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Plan of the presentation:

e General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions,
Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations
between classical and quantum mechanics, optics, non-Hausdorff
manifolds, Completely Integrable Systems, KAM
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Plan of the presentation:

e General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions,
Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations
between classical and quantum mechanics, optics, non-Hausdorff
manifolds, Completely Integrable Systems, KAM

e Poissonian dynamical systems
Poisson braket, odd-dimensional Hamiltonian systems, relations with
quantum mechanics

e Systems with symmetries
Noether’s theorem, symplectic reduction, momentum map,
Atiyah-Sternberg theorem
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Introduction
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

(-
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold M" of dimension n
and a smooth vector field § € X(M).
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold M" of dimension n
and a smooth vector field § € X(M).

The Flow q)é of € is a smooth map oz :RxM— Ms.t
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold M" of dimension n
and a smooth vector field § € X(M).

The Flow q)é of € is a smooth map oz :RxM— Ms.t
(1) ¢g = idy;
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold M" of dimension n
and a smooth vector field § € X(M).

Definition
The Flow q)é of € is a smooth map oz :RxM— Ms.t

0 ¢f = idu;
® Z0L(x) = &0
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Basic concepts and notations

The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold M" of dimension n
and a smooth vector field § € X(M).

The Flow q)é of € is a smooth map oz :RxM— Ms.t
(1) (l)g = idy;
d iy erat .
© 0(x) = E(04(x));

(5) ¢é¢g = q);js when all three maps are defined.
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Find as much as possible on the flow of §.
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Main goal
Find as much as possible on the flow of §.

When a non-degenerate (0,2) tensor h = hygdx® ® dxPB is
defined on M, then we define lz,,h=dH, i.e. have a map

ce(M) — X(M)
H — &y=h"PouHog

where hthBV =8,
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Main goal
Find as much as possible on the flow of §.

When a non-degenerate (0,2) tensor h = hygdx® ® dxPB is
defined on M, then we define lz,,h=dH, i.e. have a map

ce(M) — X(M)

H — &y=h"PouHog

where hthBV =8,
In these systems, we can specialize the definition of DS:
Definition
A Dynamical system on the manifold (M, h) is given by a
smooth function H € C*(M).
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Find as much as possible on the flow of §.

When a non-degenerate (0,2) tensor h = hygdx® ® dxPB is
defined on M, then we define lz,,h=dH, i.e. have a map
ce(M) — X(M)
H — &y=h"PouHog
where hthBV =8,
In these systems, we can specialize the definition of DS:

A Dynamical system on the manifold (M, h) is given by a
smooth function H € C*(M).

Find as much as pOSSIb/e on the flow of .
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Example: Riemannian Manifolds

Here h is symmetrical and & is known as the gradient of H

940t (x))

LgHH(X) = E o

®
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Example: Riemannian Manifolds

Here h is symmetrical and & is known as the gradient of H

L, HOx) & A0 (0) B
_ [%q,é(x) t:o} 3aH(x) = K™ agH(x)daH(x) = | E(x)|° = 0
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Example: Riemannian Manifolds

Here his symmetrical and &y is known as the gradient of H

L, HOx) & A0 (0) B
_ [%q)é(x) t:o} 3aH(x) = HBH(x)daH(x) = [En(x)|P = 0

This means that the flow lines of &4 are everywhere transversal

to the level curves of H at every non-critical point.
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Example: Riemannian Manifolds

Here his symmetrical and &y is known as the gradient of H

L, HOx) & A0 (0) B
_ [%q)é(x) Hj AoH(x) = K*PIH(x)uH(x) = [[E(x)|* > 0

This means that the flow lines of &4 are everywhere transversal
to the level curves of H at every non-critical point.

It turns out thought that the dynamics is much richer when h is
antisymmetric.
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Hamiltonian
Systems
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A Hamiltonian system on the symplectic manifold (M?", ®) is
given by a smooth function H € C*(M).
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Definition
A Hamiltonian system on the symplectic manifold (M?", ®) is
given by a smooth function H € C*(M).

By definition iz, = dH. In this case
LE.HH(X) = CO(&H,E.,H) =0,

i.e. &y is tangent to the level sets of H at every point.
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Definition
A Hamiltonian system on the symplectic manifold (M?", ®) is
given by a smooth function H € C*(M).

By definition iz, = dH. In this case
Le, H(x) = (&n,En) =0,
i.e. £y is tangent to the level sets of H at every point. Moreover,
Le, 0 = i, do+ d(i,®) = d(dH) =0,
namely the flow is symplectic, i.e. ¢§;H € Sp(M,®) Vt.
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Definition
A Hamiltonian system on the symplectic manifold (M?", ®) is
given by a smooth function H € C*(M).

By definition iz, = dH. In this case
Le, H(x) = (&n,En) =0,
i.e. £y is tangent to the level sets of H at every point. Moreover,
Le, 0 = i, do+ d(i,®) = d(dH) =0,
namely the flow is symplectic, i.e. (I)éH € Sp(M,®) Vt.

Locally we have coordinates (q',...,9",p1,. .., pn) where
® = dg* A dpg, (Darboux Theorem), so that

£y = o0H 0 oHo  oH oH
e 0pe 99%  dg* dpq - o
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).

Hamiltonian: H(q, p) = (P + ¢?)
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).
Hamiltonian: H(q, p) = (P + ¢?)

Hamiltonian vector field: 4 = pdg — qo,.
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).

Hamiltonian: H(q, p) = 3(p*+ ¢?)
Hamiltonian vector field: &y = pdg — qop.

Equations of motion:
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).

Hamiltonian: H(q, p) = 3(p*+ ¢?)
Hamiltonian vector field: &y = pdg — qop.

Equations of motion:

0 1
t .
v <_1 o) [ cost sint 5
Flow: ¢}, =e = (—sint cost) € Sp(R=,dg A dp)
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Example: Harmonic Oscillator
Manifold: (R?,® = dg A dp).

Hamiltonian: H(q, p) = 3(p*+ ¢?)
Hamiltonian vector field: &y = pdg — qop.

Equations of motion:
g\ _( 0 1\(q
p) \—1 0/ \p

0 1

t .
v <_1 o) [ cost sint 5
Flow: ¢}, =e = (—sint cost) € Sp(R=,dg A dp)

This is the qualitative behviour of Hamiltonian orbits in 2
dimensions close to a stable equilibrium point.

Slide 10/121 — Roberto De Leo — A quick survey of Hamiltonian systems




HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Example: Classical Mechanics on a
Riemannian manifold
Manifold: (T*M,® = dg* A dpa, g = gopdg® ® dgP).
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Example: Classical Mechanics on a
Riemannian manifold
Manifold: (T*M,® = dg* A dpa, g = gopdg® ® dgP).

Hamiltonian: H(g,p) = %gaﬁpapﬁ +V(q)

)
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Example: Classical Mechanics on a
Riemannian manifold

Manifold: (T*M,® = dg* A dpa, g = gopdg® ® dgP).
Hamiltonian: H(g,p) = %g“ﬁpapﬁ +V(q)

Hamiltonian vector field:
&H = gaBpB aa - (%aocg‘“v Pypv "’ aa V) a“

Slide 11/121 — Roberto De Leo — A quick survey of Hamiltonian systems



Example: Classical Mechanics on a
Riemannian manifold

Manifold: (T*M,® = dg* A dpa, g = gopdg® ® dgP).
Hamiltonian: H(q,p) = %gaﬁpapﬁ +V(q)

Hamiltonian vector field:
éH = gaBpB aOL - (%aocg“v Pypv "’ aa V) a“

Equations of motion:

() ~ (g0 -auv)
Po. —590g" Pupy — oV
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Example: Classical Mechanics on a
Riemannian manifold

Manifold: (T*M,® = dg* A dpa, g = gopdg® ® dgP).
Hamiltonian: H(q,p) = %g“ﬁpapﬁ +V(q)

Hamiltonian vector field:
&H = gaBpB aOL - (%aocg“v Pppv "’ aa V) a“

Equations of motion:

() (rudfi )
Po. —590g" Pupy — oV

In case V =0, m= 1, we get the equation of geodesics:
d/dt(gopd®) + 20a9" Pugovd*® =0
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Example: motion under a potential in R?
Here H = 5p?+ V(q) and &4(q,p) = pdg — V'(q) dp.
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Example: motion under a potential in R?

Here H = $p? + V(q) and &4(q,p) = pdg — V'(q) p.
In particular, all critical points of & lie on the g axis and we get
centers for V/ > 0 and saddles for V// < 0 (e.g. see Arn 2.4C):
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Example: motion under a potential in R?

Here H = $p? + V(q) and &4(q,p) = pdg — V'(q) p.
In particular, all critical points of & lie on the g axis and we get
centers for V/ > 0 and saddles for V// < 0 (e.g. see Arn 2.4C):

]
-
1T 17T
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(a) (b)
Figure 11 Potential energy

@) (b)

Figure 12 Phase curves
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Locally

Hamiltonian
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Locally Hamiltonian vector fields
Given (M, ®), Xnam(M) = {§ € X(M)|jz® is exact} and
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Locally Hamiltonian vector fields
Given (M, ®), Xnam(M) = {§ € X(M)|jz® is exact} and

Xioc Ham(M) = {§ € X(M) | ik is closed} = {§ € X(M) | Le =0}
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Locally Hamiltonian vector fields
Given (M, ®), Xnam(M) = {§ € X(M)|jz® is exact} and
Xioc Ham(M) = {§ € X(M) | ik is closed} = {§ € X(M) | Le =0}

Equivalently, & is locally Hamiltonian if (M) C TM is
Lagrangian with respect to ® = dg* A dpg + dg* A dpg,
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Locally Hamiltonian vector fields
Given (M, ®), Xnam(M) = {§ € X(M)|jz® is exact} and
Xioc Ham(M) = {§ € X(M) | ik is closed} = {§ € X(M) | Le =0}
Equivalently, & is locally Hamiltonian if (M) C TM is
Lagrangian with respect to ® = dg* A dpg + dg* A dpg,

Both X pam(M) and X ¢ Ham(M) are Lie subalgebras of X(M).
Note: & = hoP doH dg depends only on the deriv. of H!

P
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Locally Hamiltonian vector fields
Given (M, ®), XHam(M) = {€ € X(M)| o is exact} and

Xioc Ham(M) = {§ € X(M) | ik is closed} = {§ € X(M) | Le =0}
Equivalently, & is locally Hamiltonian if E(M) C TM is
Lagrangian with respect to ® = dg* A dpg + dg* A dpg,

Both X pam(M) and X ¢ Ham(M) are Lie subalgebras of X(M).
Note: &y = h®B doH dg depends only on the deriv. of H!

This means that the “Hamiltonian machinery” works even when
€ is just locally Hamiltonian. In this case, the corresponding H is
a multivalued function.
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Locally Hamiltonian vector fields
Given (M, ®), XHam(M) = {€ € X(M)| o is exact} and

Xioc Ham(M) = {§ € X(M) | ik is closed} = {§ € X(M) | Le =0}

Equivalently, & is locally Hamiltonian if E(M) C TM is
Lagrangian with respect to ® = dg* A dpg + dg* A dpg,

Both X pam(M) and X ¢ Ham(M) are Lie subalgebras of X(M).
Note: &y = h®B doH dg depends only on the deriv. of H!

This means that the “Hamiltonian machinery” works even when
€ is just locally Hamiltonian. In this case, the corresponding H is
a multivalued function.

Such systems have not been studied much so far, mainly )
because they do not arise from the framework of classical )
mechanics.
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Example 1: topological obstructions
Consider (T?,® = dg A dp) and n = dp.
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Example 1: topological obstructions

Consider (T?,® = dg A dp) and n = dp.

Clearly 1 is not exact, so the vector field &, = d4 such that
e, @ =T

is only locally Hamiltonian.
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Example 1: topological obstructions

Consider (T?,® = dg A dp) and n = dp.

Clearly 1 is not exact, so the vector field &, = d4 such that
@ ="

is only locally Hamiltonian.

Nevertheless, it can be considered as the differential of the
multivalued function H(q,p) = p.
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Example 1: topological obstructions

Consider (T?,® = dg A dp) and n = dp.

Clearly 1 is not exact, so the vector field &, = d4 such that
i&n(l) =M

is only locally Hamiltonian.
Nevertheless, it can be considered as the differential of the

multivalued function H(q,p) = p.
The corresponding equations of motion are

(5)= (o)

and the corresponding flow is made of translations:
o5(a,p) = (g +1t,p).
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Example 1: topological obstructions

Consider (T?,® = dg A dp) and n = dp.

Clearly 1 is not exact, so the vector field &, = d4 such that
i&n(l) =M

is only locally Hamiltonian.

Nevertheless, it can be considered as the differential of the

multivalued function H(q,p) = p.
The corresponding equations of motion are

q\ (1
p/ \O
and the corresponding flow is made of translations:
05(a,p) = (g +1t,p).
A sign that &y is not Hamiltonian is that its orbits, i.e. the level

sets of H, are topologically non-trivial. -
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Example 2: smooth obstructions

Definition

A regular 1-dim. foliation # of R? is Hamiltonian if its leaves are
the level sets of a regular smooth function H, i.e. if

F ={dH =0}, i.e. if TyF = span{Ex(x)} for all x € R2.

"Haefliger & Reeb, “Variétés (non séparés) a une dimension et structures
feullietées du plan”, Ens.Math. 3, 1957 o
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Example 2: smooth obstructions

Definition
A regular 1-dim. foliation # of R? is Hamiltonian if its leaves are
the level sets of a regular smooth function H, i.e. if

F ={dH =0}, i.e. if TyF = span{Ex(x)} for all x € R2.

Remark: 7 is usually a non-Hausdorff space, but this is not an
obstruction to define a smooth structure’.

"Haefliger & Reeb, “Variétés (non séparés) a une dimension et structures
feullietées du plan”, Ens.Math. 3, 1957
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Example 2: smooth obstructions

A regular 1-dim. foliation # of R? is Hamiltonian if its leaves are

the level sets of a regular smooth function H, i.e. if
F ={dH=0},i.e.if T,F =span{&y(x)} for all x € R?

Remark: 7 is usually a non-Hausdorff space, but this is not an
obstruction to define a smooth structure’.

In this concrete case, for example, C*(F) can be defined as the
set of CK(IR?) functions that are constant on the leaves of F,
i.e. kerLg,.

"Haefliger & Reeb, “Variétés (non séparés) a une dimension et structures :')
feullietées du plan”, Ens.Math. 3, 1957 7
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Example 2: smooth obstructions

A regular 1-dim. foliation # of R? is Hamiltonian if its leaves are
the level sets of a regular smooth function H, i.e. if
F ={dH=0},i.e.if T,F =span{&y(x)} for all x € R?

Remark: 7 is usually a non-Hausdorff space, but this is not an
obstruction to define a smooth structure’.

In this concrete case, for example, C*(F) can be defined as the
set of CX(IR?) functions that are constant on the leaves of 7,
i.e. kerLg,.

Of course, though, fundamental properties such as the
existence of a partition of unity do not hold in non-Hausdorff
spaces! Py

"Haefliger & Reeb, “Variétés (non séparés) a une dimension et structures &)
feullietées du plan”, Ens.Math. 3, 1957
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Locally every regular foliation is Hamiltonian but globally things
are different:

®
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Locally every regular foliation is Hamiltonian but globally things
are different:

Theorem (Haefliger, Reeb 1957)

F is Hamiltonian iff C'(F) contains regular functions.
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Locally every regular foliation is Hamiltonian but globally things
are different:

Theorem (Haefliger, Reeb 1957)

F is Hamiltonian iff C'(F) contains regular functions.

This is the exception rather than the rule. It turns out, for
example, that there exist foliations such that C'(F) contains
only constant functions! (see the article by Haefliger and Reeb
and the references therein).
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Locally every regular foliation is Hamiltonian but globally things
are different:

Theorem (Haefliger, Reeb 1957)

F is Hamiltonian iff C'(F) contains regular functions.

This is the exception rather than the rule. It turns out, for
example, that there exist foliations such that C'(F) contains
only constant functions! (see the article by Haefliger and Reeb
and the references therein).

Incidentally, we have an interesting related property:

Theorem (Haefliger, Reeb 1957)

On non-Hausdorff smooth manifolds of every dimension there
are infinitely many inequivalent smooth structures.

=
A4
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Example: a non-Hamiltonian foliation of R?

Consider (R?,dq A dp) and n = (1 — p?)dg +2(1 — 2p)dp.
Its leaves are shown below:

™
.
R

N

4fT ' ; ' i
AR
L . . \\\ ., \ . -
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Clearly F, = {n = 0} is a regular foliation but no regular
function has this foliation as the set of its level curves.

(-
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Clearly F, = {n = 0} is a regular foliation but no regular
function has this foliation as the set of its level curves.

Correspondigly, the vector field &, = 2(2p— 1)dq + (1 — p?)dp
is regular and everywhere tangent to %y but kerLgn is generated
by

H(q.p) = (p+1)3(p—1)e?

whose differential vanishes on the leaf p = —1.

=
A4
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Clearly F, = {n = 0} is a regular foliation but no regular
function has this foliation as the set of its level curves.

Correspondigly, the vector field &, = 2(2p— 1)dq + (1 — p?)dp
is regular and everywhere tangent to #y, but kerLgn is generated
by

H(q.p) = (p+1)*(p—1)e?
whose differential vanishes on the leaf p = —1.
Hence the derivative of every function of

C'(Fq) = {foH|fe C'(R)}

is null in that point.
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In coordinates, consider on
Fa~Y=RUR/{x~yifx=yandx <0}

the two charts y,¢ : (—¢€,€) — Y s.t.
y(w) is the leaf of n passing through (0, —1 — w) and
¢(z) is the on passing through (0,z+ 1).
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In coordinates, consider on
Fa~Y=RUR/{x~yifx=yandx <0}

the two charts y,¢ : (—¢€,€) — Y s.t.
y(w) is the leaf of n passing through (0, —1 — w) and
¢(z) is the on passing through (0,z+ 1).

Since w and z are the coords of the same leaf iff
H(0,—1—w) = H(0,z+ 1), the coords change is given by

wi(14+w) =z(z+2)°

which reduces to z ~ w?® close enough to 0.
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In coordinates, consider on
Fa~Y=RUR/{x~yifx=yandx <0}
the two charts y, ¢ : (—¢€,€) — Y sit.
y(w) is the leaf of n passing through (0, —1 — w) and
¢(2) is the on passing through (0,z+ 1).
Since w and z are the coords of the same leaf iff
H(0,—1—w) = H(0,z+ 1), the coords change is given by
wi(1+w)=z(z+2)?®
which reduces to z ~ w?® close enough to 0.
Given f € C'( ), then its representatives in coordinates are
fy(w) = F((w)) and f,(2) = 1(0(2)). Then
(W) = fo00 ™" oy(w) = fo(w?)
and 7N
fl,V(W)|W=0 = 3w fy(w®)|w=0 = 0. o
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While in the example of the torus the vector field was only
locally Hamiltonian for topological (C°) reasons, here it depends
on the smooth (C') structure:

Theorem (DL, 2014)

There exists a continuous funtion G such that (H, G) is locally
injective and %y is Hamiltonian with respect to the (inequivalent)
smooth structure on the plane given by the charts (H, G) at
every point.

=
A4
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Least
Action
Principles
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The Poincaré-Cartan 1-form
0y = po,dqg®* — Hdt

Recall that the trajectory of a Hamiltonian system on M starting
at time f from qp and arriving at time t in g is an extremal of
the action

S— / L(q,§)dt — / (podg® — Halt),
Y Y

yYe{v:[to,ti] = M|¥(to) = qo,Y(t1) = a1 }
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

The Poincaré-Cartan 1-form
0y = po,dqg®* — Hdt

Recall that the trajectory of a Hamiltonian system on M starting
at time f from qp and arriving at time t in g is an extremal of
the action

S— / L(q,§)dt — / (podg® — Halt),
Y Y

ye {y:[to,t1] = M|v(to) = qo,¥(t1) = a1 }
The Poincaré-Cartan 1-form
01(t,q,p) = pedg®™ — H(p,q)dt € Q' (R x T*M)

plays a fundamental role in Hamiltonian systems.
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Least Action principle in R x T*M

Theorem (see Arnold, 45C)
The extremals of the “extended action”

RxT*M /9/-/

in the space of all paths Y : [ty, t;] — R x T*M such that
T (Y(1)) = t, Tm(¥(to)) = (o, q0) and Tu(¥(t)) = (41, ¢1),
where T(t,q,p) = t and ty(t,q,p) = (t,q),

are the solutions y = (t,q(t),p(t)) : [to.t1] > Rx T*M
of the Hamilton equations satisfying the initial conditions
q(to) = qo, q(t1) = a1 =Y

Remark: no condition is put on p(f), p(t)! N
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We consider a family of paths . and set 6 = s ]8 o- Then

5 GH-—t/inSq + 4800 — deH8q* — 9“H 8pa] ot —

= padq*

+/MW@%mm+em+%mmﬂm
Y
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We consider a family of paths . and set 6 = s ]8 o- Then

5 GH-—t/inSq + 4800 — deH8q* — 9“H 8pa] ot —

= padq*

+/mwa%mm+em+%mmﬂm
Y

From the line above it is clear why we need to fix the initial
conditions for the g (i.e. g = 0 at fp and t;) but not for the p.
O
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Proof.

We consider a family of paths Y and set 8 = %|,_,. Then

5 GH-—t/inSq + 4800 — deH8q* — 9“H 8pa] ot —

= padq*

+/mwawmm+em+%mmﬂm
Y

From the line above it is clear why we need to fix the initial

conditions for the g (i.e. g = 0 at fp and t;) but not for the p.
O

It looks surprising that the extremals of the action on M coincide
with those of the corresponding action on R x T*M, where the
po, are allowed to vary independently from the g%.
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Proof.

We consider a family of paths . and set 6 = s ]8 o- Then

5 GH-—t/inSq + 4800 — deH8q* — 9“H 8pa] ot —

= padq*

+/mwawm%+em+%mwﬂm
Y

From the line above it is clear why we need to fix the initial

conditions for the g (i.e. g = 0 at fp and t;) but not for the p.
O

It looks surprising that the extremals of the action on M coincide

with those of the corresponding action on R x T*M, where the

po, are allowed to vary independently from the g%.

The reason behind this is that, for fixed g* on TM, the value of
o = aLa(q&é’) is, by definition of Legendre transform, an extremal

of the functlon L pPag* — H.
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Least Action Principle in Mg = H™'(E)
Maupertuis Principle, Hamiltonian version

Theorem (Mapertuis principle |, see DFN Thm33.3.1)
The extremals of the “truncated action”

Sely] = / 0, 0= pydq® (Liouville 1-form),
in the space 2 of al}(paths Y: [to,t1]] = T*M such that
n(¥(t)) = qo. Tm(¥(t1)) = a1, Y[to, t1]) € M,
where Tty - T*M — M is the projection that “drops” the p,
are all the reparametrizations of the solutions vy : [to,ti] — T*M

of the Hamilton equations contained inside ).
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Proceeding as in the previous case, we find that

5 / 6— / (67600 — padq®] dt.
Ye Y
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Proceeding as in the previous case, we find that
5 / o= / (67800 — Podq®] dit.
Ye Y

This time though the dg and dp are not independent:
since H is constant over all paths, then

0 = 8[H(qe(t), pe(1))] = duH8q* + 0*H dpq
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Proceeding as in the previous case, we find that
5 / 6= / (6600 — padq®] dt.
Ye Y

This time though the dg and dp are not independent:
since H is constant over all paths, then

0 = 8[H(qe(t), pe(t))] = doH g™ + d*H 8y,
Since this is the only constraint, it means that
(qa7p0€) &S (aaHv _a(XH) 9

namely the paths y that extremizes the truncated action are
those whose image Y(M) C Mg coincides with the image of a
solution of the coresponding Hamiltonian equations of motions,
i.e. is a solution modulo reparametrization. O
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Least Action Principle in Mg = H™'(E)
Maupertuis Principle, Lagrangian version

Theorem (Mapertuis pr. Il, Arn 45D & AM Thm3.8.5)

Consider a Hamiltonian system H with Lagrangian

Among all curvesy= q(t) : R — M connecting qo, g1 € M and
parametrized so that H(q,dL/dq) = E, the extremals of the
“truncated action”

b oL
S :/e:/ f-adt,
e[Y] ; o a0

are all reparametrizations of the solutions of the Lagrangian
equations of motion which keep the energy equal to E. e
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Let L : TM — T*M be the Legendre transformation and
consider any curve Y= q(t) : R — M connecting go with gy
in such a way that H(q(t),dL/dq) = E.
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Proof.

Let L : TM — T*M be the Legendre transformation and
consider any curve Y= q(t) : R — M connecting go with gy
in such a way that H(q(t),dL/dq) = E.

Then the curve Y= Loy: R — T*M satisfies the conditions of
the Maupertuis’ principle in the Hamiltonian version
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Proof.

Let L : TM — T*M be the Legendre transformation and
consider any curve Y= q(t) : R — M connecting go with gy
in such a way that H(q(t),dL/dq) = E.

Then the curve Y= Loy: R — T*M satisfies the conditions of
the Maupertuis’ principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

=
A4
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Proof.

Let L : TM — T*M be the Legendre transformation and
consider any curve Y= q(t) : R — M connecting go with gy
in such a way that H(q(t),dL/dq) = E.

Then the curve Y= Loy: R — T*M satisfies the conditions of
the Maupertuis’ principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

iff ¥ is a reparametrization of the solutions of the Hamiltonian
equations of motion
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Let L : TM — T*M be the Legendre transformation and
consider any curve Y= q(t) : R — M connecting go with gy
in such a way that H(q(t),dL/dq) = E.

Then the curve Y= Loy: R — T*M satisfies the conditions of
the Maupertuis’ principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

iff ¥ is a reparametrization of the solutions of the Hamiltonian
equations of motion

iff vy is a reparametrization of the solutions of the Lagrangian
equations of motion. O
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Example 1: Geodesics

On a Riemannian manifold (M, g), the extremals of the action

S= / \ /gan“qut are (unparametrized) geodesics.
Y
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Example 1: Geodesics

On a Riemannian manifold (M, g), the extremals of the action

S= / \/gaﬁq“qﬁdt are (unparametrized) geodesics.
Y

Proof.

Geodesics are the solutions of the Hamiltonian dynamical
system given by the purely kinetic energy Hamiltonian

H(g.p) = 39 papp. On H = E, g pupg = VE /9™ papp

and so the extremals of / gano‘qut are also extremals of
Y
/ \/ apg®gPat. O
v
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Example 2: Motion in a Riemann Manifold

Theorem
A particle of mass m on a Riemannian manifold (M, g)

subjected to a potential V(q) moves, at the energy level E,

along the geodesics of the new metric

9up = 2m(E — V(X))goc[5~
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Example 2: Motion in a Riemann Manifold

If H(g,p) = 39 papp + V(a) = 190pG*GP + V(q), then, in M,
9apg™aP = 2(E - V(q)).

Sy = /Y padg® = /Y gopd™Pat,

Hence
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Example 2: Motion in a Riemann Manifold

Proof.
If H(g,p) = 39 papp + V(a) = 190pG*GP + V(q), then, in M,
gupg™d = 2(E— V(q)).

Sy = /Y padg® = /Y gopd™Pat,

which we can write as

shl = /Y V2(E=V(Q))\/gupiraPet = [Y /Gupaecpat

Hence
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Example 2: Motion in a Riemann Manifold

Proof.
If H(g,p) = 39 papp + V(a) = 190pG*GP + V(q), then, in M,
9opd™ P = 2(E— V().

Sy = /Y padg® = /Y gopd™Pat,

which we can write as

shl = /Y V2(E=V(Q))\/gupiraPet = [Y /Gupaecpat

from which it is clear that the extremals of the Maupertuis action

with energy E coincide with the geodesics of M with respect to

the metric Py
Jap = 2(E — V(0))90s-
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Maupertuis’ principle allows us to apply to Hamiltonian
dynamics important results of Riemannian geometry, e.g. the
fact that, if in some homotopy class of loops there is a curve of
shortest length, this is a geodesics:
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Maupertuis’ principle allows us to apply to Hamiltonian
dynamics important results of Riemannian geometry, e.g. the
fact that, if in some homotopy class of loops there is a curve of
shortest length, this is a geodesics:

Double Pendulum

Corollary (See Arn 45C)

For every nq, no there is a periodic motion of the double
pendulum (M = T?) such that one pendulum makes n;
oscillations while the other makes n» oscillations.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Maupertuis’ principle allows us to apply to Hamiltonian
dynamics important results of Riemannian geometry, e.g. the
fact that, if in some homotopy class of loops there is a curve of
shortest length, this is a geodesics:

Double Pendulum

Corollary (See Arn 45C)

For every nq, no there is a periodic motion of the double
pendulum (M = T?) such that one pendulum makes n;
oscillations while the other makes n» oscillations.

Rigid Body

Corollary (See Arn 45C)

Given a rigid body (M = SOs), in any potential field there exists
at least one periodic motion of the body. Moreveor, there are ooy
periodic motions for every arbitrary high value of the energy. \ 4
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Example: Motion of light
The Hamiltonian for rays of light is H(q, p) = c(q)||p]|-
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Example: Motion of light

The Hamiltonian for rays of light is H(q, p) = c(q)||p||-
On ME,

_ E ~OU Po
lpll = ——5 and §% = ¢(q) {5 s

(q)
So=[0= [ pucat = [ Jilgot
Y Y Y

where gep = ﬁﬁaﬁ
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Example: Motion of light
The Hamiltonian for rays of light is H(g, p) = c(q)||p||-
On Mg, ||pl| = (Eq) and g% = ¢(q) % ol SO

So=[0= [ pucat = [ Jilgot
Y Y Y

where gep = (1)2 Bap

Theorem (Fermat’s principle — Novikov 33.3.3)

The path that light rays take by passing from a point A to a point
B in a isotropic media are geodesics with respect to the metric

op = ﬁﬁaﬁ-
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Hamiltonian

Systems
as Lagrangian

Submanifolds



Generating Functions

Symplectic diffeomorphisms of a manifold M?", which are 2n
maps of 2n variables, are actually determined by a single
function of 2n variables:
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Generating Functions

Symplectic diffeomorphisms of a manifold M?", which are 2n
maps of 2n variables, are actually determined by a single
function of 2n variables:

Theorem

fo (M7 o) — (N2, @y) is symplectic iff f's graph Tr C M x N
is Lagrangian submanifold of (M x N, ®1 — ®y).

Definition

Let 042 be local Liouville 1-forms for @y andi: [y — M x N
the inclusion of the graph. Then locally (81 —82) = dS.

S is the generating function for f.
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Generating Functions

Symplectic diffeomorphisms of a manifold M?", which are 2n
maps of 2n variables, are actually determined by a single
function of 2n variables:

Theorem

fo (M7 o) — (N2, @y) is symplectic iff f's graph Tr C M x N
is Lagrangian submanifold of (M x N, ®1 — ®y).

Definition

Let 042 be local Liouville 1-forms for @y andi: [y — M x N
the inclusion of the graph. Then locally (81 —82) = dS.

S is the generating function for f.

This means that locally 61 — 0, = py,dq® — P,dQ? = dS(q, Q),
i.e. locally JS JS
Po. = @, Pa= FYazh
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Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:
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Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:
"M T*(T*M) T(T*M) T*(TM™)
(% pa) ((6% Pa), (W, v*))  ((6%Pa), (V*, wa))  ((§%, V), (Pa, War))
padq®  wedg* + v®dpy v¥dpg, — Wo dg* Pa.dq® + wedv®
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Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:
"M T*(T*M) T(T*M) T*(TM™)
(% pa) ((6% Pa), (W, v*))  ((6%Pa), (V*, wa))  ((§%, V), (Pa, War))
padq®  wedg* + v®dpy v¥dpg, — Wo dg* Pa.dq® + wedv®
e T(T*M) — T*(T*M)
(9% pa), (V¥ wa)) = (4% pPa), (—Wa, v?*))
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Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:
"M T*(T*M) T(T*M) T*(TM™)
(qaapot) ((qavp(x)a(WOh Va)) ((qaapot)7(va7w(x)) ((qaa Va)a(pOC; WOL))
padq®  wedg* + v®dpy v¥dpg, — Wo dg* Pa.dq® + wedv®

W T(T"M) - T*(T*M)
(4% Pa), (V. we)) = (9% Pa)s (—a, V™))
L N G ) ©

(6% Pa) (v we)) = (6% V%), (WaPe))
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The pull-back v GT*(T*M ¢j*(TM)92 on T(T*M) of the canonical
Liouville 1-forms on T*(T*M) and T*(TM) are given by:
W GT*(T*M) v dp(l W(qu(x7 ¢*9T*(TM) - p(de(x + Wadqa
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The pull-back y*@._, . 02 0n T(T*M) of the canonical

*(TEM)? T T (TM)
Liouville 1-forms on T*(T*M) and T*(TM) are given by:
\V GT*(T*M) adp(x Wadq(x, q)*eT*(TM) = p(de(x + W(xdq(x

Theorem (Tulczyjew 1974)

Consider the symplectic structure ® = dv® A dpg, — dwg, A dg*
on T(T*M). Then:
© v is symplectic, ¢ is anti-symplectic;
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The pull-back y*@._, . 02 0n T(T*M) of the canonical

*(TEM)? T T (TM)
Liouville 1-forms on T*(T*M) and T*(TM) are given by:
\V GT*(T*M) adp(x Wadq(x, q)*eT*(TM) = p(de(x + W(xdq(x

Theorem (Tulczyjew 1974)

Consider the symplectic structure ® = dv® A dpg, — dwg, A dg*
on T(T*M). Then:
© v is symplectic, ¢ is anti-symplectic;

9 \lf e *(T*M) +¢* - d(p(xva);
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The pull-back y*0_, i 62 on T(T*M) of the canonical

*(TEM)? T T (TM)

Liouville 1-forms on T*(T*M) and T*(TM) are given by:
W GT*(T*M) adp(x W(xdqa, q)*eT*(TM) = p(de(x + W(x,(jq(x

Theorem (Tulczyjew 1974)
Consider the symplectic structure ® = dv® A dpg, — dwg, A dg*
on T(T*M). Then:
© v is symplectic, ¢ is anti-symplectic;
9 \II e *(T*M) +¢* - d(pocva);
@ ifi:F—T(T* M) is a Lagrangian submanifold, then
y(F) C T*(T*M) is Lagrangian with generating function
H:T*M —R (ie. (yoi)*® =dH)

T*(T*M)
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The pull-back y*0_, i 62 on T(T*M) of the canonical

*(TEM)? T T (TM)

Liouville 1-forms on T*(T*M) and T*(TM) are given by:
W GT*(T*M) adp(x W(xdq(x, q)*eT*(TM) = p(de(x + W(x,(jq(x

Theorem (Tulczyjew 1974)

Consider the symplectic structure ® = dv® A dpg, — dwg, A dg*
on T(T*M). Then:

© v is symplectic, ¢ is anti-symplectic;

9 \II e T*M +¢* - d(pocva);

@ ifi:F—T(T* M) is a Lagrangian submanifold, then
y(F) C T*(T*M) is Lagrangian with generating function
H:T"M =R (ie. (yoi)*8,. ., = 0dH) and
O(F) C T*(TM) is Lagrangian with generating function
L:TM =R (ie. (¢oi)0 . =dL);

T*(TM)
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The pull-back y*0_, i 62 on T(T*M) of the canonical

*(TEM)? T T (TM)

Liouville 1-forms on T*(T*M) and T*(TM) are given by:
W GT*(T*M) adp(x W(xdq(x, q)*eT*(TM) = p(de(x + W(x,(jq(x

Theorem (Tulczyjew 1974)

Consider the symplectic structure ® = dv® A dpg, — dwg, A dg*
on T(T*M). Then:

© v is symplectic, ¢ is anti-symplectic;

9 \II e T*M ‘|‘¢* - d(pocva);

@ ifi:F—T(T* M) is a Lagrangian submanifold, then
y(F) C T*(T*M) is Lagrangian with generating function
H:T"M =R (ie. (yoi)*8,. ., = 0dH) and
O(F) C T*(TM) is Lagrangian with generating function
L:TM =R (ie. (¢oi)0 . =dL);

oL

© H(g,p) = pav® — L(q, V), with py, = e o

T*(TM)
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Hamilton-Jdacobi
Equation
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Huygens principle

The idea behind Hamilton-Jacobi equations comes from the
Huygens principle in optics:

®
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Huygens principle

The idea behind Hamilton-Jacobi equations comes from the
Huygens principle in optics:

Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point qo. The wave front
O, (t+5) is the envelope of the fronts ®4(s) for all g € g, (t).
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Huygens principle

The idea behind Hamilton-Jacobi equations comes from the
Huygens principle in optics:

Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point qo. The wave front
P, (t+ ) is the envelope of the fronts ®4(s) for all g € P, (t).

Figure 193 Envelope of wave fronts
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Huygens principle

The level set of Sg,(q) (optical length) is the wave front.
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Huygens principle
The level set of Sg,(q) (optical length) is the wave front.

0S
Its grad. p = % is the vector of normal slowness of the front.

(-
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Huygens principle
The level set of Sg,(q) (optical length) is the wave front.

0S
Its grad. p = % is the vector of normal slowness of the front.
Note that the directions of q and p do not coincide in an

anisotropic medium/!

Direction of the ray

p=grad S

Direction of motion
of the front

Front
Selq) =t

Figure 195 Direction of a ray and direction of motion of the wave front
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Huygens principle
The level set of Sg,(q) (optical length) is the wave front.

0S
Its grad. p = % is the vector of normal slowness of the front.

Note that the directions of q and p do not coincide in an
anisotropic medium!  ¢_()

Indicatrix of

the point g: i Direction of the ray

Direction of motion
of the front

99

Front &4,(f)

Figure 197 Conjugacy of the direction of a wave and of the front
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Optical-Mechanics Analogy

Optics Mechanics

Optical medium Extended configuration space {(q. 1)}
Fermat’s principle Hamilton’s principle & { L dt = 0
Rays Trajectories g(t)

Indicatrices Lagrangian L

Normal slowness vector p Momentum p

of the front

Expression of p in terms of Legendre transformation
the velocity of the ray, 4

1-form p dq l1-formpdq — H dt
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Hamilton-Jacobi equations v1
The connection between Huygens principle and Hamiltonian
equations comes from the three following observations:

Theorem 1
The 1-formm € Q' (M) is closed iffn*® = 0, i.e. iff its graph
N(M) C T*M is a Lagrangian submanifold of T*M.

N*0 = dg* A dng = dpNadg® A dgP =
= 3(9gNa — danp)dg® A dgP m

Hence locally oe = dS, namely a(M) writes as py = 3
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Theorem 2

LetT™ C T*M" be Lagrangian and contained in H='(Ep).
Then&y € TT.

Proof.
Since ®(§y,C) = dH({) =0,V € TT, and I is Lagrangian,
then §y € TT at every point.

O
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Theorem 2

LetT™ C T*M" be Lagrangian and contained in H='(Ep).
Then&y € TT.

Proof.

Since ®(§y,C) = dH({) =0,V € TT, and I is Lagrangian,
then §y € TT at every point. O

Let "' C T*M" be isotropic. Then

M= U ol

t€[0,T]

is Lagrangian¥'T > 0.
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Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian H on T*M and a closed 1-form on M,
the following are equivalent:

O dn*H)=0;
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Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian H on T*M and a closed 1-form on M,
the following are equivalent:
O dn*H)=0;
® n(M) is a Lagrangian submanifold of T*M invariant by the
Hamiltonian flow ¢},
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Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian H on T*M and a closed 1-form on M,
the following are equivalent:
O dn*H)=0;
® n(M) is a Lagrangian submanifold of T*M invariant by the
Hamiltonian flow ¢},

7

n(q)

: oH
© for every curve Y= q(t) : R — M satisfying g% = 0
o

the curve (t) =n(q(t)) is an integral curve of &y,
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Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)
Given a Hamiltonian H on T*M and a closed 1-form on M,
the following are equivalent:
O dn*H)=0;
® n(M) is a Lagrangian submanifold of T*M invariant by the
Hamiltonian flow ¢},

7

n(q)

: oH
© for every curve Y= q(t) : R — M satisfying g% = 0
o

the curve (t) =n(q(t)) is an integral curve of &y,

O if S is a generating function forn(M), namely if locally
n = dS, then S satisfies the (time-independent)
Hamilton-Jacobi equation

0S
(a3) =
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The name S for the generating function was not by chance:
Theorem

Letl C T*M be Lagrangian and contained in H = Ey,

mg,m € I' two “close enough” points andy; 2 : [0,1] — T two
paths s.t. y1 2(0) = mo and 1 2(1) = m.

Then [, 6= [, 6.

Slide 49/121 — Roberto De Leo — A quick survey of Hamiltonian systems



HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

The name S for the generating function was not by chance:
Theorem

Letl C T*M be Lagrangian and contained in H = Ey,

mg,m € I' two “close enough” points andy; 2 : [0,1] — T two
paths s.t. y1 2(0) = mo and 1 2(1) = m.

Then [, 6= [, 6.

Since I is Lagrangian,
d9|r = 60|r =0
and so locally 6 = dS, i.e.
CE
Po = W?

and therefore
/ 0 — S(m) — S(mo).
Yi
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Corollary (“Method of Characteristics”)

For a fixed qg, assume that the Lagrangian submanifold
" c {H(q,p) = Eo} C T*M projects with full rank on M close

to qo. Then the ‘“truncated action”
q
SEo (q) =
(o}

solves the Hamilton-Jacobi equation

Po.dq”
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Corollary (“Method of Characteristics”)
For a fixed qu, assume that the Lagrangian submanifold
" c {H(q,p) = Eo} C T*M projects with full rank on M close
to qo. Then the “truncated action”
q
SEo (q) =
(0]

solves the Hamilton-Jacobi equation

Po.dq”

Since dSg, = po,dg®, we have that
. aSEO
folo
so that, since ' C {H(q,p) = Eo}, H(q,94SEk,) = Eo.
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Application to solving 1st order PDEs
Consider the 1st order implicit PDE with “Cauchy boundary
conditions”:

H(q,04S)=Ey, S =sp€ (M1

rn—1

where H|rn1 = Ep, I is transversal to the Hamiltonian flow
of H and projects diffeomorphically on M.
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Application to solving 1st order PDEs

Consider the 1st order implicit PDE with “Cauchy boundary
conditions”:

H(q,04S) =Eo, S|por=s0€C™(I"")

where H|rn1 = Ep, I is transversal to the Hamiltonian flow
of H and projects diffeomorphically on M.

Then the previous Corollary shows that, at least for small T, the
solution on i (I 1) is given by

q
Se,(9) = so(q0) + | Pudq®,
9o

where qq is the point of [~ such that g = ®1,(qo) for some t.
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Example 1: Harmonic Oscillator

1
H(x.y,Px:Py) = 5 (P%+ 0]+ X5+ y?)

The level set H = % is the unitary 3-sphere S°.
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Example 1: Harmonic Oscillator

1
H(x.y,Px:Py) = 5 (P%+P; + X%+ y?)

The level set H = % is the unitary 3-sphere S3.
The corresponding HJ equation is

0xS)? 4 (9, S)? + X2 + y? =1
y
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Example 1: Harmonic Oscillator

H(X, ¥, Px:Py) = % (P2 + 05+ X2+ y?)
The level set H = % is the unitary 3-sphere S3.
The corresponding HJ equation is
(0xS)? +(9,S)2 + x* +y? =1
Every orbit is periodic with period 21 and lies on a torus

ps+x? = 0, pj 4 y? = 1— 07, so the manifold of trajectories
['or of every loop ' c S® transversal to the flow is a 2-torus.
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Example 1: Harmonic Oscillator

1
H(x.¥:PxPy) = 5 (P + By + X+ )
The level set H = % is the unitary 3-sphere S3.
The corresponding HJ equation is
(0xS)? +(9,S)2 + x* +y? =1
Every orbit is periodic with period 21t and lies on a torus
ps+x? = 0, pj 4 y? = 1— 07, so the manifold of trajectories

['or of every loop ' c S® transversal to the flow is a 2-torus.
Take " = {p, = px = 0,x* + y2 = 1}. Then the surface 7 is

x =cosdcost, y=sinpcost

px = —cosé¢sint, p, = —sinfsint
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Hence

(T+sin(27))

N =

ST (M) = [ (oue oy )= | cos =
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Hence

(T+sin(27))

N =

ST (M) = [ (oue oy )= | cos =

Attime T, x(T) = r(T)cos®, namely r(T) =cos~' T, so

1
S(r)==cos 'r4ry1—r?

2
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Hence

T

.
S(x(T),y(T)):/0 (,oxdx-l-pydy):/0 cos? tdt = — (T +sin(27T))

N =

Attime T, x(T) = r(T)cos®, namely r(T) =cos~' T, so

1
S(r)==cos 'r4ry1—r?

2

The solution in the annullus 1 > r > rp > 0 is therefore

’
S(r,8) = so(8) + Ecos_1 r4ry/1—r2
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Hence

T

.
S(x(T),y(T)):/0 (,oxdx-l-pydy):/0 cos? tdt = — (T +sin(27T))

N =

Attime T, x(T) = r(T)cos®, namely r(T) =cos~' T, so

1
S(r)==cos 'r4ry1—r?

2

The solution in the annullus 1 > r > rp > 0 is therefore

’
S(r,8) = so(8) + 5003_1 r4ry/1—r2

Remarks: 1. In order to have a solution on the whole r < 1, we

must have sy = const. P
2. The solution is singular where ['; is not a graph. \
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Example 2: Cohomological Equation
Lef =g, §€x(M), f,g € C*(M)

Every & € (M) is the base component of a Ham. vector field
En: just take H(q,p) = pa&*(q)-
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Example 2: Cohomological Equation
Lef =g, §€x(M), f,g € C*(M)
Every & € (M) is the base component of a Ham. vector field
Ey: just take H(qg, p) = pu&*(q). In order to solve the equation
Lgf =g
with the Method of Characteristics consider the Hamiltonian
H(q.p) = pPa&*(q) — 9(q)
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Example 2: Cohomological Equation
Lef =g, §€x(M), f,g € C*(M)
Every & € (M) is the base component of a Ham. vector field
Ey: just take H(qg, p) = pu&*(q). In order to solve the equation
Léf =g
with the Method of Characteristics consider the Hamiltonian

H(a,p) = pa&™(a) — 9(q)
Its associated HJ equation corresponding to Energy level 0 is

0— H( af) @a()af()—g(Q)ZLgf—g
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Example 2: Cohomological Equation
Lef =g, E€x(M), f,g € C*(M)

Every & € (M) is the base component of a Ham. vector field

Ey: just take H(qg, p) = pu&*(q). In order to solve the equation
Léf =g

with the Method of Characteristics consider the Hamiltonian

H(q,p) = pa&*(q) — 9(q)

Its associated HJ equation corresponding to Energy level 0 is
of of
0= (4.5 ) ~8(a)5ee(@)~sla) = Lt~

Once the value of f is given on some n— 1-dimensional
submanifold transversal to & its (local) solution is given by

@)= [ puse = [ Seaar= [ Serar= [(olatper. g

(the integral is taken over the integral traj. of & joining go and q) A
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Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to
find a symplectic diffeomorphism vy : (g,p) — (Q, P) where the
Hamiltonian writes in a simpler way.
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Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to
find a symplectic diffeomorphism vy : (g,p) — (Q, P) where the
Hamiltonian writes in a simpler way.

E.g. in the best case scenario y.H(Q, P) only depends on P’s,
so that the flow of q);, is conjugated with the flow of the “free
particle”.
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Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to
find a symplectic diffeomorphism vy : (g,p) — (Q, P) where the
Hamiltonian writes in a simpler way.

E.g. in the best case scenario Y. H(Q, P) only depends on P’s,
so that the flow of q)’H is conjugated with the flow of the “free
particle”.

We recall that such a y is actually determined by a single
function S(g, Q) such that

P dg* — Py, dQ* = dS
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Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to
find a symplectic diffeomorphism vy : (g,p) — (Q, P) where the
Hamiltonian writes in a simpler way.

E.g. in the best case scenario Y. H(Q, P) only depends on P’s,
so that the flow of ¢’H is conjugated with the flow of the “free
particle”.

We recall that such a y is actually determined by a single
function S(g, Q) such that

P dg* — PydQ* = dS

This new generating function S therefore satisfies the HJ eq.
but it also depends on n “external parameters” Q%, so that it
gives rise to a Lagrangian foliation of T*Q where every leaf is .,j-;'-"f,;
isoenergetic. o

Slide 55/121 — Roberto De Leo — A quick survey of Hamiltonian systems



Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.

base space M RxM
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Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.
base space M RxM
phase space M T*Rx T*M
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Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.
base space M RxM
phase space M T*Rx T*M

coordinates (9% Pa) (t,E. 9%, Pa)
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Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.
base space M RxM
phase space M T*Rx T*M
coordinates (9%, pa) (t,E,q%, po)

symp. form dg®* A dpg, dg* A dpg, — dt A dE
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Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.
base space M RxM
phase space M T*Rx T*M
coordinates (9%, pa) (t,E,q%, po)
symp. form dg®* A dpg, dg* A dpg, — dt A dE

Hamiltonian H(t,q.p) H(t,E,q,p) = H(t,q,p) — E
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Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians H(t, g, p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.

base space M RxM

phase space M T*Rx T*M

coordinates (9%, pa) (t,E,q%, po)

symp. form dg®* A dpg, dg* A dpg, — dt A dE

Hamiltonian H(t,q,p) H(t,E,q,p) = H(t,q,p) — E
q dH/dp

Ham. eqs. (g) - (3%’2) A I -
E oH/at | (&)
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Hamilton-Jacobi equation (time-dependent)

In this environment, the generating function is given by
S(m) = S(mo) + | [pud® ~ H(t.q.p)] ot
Y

and satisfies the complete Hamilton-Jacobi equation

The solution to this equation provides a 1-parameter family of
symplectomorphisms S; which make the Hamiltonian H equal to
constant at all time.
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HJ equation and Quantum Mechanics

Feynmans’ two postulates for QM on R":

@ The probability (g1 |y¢|go) that a particle represented by
the wavefunction y; € L?(IR") moves from g to gz under a
Hamiltonian H(q,p) = 5-8"pip;+ V(q) is the “sum” over
all contribution from all possible paths joining the two
points;
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HJ equation and Quantum Mechanics

Feynmans’ two postulates for QM on R":

@ The probability (g1 |y¢|go) that a particle represented by
the wavefunction y; € L?(IR") moves from g to gz under a
Hamiltonian H(q,p) = 5-8"pip;+ V(q) is the “sum” over
all contribution from all possible paths joining the two
points;

® The contribution to y; of a path v is given by e%S[v], where
S[v] = /04 is the classical action.
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HJ equation and Quantum Mechanics

Feynmans’ two postulates for QM on R":

@ The probability (g1 |y¢|go) that a particle represented by
the wavefunction y; € LZ(R”) moves from g to go under a
Hamiltonian H(q,p) = 5-8’pip; + V(q) is the “sum” over
all contribution from all possible paths joining the two

points;

® The contribution to y; of a path v is given by e%S[v], where
S[v] = /04 is the classical action.

Consider a single contribution y;(q) = e# S and assume that
S is a solution of the HJ time-dependent equation.
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HJ equation and Quantum Mechanics

Feynmans’ two postulates for QM on R":

@ The probability (g1 |y¢|go) that a particle represented by
the wavefunction y; € LZ(R”) moves from g to go under a
Hamiltonian H(q,p) = 5-8’pip; + V(q) is the “sum” over
all contribution from all possible paths joining the two

points;
® The contribution to y; of a path v is given by eﬁS[v], where
S[v] = /04 is the classical action.
Consider a single contribution y;(q) = e# S and assume that

S is a solution of the HJ time-dependent equation.

Which equation does y satisfy?
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S(qg,t) = —ihiny
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S(qg,t) = —ihiny

oS ih oy :i[as}2_ "2 02y

9% yIg* "] wa(quR
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S(q,t) = —ihiny

35 _ _ihdy _ [3S]°_ K Py
dq* Yy og” aq*] v o(q%)?

so the HJ equation

0S 1 [8 oS 88] V(q)

ot 2m 99 9gB
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S(q,t) = —ihiny

35 _ _ihdy _ [3S]°_ K Py
dg® Y ag” |  wo(q*)?
so the HJ equation
0S 1 dS 0S
- [8 aq* Bqﬁ] Via)

S
writes as

i, h? ih
—ihy = —%ijt V(g)y+ EnwAS

Apart for the non-linear term, this is exactly the Schrodlnger
equation of quantum mechanics —iAy = H\y where H is comes =
from H via pq, — /hg e and g% — “multiplication by g*”. A\
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Now consider instead the Schrodinger equation

h . 2
W= Ayt V(Q)y

and write y¢(q) = e#Sl1 . Which eq. does S satisfy?
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Now consider instead the Schrodinger equation
h . h?
—-y=—-——A %
V=S Ay V(g)y
and write y¢(q) = e#Sl1 . Which eq. does S satisfy?
Proceeding like above we find
95 _ 1 [9508
ot  2m | dq'd¢

0S S ik
5 =H(a50) ~zmos

that, for A — 0, reduces exactly to the HJ equation!

ih

namely
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Now consider instead the Schrodinger equation

h . h?

—-y=—-——A %

V=S Ay V(g)y
and write y¢(q) = e#Sl1 . Which eq. does S satisfy?
Proceeding like above we find

ih

05 _ 1 {8’78—38—8} +V(q)— —AS
2m

ot 2m| 9gog

0S S ik
5 =H(a50) ~zmos

that, for A — 0, reduces exactly to the HJ equation!

namely

This is the simplest way to show that QM reduces to CM for &
h — 0. 9
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Consider again the Schrodinger equation in R”
: h?
—ihy = ——A 4
iy =—2—Ay+V(qy

Under the ansatz y(x) = eS®)/% at 1st order in  then S is the
solution of the corresponding HJ equation.
This though is a very poor approximation, e.g. W ¢ L2(R").
Under the ansatz

y(x) = a(x)eS)/"

V is an eigenfunction for the quantum Hamiltonian H iff
in (288 +25%9aduS) + 2Aa =0

At the 1st order in h we get the homogeneous transport
equation

aAS+259,,2055 = 0.
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Example: QM on the line

The 2nd order solution y = ae’/" is called semiclassical
approximation of the exact solution of the Schrodinger equation.
In R, the homegenous transport equation writes

asS’'+24d8 =0

so that

a(x) = c c

VS(X)  [4(B— V(x)]"*
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Example: QM on the line

The 2nd order solution y = ae’/" is called semiclassical
approximation of the exact solution of the Schrodinger equation.

In R, the homegenous transport equation writes
as’"+2458 =0

so that
c c

a(x) = = .
V() [4(E— v(x)]*
This method, called WKB (Wentzel, Kramers, Brillouin), is at the
base of microlocal analysis.

=
A4
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Completely
Integrable

Systems
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Poisson bracket & First Integrals

Let (M?" ®) be a symplectic mfd. Functions in C*(M) are
called observables.

®
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Poisson bracket & First Integrals

Let (M2" @) be a symplectic mfd. Functions in C(M) are
called observables.

An observable f is a constant of motion if Lg, f = 0, i.e. iff

m(&H7éf) =0.

Slide 65/121 — Roberto De Leo — A quick survey of Hamiltonian systems



Poisson bracket & First Integrals

Let (M?" ®) be a symplectic mfd. Functions in C*(M) are
called observables.

An observable f is a constant of motion if Lng =0, i.e. iff
(D(E;H7E4f) =0.

We set {f,g} = 0(&r,Eg) and we say that f is a first integral for
H iff {H, f} =0.
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Poisson bracket & First Integrals

Let (M?" ®) be a symplectic mfd. Functions in C*(M) are
called observables.

An observable f is a constant of motion if Lng =0, i.e. iff
o(&En,&r) = 0.

We set {f,g} = 0(&r,Eg) and we say that f is a first integral for
Hiff {H,f} = 0.

We say that H is completely integrable if it has n independent
1st integrals in involution (i.e. commuting with each other).
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Poisson bracket & First Integrals

Let (M?" ®) be a symplectic mfd. Functions in C*(M) are
called observables.

An observable f is a constant of motion if Lng =0, i.e. iff
o(&En,&r) = 0.

We set {f,g} = 0(&r,Eg) and we say that f is a first integral for
Hiff {H,f} = 0.

We say that H is completely integrable if it has n independent
1st integrals in involution (i.e. commuting with each other).

Theorem

If{fi,...,f,} are n commuting observables in involution, all level
submanifolds fy = ¢y, ..., f, = ¢, are Lagrangian.
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Arnold-Liouville Theorem

Theorem (Arnold-Liouville Theorem)
If{H="f,...,f,} isa CIS on M and M; = {f; = c¢;}. Then:
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Arnold-Liouville Theorem

Theorem (Arnold-Liouville Theorem)
If{H="f,...,f,} isa CIS on M and M; = {f; = c¢;}. Then:

@ if M¢ is compact, each connected component is
diffeomorphic to T";
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Arnold-Liouville Theorem

Theorem (Arnold-Liouville Theorem)
If{H=fi,...,fy} isa CIS on M and M, = {f; = c;}. Then:
@ if M¢ is compact, each connected component is
diffeomorphic to T";

® in the neighborhood of each such torus, there exists
action-angle symplectic coordinates Iy, ..., |, @', ...,¢"
such that the @* are coordinates on the torus and
H=H(h,...,I).
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Arnold-Liouville Theorem

Theorem (Arnold-Liouville Theorem)
If{H="f,...,f,} isa CIS on M and M; = {f; = c¢;}. Then:

@ if M¢ is compact, each connected component is
diffeomorphic to T";

® in the neighborhood of each such torus, there exists
action-angle symplectic coordinates Iy, ..., |, @', ...,¢"
such that the @* are coordinates on the torus and
H=H(h,...,I).

In particular in such coordinates the Hamilton eqs writes

: oH
_ O
I(X_Oa (P _ala

=
A4
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Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only
general effective method to find integrals of motion:

(-
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Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only
general effective method to find integrals of motion:

Theorem (Jacobi, see Arn 47B)

If the Hamilton-Jacobi equation H(q,04S) = Eo admits a
solution S(q, Q), depending on n parameters Q', ..., Q", such
that the Hessian
)
0q0Q
is always non-degenerate, then the corresponding Hamiltonian

equations
g\ _( oH/op
p) ~ \~oH/dq

can be solved explicitly by quadratures and the n functions /
Q%(q, p) are all integrals of motion. o -
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Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(g,p) = % (p* + ®?¢?).

(-
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Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(g,p) = % (p* + ®?¢?).
Every leaf Mg = {H = E > 0} is an ellipse with interior Sg.

1 1 E
Define = — dg = — dpANdg=—.
I ZR/MEp a9 2n/sE pAdq ®
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Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(g,p) = % (p* + ®?¢?).
Every leaf Mg = {H = E > 0} is an ellipse with interior Sg.

1 1 E
Define /= — dg= — dpANdg=—.
I ZR/MEp & 2n/sE IIEY ®

Hence we set / = H/® and define

S(q, /):/pdq:/\/Zlu)—ququ.
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Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(g,p) = % (p* + ®?¢?).
Every leaf Mg = {H = E > 0} is an ellipse with interior Sg.

1 1 E
Define /= — dg= — dpANdg=—.
I 2n/MEp & 2n/sE IIEY ®

Hence we set / = H/® and define

S(q, /):/pdq:/\/ZI(x)—ququ.

Then we get

—a—s—/Ld =sin~" .
T faw—wre o \War) T
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Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(g,p) = % (p* + ®?¢?).
Every leaf Mg = {H = E > 0} is an ellipse with interior Sg.

1 1 E
Define /= — dg = — doNdg=—.
I 2TC/MEp & 2n/sE IIEY ®

Hence we set / = H/® and define

S(q, /):/pdq:/\/ZI(x)—ququ.

Then we get
—a_S—\/Ld —Sinf‘] 9 —
o) ee—wr@ o \Wai) T

The coord. change (g, p) — (@, /) is symplectic (i.e.
do A dl = dq A dp) and the equations of motion now write

o=, |=0 =
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Example 2: Geodesics on an Ellipsoid
(Jacobi, 1835)
X2 y2 Z2

Problem: study geodesics on >+ = + =1.
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Example 2: Geodesics on an Ellipsoid
(Jacobi, 1835)
X2 y2 Z2

Problem: study geodesics on >+ = + =1.
Consider confocal ellipsoidal coordmates M , A2, A3 defined by

2 2

AR AR
Y U

lfa<b<cthenh <a<i<b<Az<c.

2
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Example 2: Geodesics on an Ellipsoid
(Jacobi, 1835)
X2 y2 22

Problem: study geodesics on >+ = + =1.
Consider confocal ellipsoidal coordmates M , A2, A3 defined by

2 2 2

X y z

VT

Ifa< b<cthenki < a< A <b<Az < c. Hence E; given by

=1

2 2 2

X y i V4 —q

az—ki—i—bz—}u,' 02—7\‘,'

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for
respectively i = 1,2, 3.
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Example 2: Geodesics on an Ellipsoid
(Jacobi, 1835)
X2 y2 22

Problem: study geodesics on >+ = + =1.
Consider confocal ellipsoidal coordmates M , A2, A3 defined by

2 2 2

X y z

VT

Ifa< b<cthenki < a< A <b<Az < c. Hence E; given by

=1

2 2 2

X y i V4 —q

az—ki—i—bz—}u,' 02—7\‘,'
is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for
respectively i = 1,2, 3.
Note that A;, A; can be used as local coordinates on E.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

In coordinates Ay, A3 on the ellipsoid E; the metric is

M= e he—h

2
(o) i) 2

9= (Aa—A2)

(-
\
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In coordinates Ay, A3 on the ellipsoid E; the metric is

Az — M Ao — A
f(Rs) f(h2)

g=(a—2L) A3 — drs|

where f(A) =4(a—A)(b—A)(c—A).

(-
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

In coordinates Ay, A3 on the ellipsoid E; the metric is

Az — M Ao — A
f(Rs) f(h2)

g:(xs—xz)[ o~ dxs} ,

where f(A) =4(a—A)(b—A)(c—A).

_ fha) o, f(R2) »
S0 Hike,ha) = A3 — A2 lks—h p3+7»2—7w1 k2
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

In coordinates Ay, A3 on the ellipsoid E; the metric is

M= o Ae—M
i) 8™ i(hy)

g= (s —A2) { d?ﬁ}

where f(A) =4(a—A)(b—A)(c—A).

1 fha) o, f(R2) »
S0 Hike,ha) = A3 — A2 [7»3—7&1p3+7h2—7b1p2

and therefore the Hamilton-Jacobi equation

1| fe) (3S)°, f(he) (9S)*| |

Az —Ao | A3 — A1 \OA3 Ao — Ay \ 0N -
is separable. =Y
Hence the system is completely integrable! N
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of

minimal degree over k in which p splits as p(x) = I'I?ﬁ1 (x — a).
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of

minimal degree over k in which p splits as p(x) = I'I?ﬁ1 (x — a).

E.g. C =R[x]/(x®+ 1) is the SF of p(x) = x* + 1 over R.
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of

minimal degree over k in which p splits as p(x) = I'I?ﬁ1 (x — a).

E.g. C =R[x]/(x*+1) is the SF of p(x) = x* 41 over R.
and Q[®v/2,e?™/?] is the SF of p(x) = x® — 2 over Q.
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of

minimal degree over k in which p splits as p(x) = I'I?i’1 (x — a).

E.g. C =R[x]/(x*+1) is the SF of p(x) = x* 41 over R.
and Q[®v/2,e?™/?] is the SF of p(x) = x® — 2 over Q.

The Galois group Aut(L(p)/k) of L(p) is the group of
automorphisms of L that leaves k invariant.
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of
minimal degree over k in which p splits as p(x) = I'I?i’1 (x — a).
E.g. C =R[x]/(x*+1) is the SF of p(x) = x* 41 over R.

and Q[®v/2,e?™/?] is the SF of p(x) = x® — 2 over Q.

The Galois group Aut(L(p)/k) of L(p) is the group of
automorphisms of L that leaves k invariant.

E.g. Aut(C/R) ~ {£1}, Aut(Q[*v/2, ™3] /Q) ~ Dg
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of

minimal degree over k in which p splits as p(x) = I'I?i’1 (x — a).

E.g. C =R[x]/(x*+1) is the SF of p(x) = x* 41 over R.
and Q[®v/2,e?™/?] is the SF of p(x) = x® — 2 over Q.

The Galois group Aut(L(p)/k) of L(p) is the group of
automorphisms of L that leaves k invariant.

E.g. Aut(C/R) ~ {£1}, Aut(Q[*v/2, ™3] /Q) ~ Dg

Theorem
If the roots of p(x) can be written in terms of radicals, then its
SF is soluble. If dp < 5, then L(p) is soluble.
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Remainder: classic Galois theory in 1 slide

Consider a field k and a polynomial p € k[x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of
minimal degree over k in which p splits as p(x) = I'I?p1 (x — a).
E.g. C =R[x]/(x*+1) is the SF of p(x) = x* 41 over R.

and Q[®v/2,e?™/?] is the SF of p(x) = x® — 2 over Q.

The Galois group Aut(L(p)/k) of L(p) is the group of
automorphisms of L that leaves k invariant.

E.g. Aut(C/R) ~ {£1}, Aut(Q[*v/2, €3] /Q) ~ D

Theorem

If the roots of p(x) can be written in terms of radicals, then its
SF is soluble. If dp < 5, then L(p) is soluble.

Eg. Aut(L(X —x—1)/Q) ~ Ss is not soluble (Artin).
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Galois theory of CIS

How to find out whether a Hamiltonian system (M?", @, H) is or
not a Completely Integrable System?

()
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Galois theory of CIS

How to find out whether a Hamiltonian system (M2", o, H) is or
not a Completely Integrable System?

The idea is to study the equations of second variations on TM

(04
K= 0w, x0T

defined on integral trajectories y of the Hamiltonian equations of
motion,
where (x®) are coords on M and (X%) the variations along .
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Example: the Hénon-Heiles system

1 3

A
H(XayaanDy): (p)2(+p}2,)—y2(A+X)—§X

2
' Px
Px y 2 4 hx?

Py 2(A+x)y

<- X%

)
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Example: the Hénon-Heiles system

L A
H(vaaanDy) = E (P,z(—!—p}z,) _yz(A+X)—§X3

X Px
y|_ Py
px | }’2 +Ax?
b \2(A+xy

Clearly there are orbits with y(t) = p,(t) = 0 for all t.
Along these trjectories the linearized equation writes

X P
Y| Py
P, | 2AxX

= 2AY +2xY
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Theorem (Audin, 111.1.12)

Iff: M — R is a first integral of &y and k is the first order where
the k-th order derivative D¥f : S¥(TM) — R is not zero on'y,

then
7 (t, X, P) = D], (X, P),..., (X, P))

is a first integral of the second variations equation ony.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Theorem (Audin, 111.1.12)

Iff: M — R is a first integral of &1y and k is the first order where
the k-th order derivative D¥f : S¥(TM) — R is not zero on'y,

then
£2(t,X,P) = D], (X, P),....(X,P))

(1)
is a first integral of the second variations equation ony.

E.g., in case of the Henon-Heiles system, on a solution of the

form y(t) = (x(t), 0, px(t),0) the integral of motion associated to

the Hamiltonian H = (02 +p2) — y?(A+x) — 5x% is

HY(t,X, Y, Py, Py) = dH‘Y(t) X, Y, Py, Py) = px(t)Px — AX3(£) X
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Theorem (Audin, 111.1.12)
Iff: M — R is a first integral of &1y and k is the first order where
the k-th order derivative D¥f : S¥(TM) — R is not zero on'y,

then

£2(t,X,P) = D], (X, P),....(X,P))

(1)
is a first integral of the second variations equation ony.

E.g., in case of the Henon-Heiles system, on a solution of the

form y(t) = (x(t),0, px(t),0) the integral of motion associated to

the Hamiltonian H = (02 +p2) — y?(A+x) — 5x% is

HY(t,X, Y, Py, Py) = dH‘Y(t) X, Y, Py, Py) = px(t)Px — AX3(£) X
Indeed, on a solution of the linearized equation, we have that

dHy

dt ;

= AX2 Py + py2hxX — 2AXpy X — AX2 Py = 0 g

Slide 75/121 — Roberto De Leo — A quick survey of Hamiltonian systems

= Py Py + pxPx — 2AxXxX — AXCX =




Differential Galois Theory

Definition
Given an algebraically close field k with a derivation D
(e.g. C(t) with d/dt) and a linear ODE

X=AX, A€ My(k),

the Picard-Vessiot extension L(A) of k for Ais the field
generated on k by the solutions of the ODE.
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Differential Galois Theory

Definition
Given an algebraically close field k with a derivation D
(e.g. C(t) with d/dt) and a linear ODE

X=AX, A€ My(k),

the Picard-Vessiot extension L(A) of k for Ais the field
generated on k by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique
modulo differential isomorphisms.
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Differential Galois Theory
Definition

Given an algebraically close field k with a derivation D
(e.g. C(t) with d/dt) and a linear ODE

X=AX, A€ My(k),

the Picard-Vessiot extension L(A) of k for Ais the field
generated on k by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique
modulo differential isomorphisms.

Definition

The Galois group Gal(A) C GLs(k) of the linear ODE X = AX
is the group of differential automorphisms of L(A) that fixes k.
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Example 1
Consider the linear ODE

X =

o
= Zx
t

on C(t), namely A= (%) € M;(C(t)),
whose solution is x(t) = t*+ c.

®
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Example 1
Consider the linear ODE

X =

on C(t), namely A= (%) € M;(C(t)),
whose solution is x(t) = t*+ c.

Then
0 L(A) ~C(), Gal(A) ~ {1} if a € Z;

0 L(A) ~C(t)[u]/(uT—1tP), Gal(A) ~ Zqif = p/q € Q;
© L(A) ~ C(t,u), Gal(A) ~ GL(C) ~ C* if a & Q.

12

12
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Example 2 — the Cauchy equation

Consider the Cauchy equation x” = & x on C(t), namely

A= (2 :)) € Mo(C(t)), and assume oL # —1.
2

(-
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Example 2 — the Cauchy equation

Consider the Cauchy equation x” = & x on C(t), namely
0 1
A= (% 0) € Mo(C(t)), and assume oL # —1.
Two independent solutions are the solutions of the 1-st order
egs X' = %x, where o 2 are the two distinct solutions of

ZZ—z—a=0.
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Example 2 — the Cauchy equation

Consider the Cauchy equation x” = & x on C(t), namely
0 1
A= (% 0) € Mo(C(t)), and assume oL # —1.
Two independent solutions are the solutions of the 1-st order
egs X' = %x, where o 2 are the two distinct solutions of
Z2—z—a=0.
These two solutions uy » are independent and if 6 € Gal(A) then
o o

o(u) =o(u)) = o (Tu> = ~Lo(u)
namely 6(u;) = Au;, A € C, i.e. all matrices of Gal(A) are
diagonal. In particular Gal(A) is abelian.
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Example 3 — the Airy equation

Finally consider the Airy equation x” = tx on C(t), namely

A— ((; ;) € Mo(C(1)).
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Example 3 — the Airy equation

Finally consider the Airy equation x” = tx on C(t), namely
0

A— (t g) € Mo(C(1)).

Let u and v be two independent solutions. Then their Wronskian
is a constant, since

(w/ —dv) =w" —u"v=1tuv—uv)=0
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Example 3 — the Airy equation

Finally consider the Airy equation x” = tx on C(t), namely
0

A— (t :)) € Mo(C(1)).

Let u and v be two independent solutions. Then their Wronskian
is a constant, since

(w/ —dv) =w" —u"v=1tuv—uv)=0

Redefine u and v so that their Wronskian is 1. Then, if
G € Gal(A) C GL(C), a direct calculation shows that, with
respecct to the base (u, v),

oo —cet () SN)=o(Y V)=
namely Gal(A) C SLy(C).
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Example 3 — the Airy equation

Finally consider the Airy equation x” = tx on C(t), namely
0 1

A= (t O) € Mo (C(t)).

Let u and v be two independent solutions. Then their Wronskian
is a constant, since

(w/ —dv) =w" —u"v=1tuv—uv)=0

Redefine u and v so that their Wronskian is 1. Then, if
6 € Gal(A) C GLy(C), a direct calculation shows that, with
respecct to the base (u, v),

oo —cet () SN)=o(Y V)=
namely Gal(A) C SL,(C).

It can be proved that indeed Gal(A) ~ SL>(C). 9
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Three fundamental theorems

Theorem (Morales & Ramis, Audin 111.1.13)

If f is a first integral, the Galois group of the second variations
equation leaves f° invariant.
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Three fundamental theorems

Theorem (Morales & Ramis, Audin 111.1.13)
If f is a first integral, the Galois group of the second variations
equation leaves f° invariant.

Theorem (Audin 111.2.3)
The Galois group of the second variations equation is a
symplectic subgroup of GL(TM).
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Three fundamental theorems

Theorem (Morales & Ramis, Audin 111.1.13)

If f is a first integral, the Galois group of the second variations
equation leaves f° invariant.

Theorem (Audin 111.2.3)

The Galois group of the second variations equation is a
symplectic subgroup of GL(TM).

Theorem (Audin 111.3.10)

The Lie algebra of the Galois group of the second variation
equation of a CIS is abelian.
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Example: H = J (p5+pZ) — y?(A+x) — 5x
Apply these results to the Henon-Heiles system.

For A # 0 we consider the trajectory

X(1) = 55 Px(1) = ¥(0)y(0) = 0,py (1) =0.

(-

Slide 81/121 — Roberto De Leo — A quick survey of Hamiltonian systems



g1 (A2 2 2 A3
Example: H =3 (px+py) — y(A+x) — 3X
Apply these results to the Henon-Heiles system.

For A # 0 we consider the trajectory

X(1) = 55 Px(1) = ¥(0)y(0) = 0,py (1) =0.

For A = 0 we consider the trajectory

X(t) = 5= Ap(t) = K(1),¥(1) = 0., (1) =O.
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g1 (A2 2 2 A3
Example: H =3 (px+py) —y(A+x)—3x
Apply these results to the Henon-Heiles system.
For A # 0 we consider the trajectory

X(1) = 55 Px(1) = ¥(0)y(0) = 0,py (1) =0.

For A = 0 we consider the trajectory

X(t) = 5= Ap(t) = K(1),¥(1) = 0., (1) =O.

The second variations equations can be reduced to

X(t) =2 (AJF?%) X(),A#0; X(t)=tX(t), =0
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Example: H=1 (p2+p2) — y2(A+x) — 2x°

The ODE X(t) = tX(t) is the Airy equation. We saw that its
Galois group is SL»(C), so there cannot be any further
integral of motion for A = 0.
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Example: H=1 (p2+p2) — y2(A+x) — 2x°

The ODE X(t) = tX(t) is the Airy equation. We saw that its
Galois group is SL>(C), so there cannot be any further
integral of motion for A = 0.

When A# 0, X(t) =2 (A+ %) X(t) is the Whittaker equation.
It can be proved that its Galois group is non-abelian when

x ;é k+1 , k € 7. This result can be made even stronger:

Theorem (Morales, Thm 6.4)
The Henon-Heiles system is non integrable for A # 1,2,6,16.
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Example: H=1 (p2+p2) — y2(A+x) — 2x°

The ODE X(t) = tX(t) is the Airy equation. We saw that its
Galois group is SL>(C), so there cannot be any further
integral of motion for A = 0.

When A# 0, X(t) =2 (A+ %) X(t) is the Whittaker equation.
It can be proved that its Galois group is non-abelian when

x ;é k+1 , k € 7. This result can be made even stronger:

Theorem (Morales, Thm 6.4)
The Henon-Heiles system is non integrable for A # 1,2,6,16.

For A= 0 we get the Cachy equation, whose Galois group is
abelian, so in this case we cannot exclude the possibility of
further integrals of motion.
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Example: H=1 (p2+p2) — y2(A+x) — 2x°

The ODE X(t) = tX(t) is the Airy equation. We saw that its
Galois group is SL>(C), so there cannot be any further
integral of motion for A = 0.

When A# 0, X(t) = 2 (A+ 5% ) X(t) is the Whittaker equation.
It can be proved that its Galois group is non-abelian when

% ;é k+1 , k € Z. This result can be made even stronger:

Theorem (Morales, Thm 6.4)
The Henon-Heiles system is non integrable for A # 1,2,6,16.

For A= 0 we get the Cachy equation, whose Galois group is
abelian, so in this case we cannot exclude the possibility of
further integrals of motion.

Note finally that for A= 0, A = 6 the HH system is indeed a CIS: ¢
K = 4py (xpy — ypx) +y* +4x2y? =
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Hamiltonian

Systems

close to
Integrable
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Recall that, if (M?", ®, H) is a CIS and in a neighborhood

T"x D" C T" x R" of a Lagrangian torus invariant by the flow,
there exists action-angle coordinates (g, p) , so that H = H(p)
and the equations of motion write
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Recall that, if (M2, ®, H) is a CIS and in a neighborhood

T"x D" C T" x R" of a Lagrangian torus invariant by the flow,
there exists action-angle coordinates (g, p) , so that H = H(p)
and the equations of motion write

o OH . _0
q ap(x 9 pOL
PH : : :
If ——— is non-singular at every point, then the n frequencies
apocapﬁ

v(p) = a%i(p) : D" — R" label the Lagrangian toriin T" x D".
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Recall that, if (M2, ®, H) is a CIS and in a neighborhood

T"x D" C T" x R" of a Lagrangian torus invariant by the flow,
there exists action-angle coordinates (g, p) , so that H = H(p)
and the equations of motion write

o OH . _0
q ap(x 9 pOL
PH : : :
If ——— is non-singular at every point, then the n frequencies
apocapﬁ

v(p) = aaTH(p) : D" — R" label the Lagrangian toriin T" x D".

Definition

The frequencies (v',...,V") are non-resonant if there exists
¢ > 0 such that

Q
—
S

for all k € Z"\ 0. ()
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The sets &, C R”, ¢ > 0, of non-resonant frequencies are
Cantor sets (closed, perfect and nowhere dense) such that
u(2\ &) = O(c) for every bounded Q2 C R”.
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The sets &, C R”, ¢ > 0, of non-resonant frequencies are
Cantor sets (closed, perfect and nowhere dense) such that
u(2\ &) = O(c) for every bounded Q2 C R”.

Theorem (Kolmogorov, Arnold, Moser)

Suppose that (M?", ®, H) is a CIS, T" a Lagrangian torus
invariant by the flow and a neighborhood where we have Then,
if the map v = (W) D" — R" is an immersion and the
Hamiltonian He(q, p) = H(p) +€F(q, p) is analyticon T" x D",
there exists & > 0 such that for

le| < 8c?

all tori of the unperturbed systems whose frequency v belongs

to ®. persists as Lagrangian tori in the perturbed system, being
only slightly deformed. Moreover they depend in a Lipschitz way @
onv and fill the phase space T" x D" with measure O(c). '
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Example: Hénon-Heiles Hamiltonian

Close to integrable...

Paincans bastion o Henon-Heiles potential [E=002)

025
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Example: Hénon-Heiles Hamiltonian

Not so close anymore...

Ppincare secton loe Henon-Hedes potential (E=D125)
08 T T TV T T

e M

0.8
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Quantum Hamiltonian Chaos

It was conjectured by Berry and Tabor that the integrability of a
Hamiltonian H can be read, in its quantum counterpart H, from
its eigenvalues distribution:

Conjecture (Berry & Tabor)

Let H be a Hamitonian on R" and let P(s) the distribution
function of the nearest-neighbour spacings An1 — A of the
eigenvalues of H. Then:

@ if the classical dynamics is integrable, then P(s) coincides
with the distribution of uncorrelated levels with the same
mean spacing (Poisson distr.), i.e.

P(s) < e ¢

@ (if the classic dynamics is chaotic, then P(s) coincides with

the distribution of a suitable ensamble of random matrices.

Quite interestingly, this conjecture relates Quantum chaology -
swen—avith-Number..Lheory and in particular with the Riemann Zeta ©



Quantum Hamiltonian Chaos

Poisson distribution:

s =1l : 3
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Quantum Hamiltonian Chaos
GOE distribution:

/GDE distribution
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Poissonian
Systems
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Main Definitions and examples

Definition
A Poisson manifold is a pair (M",{, }), where M is a manifold
and the bilinear map {, } : C*(M) x C*(M) — C~(M) (Poisson
bracket) satisfies the following properties:

o {f,9} = —{9,f};

@ {f,{g9,h}} +{h.{f,9}} +{g.{hf}} =0;

© {f,gh} = {f,gth+g{f, h}.
Example 1: every symplectic manifold (M2", @) is an
even-dimensional Poisson manifold with

{f,9} = 0(&r,5g)

Example 2: on a 3-dimensional Riemannian manifold (M, s),
every h € C*(M) gives rise to the Poisson bracket (e
{f,g}n = *s(df A dg A dh) 9
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Main Definitions and examples

Like on a symplectic manifold, via the Poisson braket we can
associate a vector field §y to each function H € C*(M) as

En(f) < (H. 1)
On a symplectic manifold (M, ®), in a symplectic chart (g%, po.),
{qaa qﬁ} =0, {qavpﬁ} = 6%7 {Poc,PB} =0

so that
En(f) = (&, &r} = dqHI*f — I fO*H

Clearly & is the same vector field from the symplectic structure.
In case of 3-dim Riemannian manifolds (M, s) and h € C*(M),

{Xi,Xj}h = v/detse* dxh

so that

éH = detSEijk ajHakha,'
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Poisson dynamics

Definition
A Poissonian system on the Poissonian manifold (M, {, }) is
given by a smooth function H € C*(M).

The variation of an observable f € C™(M) over the flow ¢!, of H

is given by

d t

i 00 = Le,f=0(Cn.&r) = {H,f}
This relation is written simply as

f={H,f}
E.g. if the system is symplectic then

C‘,OC = {Haqa} - aaHa pOL - {H;Poc} - _aOCH
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Integrals of motion

Theorem
f is constant over the integral trajectories of H iff {H,f} = 0.

In odd dimension {, } is degenerate, i.e. there exists
observables that commute with all other observables.
Such observables are called Casimirs.
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Integrals of motion

Theorem
f is constant over the integral trajectories of H iff {H,f} = 0.

In odd dimension {, } is degenerate, i.e. there exists
observables that commute with all other observables.
Such observables are called Casimirs.

E.g. in a 3-dim Riemannian manifold
x"'={H,x"}h = Vdetse’™ 9;Hoh
and his a Casimir since

{f,h}n = V/detsed;f9;hdxh = 0.
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Integrals of motion

Theorem
f is constant over the integral trajectories of H iff {H,f} = 0.

In odd dimension {, } is degenerate, i.e. there exists
observables that commute with all other observables.
Such observables are called Casimirs.

E.g. in a 3-dim Riemannian manifold
x"'={H,x"}h = Vdetse’™ 9;Hoh
and his a Casimir since
{f,h}n = V/detsed;f9;hdxh = 0.

This means that the image of the integral trajectories of H under :\
{,}, are the intersections between the level sets of H and of h. &
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Example: a Multivalued Poisson DS
Consider (T2, {,}5), where B = B/(p)dpj is a closed 1-form and
{pi,pj}B = 8/jkBk

A direct calculation shows that {, } 5 is a Poisson structure on
T3,
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Example: a Multivalued Poisson DS
Consider (T2, {,}5), where B = B/(p)dpj is a closed 1-form and
{pi,pi}8 = €jpB*

A direct calculation shows that {, } 5 is a Poisson structure on
T3,

Given H € C™(T?), the equations of motion are

pi = {H,pi}s = gjx HB"
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Example: a Multivalued Poisson DS
Consider (T2, {,}5), where B = B/(p)dpj is a closed 1-form and
{pi,pi}8 = €jpB*

A direct calculation shows that {, } 5 is a Poisson structure on
T3,

Given H € C™(T?), the equations of motion are
pi = {H,pi}s = gjxd'H B

Locally B = db. Clearly {f,b} = 0 for every f, so we can think of
b as a multi-valued Casimir.
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Example: a Multivalued Poisson DS
Consider (T2, {,}5), where B = B/(p)dpj is a closed 1-form and

{pi,pj}s = €ijKB"
A direct calculation shows that {, } 5 is a Poisson structure on
T3.

Given H € C™(T?), the equations of motion are

pi = {H,pi}s = gjxd'H B

Locally B= db. Clearly {f,b} = 0 for every f, so we can think of
b as a multi-valued Casimir.

The image of the integral trajectories of H are given by the
intersections between the level surfaces of H and the leaves of |
the foliation B = 0. 9
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Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

®
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Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

in the WKB approximation the (quasi-)electrons are points in T3
and under a magnetic field B they are bound to move
perpendicularly to it.
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Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

in the WKB approximation the (quasi-)electrons are points in T3
and under a magnetic field B they are bound to move
perpendicularly to it.

Moreover, every metal give rise to a Hailtonian H € C=(T?)
(Fermi energy function) which dictates its main physical
properties. The egs. of motion then are

p={H,p}s= B xdpH
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Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

in the WKB approximation the (quasi-)electrons are points in T3
and under a magnetic field B they are bound to move
perpendicularly to it.

Moreover, every metal give rise to a Hailtonian H € C=(T?)
(Fermi energy function) which dictates its main physical
properties. The egs. of motion then are

p={H,p}s=BxdpH

The geometry of trajectories here is trivial: in the universal
covering R they are planar sections of the level surfaces of H.
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Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

in the WKB approximation the (quasi-)electrons are points in T3
and under a magnetic field B they are bound to move
perpendicularly to it.

Moreover, every metal give rise to a Hailtonian H € C=(T?)
(Fermi energy function) which dictates its main physical
properties. The egs. of motion then are

p={H,p}s=BxdpH

The geometry of trajectories here is trivial: in the universal
covering R they are planar sections of the level surfaces of H.

Their topology instead, i.e. their asymptotics, turns out to be -
exceptionally rich. A\~
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Example: a Multivalued Poisson DS

H(x,y,z) = cosx+cosy +cosz
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Example: a Multivalued Poisson DS

H(x,y,z) =cosx+cosy+cosz

@
» (D
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Example: a Multivalued Poisson DS

H(x,y,z) = cos xcosy + COS y COS Z + COS ZCOS X
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Example: a Multivalued Poisson DS

H(x,y,z) = cos xcosy + COS y COS Z + COS ZCOS X

4

®
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Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

(-
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Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

Indeed in QM on R" the position and momentum observables
g%, po. € C*(R") are replaced resp. by the operators g*
(multiplication by %) and py, = 70qe acting on L%(R").
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Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

Indeed in QM on R" the position and momentum observables
g%, po. € C*(R") are replaced resp. by the operators g*
(multiplication by g%) and po, = 7dge acting on L2(R™).

As operators, their commuting relations are
[%,8"] =0, (4% pg] = ind}, [Pasbg] =0
Recall that, in the symplectic setting,

{a",d"} =0, {g“ps} =8, {papg}=0.
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Poisson brackets and QM

In other words, “[f, 8] = ih{f,g}". This analogy is the base of
two attempts to fully understanding the relation between CM
and QM:

e geometric quantization (Souriau, Weinstein, Guillemin,
Sternberg...), which uses symplectic geometry to find
some natural way to foliate T*M in Lagrangian leaves (to
mimic the separation of ¢@’s and p’s in QM (polarization);

e deformation quantization (Kontsevich, Connes...), which
deformes the product in C**(M) in order to get a
non-commutative algebra Ay that, in the limit 2 — 0,
reduces to the multiplication in C*(M).

Neither of these attempts, which we have no space to illustrate
here, succeeded to date.
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Hamiltonian
Systems

with Symmetries
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Cyclic Coordinates

The form of the Lagrange equations

g (ay_a
dt \9g*) og*

suggests the following simple observation:

(-
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Cyclic Coordinates

The form of the Lagrange equations

g (ay_a
dt \9g*) og*

suggests the following simple observation:

if L(qg,q) does not depend on, say, q',
then the associated momentum p; = a% is a first integral.
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Cyclic Coordinates

The form of the Lagrange equations

g (ay_a
dt \9g*) og*

suggests the following simple observation:

if L(qg,q) does not depend on, say, q',
then the associated momentum py = a% is a first integral.

In a classical mechanical system in R”,

: 1.
L(g,9) = 5 llql - V(a)
from which we see that invariance of the potential by
translations in the direction g’ implies the conservation of the

corresponding momentum p;.
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Cyclic Coordinates

The form of the Lagrange equations

g (ay_a
dt \9g*) og*

suggests the following simple observation:

if L(qg,q) does not depend on, say, q',
then the associated momentum py = a% is a first integral.

In a classical mechanical system in R”,

: 1.
L(g,9) = 5 llql - V(a)
from which we see that invari_ance of the potential by
translations in the direction g’ implies the conservation of the
corresponding momentum p;. o)
This is the starting point for all results that follow. -
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First generalization: Noether’s Theorem

An action ¢ of R on M is a homomorphism R — Diff(M). We
use the shortcut notation (A, q) = qgy.
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First generalization: Noether’s Theorem

Definition
An action ¢ of R on M is a homomorphism R — Diff(M). We
use the shortcut notation (A, q) = qgy.

To ¢ it is associate a vector field Eo(q) = dq% }x o
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First generalization: Noether's Theorem

Definition
An action ¢ of R on M is a homomorphism R — Diff(M). We
use the shortcut notation (A, q) = qgy.

To ¢ it is associate a vector field ¢ (q) = % —o-

® induces an action ® on TM as &(k, q,v) = (g, v-9q®(A,q))
Theorem (Noether, Arnold 20A)

If L(q, V) is invariant by ®, i.e. if ®*L =L,

then pe(q,q) = &g(q)aaTLa(q, q) is a first integral.
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Proof: since L is invariant

0= L@ &) =
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Proof: since L is invariant

0= S e (). &(0) .
~ S| Sh@a+Ta0]  She.a0 -
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Proof: since L is invariant

d

0="5 L(gy (1), (1)) -
d oL .. d . oL .

= ﬁq’“(t) - W(q, q)+ﬁqx(t) x:OaT,a(q(l‘),q(l’)) =

oL

= E4(a(0)5,q(

(alt).4(0) + L [£5(a (t»]%i(q,a)
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Proof: since L is invariant

0= T 1(a(0), a(0)

A=0
d oL d . oL
:ﬁqk()x Oa a(qaq) d_7\,q7b();\ Oa OL( ()q( ))
~ B30 (0 ) + 5 [E8(a(0)] ()
Hence

2 pola(0.a(0) = % [E8(a(0) 5 a(0,(0) -
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Proof: since L is invariant

=0
JL
A=09G*

0= T 1(a(0), a(0)

oL o d .
x—oa_“(q’ q)+ ()

oL
0q*

d

= Za(t) = (a(t), (1) =

=8o(a(t) 5

Hence

(a(0).4(0) + 5 ES (@] 5=(3-6)

2 pola(0.a(0) = % [E8(a(0) 5 a(0,(0) -

_ % [€&(a(1)] %(Q(t)a q(1)+&(a(t)) Zt aqa(CI( ),q(t)) = o\/_:_>

Slide 110/121 — Roberto De Leo — A quick survey of Hamiltonian systems



HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Example: Rotations

Consider the case of M = R® and L(q, v) = 3||v|| — V(q), with
V invariant by rotations, i.e. depending only on the distance of q
from the origin

(e.g. electric or gravitational field generated by a point particle).
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Example: Rotations

Consider the case of M = R® and L(q, v) = 3||v|| — V(q), with
V invariant by rotations, i.e. depending only on the distance of q
from the origin

(e.g. electric or gravitational field generated by a point particle).

Then L is invariant by SO;.
E.g. consider the 1-dim subgroup of rotations arount the z axis.
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Example: Rotations

Consider the case of M = R® and L(q, v) = 3||v|| — V(q), with
V invariant by rotations, i.e. depending only on the distance of q
from the origin

(e.g. electric or gravitational field generated by a point particle).

Then L is invariant by SO;.
E.g. consider the 1-dim subgroup of rotations arount the z axis.

The action is
®, (A, x,y,2) = (xcosA+ ysinA, —xsinA+ ycosA)
and Eo, (X,y) = —yox +X0.
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Example: Rotations

Consider the case of M = R® and L(g, v) = 1||v| — V(q), with
V invariant by rotations, i.e. depending only on the distance of g
from the origin

(e.g. electric or gravitational field generated by a point particle).

Then L is invariant by SOs.
E.g. consider the 1-dim subgroup of rotations arount the z axis.

The action is
®, (A, x,y,2) = (xcosA+ ysinA, —xsinA+ ycosA)
and Eo, (X,y) = —yox +X0.

The corresponding first integral
(z component of the angular momentum)

is po,(X,y,2,X,y,2) = —yX+xy.
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold

(P.{,})-
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold
(P,{,})-

We say that ® is canonical if ®3{F,G} = {®;F,®;G}.
If P= T*M, then ® is canonical iff is symplectic,

i.e. iff CDZO) =, Vg € G.
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold
(P,{,})-

We say that ® is canonical if ®3{F,G} = {®;F,®;G}.
If P= T*M, then ® is canonical iff is symplectic,

i.e. iff CDZ(D =, Vg € G.

To every element a € g = TG it corresponds a 1-dimensional
subgroup of G and therefore a vector field £, € x(M).
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold
(P,{,})-

We say that ® is canonical if ®3{F,G} = {®;F,®;G}.
If P= T*M, then ® is canonical iff is symplectic,

i.e. iff CDZ(D =, Vg € G.

To every element a € g = T.G it corresponds a 1-dimensional
subgroup of G and therefore a vector field £, € x(M).

A direct calculation shows that this map is a homomorphism of
Lie Algebras:

Elably = [SasSbly(p)
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold

(P.{,}).

We say that ® is canonical if ®3{F,G} = {®;F,®;G}.

If P= T*M, then ® is canonical iff is symplectic,

i.e. iff CDZ(D =, Vg € G.

To every element a € g = T.G it corresponds a 1-dimensional
subgroup of G and therefore a vector field &, € y(M).

A direct calculation shows that this map is a homomorphism of
Lie Algebras:

Elably = [SasSbly(p)

Every such &, satisfies £,{F, G} = {EaF, G} + {F,E.G}
If P=T*Mthen L, ® =0, i.e. €, is locally Hamiltonian.
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Second generalization: Momentum Map

Consider an action ¢ : G x P — P on a Poisson manifold

(P.{,}).

We say that ® is canonical if ®3{F,G} = {®;F,®;G}.

If P= T*M, then ® is canonical iff is symplectic,

i.e. iff CDZ(D =, Vg € G.

To every element a € g = T.G it corresponds a 1-dimensional
subgroup of G and therefore a vector field &, € y(M).

A direct calculation shows that this map is a homomorphism of
Lie Algebras:

Elably = [SasSbly(p)

Every such &, satisfies £,{F, G} = {EaF, G} + {F,E.G}
If P=T*Mthen L, ® =0, i.e. €, is locally Hamiltonian.

In both cases, locally &, is the Ham. v.f. of some function H,. @ -
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In order to define the momentum map we must make two
assumptions:

© all &, are Hamiltonian;

@ {Ha,Hp} = Higp),-

(-
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In order to define the momentum map we must make two
assumptions:
© all &, are Hamiltonian;
(2] {Ha7 Hb} = H[a,b]g-
Note that all H; are defined modulo constant. Hence they can
be chosen so that g — C*(P) is linear. In general tough
{H37 Hb} = H[a,b]g + C(av b)

where C is a 2-cocycle of g.
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In order to define the momentum map we must make two
assumptions:

© all &, are Hamiltonian;

(2] {Ha7 Hb} = H[a,b]g-
Note that all H; are defined modulo constant. Hence they can
be chosen so that g — C*(P) is linear. In general tough

{H37 Hb} = H[a,b]g + C(a, b)
where C is a 2-cocycle of g.
We say that the canonical action ® is Poissonian when C = 0.
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In order to define the momentum map we must make two
assumptions:

© all &, are Hamiltonian;
® {Ha,Ho} = Hiap),-

Note that all H; are defined modulo constant. Hence they can
be chosen so that g — C*(P) is linear. In general tough

{Ha, Hb} = H[av,b]g + C(av b)
where C is a 2-cocycle of g.
We say that the canonical action ® is Poissonian when C = 0.

Example: an action on T*M induced from an action on M is
always Poissonian (see Arnold, Appendix 5).

Definition

If & is Poissonian, we call Momentum Mapthe map J : P — g* =
defined by Jy(a) = Ha(x). =4
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Example: Rotations

Consider the action ® of SO; on T*R? induced by the rotations

on the base space.
We choose a frame (x, y, z) and identify soz with R3.
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Example: Rotations

Consider the action ® of SO; on T*R? induced by the rotations
on the base space.

We choose a frame (x, y, z) and identify soz with R3.

We saw earlier that to (0,0, 1) € sos (generator of rotations
about the z axis) it corresponds the vector field £, = xd, — ydy.
Similarly, &x = yd, —zd, and &, = zdy — x9,.

Slide 114/121 — Roberto De Leo — A quick survey of Hamiltonian systems



Example: Rotations

Consider the action ® of SO; on T*R? induced by the rotations
on the base space.
We choose a frame (x, y, z) and identify sos with R3.

We saw earlier that to (0,0, 1) € sos (generator of rotations
about the z axis) it corresponds the vector field £, = xd, — ydy.

This action is Poissonian. The first integrals corresponding to
these vector fields are the three components of the angular
momentum:

Ly =ypx—xpy, Ly=2zpy,—yp;, L;=Xpz—2zpx.
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Example: Rotations

Consider the action ® of SO; on T*R? induced by the rotations
on the base space.
We choose a frame (x, y, z) and identify sos with R3.

We saw earlier that to (0,0, 1) € sos (generator of rotations
about the z axis) it corresponds the vector field £, = xd, — ydy.

This action is Poissonian. The first integrals corresponding to
these vector fields are the three components of the angular
momentum:

Lx = ypx—xpy, Ly=2py—ypz, Lz=Xpz—2Zpx.
The momentum map is exactly the “angular momentum vector”:
J(X,¥,2,px,py,Pz) = (Lx, Ly, L;) € so(3)*
and {L,i, LX,} = S,jkLXk =Ly,
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HOWARD UNIVERSITY DEPARTMENT OF MATHEMATICS

Theorem (Covariance of the Momentum Map)

Under Jy, the action ® is taken into the coadjoint action of G on
g*, namely Jo(®(g,x)) = Ady_; (Jo(X))-
Equivalently, Hy(®(g, x)) = Hag,a(X).
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Theorem (Covariance of the Momentum Map)

Under Jy, the action ® is taken into the coadjoint action of G on
g*, namely Jo(®(g,x)) = Ady_; (Jo(X))-
Equivalently, Hy(®(g, x)) = Hag,a(X).

Proof.

Let gy a 1-parameter subgroup of G with Hamiltonian Hp. Then
aHa(®(g: %)) = {Hay Ho} (%) = Hiaz)(X) = Haa_a(x)- O
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Theorem (Covariance of the Momentum Map)

Under Jy, the action ® is taken into the coadjoint action of G on
g*, namely Jo(®(g,x)) = Ady_; (Jo(X))-
Equivalently, Hy(®(g, x)) = Hag,a(X).

Proof.
Let gy a 1-parameter subgroup of G with Hamiltonian Hp. Then
L-Ha(9(9:X)) = {Ha, Ho}(x) = Hap)(X) = Hage_a(x).

Corollary (Noether Theorem in T*M)
If H is invariant under ®, then Jg is a first integral of H.
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Theorem (Covariance of the Momentum Map)

Under Jy, the action ® is taken into the coadjoint action of G on
g*, namely Jo(®(g,x)) = Ad;‘,1 (Jo(x))-

Equivalently, Hy(®(g, x)) = Hag,a(X).

Proof.

Let gy a 1-parameter subgroup of G with Hamiltonian Hp. Then
aHa(®(g: %)) = {Hay Ho} (%) = Hiaz)(X) = Haa_a(x)- O

Corollary (Noether Theorem in T*M)
If H is invariant under ®, then Jg is a first integral of H.

Proof.

Let g, a 1-parameter subgroup of G with Hamiltonian Hz. Then
0= GrH(P(g,x)) = {H, Ha}. 0 &
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Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold (P, ®)
invariant by some Poissonian action ® of G on P and set

Pu:Jq:1(H)sIJEQ-
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Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold (P, ®)
invariant by some Poissonian action ® of G on P and set

Pu= Jq?(,u),,ue g.

The Lie subgroup G, C G that keeps u fixed, i.e. s.t. Adyu =y,
leaves P, invariant.
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Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold (P, ®)
invariant by some Poissonian action ® of G on P and set

Pu=Jg (1) nEg.
The Lie subgroup G, C G that keeps u fixed, i.e. s.t. Adyu =y,
leaves P, invariant.
Assume ¢ satisfies the following properties:
© uis aregular value (so P, is a smooth manifold);
® o is proper (e.g. G is compact);
® G, acts on P, with no fixed points.
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Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold (P, ®)
invariant by some Poissonian action ® of G on P and set

Pu=Jg (1) nEg.
The Lie subgroup G, C G that keeps u fixed, i.e. s.t. Adyu =y,
leaves P, invariant.
Assume ¢ satisfies the following properties:
© uis aregular value (so P, is a smooth manifold);
® o is proper (e.g. G is compact);
® G, acts on P, with no fixed points.

Theorem (Marsden & Weinstein, Arnold App. 5)

The quotient M, = P,/ G is a smooth manifold and inherits from -
(P,w) a symplectic structure ;. (=
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Example: Harmonic Oscillator

Consider the action of S on P = R?" induced by the flow of the
1

Harmonic Oscillator Hamiltonian H(q,p) = % (||p|I?+ ||al/?).

(-
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Example: Harmonic Oscillator

Consider the action of S on P = R?" induced by the flow of the
Harmonic Oscillator Hamiltonian H(g.p) = 1 (||p|?+ ||al/?).

The momentum map then is simply the Hamiltonian
H:P — so; ~R.
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Example: Harmonic Oscillator

Consider the action of S on P = R?" induced by the flow of the

Harmonic Oscillator Hamiltonian H(g.p) = 1 (||p|?+ ||al/?).

The momentum map then is simply the Hamiltonian
H:P — so; ~R.

All values are non-critical except for 0.
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Example: Harmonic Oscillator

Consider the action of S on P = R?" induced by the flow of the

Harmonic Oscillator Hamiltonian H(g.p) = 1 (||p|?+ ||al/?).

The momentum map then is simply the Hamiltonian
H:P — so; ~R.

All values are non-critical except for 0.

All level sets P, u # 0, are spheres S,
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Example: Harmonic Oscillator

Consider the action of S on P = R?" induced by the flow of the
Harmonic Oscillator Hamiltonian H(g,p) = 5 (||p|12 +/q]12).

The momentum map then is simply the Hamiltonian
H:P — so; ~R.

All values are non-critical except for 0.

All level sets P, u # 0, are spheres S,

All quotient spaces M, u # 0, are symplectomorphic to CP"~"
with a symplectic structure proportional to the Fubini-Study
2-form

| =
® = —3dIn|z?
21
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Convexity of the Momentum Map
Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action ® : TX x P?" — P?" on a compact
connected symplectic manifold P.
Then Jo(P) C g* is a convex polytope.

Example. Consider P?" = CP" and G = T acting on it as
x=(z1::2Zp+1) — (e Mz coaca e '9"+1z+1).
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Convexity of the Momentum Map

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action ® : TX x P?" — P?" on a compact
connected symplectic manifold P.
Then Jo(P) C g* is a convex polytope.

Example. Consider P?" = CP" and G = T acting on it as
x=(z1::2Zp+1) — (e Mz coaca e '9"+1z+1).

Each 1-parameter sugroup of rotations 0y is induced by
He(x) = |22/ (|21 P + - + ] Zn11 7).
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Convexity of the Momentum Map

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action ® : TX x P?" — P?" on a compact
connected symplectic manifold P.
Then Jo(P) C g* is a convex polytope.

Example. Consider P?" = CP" and G = T acting on it as
x=(z1::2Zp+1) — (e Mz coaca e '9"+1z+1).

Each 1-parameter sugroup of rotations 0y is induced by
He(x) = |22/ (|21 P + - + ] Zn11 7).
The momentum map is J(x) = (Hi(x),. .., Hp+1(X)).
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Convexity of the Momentum Map

Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action ® : TX x P?" — P?" on a compact
connected symplectic manifold P.
Then Jo(P) C g* is a convex polytope.

Example. Consider P?" = CP" and G = T acting on it as
x=(z1::2Zp+1) — (e Mz coaca e ’9"+1z+1).

Each 1-parameter sugroup of rotations 0y is induced by

He(x) = |22/ (|21 P + - + ] Zn11 7).

The momentum map is J(x) = (Hi(x),. .., Hp+1(X)).

Its image is the simplex

{(s1,...,8n11)| 81+~ +8pi1=1, 81,...,8p11 > 0} CR™,

whose vertices are the images of the fixed points
xi=(0:---:Zz:---:0) of the action.
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Convexity of multivalued Momentum Maps
Theorem (A. Giacobbe (2000))

Consider a Poisson action ® : TX x P?" — P?" on a closed
connected symplectic manifold P with a multivalued momentum
map Jo. Then Jo(P) C g* is a cylinder over a convex polytope.
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Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))

Consider a Poisson action ® : TX x P?" — P?" on a closed
connected symplectic manifold P with a multivalued momentum
map Jo. Then Jo(P) C g* is a cylinder over a convex polytope.

Example. Consider P* = T? x CP" with coordinates
((0,w),(z : w)) and symplectic structure
©=doAdy+ Lddin|Z
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Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))

Consider a Poisson action ® : TX x P?" — P?" on a closed
connected symplectic manifold P with a multivalued momentum
map Jo. Then Jo(P) C g* is a cylinder over a convex polytope.

Example. Consider P* = T? x CP" with coordinates
((0,¥), (2 : w)) and symplectic structure

® = do A dy + 5-ddIn| Z|2

and consider the action of G = T® on it defined by

((0.W),(z: w)) = ((0+61,W). (2 : €% w))

The corresponding momentum map is multivalued:

22 wP @
W [zt W

(o2 ) = (v
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lts image is J(T? x CP') =R x S C R3,
where S={(s,t)| s+t=1,s,t >0}

Slide 120121 — Roberto De Leo — A quick survey of Hamiltonian systems



Related Literature

e E. Noether, Invariant Variation Problems, Gott.Nachr. 235-257,
1918, arXiv:physics/0503066

e Y. Kosmann-Schwarzbach, The Noether Theorems, Springer, 2011

e J. Marsden, T. Ratiu, /ntroduction to Mechanics and Symmetry,

Springer, 2002

e J.P. May, The Atiyah-Guillemin-Sternberg Convexity Theorem, 2010,
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Schmaltz.pdf

e J. Kolk, Geometry of the Momentum Map, 2005,
http://www.staff.science.uu.nl/~kolk0101/SpringSchool2004/momentum.pdf

e M. Audin, Torus Actions on Symplectic Manifolds, Birkauser, 2004

o N. Berline, Hamiltonian manifolds and moment map, 2011,
http://www.math.polytechnique.fr/~berline/cours-Fudan.pdf

e A. Giacobbe, Convexity of Multi-valued Momentum Maps, ""
GeometrizeDedicata, 111:1, 2005 e

Slide 121/121 — Roberto De Leo — A quick survey of Hamiltonian systems.



	General properties of Hamiltonian systems

