th birthday of Ya.G.Sinai), 633-6

• R. De Leo, *Solvability of the cohomological equation for regular vector fields on the plane*, Annals of Global Analysis and Geometry, 2011, 39:3, 231-248

Least Action **Principles**

The Poincaré-Cartan 1-form $\theta_H = p_{\alpha} dq^{\alpha} - H dt$

Recall that the trajectory of a Hamiltonian system on M starting at time t_0 from q_0 and arriving at time t_1 in q_1 is an extremal of the action

$$egin{aligned} S &= \int_{\gamma} L(q,\dot{q}) dt = \int_{\gamma} (p_lpha dq^lpha - \mathcal{H} dt), \ \gamma &\in \{\gamma \colon [t_0,t_1] o \mathcal{M} \,|\, \gamma(t_0) = q_0, \gamma(t_1) = q_1 \,\} \end{aligned}$$

The Poincaré-Cartan 1-form $\theta_H = p_{\alpha} dq^{\alpha} - H dt$

Recall that the trajectory of a Hamiltonian system on M starting at time t_0 from q_0 and arriving at time t_1 in q_1 is an extremal of the action

$$egin{aligned} S &= \int_{\gamma} L(q,\dot{q}) dt = \int_{\gamma} (p_lpha dq^lpha - \mathcal{H} dt), \ \gamma &\in \{\gamma \colon [t_0,t_1] o \mathcal{M} \,|\, \gamma(t_0) = q_0, \gamma(t_1) = q_1 \,\} \end{aligned}$$

The Poincaré-Cartan 1-form

$$heta_{H}(t,q,p) = p_{lpha} dq^{lpha} - H(p,q) dt \in \Omega^{1}(\mathbb{R} imes T^{*}M)$$

plays a fundamental role in Hamiltonian systems.

Least Action principle in $\mathbb{R} \times T^*M$

Theorem (see Arnold, 45C)

The extremals of the "extended action"

$$S_{\mathbb{R} imes au^{*}M}[\gamma] = \int_{\gamma} heta_{H}$$

in the space of all paths $\gamma : [t_0, t_1] \to \mathbb{R} \times T^*M$ such that $\pi_t(\gamma(t)) = t, \pi_M(\gamma(t_0)) = (t_0, q_0)$ and $\pi_M(\gamma(t_1)) = (t_1, q_1)$, where $\pi_t(t, q, p) = t$ and $\pi_M(t, q, p) = (t, q)$, are the solutions $\gamma = (t, q(t), p(t)) : [t_0, t_1] \to \mathbb{R} \times T^*M$ of the Hamilton equations satisfying the initial conditions $q(t_0) = q_0, q(t_1) = q_1$.

Remark: no condition is put on $p(t_0), p(t_1)!$

We consider a family of paths γ_{ε} and set $\delta = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}$. Then $\delta \int_{\gamma_{\varepsilon}} \Theta_{H} = \int_{\gamma} [p_{\alpha} \delta \dot{q}^{\alpha} + \dot{q}^{\alpha} \delta p_{\alpha} - \partial_{\alpha} H \delta q^{\alpha} - \partial^{\alpha} H \delta p_{\alpha}] dt =$ $= p_{\alpha} \delta q^{\alpha} \Big|_{t_{0}}^{t_{1}} + \int_{\gamma} [(\dot{q}^{\alpha} - \partial^{\alpha} H) \delta p_{\alpha} + (-\dot{p}_{\alpha} + \partial_{\alpha} H) \delta q^{\alpha}] dt$

We consider a family of paths γ_{ε} and set $\delta = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}$. Then $\delta \int_{\gamma_{\varepsilon}} \theta_{H} = \int_{\gamma} [p_{\alpha} \delta \dot{q}^{\alpha} + \dot{q}^{\alpha} \delta p_{\alpha} - \partial_{\alpha} H \delta q^{\alpha} - \partial^{\alpha} H \delta p_{\alpha}] dt =$ $= p_{\alpha} \delta q^{\alpha} \Big|_{t_{0}}^{t_{1}} + \int_{\gamma} [(\dot{q}^{\alpha} - \partial^{\alpha} H) \delta p_{\alpha} + (-\dot{p}_{\alpha} + \partial_{\alpha} H) \delta q^{\alpha}] dt$

From the line above it is clear why we need to fix the initial conditions for the *q* (i.e. $\delta q = 0$ at t_0 and t_1) but <u>not</u> for the *p*.

We consider a family of paths γ_{ε} and set $\delta = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}$. Then $\delta \int_{\gamma_{\varepsilon}} \theta_{H} = \int_{\gamma} [p_{\alpha} \delta \dot{q}^{\alpha} + \dot{q}^{\alpha} \delta p_{\alpha} - \partial_{\alpha} H \delta q^{\alpha} - \partial^{\alpha} H \delta p_{\alpha}] dt =$ $= p_{\alpha} \delta q^{\alpha} \Big|_{t_{0}}^{t_{1}} + \int_{\gamma} [(\dot{q}^{\alpha} - \partial^{\alpha} H) \delta p_{\alpha} + (-\dot{p}_{\alpha} + \partial_{\alpha} H) \delta q^{\alpha}] dt$

From the line above it is clear why we need to fix the initial conditions for the *q* (i.e. $\delta q = 0$ at t_0 and t_1) but <u>not</u> for the *p*.

It looks surprising that the extremals of the action on M coincide with those of the corresponding action on $\mathbb{R} \times T^*M$, where the p_{α} are allowed to vary independently from the q^{α} .

We consider a family of paths γ_{ε} and set $\delta = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}$. Then $\delta \int_{\gamma_{\varepsilon}} \theta_{H} = \int_{\gamma} [p_{\alpha} \delta \dot{q}^{\alpha} + \dot{q}^{\alpha} \delta p_{\alpha} - \partial_{\alpha} H \delta q^{\alpha} - \partial^{\alpha} H \delta p_{\alpha}] dt =$ $= p_{\alpha} \delta q^{\alpha} \Big|_{t_{0}}^{t_{1}} + \int_{\gamma} [(\dot{q}^{\alpha} - \partial^{\alpha} H) \delta p_{\alpha} + (-\dot{p}_{\alpha} + \partial_{\alpha} H) \delta q^{\alpha}] dt$

From the line above it is clear why we need to fix the initial conditions for the *q* (i.e. $\delta q = 0$ at t_0 and t_1) but <u>not</u> for the *p*.

It looks surprising that the extremals of the action on M coincide with those of the corresponding action on $\mathbb{R} \times T^*M$, where the p_{α} are allowed to vary independently from the q^{α} .

The reason behind this is that, for fixed \dot{q}^{α} on *TM*, the value of $p_{\alpha} = \frac{\partial L(q,\dot{q})}{\partial \dot{q}^{\alpha}}$ is, by definition of Legendre transform, an extremal of the function $L = p_{\alpha} \dot{q}^{\alpha} - H$.

Least Action Principle in $M_E = H^{-1}(E)$ Maupertuis Principle, Hamiltonian version

Theorem (Mapertuis principle I, see DFN Thm33.3.1)

The extremals of the "truncated action"

$$\mathcal{S}_{\mathcal{E}}[\gamma] = \int_{\gamma} \Theta, \ \ \Theta = p_{\alpha} \, dq^{\alpha}$$
 (Liouville 1-form),

in the space Ω of all paths $\gamma\colon [t_0,t_1]\to T^*M$ such that

$$\pi_{\mathcal{M}}(\gamma(t_0)) = q_0$$
, $\pi_{\mathcal{M}}(\gamma(t_1)) = q_1$, $\gamma([t_0, t_1]) \subset M_E$,

where $\pi_M : T^*M \to M$ is the projection that "drops" the p,

are all the reparametrizations of the solutions $\gamma : [t_0, t_1] \to T^*M$ of the Hamilton equations contained inside Ω .

Proceeding as in the previous case, we find that

$$\delta \int_{\gamma_{\epsilon}} \theta = \int_{\gamma} [\dot{q}^{lpha} \delta p_{lpha} - \dot{p}_{lpha} \delta q^{lpha}] dt.$$

Proceeding as in the previous case, we find that

$$\delta \int_{\gamma_{\mathcal{E}}} \Theta = \int_{\gamma} [\dot{q}^{lpha} \delta p_{lpha} - \dot{p}_{lpha} \delta q^{lpha}] dt.$$

This time though the δq and δp are not independent: since *H* is constant over all paths, then

$$0 = \delta[H(q_{\varepsilon}(t), p_{\varepsilon}(t))] = \partial_{\alpha}H\delta q^{\alpha} + \partial^{\alpha}H\delta p_{\alpha}$$

Proceeding as in the previous case, we find that

$$\delta \int_{\gamma_{\mathcal{E}}} \Theta = \int_{\gamma} [\dot{q}^{lpha} \delta p_{lpha} - \dot{p}_{lpha} \delta q^{lpha}] dt.$$

This time though the δq and δp are not independent: since *H* is constant over all paths, then

$$0 = \delta[H(q_{\varepsilon}(t), p_{\varepsilon}(t))] = \partial_{\alpha}H\delta q^{\alpha} + \partial^{\alpha}H\delta p_{\alpha}$$

Since this is the only constraint, it means that

$$(\dot{q}^{\alpha}, \dot{p}_{\alpha}) \propto (\partial^{\alpha} H, -\partial_{\alpha} H),$$

namely the paths γ that extremizes the truncated action are those whose image $\gamma(M) \subset M_E$ coincides with the image of a solution of the coresponding Hamiltonian equations of motions, i.e. is a solution modulo reparametrization.

Least Action Principle in $M_E = H^{-1}(E)$ Maupertuis Principle, Lagrangian version

Theorem (Mapertuis pr. II, Arn 45D & AM Thm3.8.5)

Consider a Hamiltonian system H with Lagrangian $L(q, \dot{q}) = \dot{q}\partial L/\partial \dot{q} - H(q, \partial L/\partial \dot{q}).$

Among all curves $\gamma = q(t) : \mathbb{R} \to M$ connecting $q_0, q_1 \in M$ and parametrized so that $H(q, \partial L/\partial \dot{q}) = E$, the extremals of the "truncated action"

$$\mathcal{S}_{\mathcal{E}}[\gamma] = \int_{\gamma} \Theta = \int_{t_0}^{t_1} \frac{\partial L}{\partial \dot{q}^{\alpha}} \dot{q}^{\alpha} dt$$

are all reparametrizations of the solutions of the Lagrangian equations of motion which keep the energy equal to E.

Let $\mathcal{L} : TM \to T^*M$ be the Legendre transformation and consider any curve $\gamma = q(t) : \mathbb{R} \to M$ connecting q_0 with q_1 in such a way that $H(q(t), \partial L/\partial \dot{q}) = E$.

Let $\mathcal{L} : TM \to T^*M$ be the Legendre transformation and consider any curve $\gamma = q(t) : \mathbb{R} \to M$ connecting q_0 with q_1 in such a way that $H(q(t), \partial L/\partial \dot{q}) = E$.

Then the curve $\tilde{\gamma} = \mathcal{L} \circ \gamma : \mathbb{R} \to T^*M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version

Let $\mathcal{L} : TM \to T^*M$ be the Legendre transformation and consider any curve $\gamma = q(t) : \mathbb{R} \to M$ connecting q_0 with q_1 in such a way that $H(q(t), \partial L/\partial \dot{q}) = E$.

Then the curve $\tilde{\gamma} = \mathcal{L} \circ \gamma : \mathbb{R} \to T^*M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

Let $\mathcal{L} : TM \to T^*M$ be the Legendre transformation and consider any curve $\gamma = q(t) : \mathbb{R} \to M$ connecting q_0 with q_1 in such a way that $H(q(t), \partial L/\partial \dot{q}) = E$.

Then the curve $\tilde{\gamma} = \mathcal{L} \circ \gamma : \mathbb{R} \to T^*M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

iff $\tilde{\gamma}$ is a reparametrization of the solutions of the Hamiltonian equations of motion

Let $\mathcal{L} : TM \to T^*M$ be the Legendre transformation and consider any curve $\gamma = q(t) : \mathbb{R} \to M$ connecting q_0 with q_1 in such a way that $H(q(t), \partial L/\partial \dot{q}) = E$.

Then the curve $\tilde{\gamma} = \mathcal{L} \circ \gamma : \mathbb{R} \to T^*M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

iff $\tilde{\gamma}$ is a reparametrization of the solutions of the Hamiltonian equations of motion

iff γ is a reparametrization of the solutions of the Lagrangian equations of motion.

Example 1: Geodesics

Theorem

On a Riemannian manifold (M,g), the extremals of the action $S = \int_{\gamma} \sqrt{g_{\alpha\beta} \dot{q}^{\alpha} \dot{q}^{\beta}} dt$ are (unparametrized) geodesics.

Example 1: Geodesics

Theorem

On a Riemannian manifold (M,g), the extremals of the action $S = \int_{\gamma} \sqrt{g_{\alpha\beta} \dot{q}^{\alpha} \dot{q}^{\beta}} dt$ are (unparametrized) geodesics.

Proof.

Geodesics are the solutions of the Hamiltonian dynamical system given by the purely kinetic energy Hamiltonian $H(q,p) = \frac{1}{2}g^{\alpha\beta}p_{\alpha}p_{\beta}$. On H = E, $g^{\alpha\beta}p_{\alpha}p_{\beta} = \sqrt{E}\sqrt{g^{\alpha\beta}p_{\alpha}p_{\beta}}$ and so the extremals of $\int_{\gamma} g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta}dt$ are also extremals of $\int_{\gamma} \sqrt{g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta}}dt$.

Example 2: Motion in a Riemann Manifold

Theorem

A particle of mass m on a Riemannian manifold (M,g)

subjected to a potential V(q) moves, at the energy level E,

along the geodesics of the new metric

$$ilde{g}_{lphaeta}=$$
 2 $m(E-V(x))g_{lphaeta}$.

•

Example 2: Motion in a Riemann Manifold

Proof.

If
$$H(q,p) = \frac{1}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q) = \frac{1}{2}g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} + V(q)$$
, then, in M_E ,
 $g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} = 2(E - V(q))$.

$$S[\gamma] = \int_{\gamma} p_{lpha} dq^{lpha} = \int_{\gamma} g_{lphaeta} \dot{q}^{lpha} \dot{q}^{eta} dt$$

Example 2: Motion in a Riemann Manifold

Proof.

If
$$H(q,p) = \frac{1}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q) = \frac{1}{2}g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} + V(q)$$
, then, in M_E ,
 $g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} = 2(E - V(q))$.

$$\mathcal{S}[\gamma] = \int_{\gamma} p_{lpha} dq^{lpha} = \int_{\gamma} g_{lphaeta} \dot{q}^{lpha} \dot{q}^{eta} dt \,,$$

which we can write as

$$S[\gamma] = \int_{\gamma} \sqrt{2(E-V(q))} \sqrt{g_{lphaeta}\dot{q}^{lpha}\dot{q}^{eta}} dt = \int_{\gamma} \sqrt{ ilde{g}_{lphaeta}\dot{q}^{lpha}\dot{q}^{eta}} dt \, ,$$

Example 2: Motion in a Riemann Manifold

Proof.

If
$$H(q,p) = \frac{1}{2}g^{\alpha\beta}p_{\alpha}p_{\beta} + V(q) = \frac{1}{2}g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} + V(q)$$
, then, in M_E ,
 $g_{\alpha\beta}\dot{q}^{\alpha}\dot{q}^{\beta} = 2(E - V(q))$.

$$\mathcal{S}[\gamma] = \int_{\gamma} p_{lpha} dq^{lpha} = \int_{\gamma} g_{lpha eta} \dot{q}^{lpha} \dot{q}^{eta} dt \,,$$

which we can write as

$$S[\gamma] = \int_{\gamma} \sqrt{2(E-V(q))} \sqrt{g_{lphaeta}\dot{q}^{lpha}\dot{q}^{eta}} dt = \int_{\gamma} \sqrt{ ilde{g}_{lphaeta}\dot{q}^{lpha}\dot{q}^{eta}} dt \,,$$

from which it is clear that the extremals of the Maupertuis action with energy E coincide with the geodesics of M with respect to the metric

$$\widetilde{g}_{lphaeta} = 2(E - V(q))g_{lphaeta}.$$

Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

Double Pendulum

Corollary (See Arn 45C)

For every n_1 , n_2 there is a periodic motion of the double pendulum ($M = \mathbb{T}^2$) such that one pendulum makes n_1 oscillations while the other makes n_2 oscillations. Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

Double Pendulum

Corollary (See Arn 45C)

For every n_1 , n_2 there is a periodic motion of the double pendulum ($M = \mathbb{T}^2$) such that one pendulum makes n_1 oscillations while the other makes n_2 oscillations.

Rigid Body

Corollary (See Arn 45C)

Given a rigid body ($M = SO_3$), in any potential field there exists at least one periodic motion of the body. Moreveor, there are periodic motions for every arbitrary high value of the energy.

Example: Motion of light

The Hamiltonian for rays of light is H(q,p) = c(q) ||p||.

Example: Motion of light

The Hamiltonian for rays of light is H(q,p) = c(q) ||p||. On M_E , $||p|| = \frac{E}{c(q)}$ and $\dot{q}^{\alpha} = c(q) \frac{p_{\alpha}}{||p||}$ so $S_0 = \int_{\gamma} \theta = \int_{\gamma} p_{\alpha} \dot{q}^{\alpha} dt = E \int_{\gamma} ||\dot{q}||_g dt$ where $g_{\alpha\beta} = \frac{1}{c(q)^2} \delta_{\alpha\beta}$

Example: Motion of light

The Hamiltonian for rays of light is H(q, p) = c(q) ||p||. On M_E , $||p|| = \frac{E}{c(q)}$ and $\dot{q}^{\alpha} = c(q) \frac{p_{\alpha}}{||p||}$ so $S_0 = \int_{\gamma} \theta = \int_{\gamma} p_{\alpha} \dot{q}^{\alpha} dt = E \int_{\gamma} ||\dot{q}||_g dt$

where $g_{lphaeta}=rac{1}{c(q)^2}\delta_{lphaeta}$

Theorem (Fermat's principle – Novikov 33.3.3)

The path that light rays take by passing from a point A to a point B in a isotropic media are geodesics with respect to the metric $g_{\alpha\beta} = \frac{1}{c(q)^2} \delta_{\alpha\beta}$.

Related Literature

• S.P. Novikov, *The Hamiltonian formalism and a many-valued analogue of Morse theory*, RMS , 1982, 37:5, 3-49.

• S.P. Novikov, *Variational methods and periodic solutions of equations of Kirchhoff type. II*, Funktsional Anal. i Prilozhen., 1981, 15:4, 37-52.

• A.V. Bolsinov, V.V. Kozlov, A.T. Fomenko, *The Mapertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body*, RMS, 1995, 50:3, 473-501

• A.V. Tsiganov, *The Maupertuis Principle and Canonical Trnasformations of the Extended Phase Space*, J. of Nonlin. Math. Phys., 2001, 8:1, 157-182

Hamiltonian

Systems

as Lagrangian

Submanifolds

Generating Functions

Symplectic diffeomorphisms of a manifold M²ⁿ, which are 2n maps of 2n variables, are actually determined by a single function of 2n variables:

Generating Functions

Symplectic diffeomorphisms of a manifold M²ⁿ, which are 2n maps of 2n variables, are actually determined by a single function of 2n variables:

Theorem

 $f: (M^{2n}, \omega_1) \to (N^{2n}, \omega_2)$ is symplectic iff f's graph $\Gamma_f \subset M \times N$ is Lagrangian submanifold of $(M \times N, \omega_1 - \omega_2)$.

Definition

Let $\theta_{1,2}$ be local Liouville 1-forms for $\omega_{1,2}$ and $i : \Gamma_f \to M \times N$ the inclusion of the graph. Then locally $i^*(\theta_1 - \theta_2) = dS$. *S* is the *generating function* for *f*.

Generating Functions

Symplectic diffeomorphisms of a manifold M²ⁿ, which are 2n maps of 2n variables, are actually determined by a single function of 2n variables:

Theorem

 $f: (M^{2n}, \omega_1) \to (N^{2n}, \omega_2)$ is symplectic iff f's graph $\Gamma_f \subset M \times N$ is Lagrangian submanifold of $(M \times N, \omega_1 - \omega_2)$.

Definition

Let $\theta_{1,2}$ be local Liouville 1-forms for $\omega_{1,2}$ and $i : \Gamma_f \to M \times N$ the inclusion of the graph. Then locally $i^*(\theta_1 - \theta_2) = dS$. *S* is the *generating function* for *f*.

This means that locally $\theta_1 - \theta_2 = p_{\alpha} dq^{\alpha} - P_a dQ^a = dS(q, Q)$, i.e. locally $p_{\alpha} = \frac{\partial S}{\partial q^{\alpha}}, P_a = \frac{\partial S}{\partial Q^a}$.

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

$$\begin{array}{ll} T^*M & T^*(T^*M) & T(T^*M) & T^*(TM) \\ (q^{\alpha},p_{\alpha}) & ((q^{\alpha},p_{\alpha}),(w_{\alpha},v^{\alpha})) & ((q^{\alpha},p_{\alpha}),(v^{\alpha},w_{\alpha})) & ((q^{\alpha},v^{\alpha}),(p_{\alpha},w_{\alpha})) \\ p_{\alpha}dq^{\alpha} & w_{\alpha}dq^{\alpha}+v^{\alpha}dp_{\alpha} & v^{\alpha}dp_{\alpha}-w_{\alpha}dq^{\alpha} & p_{\alpha}dq^{\alpha}+w_{\alpha}dv^{\alpha} \end{array}$$

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

$$\begin{array}{ll} T^*M & T^*(T^*M) & T(T^*M) & T^*(TM) \\ (q^{\alpha},p_{\alpha}) & ((q^{\alpha},p_{\alpha}),(w_{\alpha},v^{\alpha})) & ((q^{\alpha},p_{\alpha}),(v^{\alpha},w_{\alpha})) & ((q^{\alpha},v^{\alpha}),(p_{\alpha},w_{\alpha})) \\ p_{\alpha}dq^{\alpha} & w_{\alpha}dq^{\alpha}+v^{\alpha}dp_{\alpha} & v^{\alpha}dp_{\alpha}-w_{\alpha}dq^{\alpha} & p_{\alpha}dq^{\alpha}+w_{\alpha}dv^{\alpha} \end{array}$$

$$egin{array}{rcl} \psi : & \mathcal{T}(\mathcal{T}^*\mathcal{M}) & o & \mathcal{T}^*(\mathcal{T}^*\mathcal{M}) \ & ((q^lpha, p_lpha), (v^lpha, w_lpha)) & \mapsto & ((q^lpha, p_lpha), (-w_lpha, v^lpha)) \end{array}$$

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

$$\begin{array}{ll} T^*M & T^*(T^*M) & T(T^*M) & T^*(TM) \\ (q^{\alpha},p_{\alpha}) & ((q^{\alpha},p_{\alpha}),(w_{\alpha},v^{\alpha})) & ((q^{\alpha},p_{\alpha}),(v^{\alpha},w_{\alpha})) & ((q^{\alpha},v^{\alpha}),(p_{\alpha},w_{\alpha})) \\ p_{\alpha}dq^{\alpha} & w_{\alpha}dq^{\alpha}+v^{\alpha}dp_{\alpha} & v^{\alpha}dp_{\alpha}-w_{\alpha}dq^{\alpha} & p_{\alpha}dq^{\alpha}+w_{\alpha}dv^{\alpha} \end{array}$$

$$egin{array}{rcl} \psi & & T(T^*M) &
ightarrow & T^*(T^*M) \ & ((q^lpha, p_lpha), (v^lpha, w_lpha)) & \mapsto & ((q^lpha, p_lpha), (-w_lpha, v^lpha)) \ \phi & : & T(T^*M) &
ightarrow & T^*(TM) \ & ((q^lpha, p_lpha), (v^lpha, w_lpha)) & \mapsto & ((q^lpha, v^lpha), (w_lpha, p_lpha)) \end{array}$$
$\psi^* \theta_{\tau^*(\tau^*M)} = v^{\alpha} dp_{\alpha} - w_{\alpha} dq^{\alpha}, \quad \phi^* \theta_{\tau^*(\tau M)} = p^{\alpha} dv_{\alpha} + w_{\alpha} dq^{\alpha}$

 $\psi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}^{*}M)}} = v^{\alpha}dp_{\alpha} - w_{\alpha}dq^{\alpha}, \quad \phi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}M)}} = p^{\alpha}dv_{\alpha} + w_{\alpha}dq^{\alpha}$

Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega = dv^{\alpha} \wedge dp_{\alpha} - dw_{\alpha} \wedge dq^{\alpha}$ on $T(T^*M)$. Then:

1 ψ is symplectic, ϕ is anti-symplectic;

 $\psi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}^{*}M)}} = v^{\alpha}dp_{\alpha} - w_{\alpha}dq^{\alpha}, \quad \phi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}M)}} = p^{\alpha}dv_{\alpha} + w_{\alpha}dq^{\alpha}$

Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega = dv^{\alpha} \wedge dp_{\alpha} - dw_{\alpha} \wedge dq^{\alpha}$ on $T(T^*M)$. Then:

1 ψ is symplectic, ϕ is anti-symplectic;

 $\psi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}^{*}M)}} = v^{\alpha}dp_{\alpha} - w_{\alpha}dq^{\alpha}, \quad \phi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}M)}} = p^{\alpha}dv_{\alpha} + w_{\alpha}dq^{\alpha}$

Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega = dv^{\alpha} \wedge dp_{\alpha} - dw_{\alpha} \wedge dq^{\alpha}$ on $T(T^*M)$. Then:

1 ψ is symplectic, ϕ is anti-symplectic;

③ if $i : F \hookrightarrow T(T^*M)$ is a Lagrangian submanifold, then $\psi(F) \subset T^*(T^*M)$ is Lagrangian with generating function $H : T^*M \to \mathbb{R}$ (i.e. $(\psi \circ i)^* \theta_{T^*(T^*M)} = dH$)

 $\psi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}^{*}M)}} = v^{\alpha}dp_{\alpha} - w_{\alpha}dq^{\alpha}, \quad \phi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}M)}} = p^{\alpha}dv_{\alpha} + w_{\alpha}dq^{\alpha}$

Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega = dv^{\alpha} \wedge dp_{\alpha} - dw_{\alpha} \wedge dq^{\alpha}$ on $T(T^*M)$. Then:

1 ψ is symplectic, ϕ is anti-symplectic;

③ *if i* : *F* → *T*(*T***M*) *is a Lagrangian submanifold, then* $Ψ(F) ⊂ T^*(T^*M)$ *is Lagrangian with generating function H* : *T***M* → ℝ *(i.e.* (ψ ∘ i)* $θ_{T^*(T^*M)} = dH$) *and* $φ(F) ⊂ T^*(TM)$ *is Lagrangian with generating function L* : *TM* → ℝ *(i.e.* (φ ∘ i)* $θ_{T^*(TM)} = dL$);

 $\psi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}^{*}M)}} = v^{\alpha}dp_{\alpha} - w_{\alpha}dq^{\alpha}, \quad \phi^{*}\theta_{_{\mathcal{T}^{*}(\mathcal{T}M)}} = p^{\alpha}dv_{\alpha} + w_{\alpha}dq^{\alpha}$

Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega = dv^{\alpha} \wedge dp_{\alpha} - dw_{\alpha} \wedge dq^{\alpha}$ on $T(T^*M)$. Then:

1 ψ is symplectic, ϕ is anti-symplectic;

S if i : F → T(T*M) is a Lagrangian submanifold, then ψ(F) ⊂ T*(T*M) is Lagrangian with generating function H : T*M → ℝ (i.e. (ψ∘i)*θ_{T*(T*M)} = dH) and φ(F) ⊂ T*(TM) is Lagrangian with generating function L : TM → ℝ (i.e. (φ∘i)*θ_{T*(TM)} = dL);

•
$$H(q,p) = p_{\alpha}v^{\alpha} - L(q,v)$$
, with $p_{\alpha} = \frac{\partial L}{\partial v^{\alpha}}$.

Related Literature

• W.M. Tulczyjew Hamiltonian Systems, Lagrangian systems and the Legendre transformation, Symp. Math. 14, 247-258

• K. Konieczna, P. Urbanski *Double vector bundles and duality*, Archivum Mathematicum, 1999

• M. de Leon, D. Martin de Diego, *Tulczyjew's triples and lagrangian submanifolds in classical field theories*, in "Applied Differential Geometry and Mechanics,", Eds. W. Sarlet and F. Cantrijn, U. of Gent, Gent, Academia Press (2003), 21-47.

• J. Grabowski, G. Marmo, *Deformed Tulczyjew triples and Legendre transform*, Rend. Sem. Univ. Pol. Torino, 1999, 54:3

Hamilton-Jacobi Equation

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point q_0 . The wave front $\Phi_{q_0}(t+s)$ is the envelope of the fronts $\Phi_q(s)$ for all $q \in \Phi_{q_0}(t)$.

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point q_0 . The wave front $\Phi_{q_0}(t+s)$ is the envelope of the fronts $\Phi_q(s)$ for all $q \in \Phi_{q_0}(t)$.

The level set of $S_{q_0}(q)$ (optical length) is the wave front.

The level set of $S_{q_0}(q)$ (optical length) is the wave front.

Its grad. $p = \frac{\partial S}{\partial q}$ is the vector of normal slowness of the front.

The level set of $S_{q_0}(q)$ (optical length) is the wave front. Its grad. $p = \frac{\partial S}{\partial q}$ is the vector of normal slowness of the front. Note that the directions of \dot{q} and p do not coincide in an anisotropic medium!

Figure 195 Direction of a ray and direction of motion of the wave front

The level set of $S_{\alpha_0}(q)$ (optical length) is the wave front. Its grad. $p = \frac{\partial S}{\partial a}$ is the vector of normal slowness of the front. Note that the directions of g and p do not coincide in an anisotropic medium! $\Phi_{q_0}(t)$ Indicatrix of the point q1 Direction of the ray Direction of motion of the front p Ray q_0 (e) Front $\Phi_{q_0}(t)$

Figure 197 Conjugacy of the direction of a wave and of the front

Optical-Mechanics Analogy

Optics	Mechanics
Optical medium	Extended configuration space $\{(\mathbf{q}, t)\}$
Fermat's principle	Hamilton's principle $\delta \int L dt = 0$
Rays	Trajectories $\mathbf{q}(t)$
Indicatrices	Lagrangian L
Normal slowness vector p of the front	Momentum p
Expression of p in terms of the velocity of the ray, q	Legendre transformation
1-form p dq	1-form $\mathbf{p} d\mathbf{q} - H dt$

Hamilton-Jacobi equations v1

The connection between Huygens principle and Hamiltonian equations comes from the three following observations:

Theorem 1

The 1-form $\eta \in \Omega^1(M)$ is closed iff $\eta^* \omega = 0$, i.e. iff its graph $\eta(M) \subset T^*M$ is a Lagrangian submanifold of T^*M .

Proof.

$$\begin{array}{l} \eta^* \omega = \textit{d} q^\alpha \wedge \textit{d} \eta_\alpha = \partial_\beta \eta_\alpha \textit{d} q^\alpha \wedge \textit{d} q^\beta = \\ = \frac{1}{2} (\partial_\beta \eta_\alpha - \partial_\alpha \eta_\beta) \textit{d} q^\alpha \wedge \textit{d} q^\beta \end{array}$$

Hence locally $\alpha = dS$, namely $\alpha(M)$ writes as $p_{\alpha} = \frac{\partial S}{\partial q^{\alpha}}$.

Theorem 2

Let $\Gamma^n \subset T^*M^n$ be Lagrangian and contained in $H^{-1}(E_0)$. Then $\xi_H \in T\Gamma$.

Proof.

Since $\omega(\xi_H, \zeta) = dH(\zeta) = 0$, $\forall \zeta \in T\Gamma$, and Γ is Lagrangian, then $\xi_H \in T\Gamma$ at every point.

Theorem 2

Let $\Gamma^n \subset T^*M^n$ be Lagrangian and contained in $H^{-1}(E_0)$. Then $\xi_H \in T\Gamma$.

Proof.

Since $\omega(\xi_H, \zeta) = dH(\zeta) = 0$, $\forall \zeta \in T\Gamma$, and Γ is Lagrangian, then $\xi_H \in T\Gamma$ at every point.

Theorem 3

Let $\Gamma^{n-1} \subset T^*M^n$ be isotropic. Then

$$\Gamma_T^n = \bigcup_{t \in [0,T]} \phi_H^t(\Gamma^{n-1})$$

is Lagrangian $\forall T > 0$.

Given a Hamiltonian H on T^*M and a closed 1-form η on M, the following are equivalent:

```
1 d(\eta^* H) = 0;
```


Given a Hamiltonian H on T^*M and a closed 1-form η on M, the following are equivalent:

- **1** $d(\eta^* H) = 0;$
- **2** $\eta(M)$ is a Lagrangian submanifold of T^*M invariant by the Hamiltonian flow ϕ_H^t ;

Given a Hamiltonian H on T^*M and a closed 1-form η on M, the following are equivalent:

- **1** $d(\eta^* H) = 0;$
- **2** $\eta(M)$ is a Lagrangian submanifold of T^*M invariant by the Hamiltonian flow ϕ_H^t ;

• for every curve $\gamma = q(t) : \mathbb{R} \to M$ satisfying $\dot{q}^{\alpha} = \frac{\partial H}{\partial p_{\alpha}}\Big|_{\eta(q)}$, the curve $\tilde{\gamma}(t) = \eta(q(t))$ is an integral curve of ξ_{H} ;

Given a Hamiltonian H on T^*M and a closed 1-form η on M, the following are equivalent:

- **1** $d(\eta^* H) = 0;$
- **2** $\eta(M)$ is a Lagrangian submanifold of T^*M invariant by the Hamiltonian flow ϕ_H^t ;

• for every curve
$$\gamma = q(t) : \mathbb{R} \to M$$
 satisfying $\dot{q}^{\alpha} = \frac{\partial H}{\partial p_{\alpha}}\Big|_{\eta(q)}$,
the curve $\tilde{\gamma}(t) = \eta(q(t))$ is an integral curve of \tilde{k} .

the curve $\tilde{\gamma}(t) = \eta(q(t))$ is an integral curve of ξ_H ;

• if S is a generating function for $\eta(M)$, namely if locally $\eta = dS$, then S satisfies the (time-independent) Hamilton-Jacobi equation

$$H\left(q,\frac{\partial S}{\partial q}\right)=E_{0}$$

The name S for the generating function was not by chance:

Theorem

Let $\Gamma \subset T^*M$ be Lagrangian and contained in $H = E_0$, $m_0, m \in \Gamma$ two "close enough" points and $\gamma_{1,2} : [0,1] \to \Gamma$ two paths s.t. $\gamma_{1,2}(0) = m_0$ and $\gamma_{1,2}(1) = m$. Then $\int_{\gamma_1} \theta = \int_{\gamma_2} \theta$.

The name S for the generating function was not by chance:

Theorem

Let $\Gamma \subset T^*M$ be Lagrangian and contained in $H = E_0$, $m_0, m \in \Gamma$ two "close enough" points and $\gamma_{1,2} : [0,1] \to \Gamma$ two paths s.t. $\gamma_{1,2}(0) = m_0$ and $\gamma_{1,2}(1) = m$. Then $\int_{\gamma_1} \theta = \int_{\gamma_2} \theta$.

Proof.

Since Γ is Lagrangian,

$$d \theta|_{\Gamma} = \omega|_{\Gamma} = 0$$

and so locally $\theta = dS$, i.e.

$$p_{\alpha}=rac{\partial S}{\partial q^{lpha}},$$

and therefore

$$\int_{\gamma_i} \theta = S(m) - S(m_0).$$

Corollary ("Method of Characteristics")

For a fixed q_0 , assume that the Lagrangian submanifold $\Gamma^n \subset \{H(q,p) = E_0\} \subset T^*M$ projects with full rank on M close to q_0 . Then the "truncated action"

$$S_{E_0}(q)=\int_{q_0}^q p_lpha dq^lpha$$

solves the Hamilton-Jacobi equation

$$H\left(q, \frac{\partial \mathcal{S}_{E_0}}{\partial q}\right) = E_0$$

Corollary ("Method of Characteristics")

For a fixed q_0 , assume that the Lagrangian submanifold $\Gamma^n \subset \{H(q,p) = E_0\} \subset T^*M$ projects with full rank on M close to q_0 . Then the "truncated action"

$$S_{E_0}(q)=\int_{q_0}^{\cdot q}p_lpha dq^lpha$$

solves the Hamilton-Jacobi equation

$$H\left(q,\frac{\partial S_{E_0}}{\partial q}\right)=E_0$$

Proof.

Since
$$dS_{E_0} = p_{\alpha} dq^{\alpha}$$
, we have that
 $p_{\alpha} = \frac{\partial S_{E_0}}{\partial q^{\alpha}}$
so that, since $\Gamma \subset \{H(q, p) = E_0\}, H(q, \partial_q S_{E_0}) = E_0.$

Application to solving 1st order PDEs

Consider the 1st order implicit PDE with "Cauchy boundary conditions":

$$H(q,\partial_q S) = E_0, \ S|_{\Gamma^{n-1}} = s_0 \in C^{\infty}(\Gamma^{n-1})$$

where $H|_{\Gamma^{n-1}} = E_0$, Γ^{n-1} is transversal to the Hamiltonian flow of *H* and projects diffeomorphically on *M*.

Application to solving 1st order PDEs

Consider the 1st order implicit PDE with "Cauchy boundary conditions":

$$H(q,\partial_q S) = E_0, \ S|_{\Gamma^{n-1}} = s_0 \in C^{\infty}(\Gamma^{n-1})$$

where $H|_{\Gamma^{n-1}} = E_0$, Γ^{n-1} is transversal to the Hamiltonian flow of *H* and projects diffeomorphically on *M*. Then the previous Corollary shows that at least for small *T* the

Then the previous Corollary shows that, at least for small T, the solution on $\pi_M(\Gamma_T)$ is given by

$$S_{E_0}(q)=s_0(q_0)+\int_{q_0}^qp_lpha dq^lpha\,,$$

where q_0 is the point of Γ^{n-1} such that $q = \Phi_H^t(q_0)$ for some *t*.

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2 \right)$$

The level set $H = \frac{1}{2}$ is the unitary 3-sphere \mathbb{S}^3 .

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2 \right)$$

The level set $H = \frac{1}{2}$ is the unitary 3-sphere \mathbb{S}^3 .

The corresponding HJ equation is

$$(\partial_x S)^2 + (\partial_y S)^2 + x^2 + y^2 = 1$$

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2 \right)$$

The level set $H = \frac{1}{2}$ is the unitary 3-sphere \mathbb{S}^3 .

The corresponding HJ equation is

$$(\partial_x S)^2 + (\partial_y S)^2 + x^2 + y^2 = 1$$

Every orbit is periodic with period 2π and lies on a torus $p_x^2 + x^2 = \alpha^2$, $p_y^2 + y^2 = 1 - \alpha^2$, so the manifold of trajectories $\Gamma_{2\pi}$ of every loop $\Gamma^1 \subset \mathbb{S}^3$ transversal to the flow is a 2-torus.

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 + x^2 + y^2 \right)$$

The level set $H = \frac{1}{2}$ is the unitary 3-sphere \mathbb{S}^3 .

The corresponding HJ equation is

$$(\partial_x S)^2 + (\partial_y S)^2 + x^2 + y^2 = 1$$

Every orbit is periodic with period 2π and lies on a torus $p_x^2 + x^2 = \alpha^2$, $p_y^2 + y^2 = 1 - \alpha^2$, so the manifold of trajectories $\Gamma_{2\pi}$ of every loop $\Gamma^1 \subset \mathbb{S}^3$ transversal to the flow is a 2-torus. Take $\Gamma^1 = \{p_y = p_x = 0, x^2 + y^2 = 1\}$. Then the surface Γ_T is

$$x = \cos\phi\cos t$$
, $y = \sin\phi\cos t$

$$p_x = -\cos\phi\sin t$$
, $p_y = -\sin\phi\sin t$

Hence

$$S(x(T), y(T)) = \int_0^T (p_x \, dx + p_y \, dy) = \int_0^T \cos^2 t \, dt = \frac{1}{2} (T + \sin(2T))$$

Hence

$$S(x(T), y(T)) = \int_0^T (p_x \, dx + p_y \, dy) = \int_0^T \cos^2 t \, dt = \frac{1}{2} (T + \sin(2T))$$

At time T, $x(T) = r(T)\cos\phi$, namely $r(T) = \cos^{-1} T$, so

$$S(r) = \frac{1}{2}\cos^{-1}r + r\sqrt{1 - r^2}$$

Hence

$$S(x(T), y(T)) = \int_0^T (p_x \, dx + p_y \, dy) = \int_0^T \cos^2 t \, dt = \frac{1}{2} (T + \sin(2T))$$

At time T, $x(T) = r(T)\cos\phi$, namely $r(T) = \cos^{-1} T$, so

$$S(r) = \frac{1}{2}\cos^{-1}r + r\sqrt{1-r^2}$$

The solution in the annullus $1 \ge r \ge r_0 > 0$ is therefore

$$S(r,\theta) = s_0(\theta) + \frac{1}{2}\cos^{-1}r + r\sqrt{1-r^2}$$

Hence

$$S(x(T), y(T)) = \int_0^T (p_x \, dx + p_y \, dy) = \int_0^T \cos^2 t \, dt = \frac{1}{2} (T + \sin(2T))$$

At time T, $x(T) = r(T)\cos\phi$, namely $r(T) = \cos^{-1} T$, so

$$S(r) = \frac{1}{2}\cos^{-1}r + r\sqrt{1-r^2}$$

The solution in the annullus $1 \ge r \ge r_0 > 0$ is therefore

$$S(r,\theta) = s_0(\theta) + \frac{1}{2}\cos^{-1}r + r\sqrt{1-r^2}$$

Remarks: 1. In order to have a solution on the whole $r \le 1$, we must have $s_0 = const$. 2. The solution is singular where Γ_t is not a graph.

Example 2: Cohomological Equation $L_{\xi}f = g, \ \xi \in \chi(M), \ f,g \in C^{\infty}(M)$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field ξ_H : just take $H(q, p) = p_{\alpha}\xi^{\alpha}(q)$.

Example 2: Cohomological Equation $L_{\xi}f = g, \ \xi \in \chi(M), \ f, g \in C^{\infty}(M)$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field ξ_H : just take $H(q,p) = p_{\alpha}\xi^{\alpha}(q)$. In order to solve the equation $L_{\xi}f = g$

with the Method of Characteristics consider the Hamiltonian

$$H(q,p) = p_{\alpha}\xi^{\alpha}(q) - g(q)$$

Example 2: Cohomological Equation $L_{\xi}f = g, \ \xi \in \chi(M), \ f, g \in C^{\infty}(M)$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field ξ_H : just take $H(q,p) = p_{\alpha}\xi^{\alpha}(q)$. In order to solve the equation $L_{\xi}f = g$

with the Method of Characteristics consider the Hamiltonian $H(q,p) = p_{\alpha}\xi^{\alpha}(q) - g(q)$

Its associated HJ equation corresponding to Energy level 0 is

$$0 = H\left(q, \frac{\partial f}{\partial q}\right) = \xi^{\alpha}(q) \frac{\partial f}{\partial q^{\alpha}}(q) - g(q) = L_{\xi}f - g$$

Example 2: Cohomological Equation $L_{\xi}f = g, \ \xi \in \chi(M), \ f, g \in C^{\infty}(M)$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field ξ_H : just take $H(q,p) = p_{\alpha}\xi^{\alpha}(q)$. In order to solve the equation $L_{\xi}f = g$

with the Method of Characteristics consider the Hamiltonian $H(q,p) = p_{\alpha}\xi^{\alpha}(q) - g(q)$

Its associated HJ equation corresponding to Energy level 0 is

$$0 = H\left(q, \frac{\partial f}{\partial q}\right) = \xi^{\alpha}(q) \frac{\partial f}{\partial q^{\alpha}}(q) - g(q) = L_{\xi}f - g$$

Once the value of *f* is given on some n-1-dimensional submanifold transversal to ξ , its (local) solution is given by

$$f(q) = \int_{q_0}^q p_\alpha dq^\alpha = \int_{t_0}^t \frac{\partial f}{\partial q} \dot{q}^\alpha dt = \int_{t_0}^t \frac{\partial f}{\partial q} \xi^\alpha dt = \int_{t_0}^t g(q(t)) dt,$$

(the integral is taken over the integral traj. of ξ joining q_0 and q)

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi : (q, p) \rightarrow (Q, P)$ where the Hamiltonian writes in a simpler way.

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi : (q, p) \rightarrow (Q, P)$ where the Hamiltonian writes in a simpler way.

E.g. in the best case scenario $\psi_* H(Q, P)$ only depends on *P*'s, so that the flow of ϕ_H^t is conjugated with the flow of the "free particle".

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi : (q, p) \rightarrow (Q, P)$ where the Hamiltonian writes in a simpler way.

E.g. in the best case scenario $\psi_* H(Q, P)$ only depends on *P*'s, so that the flow of ϕ_H^t is conjugated with the flow of the "free particle".

We recall that such a ψ is actually determined by a single function S(q, Q) such that

$$p_{\alpha}dq^{\alpha} - P_{\alpha}dQ^{\alpha} = dS$$

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi : (q, p) \rightarrow (Q, P)$ where the Hamiltonian writes in a simpler way.

E.g. in the best case scenario $\psi_* H(Q, P)$ only depends on *P*'s, so that the flow of ϕ_H^t is conjugated with the flow of the "free particle".

We recall that such a ψ is actually determined by a single function S(q, Q) such that

$$p_{\alpha}dq^{\alpha}-P_{\alpha}dQ^{\alpha}=dS$$

This new generating function *S* therefore satisfies the HJ eq. but it also depends on *n* "external parameters" Q^{α} , so that it gives rise to a Lagrangian foliation of T^*Q where every leaf is isoenergetic.

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	Μ	$\mathbb{R} imes M$

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	М	$\mathbb{R} imes M$
phase space	T^*M	$T^*\mathbb{R} imes T^*M$

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	М	$\mathbb{R} imes M$
phase space	T^*M	$T^*\mathbb{R} imes T^*M$
coordinates	(q^lpha, p_lpha)	$(t, E, q^{lpha}, p_{lpha})$

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	М	$\mathbb{R} imes M$
phase space	T^*M	$T^*\mathbb{R} imes T^*M$
coordinates	(q^lpha, p_lpha)	$(t, E, q^{lpha}, ho_{lpha})$
symp. form	$\mathit{dq}^{lpha}\wedge \mathit{dp}_{lpha}$	$\mathit{dq}^{lpha} \wedge \mathit{dp}_{lpha} - \mathit{dt} \wedge \mathit{dE}$

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	М	$\mathbb{R} imes M$
phase space	T^*M	$T^*\mathbb{R} imes T^*M$
coordinates	(q^lpha, p_lpha)	$(t, E, q^{lpha}, ho_{lpha})$
symp. form	$\mathit{dq}^{lpha}\wedge \mathit{dp}_{lpha}$	$\mathit{dq}^{lpha} \wedge \mathit{dp}_{lpha} - \mathit{dt} \wedge \mathit{dE}$
Hamiltonian	H(t,q,p)	$ ilde{ extsf{H}}(t, extsf{E}, extsf{q}, extsf{p}) = extsf{H}(t, extsf{q}, extsf{p}) - extsf{E}$

Hamilton-Jacobi equation (time-dependent)

	time ind.	time dep.
base space	М	$\mathbb{R} imes M$
phase space	T^*M	$T^*\mathbb{R} imes T^*M$
coordinates	(q^lpha, p_lpha)	$(t, E, q^{lpha}, p_{lpha})$
symp. form	$\mathit{dq}^{lpha}\wedge \mathit{dp}_{lpha}$	$dq^{lpha} \wedge dp_{lpha} - dt \wedge dE$
Hamiltonian	H(t,q,p)	$ ilde{H}(t, E, q, p) = H(t, q, p) - E$
Ham. eqs.	$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \partial H / \partial p \\ -\partial H / \partial q \end{pmatrix}$	$\begin{pmatrix} \dot{q} \\ \dot{p} \\ \dot{t} \\ \dot{E} \end{pmatrix} = \begin{pmatrix} \partial H / \partial p \\ -\partial H / \partial q \\ 1 \\ \partial H / \partial t \end{pmatrix} \textcircled{e}$

Hamilton-Jacobi equation (time-dependent)

In this environment, the generating function is given by

$$S(m) = S(m_0) + \int_{\gamma} [p_{lpha} dq^{lpha} - H(t,q,p)] dt$$

and satisfies the complete Hamilton-Jacobi equation

$$H\left(q,\frac{\partial S}{\partial q}\right) = -\frac{\partial S}{\partial t}$$

The solution to this equation provides a 1-parameter family of symplectomorphisms S_t which make the Hamiltonian H equal to constant at all time.

Feynmans' two postulates for QM on \mathbb{R}^n :

• The probability $\langle q_1 | \Psi_t | q_2 \rangle$ that a particle represented by the wavefunction $\Psi_t \in L^2(\mathbb{R}^n)$ moves from q_1 to q_2 under a Hamiltonian $H(q,p) = \frac{1}{2m} \delta^{ij} p_i p_j + V(q)$ is the "sum" over all contribution from all possible paths joining the two points;

Feynmans' two postulates for QM on \mathbb{R}^n :

- The probability $\langle q_1 | \Psi_t | q_2 \rangle$ that a particle represented by the wavefunction $\Psi_t \in L^2(\mathbb{R}^n)$ moves from q_1 to q_2 under a Hamiltonian $H(q,p) = \frac{1}{2m} \delta^{ij} p_i p_j + V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
- **2** The contribution to Ψ_t of a path γ is given by $e^{\frac{i}{\hbar}S[\gamma]}$, where $S[\gamma] = \int_{\gamma} \theta_H$ is the classical action.

Feynmans' two postulates for QM on \mathbb{R}^n :

- The probability $\langle q_1 | \Psi_t | q_2 \rangle$ that a particle represented by the wavefunction $\Psi_t \in L^2(\mathbb{R}^n)$ moves from q_1 to q_2 under a Hamiltonian $H(q,p) = \frac{1}{2m} \delta^{ij} p_i p_j + V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
- **2** The contribution to ψ_t of a path γ is given by $e^{\frac{f}{\hbar}S[\gamma]}$, where $S[\gamma] = \int_{\gamma} \theta_H$ is the classical action.

Consider a single contribution $\psi_t(q) = e^{\frac{i}{\hbar}S[\gamma]}$ and assume that *S* is a solution of the HJ time-dependent equation.

Feynmans' two postulates for QM on \mathbb{R}^n :

- The probability $\langle q_1 | \Psi_t | q_2 \rangle$ that a particle represented by the wavefunction $\Psi_t \in L^2(\mathbb{R}^n)$ moves from q_1 to q_2 under a Hamiltonian $H(q,p) = \frac{1}{2m} \delta^{ij} p_i p_j + V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
- **2** The contribution to Ψ_t of a path γ is given by $e^{\frac{i}{\hbar}S[\gamma]}$, where $S[\gamma] = \int_{\gamma} \theta_H$ is the classical action.

Consider a single contribution $\psi_t(q) = e^{\frac{i}{\hbar}S[\gamma]}$ and assume that *S* is a solution of the HJ time-dependent equation.

Which equation does ψ satisfy?

$$S(q,t) = -i\hbar \ln \psi$$

$$S(q,t) = -i\hbar \ln \psi$$
$$\frac{\partial S}{\partial q^{\alpha}} = -\frac{i\hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \implies \left[\frac{\partial S}{\partial q^{\alpha}}\right]^{2} = -\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial (q^{\alpha})^{2}}$$

.. .

- 1

$$S(q,t) = -i\hbar \ln \psi$$

 $\frac{\partial S}{\partial q^{\alpha}} = -\frac{i\hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \implies \left[\frac{\partial S}{\partial q^{\alpha}}\right]^2 = -\frac{\hbar^2}{\psi} \frac{\partial^2 \psi}{\partial (q^{\alpha})^2}$
so the HJ equation

$$\frac{\partial S}{\partial t} = \frac{1}{2m} \left[\delta^{ij} \frac{\partial S}{\partial q^{\alpha}} \frac{\partial S}{\partial q^{\beta}} \right] + V(q)$$

$$S(q,t) = -i\hbar \ln \psi$$
$$\frac{\partial S}{\partial q^{\alpha}} = -\frac{i\hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \Longrightarrow \left[\frac{\partial S}{\partial q^{\alpha}}\right]^{2} = -\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial (q^{\alpha})^{2}}$$

so the HJ equation

$$\frac{\partial S}{\partial t} = \frac{1}{2m} \left[\delta^{ij} \frac{\partial S}{\partial q^{\alpha}} \frac{\partial S}{\partial q^{\beta}} \right] + V(q)$$

writes as

$$-i\hbar\dot{\psi} = -\frac{\hbar^2}{2m}\Delta\psi + V(q)\psi + \frac{i\hbar}{2m}\psi\Delta S$$

Apart for the non-linear term, this is exactly the Schrodinger equation of quantum mechanics $-i\hbar\dot{\psi} = \hat{H}\psi$, where \hat{H} is comes from H via $p_{\alpha} \rightarrow -i\hbar\frac{\partial}{\partial q^{\alpha}}$ and $q^{\alpha} \rightarrow$ "multiplication by q^{α} ".

Now consider instead the Schrodinger equation

$$rac{\hbar}{i}\dot{\psi}=-rac{\hbar^2}{2m}\Delta\psi+V(q)\psi$$

and write $\psi_t(q) = e^{rac{i}{\hbar}S[\gamma]}$. Which eq. does *S* satisfy?

Now consider instead the Schrodinger equation

$$rac{\hbar}{i}\dot{\psi}=-rac{\hbar^2}{2m}\Delta\psi+V(q)\psi$$

and write $\psi_t(q) = e^{rac{i}{\hbar}S[\gamma]}$. Which eq. does *S* satisfy?

Proceeding like above we find

$$-\frac{\partial S}{\partial t} = \frac{1}{2m} \left[\delta^{ij} \frac{\partial S}{\partial q^i} \frac{\partial S}{\partial q^j} \right] + V(q) - \frac{i\hbar}{2m} \Delta S$$

namely

$$-\frac{\partial S}{\partial t} = H\left(q, \frac{\partial S}{\partial q}\right) - \frac{i\hbar}{2m}\Delta S$$

that, for $\hbar \to$ 0, reduces exactly to the HJ equation!

Now consider instead the Schrodinger equation

$$rac{\hbar}{i}\dot{\psi}=-rac{\hbar^2}{2m}\Delta\psi+V(q)\psi$$

and write $\psi_t(q) = e^{rac{i}{\hbar}S[\gamma]}$. Which eq. does *S* satisfy?

Proceeding like above we find

$$-\frac{\partial S}{\partial t} = \frac{1}{2m} \left[\delta^{ij} \frac{\partial S}{\partial q^i} \frac{\partial S}{\partial q^j} \right] + V(q) - \frac{i\hbar}{2m} \Delta S$$

namely

$$-\frac{\partial S}{\partial t} = H\left(q, \frac{\partial S}{\partial q}\right) - \frac{i\hbar}{2m}\Delta S$$

that, for $\hbar \rightarrow$ 0, reduces exactly to the HJ equation!

This is the simplest way to show that QM reduces to CM for $\hbar \rightarrow$ 0.

The WKB Method

Consider again the Schrodinger equation in \mathbb{R}^n

$$-i\hbar\dot{\psi}=-rac{\hbar^{2}}{2m}\Delta\psi+V(q)\psi$$

Under the ansatz $\psi(x) = e^{iS(x)/\hbar}$, at 1st order in \hbar then *S* is the solution of the corresponding HJ equation.

This though is a very poor approximation, e.g. $\psi \notin L^2(\mathbb{R}^n)$. Under the ansatz

$$\psi(x) = a(x)e^{iS(x)/\hbar}$$

 ψ is an eigenfunction for the quantum Hamiltonian \hat{H} iff

$$i\hbar\left(a\Delta S+2\delta^{lphaeta}\partial_{eta}a\partial_{lpha}S
ight)+\hbar^{2}\Delta a=0$$

At the 1st order in \hbar we get the *homogeneous transport* equation

$$a\Delta S+2\delta^{lphaeta}\partial_{lpha}a\partial_{eta}S=0$$
 .

Example: QM on the line

The 2nd order solution $\psi = ae^{iS/\hbar}$ is called *semiclassical approximation* of the exact solution of the Schrodinger equation. In \mathbb{R} , the homegenous transport equation writes

$$aS''+2a'S'=0$$

so that

$$a(x) = rac{c}{\sqrt{S'(x)}} = rac{c}{\left[4(E_0 - V(x))
ight]^{1/4}}.$$

Example: QM on the line

The 2nd order solution $\psi = ae^{iS/\hbar}$ is called *semiclassical approximation* of the exact solution of the Schrodinger equation. In \mathbb{R} , the homegenous transport equation writes

$$aS''+2a'S'=0$$

so that

$$a(x) = rac{c}{\sqrt{S'(x)}} = rac{c}{\left[4(E_0 - V(x))
ight]^{1/4}}.$$

This method, called WKB (Wentzel, Kramers, Brillouin), is at the base of *microlocal analysis*.

Related Literature

• D. Holm, *Fermat's principle and the Geometric Mechanics of Ray Optics*, Summer School Lectures, Field Inst., July 2012, http://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/

• S. Bates, A. Weinstein, *Lectures on the Geometric Quantization*, http://math.berkeley.edu/~alanw/GofQ.pdf

• J. Carinena, X. Gracia, G. Marmo, E. Martinez, M Munoz-Lecanda, N. Roman-Roy, *Geometric Hamilton-Jacobi theory*, Int. J. Geom. Meth. Mod. Phys., 2006, 3, 1417-1458

• J. Carinena, X. Gracia, G. Marmo, E. Martinez, M Munoz-Lecanda, N. Roman-Roy, *Hamilton-Jacobi theory and the evolution operator*, arxiv.org/0907.1039

• M. Nakane, G. Fraser, *The early history of Hamilton-Jacobi equations*, Centaurus, 2002, 44, 161-227

Completely Integrable

Systems

Let (M^{2n}, ω) be a symplectic mfd. Functions in $C^{\infty}(M)$ are called *observables*.

Let (M^{2n}, ω) be a symplectic mfd. Functions in $C^{\infty}(M)$ are called *observables*.

An observable *f* is a *constant of motion* if $L_{\xi_H} f = 0$, i.e. iff $\omega(\xi_H, \xi_f) = 0$.

Let (M^{2n}, ω) be a symplectic mfd. Functions in $C^{\infty}(M)$ are called *observables*.

An observable *f* is a *constant of motion* if $L_{\xi_H} f = 0$, i.e. iff $\omega(\xi_H, \xi_f) = 0$.

We set $\{f,g\} = \omega(\xi_f,\xi_g)$ and we say that *f* is a *first integral* for *H* iff $\{H,f\} = 0$.

Let (M^{2n}, ω) be a symplectic mfd. Functions in $C^{\infty}(M)$ are called *observables*.

An observable *f* is a *constant of motion* if $L_{\xi_H} f = 0$, i.e. iff $\omega(\xi_H, \xi_f) = 0$.

We set $\{f,g\} = \omega(\xi_f, \xi_g)$ and we say that *f* is a *first integral* for *H* iff $\{H, f\} = 0$.

We say that *H* is *completely integrable* if it has *n* independent 1st integrals in involution (i.e. commuting with each other).
Poisson bracket & First Integrals

Let (M^{2n}, ω) be a symplectic mfd. Functions in $C^{\infty}(M)$ are called *observables*.

An observable *f* is a *constant of motion* if $L_{\xi_H} f = 0$, i.e. iff $\omega(\xi_H, \xi_f) = 0$.

We set $\{f,g\} = \omega(\xi_f, \xi_g)$ and we say that *f* is a *first integral* for *H* iff $\{H, f\} = 0$.

We say that H is *completely integrable* if it has n independent 1st integrals in involution (i.e. commuting with each other).

Theorem

If $\{f_1, \ldots, f_n\}$ are n commuting observables in involution, all level submanifolds $f_1 = c_1, \ldots, f_n = c_n$ are Lagrangian.

Theorem (Arnold-Liouville Theorem)

If $\{H = f_1, \dots, f_n\}$ is a CIS on M and $M_c = \{f_i = c_i\}$. Then:

Theorem (Arnold-Liouville Theorem)

If $\{H = f_1, \dots, f_n\}$ is a CIS on M and $M_c = \{f_i = c_i\}$. Then:

if M_f is compact, each connected component is diffeomorphic to Tⁿ;

Theorem (Arnold-Liouville Theorem)

If $\{H = f_1, \ldots, f_n\}$ is a CIS on M and $M_c = \{f_i = c_i\}$. Then:

if M_f is compact, each connected component is diffeomorphic to Tⁿ;

2 in the neighborhood of each such torus, there exists action-angle symplectic coordinates $I_1, \ldots, I_n, \varphi^1, \ldots, \varphi^n$ such that the φ^{α} are coordinates on the torus and $H = H(I_1, \ldots, I_n)$.

Theorem (Arnold-Liouville Theorem)

If $\{H = f_1, \ldots, f_n\}$ is a CIS on M and $M_c = \{f_i = c_i\}$. Then:

if M_f is compact, each connected component is diffeomorphic to Tⁿ;

2 in the neighborhood of each such torus, there exists action-angle symplectic coordinates $I_1, \ldots, I_n, \varphi^1, \ldots, \varphi^n$ such that the φ^{α} are coordinates on the torus and $H = H(I_1, \ldots, I_n)$.

In particular in such coordinates the Hamilton eqs writes

$$\dot{l}_{\alpha} = 0, \ \dot{\phi}^{\alpha} = \frac{\partial H}{\partial l_{\alpha}}$$

Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only general effective method to find integrals of motion:

Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only general effective method to find integrals of motion:

Theorem (Jacobi, see Arn 47B)

If the Hamilton-Jacobi equation $H(q, \partial_q S) = E_0$ admits a solution S(q, Q), depending on n parameters Q^1, \ldots, Q^n , such that the Hessian

$\frac{\partial^2 S}{\partial q \partial Q}$

is always non-degenerate, then the corresponding Hamiltonian equations

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} \partial H / \partial p \\ -\partial H / \partial q \end{pmatrix}$$

can be solved explicitly by quadratures and the n functions $Q^{\alpha}(q,p)$ are all integrals of motion.

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q,p) = \frac{1}{2} (p^2 + \omega^2 q^2)$.

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q,p) = \frac{1}{2} (p^2 + \omega^2 q^2)$. Every leaf $M_E = \{H = E > 0\}$ is an ellipse with interior S_E .

Define
$$I = \frac{1}{2\pi} \int_{M_E} p \, dq = \frac{1}{2\pi} \int_{S_E} dp \wedge dq = \frac{E}{\omega}$$

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q,p) = \frac{1}{2} (p^2 + \omega^2 q^2)$. Every leaf $M_E = \{H = E > 0\}$ is an ellipse with interior S_E .

Define
$$I = \frac{1}{2\pi} \int_{M_E} p \, dq = \frac{1}{2\pi} \int_{S_E} dp \wedge dq = \frac{E}{\omega}$$

Hence we set $I = H/\omega$ and define

$$S(q, l) = \int p \, dq = \int \sqrt{2 l \omega - \omega^2 q^2} \, dq$$

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q,p) = \frac{1}{2} (p^2 + \omega^2 q^2)$. Every leaf $M_E = \{H = E > 0\}$ is an ellipse with interior S_E .

Define
$$I = \frac{1}{2\pi} \int_{M_E} p \, dq = \frac{1}{2\pi} \int_{S_E} dp \wedge dq = \frac{E}{\omega}$$

Hence we set $I = H/\omega$ and define

$$S(q,l)=\int p\,dq=\int \sqrt{2I\omega-\omega^2q^2}dq$$
 . Then we get

$$\varphi = \frac{\partial S}{\partial I} = \int \frac{\omega}{\sqrt{2I\omega - \omega^2 q^2}} dq = \sin^{-1} \left(q \sqrt{\frac{\omega}{2I}} \right) - \varphi_0$$

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q,p) = \frac{1}{2} (p^2 + \omega^2 q^2)$. Every leaf $M_E = \{H = E > 0\}$ is an ellipse with interior S_E .

Define
$$I = \frac{1}{2\pi} \int_{M_E} p \, dq = \frac{1}{2\pi} \int_{S_E} dp \wedge dq = \frac{E}{\omega}$$

Hence we set $I = H/\omega$ and define

$$S(q, l) = \int p \, dq = \int \sqrt{2 l \omega - \omega^2 q^2} \, dq.$$
get

Then we get

$$\varphi = \frac{\partial S}{\partial I} = \int \frac{\omega}{\sqrt{2I\omega - \omega^2 q^2}} dq = \sin^{-1} \left(q \sqrt{\frac{\omega}{2I}} \right) - \varphi_0$$

The coord. change $(q, p) \mapsto (\varphi, I)$ is symplectic (i.e. $d\varphi \wedge dI = dq \wedge dp$) and the equations of motion now write $\dot{\varphi} = \omega, \quad \dot{I} = 0$

Problem: study geodesics on $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Problem: study geodesics on
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

Consider confocal ellipsoidal coordinates $\lambda_1,\lambda_2,\lambda_3$ defined by

$$\frac{x^2}{a^2-\lambda}+\frac{y^2}{b^2-\lambda}+\frac{z^2}{c^2-\lambda}=1$$

If a < b < c then $\lambda_1 < a < \lambda_2 < b < \lambda_3 < c$.

Problem: study geodesics on $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Consider confocal ellipsoidal coordinates $\lambda_1,\lambda_2,\lambda_3$ defined by

$$\frac{x^2}{a^2-\lambda}+\frac{y^2}{b^2-\lambda}+\frac{z^2}{c^2-\lambda}=1$$

If a < b < c then $\lambda_1 < a < \lambda_2 < b < \lambda_3 < c$. Hence E_i given by

$$\frac{x^2}{a^2-\lambda_i}+\frac{y^2}{b^2-\lambda_i}+\frac{z^2}{c^2-\lambda_i}=1$$

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for respectively i = 1, 2, 3.

Problem: study geodesics on $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Consider confocal ellipsoidal coordinates $\lambda_1,\lambda_2,\lambda_3$ defined by

$$\frac{x^2}{a^2-\lambda}+\frac{y^2}{b^2-\lambda}+\frac{z^2}{c^2-\lambda}=1$$

If a < b < c then $\lambda_1 < a < \lambda_2 < b < \lambda_3 < c$. Hence E_i given by

$$\frac{x^2}{a^2-\lambda_i}+\frac{y^2}{b^2-\lambda_i}+\frac{z^2}{c^2-\lambda_i}=1$$

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for respectively i = 1, 2, 3. Note that λ_i, λ_j can be used as local coordinates on E_k .

$$g=(\lambda_3-\lambda_2)\left[rac{\lambda_3-\lambda_1}{f(\lambda_3)}d\lambda_3^2-rac{\lambda_2-\lambda_1}{f(\lambda_2)}d\lambda_2^2
ight]\,.$$

$$g=(\lambda_3-\lambda_2)\left[rac{\lambda_3-\lambda_1}{f(\lambda_3)}d\lambda_3^2-rac{\lambda_2-\lambda_1}{f(\lambda_2)}d\lambda_2^2
ight]\,.$$

where
$$f(\lambda) = 4(a-\lambda)(b-\lambda)(c-\lambda)$$
.

$$g=(\lambda_3-\lambda_2)\left[rac{\lambda_3-\lambda_1}{f(\lambda_3)}d\lambda_3^2-rac{\lambda_2-\lambda_1}{f(\lambda_2)}d\lambda_2^2
ight],$$

where
$$f(\lambda) = 4(a - \lambda)(b - \lambda)(c - \lambda)$$
.

So
$$H(\lambda_2,\lambda_3) = \frac{1}{\lambda_3 - \lambda_2} \left[\frac{f(\lambda_3)}{\lambda_3 - \lambda_1} p_3^2 + \frac{f(\lambda_2)}{\lambda_2 - \lambda_1} p_2^2 \right]$$

$$g=(\lambda_3-\lambda_2)\left[rac{\lambda_3-\lambda_1}{f(\lambda_3)}d\lambda_3^2-rac{\lambda_2-\lambda_1}{f(\lambda_2)}d\lambda_2^2
ight],$$

where
$$f(\lambda) = 4(a - \lambda)(b - \lambda)(c - \lambda)$$
.

So
$$H(\lambda_2,\lambda_3) = \frac{1}{\lambda_3 - \lambda_2} \left[\frac{f(\lambda_3)}{\lambda_3 - \lambda_1} p_3^2 + \frac{f(\lambda_2)}{\lambda_2 - \lambda_1} p_2^2 \right]$$

and therefore the Hamilton-Jacobi equation

$$\frac{1}{\lambda_3 - \lambda_2} \left[\frac{f(\lambda_3)}{\lambda_3 - \lambda_1} \left(\frac{\partial S}{\partial \lambda_3} \right)^2 + \frac{f(\lambda_2)}{\lambda_2 - \lambda_1} \left(\frac{\partial S}{\partial \lambda_2} \right)^2 \right] = 1$$

is separable. Hence the system is completely integrable!

Slide 71/121 - Roberto De Leo - A quick survey of Hamiltonian systems

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g. $\mathbb{C} = \mathbb{R}[x]/(x^2+1)$ is the SF of $p(x) = x^2+1$ over \mathbb{R} .

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g. $\mathbb{C} = \mathbb{R}[x]/(x^2+1)$ is the SF of $p(x) = x^2+1$ over \mathbb{R} . and $\mathbb{Q}[\sqrt[3]{2}, e^{i2\pi/3}]$ is the SF of $p(x) = x^3 - 2$ over \mathbb{Q} .

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g.
$$\mathbb{C} = \mathbb{R}[x]/(x^2+1)$$
 is the SF of $p(x) = x^2+1$ over \mathbb{R} .
and $\mathbb{Q}[\sqrt[3]{2}, e^{i2\pi/3}]$ is the SF of $p(x) = x^3 - 2$ over \mathbb{Q} .

The Galois group Aut(L(p)/k) of L(p) is the group of automorphisms of *L* that leaves *k* invariant.

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g.
$$\mathbb{C} = \mathbb{R}[x]/(x^2+1)$$
 is the SF of $p(x) = x^2+1$ over \mathbb{R} .
and $\mathbb{Q}[\sqrt[3]{2}, e^{i2\pi/3}]$ is the SF of $p(x) = x^3-2$ over \mathbb{Q} .

The Galois group Aut(L(p)/k) of L(p) is the group of automorphisms of *L* that leaves *k* invariant.

E.g.
$$Aut(\mathbb{C}/\mathbb{R}) \simeq \{\pm 1\}, Aut(\mathbb{Q}[{}^3\sqrt{2}, e^{i2\pi/3}]/\mathbb{Q}) \simeq D_6$$

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g.
$$\mathbb{C} = \mathbb{R}[x]/(x^2+1)$$
 is the SF of $p(x) = x^2+1$ over \mathbb{R} .
and $\mathbb{Q}[\sqrt[3]{2}, e^{i2\pi/3}]$ is the SF of $p(x) = x^3-2$ over \mathbb{Q} .

The Galois group Aut(L(p)/k) of L(p) is the group of automorphisms of *L* that leaves *k* invariant.

E.g.
$$Aut(\mathbb{C}/\mathbb{R}) \simeq \{\pm 1\}$$
, $Aut(\mathbb{Q}[{}^3\sqrt{2}, e^{i2\pi/3}]/\mathbb{Q}) \simeq D_6$

Theorem

If the roots of p(x) can be written in terms of radicals, then its SF is soluble. If $\partial p < 5$, then L(p) is soluble.

Consider a field *k* and a polynomial $p \in k[x]$. The *splitting field* (SF) L(p) is *the* field extension (modulo isomorphisms) of minimal degree over *k* in which *p* splits as $p(x) = \prod_{i=1}^{\partial p} (x - a_i)$.

E.g.
$$\mathbb{C} = \mathbb{R}[x]/(x^2+1)$$
 is the SF of $p(x) = x^2+1$ over \mathbb{R} .
and $\mathbb{Q}[\sqrt[3]{2}, e^{i2\pi/3}]$ is the SF of $p(x) = x^3-2$ over \mathbb{Q} .

The Galois group Aut(L(p)/k) of L(p) is the group of automorphisms of *L* that leaves *k* invariant.

E.g.
$$Aut(\mathbb{C}/\mathbb{R}) \simeq \{\pm 1\}$$
, $Aut(\mathbb{Q}[{}^3\sqrt{2}, e^{i2\pi/3}]/\mathbb{Q}) \simeq D_6$

Theorem

If the roots of p(x) can be written in terms of radicals, then its SF is soluble. If $\partial p < 5$, then L(p) is soluble.

E.g. $Aut(L(x^5 - x - 1)/\mathbb{Q}) \simeq S_5$ is not soluble (Artin).

Galois theory of CIS

How to find out whether a Hamiltonian system (M^{2n}, ω, H) is or not a Completely Integrable System?

Galois theory of CIS

How to find out whether a Hamiltonian system (M^{2n}, ω, H) is or not a Completely Integrable System?

The idea is to study the equations of second variations on TM

$$\dot{X}^{lpha}(t) = rac{\partial \xi^{lpha}_H}{\partial x^{eta}} \Big|_{\gamma(t)} X^{eta}(t), \ X(t) \in T_{\gamma(t)} M$$

defined on integral trajectories $\boldsymbol{\gamma}$ of the Hamiltonian equations of motion,

where (x^{α}) are coords on *M* and (X^{α}) the variations along γ .

Example: the Hénon-Heiles system

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$
$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{p}_x \\ \dot{p}_y \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \\ y^2 + \lambda x^2 \\ 2(A + x)y \end{pmatrix}$$

Example: the Hénon-Heiles system

$$H(x, y, p_x, p_y) = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$
$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{p}_x \\ \dot{p}_y \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \\ y^2 + \lambda x^2 \\ 2(A + x)y \end{pmatrix}$$

Clearly there are orbits with $y(t) = p_y(t) = 0$ for all *t*. Along these trjectories the linearized equation writes

$$\begin{pmatrix} \dot{X} \\ \dot{Y} \\ \dot{P}_{x} \\ \dot{P}_{y} \end{pmatrix} = \begin{pmatrix} P_{x} \\ P_{y} \\ 2\lambda x X \\ 2AY + 2xY \end{pmatrix}$$

Theorem (Audin, III.1.12)

If $f : M \to \mathbb{R}$ is a first integral of ξ_H and k is the first order where the k-th order derivative $D^k f : S^k(TM) \to \mathbb{R}$ is not zero on γ , then

$$f^{o}_{\gamma}(t,X,P) = D^{k}f\big|_{\gamma(t)}((X,P),\ldots,(X,P))$$

is a first integral of the second variations equation on γ .

Theorem (Audin, III.1.12)

If $f : M \to \mathbb{R}$ is a first integral of ξ_H and k is the first order where the k-th order derivative $D^k f : S^k(TM) \to \mathbb{R}$ is not zero on γ , then

$$f_{\gamma}^{o}(t,X,P) = D^{k}f\big|_{\gamma(t)}((X,P),\ldots,(X,P))$$

is a first integral of the second variations equation on γ .

E.g., in case of the Henon-Heiles system, on a solution of the form $\gamma(t) = (x(t), 0, p_x(t), 0)$ the integral of motion associated to the Hamiltonian $H = \frac{1}{2} (p_x^2 + p_y^2) - y^2 (A + x) - \frac{\lambda}{3} x^3$ is

$$H^o_{\gamma}(t,X,Y,P_x,P_y) = dH\big|_{\gamma(t)}(X,Y,P_x,P_y) = p_x(t)P_x - \lambda x^2(t)X$$

Theorem (Audin, III.1.12)

If $f : M \to \mathbb{R}$ is a first integral of ξ_H and k is the first order where the k-th order derivative $D^k f : S^k(TM) \to \mathbb{R}$ is not zero on γ , then

$$f_{\gamma}^{o}(t,X,P) = D^{k}f\big|_{\gamma(t)}((X,P),\ldots,(X,P))$$

is a first integral of the second variations equation on γ .

E.g., in case of the Henon-Heiles system, on a solution of the form $\gamma(t) = (x(t), 0, p_x(t), 0)$ the integral of motion associated to the Hamiltonian $H = \frac{1}{2} (p_x^2 + p_y^2) - y^2 (A + x) - \frac{\lambda}{3} x^3$ is

$$H^{o}_{\gamma}(t,X,Y,P_{x},P_{y}) = dH|_{\gamma(t)}(X,Y,P_{x},P_{y}) = p_{x}(t)P_{x} - \lambda x^{2}(t)X$$

Indeed, on a solution of the linearized equation, we have that

$$\frac{dH_{\gamma}^{o}}{dt} = \dot{p}_{x}P_{x} + p_{x}\dot{P}_{x} - 2\lambda x\dot{x}X - \lambda x^{2}\dot{X} =$$
$$= \lambda x^{2}P_{x} + p_{x}2\lambda xX - 2\lambda xp_{x}X - \lambda x^{2}P_{x} = 0$$

Differential Galois Theory

Definition

Given an algebraically close field *k* with a derivation *D* (e.g. $\mathbb{C}(t)$ with d/dt) and a linear ODE

$$\dot{X} = AX$$
, $A \in M_n(k)$,

the *Picard-Vessiot* extension L(A) of k for A is the field generated on k by the solutions of the ODE.

Differential Galois Theory

Definition

Given an algebraically close field *k* with a derivation *D* (e.g. $\mathbb{C}(t)$ with d/dt) and a linear ODE

$$\dot{X} = AX$$
, $A \in M_n(k)$,

the *Picard-Vessiot* extension L(A) of k for A is the field generated on k by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique modulo differential isomorphisms.

Differential Galois Theory

Definition

Given an algebraically close field *k* with a derivation *D* (e.g. $\mathbb{C}(t)$ with d/dt) and a linear ODE

$$\dot{X} = AX, \quad A \in M_n(k),$$

the *Picard-Vessiot* extension L(A) of k for A is the field generated on k by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique modulo differential isomorphisms.

Definition

The Galois group $Gal(A) \subset GL_n(k)$ of the linear ODE $\dot{X} = AX$ is the group of differential automorphisms of L(A) that fixes k.

Example 1

Consider the linear ODE

$$x' = \frac{\alpha}{t}x$$

on $\mathbb{C}(t)$, namely $A = \left(\frac{\alpha}{t}\right) \in M_1(\mathbb{C}(t))$, whose solution is $x(t) = t^{\alpha} + c$.

Example 1

Consider the linear ODE

$$x' = \frac{\alpha}{t}x$$

on $\mathbb{C}(t)$, namely $A = \left(\frac{\alpha}{t}\right) \in M_1(\mathbb{C}(t))$, whose solution is $x(t) = t^{\alpha} + c$.

Then

•
$$L(A) \simeq \mathbb{C}(t), Gal(A) \simeq \{1\} \text{ if } \alpha \in \mathbb{Z};$$

Example 2 – the Cauchy equation

Consider the Cauchy equation $x'' = \frac{\alpha}{t^2} x$ on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ \frac{\alpha}{t^2} & 0 \end{pmatrix} \in M_2(\mathbb{C}(t))$, and assume $\alpha \neq -\frac{1}{4}$.

Example 2 – the Cauchy equation

Consider the Cauchy equation $x'' = \frac{\alpha}{t^2}x$ on $\mathbb{C}(t)$, namely

$$A = \begin{pmatrix} 0 & 1 \\ \frac{\alpha}{t^2} & 0 \end{pmatrix} \in M_2(\mathbb{C}(t)), \text{ and assume } \alpha \neq -\frac{1}{4}.$$

Two independent solutions are the solutions of the 1-st order

eqs $x' = \frac{\omega_1}{t}x$, where $\alpha_{1,2}$ are the two distinct solutions of $z^2 - z - \alpha = 0$.

Example 2 – the Cauchy equation

Consider the Cauchy equation $x'' = \frac{\alpha}{t^2}x$ on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ \frac{\alpha}{t^2} & 0 \end{pmatrix} \in M_2(\mathbb{C}(t))$, and assume $\alpha \neq -\frac{1}{4}$. Two independent solutions are the solutions of the 1-st order eqs $x' = \frac{\alpha_i}{t}x$, where $\alpha_{1,2}$ are the two distinct solutions of $z^2 - z - \alpha = 0$.

These two solutions $u_{1,2}$ are independent and if $\sigma \in Gal(A)$ then

$$\sigma(u_i)' = \sigma(u_i') = \sigma\left(\frac{\alpha_i}{t}u_i\right) = \frac{\alpha_i}{t}\sigma(u_i)$$

namely $\sigma(u_i) = \lambda u_i$, $\lambda \in \mathbb{C}$, i.e. all matrices of Gal(A) are diagonal. In particular Gal(A) is abelian.

Finally consider the Airy equation x'' = tx on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix} \in M_2(\mathbb{C}(t)).$

Finally consider the Airy equation x'' = tx on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix} \in M_2(\mathbb{C}(t)).$

Let u and v be two independent solutions. Then their Wronskian is a constant, since

$$(uv' - u'v)' = uv'' - u''v = t(uv - uv) = 0$$

Finally consider the Airy equation x'' = tx on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix} \in M_2(\mathbb{C}(t)).$

Let u and v be two independent solutions. Then their Wronskian is a constant, since

$$(uv' - u'v)' = uv'' - u''v = t(uv - uv) = 0$$

Redefine *u* and *v* so that their Wronskian is 1. Then, if $\sigma \in Gal(A) \subset GL_2(\mathbb{C})$, a direct calculation shows that, with respect to the base (u, v),

$$\det \sigma = \det \begin{pmatrix} \sigma(u) & \sigma(v) \\ \sigma(u') & \sigma(v') \end{pmatrix} = \sigma \begin{pmatrix} u & v \\ u' & v' \end{pmatrix} = 1$$

namely $Gal(A) \subset SL_2(\mathbb{C})$.

Finally consider the Airy equation x'' = tx on $\mathbb{C}(t)$, namely $A = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix} \in M_2(\mathbb{C}(t)).$

Let u and v be two independent solutions. Then their Wronskian is a constant, since

$$(uv' - u'v)' = uv'' - u''v = t(uv - uv) = 0$$

Redefine *u* and *v* so that their Wronskian is 1. Then, if $\sigma \in Gal(A) \subset GL_2(\mathbb{C})$, a direct calculation shows that, with respect to the base (u, v),

$$\det \sigma = \det \begin{pmatrix} \sigma(u) & \sigma(v) \\ \sigma(u') & \sigma(v') \end{pmatrix} = \sigma \begin{pmatrix} u & v \\ u' & v' \end{pmatrix} = 1$$

namely $Gal(A) \subset SL_2(\mathbb{C})$. It can be proved that indeed $Gal(A) \simeq SL_2(\mathbb{C})$.

Three fundamental theorems

Theorem (Morales & Ramis, Audin III.1.13)

If f is a first integral, the Galois group of the second variations equation leaves f^o invariant.

Three fundamental theorems

Theorem (Morales & Ramis, Audin III.1.13)

If f is a first integral, the Galois group of the second variations equation leaves f^o invariant.

Theorem (Audin III.2.3)

The Galois group of the second variations equation is a symplectic subgroup of GL(TM).

Three fundamental theorems

Theorem (Morales & Ramis, Audin III.1.13)

If f is a first integral, the Galois group of the second variations equation leaves f^o invariant.

Theorem (Audin III.2.3)

The Galois group of the second variations equation is a symplectic subgroup of GL(TM).

Theorem (Audin III.3.10)

The Lie algebra of the Galois group of the second variation equation of a CIS is abelian.

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

Apply these results to the Henon-Heiles system.

For $\lambda \neq 0$ we consider the trajectory

$$x(t) = \frac{6}{\lambda t^2}, p_x(t) = \dot{x}(t), y(t) = 0, p_y(t) = 0.$$

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

Apply these results to the Henon-Heiles system.

For $\lambda \neq 0$ we consider the trajectory

$$x(t) = \frac{6}{\lambda t^2}, p_x(t) = \dot{x}(t), y(t) = 0, p_y(t) = 0.$$

For $\lambda = 0$ we consider the trajectory

$$x(t) = \frac{t}{2} - A, p_x(t) = \dot{x}(t), y(t) = 0, p_y(t) = 0.$$

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

Apply these results to the Henon-Heiles system.

For $\lambda \neq 0$ we consider the trajectory

$$x(t) = \frac{6}{\lambda t^2}, p_x(t) = \dot{x}(t), y(t) = 0, p_y(t) = 0.$$

For $\lambda = 0$ we consider the trajectory

$$x(t) = \frac{t}{2} - A, p_x(t) = \dot{x}(t), y(t) = 0, p_y(t) = 0.$$

The second variations equations can be reduced to

$$\ddot{X}(t) = 2\left(A + \frac{6}{\lambda t^2}\right)X(t), \lambda \neq 0; \quad \ddot{X}(t) = tX(t), \ \lambda = 0$$

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

When $A \neq 0$, $\ddot{X}(t) = 2\left(A + \frac{6}{\lambda t^2}\right)X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}$, $k \in \mathbb{Z}$. This result can be made even stronger:

Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1, 2, 6, 16$.

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

When $A \neq 0$, $\ddot{X}(t) = 2\left(A + \frac{6}{\lambda t^2}\right)X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}$, $k \in \mathbb{Z}$. This result can be made even stronger:

Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1, 2, 6, 16$.

For A = 0 we get the Cachy equation, whose Galois group is abelian, so in this case we cannot exclude the possibility of further integrals of motion.

Example:
$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) - y^2 (A + x) - \frac{\lambda}{3} x^3$$

When $A \neq 0$, $\ddot{X}(t) = 2\left(A + \frac{6}{\lambda t^2}\right)X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}$, $k \in \mathbb{Z}$. This result can be made even stronger:

Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1, 2, 6, 16$.

For A = 0 we get the Cachy equation, whose Galois group is abelian, so in this case we cannot exclude the possibility of further integrals of motion.

Note finally that for A = 0, $\lambda = 6$ the HH system is indeed a CIS: $K = 4p_y(xp_y - yp_x) + y^4 + 4x^2y^2$

Related Literature

- J. Moser, E. Zehdner, Notes on Dynamical Systems, AMS
- M. Audin, Hamiltonian systems and their integrability, AMS, 2008
- J. Morales, *Differential Galois Theory and non-integrability of Hamiltonian systems*, Birkauser, 1983
- V.I. Arnold, A.B. Givental', "Symplectic Geometry", in Dynamical Systems IV: Symplectic Geometry and Its Applications, edited by V.I. Arnold & S.P. Novikov
- M. Dunajski, *Integrable Systems*, Lecture Notes, http://www.damtp.cam.ac.uk/user/md327/ISlecture_notes_2012_part1.pdf
- V. Jurdjevic, *Jacobi's geodesics problem and Lie groups*, Slides, http://www.cmap.polytechnique.fr/geometric-controlsrg/slides2/jurdjevic.pdf

• A. Maciejewski and M. Przybylska, *Differential Galois theory and integrability*, Int. J. of Geometric Methods in Modern Physics, 6:8, 2009, arXiv:0912.1046

Hamiltonian

Systems

close to

Integrable

Recall that, if (M^{2n}, ω, H) is a CIS and in a neighborhood $T^n \times D^n \subset T^n \times \mathbb{R}^n$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates (q, p), so that H = H(p) and the equations of motion write

$$\dot{q}^{lpha}=rac{\partial H}{\partial p_{lpha}}\,,\ \dot{p}_{lpha}=0\,.$$

Recall that, if (M^{2n}, ω, H) is a CIS and in a neighborhood $T^n \times D^n \subset T^n \times \mathbb{R}^n$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates (q, p), so that H = H(p) and the equations of motion write

$$\dot{q}^{lpha} = rac{\partial H}{\partial p_{lpha}}, \ \dot{p}_{lpha} = 0.$$

If $\frac{\partial^2 H}{\partial p_{\alpha} \partial p_{\beta}}$ is non-singular at every point, then the *n* frequencies $v(p) = \frac{\partial H}{\partial p_{\alpha}}(p) : D^n \to \mathbb{R}^n$ label the Lagrangian tori in $T^n \times D^n$.

Recall that, if (M^{2n}, ω, H) is a CIS and in a neighborhood $T^n \times D^n \subset T^n \times \mathbb{R}^n$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates (q, p), so that H = H(p) and the equations of motion write

$$\dot{q}^{lpha}=rac{\partial H}{\partial p_{lpha}}\,,\ \dot{p}_{lpha}=0\,.$$

If $\frac{\partial^2 H}{\partial p_{\alpha} \partial p_{\beta}}$ is non-singular at every point, then the *n* frequencies $v(p) = \frac{\partial H}{\partial p_{\alpha}}(p) : D^n \to \mathbb{R}^n$ label the Lagrangian tori in $T^n \times D^n$.

Definition

The frequencies (v^1, \ldots, v^n) are non-resonant if there exists c > 0 such that

$$|k_{lpha} \mathbf{v}^{lpha}| \geq rac{c}{\|k\|^n}, \, ext{ for all } k \in \mathbb{Z}^n \setminus 0.$$

The sets $\Phi_c \subset \mathbb{R}^n$, c > 0, of non-resonant frequencies are Cantor sets (closed, perfect and nowhere dense) such that $\mu(\Omega \setminus \Phi_c) = O(c)$ for every bounded $\Omega \subset \mathbb{R}^n$.

The sets $\Phi_c \subset \mathbb{R}^n$, c > 0, of non-resonant frequencies are Cantor sets (closed, perfect and nowhere dense) such that $\mu(\Omega \setminus \Phi_c) = O(c)$ for every bounded $\Omega \subset \mathbb{R}^n$.

Theorem (Kolmogorov, Arnold, Moser)

Suppose that (M^{2n}, ω, H) is a CIS, T^n a Lagrangian torus invariant by the flow and a neighborhood where we have Then, if the map $v = (\frac{\partial H}{\partial p_{\alpha}}) : D^n \to \mathbb{R}^n$ is an immersion and the Hamiltonian $H_{\varepsilon}(q, p) = H(p) + \varepsilon F(q, p)$ is analytic on $T^n \times D^n$, there exists $\delta > 0$ such that for

 $|\varepsilon| < \delta c^2$

all tori of the unperturbed systems whose frequency v belongs to Φ_c persists as Lagrangian tori in the perturbed system, being only slightly deformed. Moreover they depend in a Lipschitz way on v and fill the phase space $T^n \times D^n$ with measure O(c).

Example: Hénon-Heiles Hamiltonian

Close to integrable...

Example: Hénon-Heiles Hamiltonian

Not so close anymore...

Quantum Hamiltonian Chaos

It was conjectured by Berry and Tabor that the integrability of a Hamiltonian H can be read, in its quantum counterpart \hat{H} , from its eigenvalues distribution:

Conjecture (Berry & Tabor)

Let H be a Hamitonian on \mathbb{R}^n and let P(s) the distribution function of the nearest-neighbour spacings $\lambda_{n+1} - \lambda_n$ of the eigenvalues of \hat{H} . Then:

 if the classical dynamics is integrable, then P(s) coincides with the distribution of uncorrelated levels with the same mean spacing (Poisson distr.), i.e.

 $P(s) \propto e^{-cs}$

2 if the classic dynamics is chaotic, then P(s) coincides with the distribution of a suitable ensamble of random matrices.

Quite interestingly, this conjecture relates Quantum *chaology*

Quantum Hamiltonian Chaos

Poisson distribution:

Quantum Hamiltonian Chaos

GOE distribution:

Related Literature

- A.N. Kolmogorov, *The general theory of dynamical systems and classical mechanics*, reprinted in appendix to Abraham & Marsden's book.
- J. Poschel, A lecture on the classical KAM theorem,

http://www.deas.harvard.edu/climate/eli/Courses/APM203/2003fall/Poschel_ClassicalKAM.pdf

- E. Bogomolny, *Riemann Zeta function and Quantum Chaos*, Prog. of Theor. Phys., 166, 2007, arXiv:0708.4223
- P. Cvitanovic et al., "Chaos Book", http://chaosbook.org/
- M. Berry, M. Tabor., "Level clustering in the regular spectrum", Proc. of the Royal Soc. A, 356, 1977
- D. Cremers, A. Mielke., "Flow equations for the Hénon-Heiles Hamiltonian", Physica D: Nonlinear Phenomena, 1999, quant-ph/9809086
- M. Brack et al, "Quantum beats and chaos in the Hénon-Heiles Hamiltonian", Phys. Rev. Lett. 70, 568 (1993)

Poissonian

Systems

Main Definitions and examples

Definition

A Poisson manifold is a pair $(M^n, \{,\})$, where M is a manifold and the bilinear map $\{,\} : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ (Poisson bracket) satisfies the following properties:

1
$$\{f,g\} = -\{g,f\};$$

2
$$\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0;$$

3
$$\{f,gh\} = \{f,g\}h + g\{f,h\}.$$

Example 1: every symplectic manifold (M^{2n}, ω) is an even-dimensional Poisson manifold with

$$\{f,g\} = \omega(\xi_f,\xi_g)$$

Example 2: on a 3-dimensional Riemannian manifold (M, s), every $h \in C^{\infty}(M)$ gives rise to the Poisson bracket $\{f, g\}_h = \star_s(df \wedge dg \wedge dh)$
Main Definitions and examples

Like on a symplectic manifold, via the Poisson braket we can associate a vector field ξ_H to each function $H \in C^{\infty}(M)$ as

$$\xi_{H}(f) \stackrel{\mathrm{def}}{=} \{H, f\}$$

On a symplectic manifold (M, ω) , in a symplectic chart (q^{α}, p_{α}) ,

$$\{ q^lpha, q^eta \} = 0\,, \hspace{0.2cm} \{ q^lpha,
ho_eta \} = \delta^lpha_eta\,, \hspace{0.2cm} \{
ho_lpha,
ho_eta \} = 0$$

so that

$$\xi_{H}(f) = \omega(\xi_{H},\xi_{f}) = \partial_{\alpha}H\partial^{\alpha}f - \partial_{\alpha}f\partial^{\alpha}H$$

Clearly ξ_H is the same vector field from the symplectic structure. In case of 3-dim Riemannian manifolds (M, s) and $h \in C^{\infty}(M)$,

$$\{x^i, x^j\}_h = \sqrt{\det s} \varepsilon^{ijk} \partial_k h$$

so that

$$\xi_H = \sqrt{\det s} \varepsilon^{ijk} \partial_j H \partial_k h \partial_i$$

Poisson dynamics

Definition

A *Poissonian system* on the Poissonian manifold $(M, \{,\})$ is given by a smooth function $H \in C^{\infty}(M)$.

The variation of an observable $f \in C^{\infty}(M)$ over the flow ϕ_{H}^{t} of H is given by

$$\frac{d}{dt}f\circ\phi_{H}^{t}=L_{\xi_{H}}f=\omega(\xi_{H},\xi_{f})=\{H,f\}$$

This relation is written simply as

$$\dot{f} = \{H, f\}$$

E.g. if the system is symplectic then

$$\dot{q}^{lpha}=\{H,q^{lpha}\}=\partial^{lpha}H,\ \ \dot{p}_{lpha}=\{H,p_{lpha}\}=-\partial_{lpha}H$$

Integrals of motion

Theorem

f is constant over the integral trajectories of H iff $\{H, f\} = 0$.

In odd dimension $\{,\}$ is degenerate, i.e. there exists observables that commute with all other observables. Such observables are called *Casimirs*.

Integrals of motion

Theorem

f is constant over the integral trajectories of H iff $\{H, f\} = 0$.

In odd dimension $\{,\}$ is degenerate, i.e. there exists observables that commute with all other observables. Such observables are called *Casimirs*.

E.g. in a 3-dim Riemannian manifold

$$\dot{x}^i = \{H, x^i\}_h = \sqrt{\det s} \varepsilon^{ijk} \partial_j H \partial_k h$$

and h is a Casimir since

$$\{f,h\}_h = \sqrt{\det s} \varepsilon^{ijk} \partial_i f \partial_j h \partial_k h = 0.$$

Integrals of motion

Theorem

f is constant over the integral trajectories of H iff $\{H, f\} = 0$.

In odd dimension $\{,\}$ is degenerate, i.e. there exists observables that commute with all other observables. Such observables are called *Casimirs*.

E.g. in a 3-dim Riemannian manifold

$$\dot{x}^i = \{H, x^i\}_h = \sqrt{\det s} \varepsilon^{ijk} \partial_j H \partial_k h$$

and h is a Casimir since

$$\{f,h\}_h = \sqrt{\det s} \varepsilon^{ijk} \partial_i f \partial_j h \partial_k h = 0.$$

This means that the image of the integral trajectories of *H* under $\{,\}_h$ are the intersections between the level sets of *H* and of *h*.

Consider $(\mathbb{T}^3, \{,\}_B)$, where $B = B^i(p)dp_i$ is a closed 1-form and

$$\{p_i, p_j\}_B = \varepsilon_{ijk}B^k$$

A direct calculation shows that $\{,\}_B$ is a Poisson structure on \mathbb{T}^3 .

Consider $(\mathbb{T}^3, \{,\}_B)$, where $B = B^i(p)dp_i$ is a closed 1-form and

$$\{p_i, p_j\}_B = \varepsilon_{ijk}B^k$$

A direct calculation shows that $\{,\}_B$ is a Poisson structure on \mathbb{T}^3 .

Given $H \in C^{\infty}(\mathbb{T}^3)$, the equations of motion are

$$\dot{p}_i = \{H, p_i\}_B = \varepsilon_{ijk}\partial^j H B^k$$

Consider $(\mathbb{T}^3, \{,\}_B)$, where $B = B^i(p)dp_i$ is a closed 1-form and

$$\{p_i, p_j\}_B = \varepsilon_{ijk}B^k$$

A direct calculation shows that $\{,\}_B$ is a Poisson structure on \mathbb{T}^3 .

Given $H \in C^{\infty}(\mathbb{T}^3)$, the equations of motion are

$$\dot{p}_i = \{H, p_i\}_B = \varepsilon_{ijk}\partial^j H B^k$$

Locally B = db. Clearly $\{f, b\} = 0$ for every f, so we can think of b as a *multi-valued Casimir*.

Consider $(\mathbb{T}^3, \{,\}_B)$, where $B = B^i(p)dp_i$ is a closed 1-form and

$$\{p_i, p_j\}_B = \varepsilon_{ijk}B^k$$

A direct calculation shows that $\{,\}_B$ is a Poisson structure on \mathbb{T}^3 .

Given $H \in C^{\infty}(\mathbb{T}^3)$, the equations of motion are

$$\dot{p}_i = \{H, p_i\}_B = \varepsilon_{ijk}\partial^j H B^k$$

Locally B = db. Clearly $\{f, b\} = 0$ for every f, so we can think of b as a *multi-valued Casimir*.

The image of the integral trajectories of *H* are given by the intersections between the level surfaces of *H* and the leaves of the foliation B = 0.

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

in the WKB approximation the (quasi-)electrons are points in \mathbb{T}^3 and under a magnetic field *B* they are bound to move perpendicularly to it.

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

in the WKB approximation the (quasi-)electrons are points in \mathbb{T}^3 and under a magnetic field *B* they are bound to move perpendicularly to it.

Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}(\mathbb{T}^3)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$\boldsymbol{p} = \{H, \boldsymbol{p}\}_B = \boldsymbol{B} \times \partial_{\boldsymbol{p}} H$$

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

in the WKB approximation the (quasi-)electrons are points in \mathbb{T}^3 and under a magnetic field *B* they are bound to move perpendicularly to it.

Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}(\mathbb{T}^3)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$\boldsymbol{p} = \{H, \boldsymbol{p}\}_{\boldsymbol{B}} = \boldsymbol{B} \times \partial_{\boldsymbol{p}} H$$

The geometry of trajectories here is trivial: in the universal covering \mathbb{R}^3 they are planar sections of the level surfaces of *H*.

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

in the WKB approximation the (quasi-)electrons are points in \mathbb{T}^3 and under a magnetic field *B* they are bound to move perpendicularly to it.

Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}(\mathbb{T}^3)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$\boldsymbol{p} = \{H, \boldsymbol{p}\}_{\boldsymbol{B}} = \boldsymbol{B} \times \partial_{\boldsymbol{p}} H$$

The geometry of trajectories here is trivial: in the universal covering \mathbb{R}^3 they are planar sections of the level surfaces of *H*.

Their topology instead, i.e. their asymptotics, turns out to be exceptionally rich.

$$H(x,y,z) = \cos x + \cos y + \cos z$$

 $H(x,y,z) = \cos x + \cos y + \cos z$

 $H(x, y, z) = \cos x \cos y + \cos y \cos z + \cos z \cos x$

 $H(x, y, z) = \cos x \cos y + \cos y \cos z + \cos z \cos x$

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.

Indeed in QM on \mathbb{R}^n the position and momentum observables $q^{\alpha}, p_{\alpha} \in C^{\infty}(\mathbb{R}^n)$ are replaced resp. by the operators \hat{q}^{α} (multiplication by q^{α}) and $\hat{p}_{\alpha} = \frac{i}{\hbar} \partial_{q^{\alpha}}$ acting on $L^2(\mathbb{R}^n)$.

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.

Indeed in QM on \mathbb{R}^n the position and momentum observables $q^{\alpha}, p_{\alpha} \in C^{\infty}(\mathbb{R}^n)$ are replaced resp. by the operators \hat{q}^{α} (multiplication by q^{α}) and $\hat{p}_{\alpha} = \frac{i}{\hbar} \partial_{q^{\alpha}}$ acting on $L^2(\mathbb{R}^n)$.

As operators, their commuting relations are

$$[\hat{q}^{lpha},\hat{q}^{eta}]=0\,,~~[\hat{q}^{lpha},\hat{
ho}_{eta}]=i\hbar\delta^{lpha}_{eta}\,,~~[\hat{
ho}_{lpha},\hat{
ho}_{eta}]=0.$$

Recall that, in the symplectic setting,

$$\{q^lpha,q^eta\}=0\,,~~\{q^lpha,p_eta\}=\delta^lpha_eta,~~\{p_lpha,p_eta\}=0.$$

In other words, " $[\hat{f}, \hat{g}] = i\hbar\{f, g\}$ ". This analogy is the base of two attempts to fully understanding the relation between CM and QM:

- geometric quantization (Souriau, Weinstein, Guillemin, Sternberg...), which uses symplectic geometry to find some natural way to foliate T*M in Lagrangian leaves (to mimic the separation of q's and p's in QM (polarization);
- deformation quantization (Kontsevich, Connes...), which deformes the product in $C^{\infty}(M)$ in order to get a non-commutative algebra A_{\hbar} that, in the limit $\hbar \to 0$, reduces to the multiplication in $C^{\infty}(M)$.

Neither of these attempts, which we have no space to illustrate here, succeeded to date.

Related Literature

• A. Weinstein, *Poisson Geometry*,

http://math.berkeley.edu/ alanw/Poisson.tex

- S.P. Novikov, *The Semiclassical Electron in a Magnetic Field and Lattice. Some Problems of the Low Dimensional Periodic Topology*, Geometric and Functional Analysis, 1995, v. 5, n. 2, pp. 434-444.
- R De Leo, *Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field*, SIAM J. on App. Dyn. Sys., 2(4), 517-545, 2003, arXiv:math-ph/0006023
- R De Leo and I.A. Dynnikov, *Topology of plane sections of the infinite regular skew polyhedron* {4,6|4}, Geometriae Dedicata, 138:1, 51-67, 2009, arXiv:0804.1668v1
- A. Weinstein, , *Lectures on the Geometric Quantization*, http://math.berkeley.edu/ alanw/GofQ.pdf
- A. Connes, , *Non-commutative Geometry*, http://www.alainconnes.org/docs/book94bigpdf.pdf

Hamiltonian

Systems

with Symmetries

The form of the Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right) = \frac{\partial L}{\partial q^{\alpha}}$$

suggests the following simple observation:

The form of the Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right) = \frac{\partial L}{\partial q^{\alpha}}$$

suggests the following simple observation:

if $L(q, \dot{q})$ does not depend on, say, q^1 , then the associated momentum $p_1 = \frac{\partial L}{\partial \dot{q}^1}$ is a first integral.

The form of the Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right) = \frac{\partial L}{\partial q^{\alpha}}$$

suggests the following simple observation:

if $L(q, \dot{q})$ does not depend on, say, q^1 , then the associated momentum $p_1 = \frac{\partial L}{\partial \dot{q}^1}$ is a first integral.

In a classical mechanical system in \mathbb{R}^n ,

$$L(q,\dot{q}) = \frac{1}{2} ||\dot{q}|| - V(q)$$

from which we see that invariance of the potential by translations in the direction q^i implies the conservation of the corresponding momentum p_i .

The form of the Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right) = \frac{\partial L}{\partial q^{\alpha}}$$

suggests the following simple observation:

if $L(q, \dot{q})$ does not depend on, say, q^1 , then the associated momentum $p_1 = \frac{\partial L}{\partial \dot{q}^1}$ is a first integral.

In a classical mechanical system in \mathbb{R}^n ,

$$L(q,\dot{q})=\frac{1}{2}\|\dot{q}\|-V(q)$$

from which we see that invariance of the potential by translations in the direction q^i implies the conservation of the corresponding momentum p_i .

This is the starting point for all results that follow.

First generalization: Noether's Theorem

Definition

An action Φ of \mathbb{R} on *M* is a homomorphism $\mathbb{R} \to Diff(M)$. We use the shortcut notation $\Phi(\lambda, q) = q_{\lambda}$.

First generalization: Noether's Theorem

Definition

An action Φ of \mathbb{R} on *M* is a homomorphism $\mathbb{R} \to Diff(M)$. We use the shortcut notation $\Phi(\lambda, q) = q_{\lambda}$.

To Φ it is associate a vector field $\xi_{\Phi}(q) = \frac{dq_{\lambda}}{d\lambda}|_{\lambda=0}$.

First generalization: Noether's Theorem

Definition

An action Φ of \mathbb{R} on *M* is a homomorphism $\mathbb{R} \to Diff(M)$. We use the shortcut notation $\Phi(\lambda, q) = q_{\lambda}$.

To Φ it is associate a vector field $\xi_{\Phi}(q) = \frac{dq_{\lambda}}{d\lambda}|_{\lambda=0}$.

 Φ induces an action $\hat{\Phi}$ on *TM* as $\hat{\Phi}(\lambda, q, \nu) = (q_{\lambda}, \nu \cdot \partial_q \Phi(\lambda, q))$

Theorem (Noether, Arnold 20A)

If L(q, v) is invariant by Φ , i.e. if $\hat{\Phi}^* L = L$, then $p_{\Phi}(q, \dot{q}) = \xi^{\alpha}_{\Phi}(q) \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q})$ is a first integral.

$$0 = \left. \frac{d}{d\lambda} L(q_{\lambda}(t), \dot{q}_{\lambda}(t)) \right|_{\lambda=0} =$$

$$0 = rac{d}{d\lambda} L(q_{\lambda}(t), \dot{q}_{\lambda}(t)) \Big|_{\lambda=0} =$$

 $= rac{d}{d\lambda} q_{\lambda}(t) \Big|_{\lambda=0} rac{\partial L}{\partial q^{lpha}}(q, \dot{q}) + rac{d}{d\lambda} \dot{q}_{\lambda}(t) \Big|_{\lambda=0} rac{\partial L}{\partial \dot{q}^{lpha}}(q(t), \dot{q}(t)) =$

$$\begin{split} 0 &= \frac{d}{d\lambda} L(q_{\lambda}(t), \dot{q}_{\lambda}(t)) \Big|_{\lambda=0} = \\ &= \frac{d}{d\lambda} q_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q}) + \frac{d}{d\lambda} \dot{q}_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) = \\ &= \xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t)) + \frac{d}{dt} [\xi_{\Phi}^{\alpha}(q(t))] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q}) \end{split}$$

$$\begin{split} 0 &= \frac{d}{d\lambda} L(q_{\lambda}(t), \dot{q}_{\lambda}(t)) \Big|_{\lambda=0} = \\ &= \frac{d}{d\lambda} q_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q}) + \frac{d}{d\lambda} \dot{q}_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) = \\ &= \xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t)) + \frac{d}{dt} [\xi_{\Phi}^{\alpha}(q(t))] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q}) \end{split}$$

Hence

$$rac{d}{dt} p_{\Phi}(q(t), \dot{q}(t)) = rac{d}{dt} \left[\xi^{lpha}_{\Phi}(q(t)) rac{\partial L}{\partial \dot{q}^{lpha}}(q(t), \dot{q}(t))
ight] =$$

$$\begin{split} 0 &= \frac{d}{d\lambda} L(q_{\lambda}(t), \dot{q}_{\lambda}(t)) \Big|_{\lambda=0} = \\ &= \frac{d}{d\lambda} q_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q}) + \frac{d}{d\lambda} \dot{q}_{\lambda}(t) \Big|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) = \\ &= \xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t)) + \frac{d}{dt} [\xi_{\Phi}^{\alpha}(q(t))] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q}) \end{split}$$

Hence

=

$$\frac{d}{dt} p_{\Phi}(q(t), \dot{q}(t)) = \frac{d}{dt} \left[\xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) \right] =$$

$$\frac{d}{dt} \left[\xi_{\Phi}^{\alpha}(q(t)) \right] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) + \xi_{\Phi}^{\alpha}(q(t)) \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t)) = 0.$$
Consider the case of $M = \mathbb{R}^3$ and $L(q, v) = \frac{1}{2} ||v|| - V(q)$, with *V* invariant by rotations, i.e. depending only on the distance of *q* from the origin

(e.g. electric or gravitational field generated by a point particle).

Consider the case of $M = \mathbb{R}^3$ and $L(q, v) = \frac{1}{2} ||v|| - V(q)$, with *V* invariant by rotations, i.e. depending only on the distance of *q*

from the origin

(e.g. electric or gravitational field generated by a point particle).

Then *L* is invariant by SO_3 .

E.g. consider the 1-dim subgroup of rotations arount the z axis.

Consider the case of $M = \mathbb{R}^3$ and $L(q, v) = \frac{1}{2} ||v|| - V(q)$, with *V* invariant by rotations, i.e. depending only on the distance of *q* from the origin

(e.g. electric or gravitational field generated by a point particle).

Then *L* is invariant by SO_3 .

E.g. consider the 1-dim subgroup of rotations arount the z axis.

The action is $\Phi_z(\lambda, x, y, z) = (x \cos \lambda + y \sin \lambda, -x \sin \lambda + y \cos \lambda)$ and $\xi_{\Phi_z}(x, y) = -y \partial_x + x \partial_y$.

Consider the case of $M = \mathbb{R}^3$ and $L(q, v) = \frac{1}{2} ||v|| - V(q)$, with *V* invariant by rotations, i.e. depending only on the distance of *q* from the origin

(e.g. electric or gravitational field generated by a point particle).

Then *L* is invariant by SO_3 .

E.g. consider the 1-dim subgroup of rotations arount the z axis.

The action is $\Phi_z(\lambda, x, y, z) = (x \cos \lambda + y \sin \lambda, -x \sin \lambda + y \cos \lambda)$ and $\xi_{\Phi_z}(x, y) = -y \partial_x + x \partial_y$.

The corresponding first integral (*z* component of the angular momentum) is $p_{\Phi_z}(x, y, z, \dot{x}, \dot{y}, \dot{z}) = -y\dot{x} + x\dot{y}$.

Consider an action $\Phi : G \times P \rightarrow P$ on a Poisson manifold $(P, \{,\})$.

Consider an action $\Phi : G \times P \to P$ on a Poisson manifold $(P, \{,\})$. We say that Φ is *canonical* if $\Phi_g^* \{F, G\} = \{\Phi_g^* F, \Phi_g^* G\}$. If $P = T^* M$, then Φ is canonical iff is symplectic, i.e. iff $\Phi_g^* \omega = \omega, \forall g \in G$.

Consider an action $\Phi : G \times P \to P$ on a Poisson manifold $(P, \{,\})$. We say that Φ is *canonical* if $\Phi_g^* \{F, G\} = \{\Phi_g^* F, \Phi_g^* G\}$. If $P = T^*M$, then Φ is canonical iff is symplectic, i.e. iff $\Phi_g^* \omega = \omega, \forall g \in G$.

To every element $a \in \mathfrak{g} = T_e G$ it corresponds a 1-dimensional subgroup of *G* and therefore a vector field $\xi_a \in \chi(M)$.

Consider an action $\Phi : G \times P \to P$ on a Poisson manifold $(P, \{,\})$. We say that Φ is *canonical* if $\Phi_g^* \{F, G\} = \{\Phi_g^* F, \Phi_g^* G\}$. If $P = T^*M$, then Φ is canonical iff is symplectic, i.e. iff $\Phi_g^* \omega = \omega, \forall g \in G$.

To every element $a \in \mathfrak{g} = T_e G$ it corresponds a 1-dimensional subgroup of *G* and therefore a vector field $\xi_a \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$\xi_{[a,b]_{\mathfrak{g}}} = [\xi_a,\xi_b]_{\chi(P)}$$

Consider an action $\Phi : G \times P \to P$ on a Poisson manifold $(P, \{,\})$. We say that Φ is *canonical* if $\Phi_g^* \{F, G\} = \{\Phi_g^* F, \Phi_g^* G\}$. If $P = T^*M$, then Φ is canonical iff is symplectic, i.e. iff $\Phi_g^* \omega = \omega, \forall g \in G$.

To every element $a \in \mathfrak{g} = T_e G$ it corresponds a 1-dimensional subgroup of *G* and therefore a vector field $\xi_a \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$\xi_{[a,b]_g} = [\xi_a,\xi_b]_{\chi(P)}$$

Every such ξ_a satisfies $\xi_a\{F, G\} = \{\xi_aF, G\} + \{F, \xi_aG\}$ If $P = T^*M$ then $L_{\xi_a}\omega = 0$, i.e. ξ_a is locally Hamiltonian.

Consider an action $\Phi : G \times P \to P$ on a Poisson manifold $(P, \{,\})$. We say that Φ is *canonical* if $\Phi_g^* \{F, G\} = \{\Phi_g^* F, \Phi_g^* G\}$. If $P = T^*M$, then Φ is canonical iff is symplectic, i.e. iff $\Phi_g^* \omega = \omega, \forall g \in G$.

To every element $a \in \mathfrak{g} = T_e G$ it corresponds a 1-dimensional subgroup of *G* and therefore a vector field $\xi_a \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$\xi_{[a,b]_g} = [\xi_a, \xi_b]_{\chi(P)}$$

Every such ξ_a satisfies $\xi_a\{F, G\} = \{\xi_aF, G\} + \{F, \xi_aG\}$ If $P = T^*M$ then $L_{\xi_a}\omega = 0$, i.e. ξ_a is locally Hamiltonian.

In both cases, locally ξ_a is the Ham. v.f. of some function H_a .

1 all ξ_a are Hamiltonian;

$$\mathbf{2} \{H_a, H_b\} = H_{[a,b]_g}$$

1 all ξ_a are Hamiltonian;

$$\mathbf{2} \ \{H_a, H_b\} = H_{[a,b]_g}$$

Note that all H_a are defined *modulo constant*. Hence they can be chosen so that $\mathfrak{g} \to C^{\infty}(P)$ is linear. In general tough

$$\{H_a,H_b\}=H_{[a,b]_{\mathfrak{g}}}+C(a,b)$$

where C is a 2-cocycle of \mathfrak{g} .

1 all ξ_a are Hamiltonian;

$$\mathbf{2} \{H_a, H_b\} = H_{[a,b]_g}$$

Note that all H_a are defined *modulo constant*. Hence they can be chosen so that $\mathfrak{g} \to C^{\infty}(P)$ is linear. In general tough

$$\{H_a,H_b\}=H_{[a,b]_g}+C(a,b)$$

where C is a 2-cocycle of \mathfrak{g} .

We say that the canonical action Φ is *Poissonian* when C = 0.

1 all ξ_a are Hamiltonian;

$$\mathbf{2} \{H_a, H_b\} = H_{[a,b]_g}$$

Note that all H_a are defined *modulo constant*. Hence they can be chosen so that $\mathfrak{g} \to C^{\infty}(P)$ is linear. In general tough

$$\{H_a,H_b\}=H_{[a,b]_g}+C(a,b)$$

where C is a 2-cocycle of \mathfrak{g} .

We say that the canonical action Φ is *Poissonian* when C = 0.

Example: an action on T^*M induced from an action on *M* is always Poissonian (see Arnold, Appendix 5).

Definition

If Φ is Poissonian, we call *Momentum Map* the map $J : P \to \mathfrak{g}^*$ defined by $J_x(a) = H_a(x)$.

Consider the action Φ of SO_3 on $T^*\mathbb{R}^3$ induced by the rotations on the base space. We choose a frame (x, y, z) and identify so_3 with \mathbb{R}^3 .

Consider the action Φ of SO_3 on $T^*\mathbb{R}^3$ induced by the rotations on the base space.

We choose a frame (x, y, z) and identify so_3 with \mathbb{R}^3 .

We saw earlier that to $(0,0,1) \in so_3$ (generator of rotations about the *z* axis) it corresponds the vector field $\xi_z = x\partial_y - y\partial_x$. Similarly, $\xi_x = y\partial_z - z\partial_y$ and $\xi_y = z\partial_x - x\partial_z$.

Consider the action Φ of SO_3 on $T^*\mathbb{R}^3$ induced by the rotations on the base space.

We choose a frame (x, y, z) and identify so_3 with \mathbb{R}^3 .

We saw earlier that to $(0,0,1) \in so_3$ (generator of rotations about the *z* axis) it corresponds the vector field $\xi_z = x\partial_y - y\partial_x$. Similarly, $\xi_x = y\partial_z - z\partial_y$ and $\xi_y = z\partial_x - x\partial_z$.

This action is Poissonian. The first integrals corresponding to these vector fields are the three components of the angular momentum:

$$L_x = yp_x - xp_y, \quad L_y = zp_y - yp_z, \quad L_z = xp_z - zp_x.$$

Consider the action Φ of SO_3 on $T^*\mathbb{R}^3$ induced by the rotations on the base space.

We choose a frame (x, y, z) and identify so_3 with \mathbb{R}^3 .

We saw earlier that to $(0,0,1) \in so_3$ (generator of rotations about the *z* axis) it corresponds the vector field $\xi_z = x\partial_y - y\partial_x$. Similarly, $\xi_x = y\partial_z - z\partial_y$ and $\xi_y = z\partial_x - x\partial_z$.

This action is Poissonian. The first integrals corresponding to these vector fields are the three components of the angular momentum:

$$L_x = yp_x - xp_y$$
, $L_y = zp_y - yp_z$, $L_z = xp_z - zp_x$.

The momentum map is exactly the "angular momentum vector":

$$J(x,y,z,p_x,p_y,p_z) = (L_x,L_y,L_z) \in so(3)^*$$

and
$$\{L_{x^{i}}, L_{x^{j}}\} = \varepsilon_{ijk}L_{x^{k}} = L_{[x^{i}, x^{j}]_{so(3)^{*}}}.$$

Under J_{Φ} , the action Φ is taken into the coadjoint action of G on \mathfrak{g}^* , namely $J_{\Phi}(\Phi(g, x)) = Ad_{g^{-1}}^*(J_{\Phi}(x))$. Equivalently, $H_a(\Phi(g, x)) = H_{Ad_ga}(x)$.

Under J_{Φ} , the action Φ is taken into the coadjoint action of G on \mathfrak{g}^* , namely $J_{\Phi}(\Phi(g, x)) = Ad_{g^{-1}}^*(J_{\Phi}(x))$. Equivalently, $H_a(\Phi(g, x)) = H_{Ad_ga}(x)$.

Proof.

Let g_{λ} a 1-parameter subgroup of G with Hamiltonian H_b . Then $\frac{d}{d\lambda}H_a(\Phi(g,x)) = \{H_a, H_b\}(x) = H_{[a,b]}(x) = H_{Ad_{a^{-1}}^*a}(x).$

Under J_{Φ} , the action Φ is taken into the coadjoint action of G on \mathfrak{g}^* , namely $J_{\Phi}(\Phi(g, x)) = Ad_{g^{-1}}^*(J_{\Phi}(x))$. Equivalently, $H_a(\Phi(g, x)) = H_{Ad_ga}(x)$.

Proof.

Let g_{λ} a 1-parameter subgroup of G with Hamiltonian H_b . Then $\frac{d}{d\lambda}H_a(\Phi(g,x)) = \{H_a, H_b\}(x) = H_{[a,b]}(x) = H_{Ad_{g^{-1}}^*a}(x).$

Corollary (Noether Theorem in T^*M)

If H is invariant under Φ , then J_{Φ} is a first integral of H.

Under J_{Φ} , the action Φ is taken into the coadjoint action of G on \mathfrak{g}^* , namely $J_{\Phi}(\Phi(g, x)) = Ad_{g^{-1}}^*(J_{\Phi}(x))$. Equivalently, $H_a(\Phi(g, x)) = H_{Ad_ga}(x)$.

Proof.

Let g_{λ} a 1-parameter subgroup of G with Hamiltonian H_b . Then $\frac{d}{d\lambda}H_a(\Phi(g,x)) = \{H_a, H_b\}(x) = H_{[a,b]}(x) = H_{Ad_{g^{-1}}^*a}(x).$

Corollary (Noether Theorem in T^*M)

If H is invariant under Φ , then J_{Φ} is a first integral of H.

Proof.

Let g_{λ} a 1-parameter subgroup of *G* with Hamiltonian H_a . Then $0 = \frac{d}{d\lambda} H(\Phi(g, x)) = \{H, H_a\}.$

Consider a Hamiltonian on a symplectic manifold (P, ω) invariant by some Poissonian action Φ of G on P and set $P_{\mu} = J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}.$

Consider a Hamiltonian on a symplectic manifold (P, ω) invariant by some Poissonian action Φ of G on P and set $P_{\mu} = J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}.$

The Lie subgroup $G_{\mu} \subset G$ that keeps μ fixed, i.e. s.t. $Ad_g^* \mu = \mu$, leaves P_{μ} invariant.

Consider a Hamiltonian on a symplectic manifold (P, ω) invariant by some Poissonian action Φ of G on P and set $P_{\mu} = J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}.$

The Lie subgroup $G_{\mu} \subset G$ that keeps μ fixed, i.e. s.t. $Ad_g^* \mu = \mu$, leaves P_{μ} invariant.

Assume Φ satisfies the following properties:

- μ is a regular value (so P_{μ} is a smooth manifold);
- **2** Φ is proper (e.g. *G* is compact);
- **3** G_{μ} acts on P_{μ} with no fixed points.

Consider a Hamiltonian on a symplectic manifold (P, ω) invariant by some Poissonian action Φ of G on P and set $P_{\mu} = J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}.$

The Lie subgroup $G_{\mu} \subset G$ that keeps μ fixed, i.e. s.t. $Ad_g^* \mu = \mu$, leaves P_{μ} invariant.

Assume Φ satisfies the following properties:

- μ is a regular value (so P_{μ} is a smooth manifold);
- **2** Φ is proper (e.g. *G* is compact);
- **3** G_{μ} acts on P_{μ} with no fixed points.

Theorem (Marsden & Weinstein, Arnold App. 5)

The quotient $M_{\mu} = P_{\mu}/G$ is a smooth manifold and inherits from (P, ω) a symplectic structure ω_{μ} .

Consider the action of \mathbb{S}^1 on $P = \mathbb{R}^{2n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q,p) = \frac{1}{2} (||p||^2 + ||q||^2)$.

Consider the action of \mathbb{S}^1 on $P = \mathbb{R}^{2n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q,p) = \frac{1}{2} (||p||^2 + ||q||^2)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow so_2^* \simeq \mathbb{R}$.

Consider the action of \mathbb{S}^1 on $P = \mathbb{R}^{2n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q,p) = \frac{1}{2} (||p||^2 + ||q||^2)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow so_2^* \simeq \mathbb{R}$.

All values are non-critical except for 0.

Consider the action of \mathbb{S}^1 on $P = \mathbb{R}^{2n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q,p) = \frac{1}{2} (||p||^2 + ||q||^2)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow so_2^* \simeq \mathbb{R}$.

All values are non-critical except for 0.

All level sets P_{μ} , $\mu \neq 0$, are spheres \mathbb{S}^{2n-1} .

Consider the action of \mathbb{S}^1 on $P = \mathbb{R}^{2n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q,p) = \frac{1}{2} (||p||^2 + ||q||^2)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow so_2^* \simeq \mathbb{R}$.

All values are non-critical except for 0.

All level sets P_{μ} , $\mu \neq 0$, are spheres \mathbb{S}^{2n-1} .

All quotient spaces M_{μ} , $\mu \neq 0$, are symplectomorphic to $\mathbb{C}P^{n-1}$ with a symplectic structure proportional to the Fubini-Study 2-form

$$\omega = \frac{i}{2\pi} \partial \bar{\partial} \ln |z|^2$$

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a compact connected symplectic manifold *P*. Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a convex polytope.

Example. Consider $P^{2n} = \mathbb{C}P^n$ and $G = \mathbb{T}^{n+1}$ acting on it as $x = (z_1 : \cdots : z_{n+1}) \rightarrow (e^{i\theta_1}z_1 : \cdots : e^{i\theta_{n+1}}z_{n+1}).$

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a compact connected symplectic manifold *P*. Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a convex polytope.

Example. Consider $P^{2n} = \mathbb{C}P^n$ and $G = \mathbb{T}^{n+1}$ acting on it as $x = (z_1 : \cdots : z_{n+1}) \rightarrow (e^{i\theta_1}z_1 : \cdots : e^{i\theta_{n+1}}z_{n+1}).$

Each 1-parameter sugroup of rotations θ_k is induced by $H_k(x) = |z_k|^2/(|z_1|^2 + \cdots + |z_{n+1}|^2).$

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a compact connected symplectic manifold P. Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a convex polytope.

Example. Consider $P^{2n} = \mathbb{C}P^n$ and $G = \mathbb{T}^{n+1}$ acting on it as $x = (z_1 : \cdots : z_{n+1}) \rightarrow (e^{i\theta_1}z_1 : \cdots : e^{i\theta_{n+1}}z_{n+1}).$

Each 1-parameter sugroup of rotations θ_k is induced by $H_k(x) = |z_k|^2/(|z_1|^2 + \cdots + |z_{n+1}|^2)$. The momentum map is $J(x) = (H_1(x), \dots, H_{n+1}(x))$.

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a compact connected symplectic manifold P. Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a convex polytope.

Example. Consider $P^{2n} = \mathbb{C}P^n$ and $G = \mathbb{T}^{n+1}$ acting on it as $x = (z_1 : \cdots : z_{n+1}) \rightarrow (e^{i\theta_1}z_1 : \cdots : e^{i\theta_{n+1}}z_{n+1}).$

Each 1-parameter sugroup of rotations θ_k is induced by $H_k(x) = |z_k|^2/(|z_1|^2 + \cdots + |z_{n+1}|^2)$. The momentum map is $J(x) = (H_1(x), \dots, H_{n+1}(x))$. Its image is the simplex

$$\{(s_1, \ldots, s_{n+1}) \mid s_1 + \cdots + s_{n+1} = 1, s_1, \ldots, s_{n+1} \ge 0\} \subset \mathbb{R}^{n+1}$$

whose vertices are the images of the fixed points $x_i = (0 : \cdots : z_i : \cdots : 0)$ of the action.

Slide 118/121 — Roberto De Leo — A quick survey of Hamiltonian systems

Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a closed connected symplectic manifold P with a multivalued momentum map J_{Φ} . Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a cylinder over a convex polytope.

Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a closed connected symplectic manifold P with a multivalued momentum map J_{Φ} . Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a cylinder over a convex polytope.

Example. Consider $P^4 = \mathbb{T}^2 \times \mathbb{C}P^1$ with coordinates $((\phi, \psi), (z : w))$ and symplectic structure $\omega = d\phi \wedge d\psi + \frac{i}{2\pi} d\bar{d} \ln |\frac{z}{w}|^2$

Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi : \mathbb{T}^k \times P^{2n} \to P^{2n}$ on a closed connected symplectic manifold P with a multivalued momentum map J_{Φ} . Then $J_{\Phi}(P) \subset \mathfrak{g}^*$ is a cylinder over a convex polytope.

Example. Consider $P^4 = \mathbb{T}^2 \times \mathbb{C}P^1$ with coordinates $((\phi, \psi), (z : w))$ and symplectic structure $\omega = d\phi \wedge d\psi + \frac{i}{2\pi} d\overline{d} \ln |\frac{z}{w}|^2$ and consider the action of $G = \mathbb{T}^3$ on it defined by

$$((\phi,\psi),(z:w)) \rightarrow ((\phi+\theta_1,\psi),(e^{i\theta_2}z:e^{i\theta_3}w))$$

The corresponding momentum map is multivalued:

$$J((\phi, \psi), (z : w)) = \left(\psi, \frac{|z|^2}{|z|^2 + |w|^2}, \frac{|w|^2}{|z|^2 + |w|^2}\right)$$

Its image is $J(\mathbb{T}^2 \times \mathbb{C}P^1) = \mathbb{R} \times S \subset \mathbb{R}^3$, where $S = \{(s,t) \mid s+t = 1, s, t \ge 0\}$

Related Literature

- E. Noether, *Invariant Variation Problems*, Gott.Nachr. 235-257, 1918, arXiv:physics/0503066
- Y. Kosmann-Schwarzbach, The Noether Theorems, Springer, 2011
- J. Marsden, T. Ratiu, *Introduction to Mechanics and Symmetry*, Springer, 2002
- J.P. May, *The Atiyah-Guillemin-Sternberg Convexity Theorem*, 2010, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Schmaltz.pdf
- J. Kolk, *Geometry of the Momentum Map*, 2005, http://www.staff.science.uu.nl/~kolk0101/SpringSchool2004/momentum.pdf
- M. Audin, Torus Actions on Symplectic Manifolds, Birkauser, 2004
- N. Berline, *Hamiltonian manifolds and moment map*, 2011, http://www.math.polytechnique.fr/~berline/cours-Fudan.pdf
- A. Giacobbe, *Convexity of Multi-valued Momentum Maps*, GeometriæDedicata, 111:1, 2005

