# A quick survey of Hamiltonian systems 

 from a Dynamical Systems point of viewRoberto De Leo

Department of Mathematics



## Plan of the presentation:

- General properties of Hamiltonian systems geodesics equations, Maupertuis principle, generating functions, Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations between classical and quantum mechanics, optics, non-Hausdorff manifolds, Completely Integrable Systems, KAM


## Plan of the presentation:

- General properties of Hamiltonian systems geodesics equations, Maupertuis principle, generating functions, Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations between classical and quantum mechanics, optics, non-Hausdorff manifolds, Completely Integrable Systems, KAM
- Poissonian dynamical systems

Poisson braket, odd-dimensional Hamiltonian systems, relations with quantum mechanics

## Plan of the presentation:

- General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions, Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations between classical and quantum mechanics, optics, non-Hausdorff manifolds, Completely Integrable Systems, KAM
- Poissonian dynamical systems

Poisson braket, odd-dimensional Hamiltonian systems, relations with quantum mechanics

- Systems with symmetries

Noether's theorem, symplectic reduction, momentum map,
Atiyah-Sternberg theorem

## Main Sources

- V.I. Arnold, "Mathematical Methods of Classical Mechanics", GTM 60, Springer, 1989
- B. Dubrovin, A. Fomenko, S.P. Novikov, "Modern Geometry", GTM 93, Springer, 1992
- R. Abraham \& J.E. Marsden, "Foundations of Mechanics", Addison-Wesley, 1978
- J.M. Sourieau, "Structure of Dynamical Systems", Springer, 1997
- V. Guillemin \& S. Sternberg, "Symplectic techniques in Physics", CUP, 1984
- V. Guillemin \& S. Sternberg, "Semi-classical analysis", Int. Press, 2011
- W. Thirring, "Classical Mathematical Physics", Springer, 1992
- G. Esposito, G. Marmo, S. Sudarshan, "From Classical to Quantum Mechanics", CUP, 2004
- A. Cannas da Silva, "Lectures on Symplectic Geometry", LNM

1764, Springer, 2006

## Introduction

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Definition

A Dynamical System on a smooth manifold $M^{n}$ of dimension $n$ and a smooth vector field $\xi \in \mathfrak{X}(M)$.

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Definition

A Dynamical System on a smooth manifold $M^{n}$ of dimension $n$ and a smooth vector field $\xi \in \mathfrak{X}(M)$.

## Definition

The Flow $\phi_{\xi}^{t}$ of $\xi$ is a smooth map $\phi_{\xi}: \mathbb{R} \times M \rightarrow M$ s.t.

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Definition

A Dynamical System on a smooth manifold $M^{n}$ of dimension $n$ and a smooth vector field $\xi \in \mathfrak{X}(M)$.

## Definition

The Flow $\phi_{\xi}^{t}$ of $\xi$ is a smooth map $\phi_{\xi}: \mathbb{R} \times M \rightarrow M$ s.t.
(1) $\phi_{\xi}^{0}=\mathrm{id}_{M}$;

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Definition

A Dynamical System on a smooth manifold $M^{n}$ of dimension $n$ and a smooth vector field $\xi \in \mathfrak{X}(M)$.

## Definition

The Flow $\phi_{\xi}^{t}$ of $\xi$ is a smooth map $\phi_{\xi}: \mathbb{R} \times M \rightarrow M$ s.t.
(1) $\phi_{\xi}^{0}=\mathrm{id}_{M}$;
(2) $\frac{d}{d t} \phi_{\xi}^{t}(x)=\xi\left(\phi_{\xi}^{t}(x)\right)$;

## Basic concepts and notations

The concept of Dynamical System can vary a considerably, depending on the degree of abstraction one aims at.

## Definition

A Dynamical System on a smooth manifold $M^{n}$ of dimension $n$ and a smooth vector field $\xi \in \mathfrak{X}(M)$.

## Definition

The Flow $\phi_{\xi}^{t}$ of $\xi$ is a smooth map $\phi_{\xi}: \mathbb{R} \times M \rightarrow M$ s.t.
(1) $\phi_{\xi}^{0}=\mathrm{id}_{M}$;
(2) $\frac{d}{d t} \phi_{\xi}^{t}(x)=\xi\left(\phi_{\xi}^{t}(x)\right)$;
(3) $\phi_{\xi}^{t} \phi_{\xi}^{s}=\phi_{\xi}^{t+s}$ when all three maps are defined.

## Main goal

Find as much as possible on the flow of $\xi$.

## Main goal

Find as much as possible on the flow of $\xi$.
When a non-degenerate $(0,2)$ tensor $h=h_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta}$ is defined on $M$, then we define $\xi_{\xi} h=d H$, i.e. have a map

$$
\begin{array}{clc}
C^{\infty}(M) & \rightarrow & \mathfrak{X}(M) \\
H & \mapsto & \xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}
\end{array}
$$

where $h_{\alpha \beta} h^{\beta \gamma}=\delta_{\alpha}^{\gamma}$.

## Main goal

Find as much as possible on the flow of $\xi$.
When a non-degenerate $(0,2)$ tensor $h=h_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta}$ is defined on $M$, then we define $\xi_{\xi} h=d H$, i.e. have a map

$$
\begin{array}{clc}
C^{\infty}(M) & \rightarrow & \mathcal{X}(M) \\
H & \mapsto & \xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}
\end{array}
$$

where $h_{\alpha \beta} h^{\beta \gamma}=\delta_{\alpha}^{\gamma}$.
In these systems, we can specialize the definition of DS:

## Definition

A Dynamical system on the manifold ( $M, h$ ) is given by a smooth function $H \in C^{\infty}(M)$.

## Main goal

Find as much as possible on the flow of $\xi$.
When a non-degenerate $(0,2)$ tensor $h=h_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta}$ is defined on $M$, then we define $\dot{\xi}_{\xi} h=d H$, i.e. have a map

$$
\begin{array}{clc}
C^{\infty}(M) & \rightarrow & \mathcal{X}(M) \\
H & \mapsto & \xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}
\end{array}
$$

where $h_{\alpha \beta} h^{\beta \gamma}=\delta_{\alpha}^{\gamma}$.
In these systems, we can specialize the definition of DS:

## Definition

A Dynamical system on the manifold $(M, h)$ is given by a smooth function $H \in C^{\infty}(M)$.

## Main goal

Find as much as possible on the flow of $\xi_{H}$.

## Example: Riemannian Manifolds

Here $h$ is symmetrical and $\xi_{H}$ is known as the gradient of $H$

$$
\left.L_{\xi H} H(x) \stackrel{\text { def }}{=} \frac{d}{d t} H\left(\phi_{\xi}^{t}(x)\right)\right|_{t=0}
$$

## Example: Riemannian Manifolds

Here $h$ is symmetrical and $\xi_{H}$ is known as the gradient of $H$

$$
\begin{gathered}
\left.L_{\xi H} H(x) \stackrel{\text { def }}{=} \frac{d}{d t} H\left(\phi_{\xi}^{t}(x)\right)\right|_{t=0} \\
=\left[\left.\frac{d}{d t} \phi_{\xi}^{t}(x)\right|_{t=0}\right]^{\alpha} \partial_{\alpha} H(x)=h^{\alpha \beta} \partial_{\beta} H(x) \partial_{\alpha} H(x)=\left\|\xi_{H}(x)\right\|^{2} \geq 0
\end{gathered}
$$

## Example: Riemannian Manifolds

Here $h$ is symmetrical and $\xi_{H}$ is known as the gradient of $H$

$$
\left.L_{\xi} H(x) \stackrel{\text { def }}{=} \frac{d}{d t} H\left(\phi_{\xi}^{t}(x)\right)\right|_{t=0}
$$

$=\left[\left.\frac{d}{d t} \phi_{\xi}^{t}(x)\right|_{t=0}\right]^{\alpha} \partial_{\alpha} H(x)=h^{\alpha \beta} \partial_{\beta} H(x) \partial_{\alpha} H(x)=\left\|\xi_{H}(x)\right\|^{2} \geq 0$
This means that the flow lines of $\xi_{H}$ are everywhere transversal to the level curves of $H$ at every non-critical point.

## Example: Riemannian Manifolds

Here $h$ is symmetrical and $\xi_{H}$ is known as the gradient of $H$

$$
\left.L_{\xi} H(x) \stackrel{\text { def }}{=} \frac{d}{d t} H\left(\phi_{\xi}^{t}(x)\right)\right|_{t=0}
$$

$=\left[\left.\frac{d}{d t} \phi_{\xi}^{t}(x)\right|_{t=0}\right]^{\alpha} \partial_{\alpha} H(x)=h^{\alpha \beta} \partial_{\beta} H(x) \partial_{\alpha} H(x)=\left\|\xi_{H}(x)\right\|^{2} \geq 0$
This means that the flow lines of $\xi_{H}$ are everywhere transversal to the level curves of $H$ at every non-critical point.

It turns out thought that the dynamics is much richer when $h$ is antisymmetric.

# Hamiltonian 

## Systems

## Definition

A Hamiltonian system on the symplectic manifold $\left(M^{2 n}, \omega\right)$ is given by a smooth function $H \in C^{\infty}(M)$.

## Definition

A Hamiltonian system on the symplectic manifold $\left(M^{2 n}, \omega\right)$ is given by a smooth function $H \in C^{\infty}(M)$.

By definition $\dot{\xi}_{H} \omega=d H$. In this case

$$
L_{\xi_{H}} H(x)=\omega\left(\xi_{H}, \xi_{H}\right)=0,
$$

i.e. $\xi_{H}$ is tangent to the level sets of $H$ at every point.

## Definition

A Hamiltonian system on the symplectic manifold $\left(M^{2 n}, \omega\right)$ is given by a smooth function $H \in C^{\infty}(M)$.

By definition $\dot{\xi}_{H} \omega=d H$. In this case

$$
L_{\xi_{H}} H(x)=\omega\left(\xi_{H}, \xi_{H}\right)=0,
$$

i.e. $\xi_{H}$ is tangent to the level sets of $H$ at every point. Moreover,

$$
L_{\xi_{H}} \omega=i_{\xi H} d \omega+d\left(i_{\xi H} \omega\right)=d(d H)=0,
$$

namely the flow is symplectic, i.e. $\phi_{\xi_{H}}^{t} \in S p(M, \omega) \forall t$.

## Definition

A Hamiltonian system on the symplectic manifold $\left(M^{2 n}, \omega\right)$ is given by a smooth function $H \in C^{\infty}(M)$.

By definition $i_{\xi_{H}} \omega=d H$. In this case

$$
L_{\xi_{H}} H(x)=\omega\left(\xi_{H}, \xi_{H}\right)=0,
$$

i.e. $\xi_{H}$ is tangent to the level sets of $H$ at every point. Moreover,

$$
L_{\xi_{H}} \omega=i_{\xi_{H}} d \omega+d\left(i_{\xi_{H}} \omega\right)=d(d H)=0,
$$

namely the flow is symplectic, i.e. $\phi_{\xi_{H}}^{t} \in S p(M, \omega) \forall t$.
Locally we have coordinates $\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$ where
$\omega=d q^{\alpha} \wedge d p_{\alpha}$ (Darboux Theorem), so that

$$
\xi_{H}=\frac{\partial H}{\partial p_{\alpha}} \frac{\partial}{\partial q^{\alpha}}-\frac{\partial H}{\partial q^{\alpha}} \frac{\partial}{\partial p_{\alpha}}=\frac{\partial H}{\partial p_{\alpha}} \partial_{\alpha}-\frac{\partial H}{\partial q^{\alpha}} \partial^{\alpha}
$$

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.
Hamiltonian: $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.
Hamiltonian: $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$
Hamiltonian vector field: $\xi_{H}=p \partial_{q}-q \partial_{p}$.

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.
Hamiltonian: $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$
Hamiltonian vector field: $\xi_{H}=p \partial_{q}-q \partial_{p}$.
Equations of motion:

$$
\binom{\dot{q}}{\dot{p}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{q}{p}
$$

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.
Hamiltonian: $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$
Hamiltonian vector field: $\xi_{H}=p \partial_{q}-q \partial_{p}$.
Equations of motion:

$$
\binom{\dot{q}}{\dot{p}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{q}{p}
$$

Flow: $\phi_{H}^{t}=e^{\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) t}=\left(\begin{array}{rr}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right) \in \operatorname{Sp}\left(\mathbb{R}^{2}, d q \wedge d p\right)$

## Example: Harmonic Oscillator

Manifold: $\left(\mathbb{R}^{2}, \omega=d q \wedge d p\right)$.
Hamiltonian: $H(q, p)=\frac{1}{2}\left(p^{2}+q^{2}\right)$
Hamiltonian vector field: $\xi_{H}=p \partial_{q}-q \partial_{p}$.
Equations of motion:

$$
\binom{\dot{q}}{\dot{p}}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{q}{p}
$$

Flow: $\phi_{H}^{t}=e^{\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right) t}=\left(\begin{array}{rr}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right) \in \operatorname{Sp}\left(\mathbb{R}^{2}, d q \wedge d p\right)$
This is the qualitative behviour of Hamiltonian orbits in 2 dimensions close to a stable equilibrium point.

## Example: Classical Mechanics on a Riemannian manifold

Manifold: $\left(T^{*} M, \omega=d q^{\alpha} \wedge d p_{\alpha}, g=g_{\alpha \beta} d q^{\alpha} \otimes d q^{\beta}\right)$.

## Example: Classical Mechanics on a Riemannian manifold

Manifold: $\left(T^{*} M, \omega=d q^{\alpha} \wedge d p_{\alpha}, g=g_{\alpha \beta} d q^{\alpha} \otimes d q^{\beta}\right)$.
Hamiltonian: $H(q, p)=\frac{m}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)$

## Example: Classical Mechanics on a Riemannian manifold

Manifold: $\left(T^{*} M, \omega=d q^{\alpha} \wedge d p_{\alpha}, g=g_{\alpha \beta} d q^{\alpha} \otimes d q^{\beta}\right)$.
Hamiltonian: $H(q, p)=\frac{m}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)$
Hamiltonian vector field:
$\xi_{H}=g^{\alpha \beta} p_{\beta} \partial_{\alpha}-\left(\frac{m}{2} \partial_{\alpha} g^{\mu v} p_{\mu} p_{v}+\partial_{\alpha} V\right) \partial^{\alpha}$

## Example: Classical Mechanics on a Riemannian manifold

Manifold: $\left(T^{*} M, \omega=d q^{\alpha} \wedge d p_{\alpha}, g=g_{\alpha \beta} d q^{\alpha} \otimes d q^{\beta}\right)$.
Hamiltonian: $H(q, p)=\frac{m}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)$
Hamiltonian vector field:
$\xi_{H}=g^{\alpha \beta} p_{\beta} \partial_{\alpha}-\left(\frac{m}{2} \partial_{\alpha} g^{\mu v} p_{\mu} p_{v}+\partial_{\alpha} V\right) \partial^{\alpha}$
Equations of motion:

$$
\binom{\dot{q}^{\alpha}}{\dot{p}_{\alpha}}=\binom{g^{\alpha \beta} p_{\beta}}{-\frac{m}{2} \partial_{\alpha} g^{\mu v} p_{\mu} p_{v}-\partial_{\alpha} v}
$$

## Example: Classical Mechanics on a Riemannian manifold

Manifold: $\left(T^{*} M, \omega=d q^{\alpha} \wedge d p_{\alpha}, g=g_{\alpha \beta} d q^{\alpha} \otimes d q^{\beta}\right)$.
Hamiltonian: $H(q, p)=\frac{m}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)$
Hamiltonian vector field:
$\xi_{H}=g^{\alpha \beta} p_{\beta} \partial_{\alpha}-\left(\frac{m}{2} \partial_{\alpha} g^{\mu v} p_{\mu} p_{\nu}+\partial_{\alpha} V\right) \partial^{\alpha}$
Equations of motion:

$$
\binom{\dot{q}^{\alpha}}{\dot{p}_{\alpha}}=\binom{g^{\alpha \beta} p_{\beta}}{-\frac{m}{2} \partial_{\alpha} g^{\mu v} p_{\mu} p_{v}-\partial_{\alpha} V}
$$

In case $V \equiv 0, m=1$, we get the equation of geodesics:
$d / d t\left(g_{\alpha \beta} \dot{q}^{\alpha}\right)+\frac{1}{2} \partial_{\alpha} g^{\mu v} g_{\lambda \mu} g_{\rho \nu} \dot{q}^{\lambda} \dot{q}^{\rho}=0$

## Example: motion under a potential in $\mathbb{R}^{2}$

Here $H=\frac{1}{2} p^{2}+V(q)$ and $\xi_{H}(q, p)=p \partial_{q}-V^{\prime}(q) \partial_{p}$.

## Example: motion under a potential in $\mathbb{R}^{2}$

Here $H=\frac{1}{2} p^{2}+V(q)$ and $\xi_{H}(q, p)=p \partial_{q}-V^{\prime}(q) \partial_{p}$. In particular, all critical points of $\xi_{H}$ lie on the $q$ axis and we get centers for $V^{\prime \prime}>0$ and saddles for $V^{\prime \prime}<0$ (e.g. see Arn 2.4C):

## Example: motion under a potential in $\mathbb{R}^{2}$

Here $H=\frac{1}{2} p^{2}+V(q)$ and $\xi_{H}(q, p)=p \partial_{q}-V^{\prime}(q) \partial_{p}$. In particular, all critical points of $\xi_{H}$ lie on the $q$ axis and we get centers for $V^{\prime \prime}>0$ and saddles for $V^{\prime \prime}<0$ (e.g. see Arn 2.4C):




Figure 11 Potential energy


Figure 12 Phase curves

## Locally

## Hamiltonian

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{\operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid \dot{i}_{\xi} \omega\right.$ is exact $\}$ and

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{\operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid i_{\xi} \omega\right.$ is exact $\}$ and
$\mathfrak{X}_{\text {loc } \operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is closed $\}=\left\{\xi \in \mathfrak{X}(M) \mid L_{\xi} \omega=0\right\}$

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{\operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is exact $\}$ and
$\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is closed $\}=\left\{\xi \in \mathfrak{X}(M) \mid L_{\xi} \omega=0\right\}$
Equivalently, $\xi$ is locally Hamiltonian if $\xi(M) \subset T M$ is
Lagrangian with respect to $\omega=d \dot{q}^{\alpha} \wedge d p_{\alpha}+d q^{\alpha} \wedge d \dot{p}_{\alpha}$

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{\operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is exact $\}$ and
$\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is closed $\}=\left\{\xi \in \mathfrak{X}(M) \mid L_{\xi} \omega=0\right\}$
Equivalently, $\xi$ is locally Hamiltonian if $\xi(M) \subset T M$ is
Lagrangian with respect to $\omega=d \dot{q}^{\alpha} \wedge d p_{\alpha}+d q^{\alpha} \wedge d \dot{p}_{\alpha}$
Both $\mathfrak{X}_{\text {Ham }}(M)$ and $\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$.
Note: $\xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of $H$ !

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{\operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid i_{\xi} \omega\right.$ is exact $\}$ and
$\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)=\left\{\xi \in \mathfrak{X}(M) \mid{ }_{\xi} \omega\right.$ is closed $\}=\left\{\xi \in \mathfrak{X}(M) \mid L_{\xi} \omega=0\right\}$
Equivalently, $\xi$ is locally Hamiltonian if $\xi(M) \subset T M$ is
Lagrangian with respect to $\omega=d \dot{q}^{\alpha} \wedge d p_{\alpha}+d q^{\alpha} \wedge d \dot{p}_{\alpha}$
Both $\mathfrak{X}_{\text {Ham }}(M)$ and $\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$.
Note: $\xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of $H$ !
This means that the "Hamiltonian machinery" works even when $\xi$ is just locally Hamiltonian. In this case, the corresponding $H$ is a multivalued function.

## Locally Hamiltonian vector fields

Given $(M, \omega), \mathfrak{X}_{H a m}(M)=\left\{\xi \in \mathfrak{X}(M) \mid i_{\xi} \omega\right.$ is exact $\}$ and
$\mathfrak{X}_{\text {loc } \operatorname{Ham}}(M)=\left\{\xi \in \mathfrak{X}(M) \mid i_{\xi} \omega\right.$ is closed $\}=\left\{\xi \in \mathfrak{X}(M) \mid L_{\xi} \omega=0\right\}$
Equivalently, $\xi$ is locally Hamiltonian if $\xi(M) \subset T M$ is
Lagrangian with respect to $\omega=d \dot{q}^{\alpha} \wedge d p_{\alpha}+d q^{\alpha} \wedge d \dot{p}_{\alpha}$
Both $\mathfrak{X}_{\text {Ham }}(M)$ and $\mathfrak{X}_{\text {loc }} \operatorname{Ham}(M)$ are Lie subalgebras of $\mathfrak{X}(M)$.
Note: $\xi_{H}=h^{\alpha \beta} \partial_{\alpha} H \partial_{\beta}$ depends only on the deriv. of $H$ !
This means that the "Hamiltonian machinery" works even when $\xi$ is just locally Hamiltonian. In this case, the corresponding $H$ is a multivalued function.

Such systems have not been studied much so far, mainly because they do not arise from the framework of classical mechanics.

## Example 1: topological obstructions

Consider $\left(\mathbb{T}^{2}, \omega=d q \wedge d p\right)$ and $\eta=d p$.

## Example 1: topological obstructions

Consider $\left(\mathbb{T}^{2}, \omega=d q \wedge d p\right)$ and $\eta=d p$.
Clearly $\eta$ is not exact, so the vector field $\xi_{\eta}=\partial_{q}$ such that

$$
\dot{\xi}_{\eta} \omega=\eta
$$

is only locally Hamiltonian.

## Example 1: topological obstructions

Consider ( $\mathbb{T}^{2}, \omega=d q \wedge d p$ ) and $\eta=d p$.
Clearly $\eta$ is not exact, so the vector field $\xi_{\eta}=\partial_{q}$ such that

$$
i_{\xi \eta} \omega=\eta
$$

is only locally Hamiltonian.
Nevertheless, it can be considered as the differential of the multivalued function $H(q, p)=p$.

## Example 1: topological obstructions

Consider ( $\mathbb{T}^{2}, \omega=d q \wedge d p$ ) and $\eta=d p$.
Clearly $\eta$ is not exact, so the vector field $\xi_{\eta}=\partial_{q}$ such that

$$
\dot{\xi}_{\xi} \omega=\eta
$$

is only locally Hamiltonian.
Nevertheless, it can be considered as the differential of the multivalued function $H(q, p)=p$.
The corresponding equations of motion are

$$
\binom{\dot{q}}{\dot{p}}=\binom{1}{0}
$$

and the corresponding flow is made of translations:
$\phi_{\eta}^{t}(q, p)=(q+t, p)$.

## Example 1: topological obstructions

Consider ( $\mathbb{T}^{2}, \omega=d q \wedge d p$ ) and $\eta=d p$.
Clearly $\eta$ is not exact, so the vector field $\xi_{\eta}=\partial_{q}$ such that

$$
\dot{\xi}_{\xi} \omega=\eta
$$

is only locally Hamiltonian.
Nevertheless, it can be considered as the differential of the multivalued function $H(q, p)=p$.
The corresponding equations of motion are

$$
\binom{\dot{q}}{\dot{p}}=\binom{1}{0}
$$

and the corresponding flow is made of translations:
$\phi_{\eta}^{t}(q, p)=(q+t, p)$.
A sign that $\xi_{\eta}$ is not Hamiltonian is that its orbits, i.e. the level sets of $H$, are topologically non-trivial.

## Example 2: smooth obstructions

## Definition

A regular 1-dim. foliation $\mathcal{F}$ of $\mathbb{R}^{2}$ is Hamiltonian if its leaves are the level sets of a regular smooth function $H$, i.e. if $\mathcal{F}=\{d H=0\}$, i.e. if $T_{x} \mathcal{F}=\operatorname{span}\left\{\xi_{H}(x)\right\}$ for all $x \in \mathbb{R}^{2}$.
${ }^{1}$ Haefliger \& Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

## Example 2: smooth obstructions

## Definition

A regular 1-dim. foliation $\mathcal{F}$ of $\mathbb{R}^{2}$ is Hamiltonian if its leaves are the level sets of a regular smooth function $H$, i.e. if $\mathcal{F}=\{d H=0\}$, i.e. if $T_{x} \mathcal{F}=\operatorname{span}\left\{\xi_{H}(x)\right\}$ for all $x \in \mathbb{R}^{2}$.

Remark: $\mathcal{F}$ is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure ${ }^{1}$.

[^0]
## Example 2: smooth obstructions

## Definition

A regular 1-dim. foliation $\mathcal{F}$ of $\mathbb{R}^{2}$ is Hamiltonian if its leaves are the level sets of a regular smooth function $H$, i.e. if $\mathcal{F}=\{d H=0\}$, i.e. if $T_{x} \mathcal{F}=\operatorname{span}\left\{\xi_{H}(x)\right\}$ for all $x \in \mathbb{R}^{2}$.

Remark: $\mathcal{F}$ is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure ${ }^{1}$. In this concrete case, for example, $C^{k}(\mathcal{F})$ can be defined as the set of $C^{k}\left(\mathbb{R}^{2}\right)$ functions that are constant on the leaves of $\mathcal{F}$, i.e. $\operatorname{ker} L_{\xi_{H}}$.

[^1]
## Example 2: smooth obstructions

## Definition

A regular 1-dim. foliation $\mathcal{F}$ of $\mathbb{R}^{2}$ is Hamiltonian if its leaves are the level sets of a regular smooth function $H$, i.e. if $\mathcal{F}=\{d H=0\}$, i.e. if $T_{x} \mathcal{F}=\operatorname{span}\left\{\xi_{H}(x)\right\}$ for all $x \in \mathbb{R}^{2}$.

Remark: $\mathcal{F}$ is usually a non-Hausdorff space, but this is not an obstruction to define a smooth structure ${ }^{1}$. In this concrete case, for example, $C^{k}(\mathcal{F})$ can be defined as the set of $C^{k}\left(\mathbb{R}^{2}\right)$ functions that are constant on the leaves of $\mathcal{F}$, i.e. $\operatorname{ker} L_{\xi_{H}}$.

Of course, though, fundamental properties such as the existence of a partition of unity do not hold in non-Hausdorff spaces!
${ }^{1}$ Haefliger \& Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

Locally every regular foliation is Hamiltonian but globally things are different:

Locally every regular foliation is Hamiltonian but globally things are different:

## Theorem (Haefliger, Reeb 1957)

$\mathcal{F}$ is Hamiltonian iff $C^{1}(\mathcal{F})$ contains regular functions.

Locally every regular foliation is Hamiltonian but globally things are different:

## Theorem (Haefliger, Reeb 1957)

$\mathcal{F}$ is Hamiltonian iff $C^{1}(\mathcal{F})$ contains regular functions.
This is the exception rather than the rule. It turns out, for example, that there exist foliations such that $C^{1}(\mathcal{F})$ contains only constant functions! (see the article by Haefliger and Reeb and the references therein).

Locally every regular foliation is Hamiltonian but globally things are different:

## Theorem (Haefliger, Reeb 1957)

$\mathcal{F}$ is Hamiltonian iff $C^{1}(\mathcal{F})$ contains regular functions.
This is the exception rather than the rule. It turns out, for example, that there exist foliations such that $C^{1}(\mathcal{F})$ contains only constant functions! (see the article by Haefliger and Reeb and the references therein).
Incidentally, we have an interesting related property:

## Theorem (Haefliger, Reeb 1957)

On non-Hausdorff smooth manifolds of every dimension there are infinitely many inequivalent smooth structures.

## Example: a non-Hamiltonian foliation of $\mathbb{R}^{2}$

Consider $\left(\mathbb{R}^{2}, d q \wedge d p\right)$ and $\eta=\left(1-p^{2}\right) d q+2(1-2 p) d p$. Its leaves are shown below:


Clearly $\mathcal{F}_{\eta}=\{\eta=0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Clearly $\mathcal{F}_{\eta}=\{\eta=0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Correspondigly, the vector field $\xi_{\eta}=2(2 p-1) \partial_{q}+\left(1-p^{2}\right) \partial_{p}$ is regular and everywhere tangent to $\mathcal{F}_{\eta}$ but ker $L_{\xi_{\eta}}$ is generated by

$$
H(q, p)=(p+1)^{3}(p-1) e^{q}
$$

whose differential vanishes on the leaf $p=-1$.

Clearly $\mathcal{F}_{\eta}=\{\eta=0\}$ is a regular foliation but no regular function has this foliation as the set of its level curves.

Correspondigly, the vector field $\xi_{\eta}=2(2 p-1) \partial_{q}+\left(1-p^{2}\right) \partial_{p}$ is regular and everywhere tangent to $\mathcal{F}_{\eta}$ but ker $L_{\xi}$ is generated by

$$
H(q, p)=(p+1)^{3}(p-1) e^{q}
$$

whose differential vanishes on the leaf $p=-1$.
Hence the derivative of every function of

$$
C^{1}\left(\mathcal{F}_{\eta}\right)=\left\{f \circ H \mid f \in C^{1}(\mathbb{R})\right\}
$$

is null in that point.

In coordinates, consider on

$$
\mathcal{F}_{\eta} \simeq Y=\mathbb{R} \sqcup \mathbb{R} /\{x \sim y \text { if } x=y \text { and } x<0\}
$$

the two charts $\psi, \phi:(-\varepsilon, \varepsilon) \rightarrow Y$ s.t.
$\psi(w)$ is the leaf of $\eta$ passing through $(0,-1-w)$ and $\phi(z)$ is the on passing through $(0, z+1)$.

In coordinates, consider on

$$
\mathcal{F}_{\eta} \simeq Y=\mathbb{R} \sqcup \mathbb{R} /\{x \sim y \text { if } x=y \text { and } x<0\}
$$

the two charts $\psi, \phi:(-\varepsilon, \varepsilon) \rightarrow Y$ s.t.
$\psi(w)$ is the leaf of $\eta$ passing through ( $0,-1-w$ ) and
$\phi(z)$ is the on passing through $(0, z+1)$.
Since $w$ and $z$ are the coords of the same leaf iff $H(0,-1-w)=H(0, z+1)$, the coords change is given by

$$
w^{3}(1+w)=z(z+2)^{3}
$$

which reduces to $z \simeq w^{3}$ close enough to 0 .

In coordinates, consider on

$$
\mathcal{F}_{\eta} \simeq Y=\mathbb{R} \sqcup \mathbb{R} /\{x \sim y \text { if } x=y \text { and } x<0\}
$$

the two charts $\psi, \phi:(-\varepsilon, \varepsilon) \rightarrow Y$ s.t.
$\psi(w)$ is the leaf of $\eta$ passing through ( $0,-1-w$ ) and
$\phi(z)$ is the on passing through $(0, z+1)$.
Since $w$ and $z$ are the coords of the same leaf iff $H(0,-1-w)=H(0, z+1)$, the coords change is given by

$$
w^{3}(1+w)=z(z+2)^{3}
$$

which reduces to $z \simeq w^{3}$ close enough to 0 .
Given $f \in C^{1}\left(\mathcal{F}_{\eta}\right)$, then its representatives in coordinates are $f_{\psi}(w)=f(\psi(w))$ and $f_{\phi}(z)=f(\phi(z))$. Then

$$
f_{\psi}(w)=f_{\phi} \circ \phi^{-1} \circ \psi(w)=f_{\phi}\left(w^{3}\right)
$$

and

$$
\left.f_{\psi}^{\prime}(w)\right|_{w=0}=\left.3 w^{2} f_{\phi}\left(w^{3}\right)\right|_{w=0}=0
$$

While in the example of the torus the vector field was only locally Hamiltonian for topological ( $C^{0}$ ) reasons, here it depends on the smooth ( $C^{1}$ ) structure:

## Theorem (DL, 2014)

There exists a continuous funtion $G$ such that $(H, G)$ is locally injective and $\mathcal{F}_{\eta}$ is Hamiltonian with respect to the (inequivalent) smooth structure on the plane given by the charts $(H, G)$ at every point.

## Related Literature

- S.P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory, Uspekhi Mat. Nauk , 1982, 37:5, 3-49.
- S.P. Novikov, The Semiclassical Electron in a Magnetic Field and Lattice. Some Problems of the Low Dimensional Periodic Topology, Geometric and Functional Analysis, 1995, 5:2, 434-444.
- S.P. Novikov, Topology of the Generic Hamiltonian Foliations on the Riemann Surface., Moscow Math. Journal, 2005, 5:3 (70th birthday of Ya.G.Sinai), 633-6
- R. De Leo, Solvability of the cohomological equation for regular vector fields on the plane, Annals of Global Analysis and Geometry, 2011, 39:3, 231-248


## Least

## Action

## Principles

## The Poincaré-Cartan 1-form $\theta_{H}=p_{\alpha} d q^{\alpha}-H d t$

Recall that the trajectory of a Hamiltonian system on $M$ starting at time $t_{0}$ from $q_{0}$ and arriving at time $t_{1}$ in $q_{1}$ is an extremal of the action

$$
\begin{gathered}
S=\int_{\gamma} L(q, \dot{q}) d t=\int_{\gamma}\left(p_{\alpha} d q^{\alpha}-H d t\right), \\
\gamma \in\left\{\gamma:\left[t_{0}, t_{1}\right] \rightarrow M \mid \gamma\left(t_{0}\right)=q_{0}, \gamma\left(t_{1}\right)=q_{1}\right\}
\end{gathered}
$$

## The Poincaré-Cartan 1-form <br> $\theta_{H}=p_{\alpha} d q^{\alpha}-H d t$

Recall that the trajectory of a Hamiltonian system on $M$ starting at time $t_{0}$ from $q_{0}$ and arriving at time $t_{1}$ in $q_{1}$ is an extremal of the action

$$
\begin{gathered}
S=\int_{\gamma} L(q, \dot{q}) d t=\int_{\gamma}\left(p_{\alpha} d q^{\alpha}-H d t\right), \\
\gamma \in\left\{\gamma:\left[t_{0}, t_{1}\right] \rightarrow M \mid \gamma\left(t_{0}\right)=q_{0}, \gamma\left(t_{1}\right)=q_{1}\right\}
\end{gathered}
$$

The Poincaré-Cartan 1-form

$$
\theta_{H}(t, q, p)=p_{\alpha} d q^{\alpha}-H(p, q) d t \in \Omega^{1}\left(\mathbb{R} \times T^{*} M\right)
$$

plays a fundamental role in Hamiltonian systems.

## Least Action principle in $\mathbb{R} \times T^{*} M$

## Theorem (see Arnold, 45C)

The extremals of the "extended action"

$$
S_{\mathbb{R} \times T^{*} M}[\gamma]=\int_{\gamma} \theta_{H}
$$

in the space of all paths $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R} \times T^{*} M$ such that $\pi_{t}(\gamma(t))=t, \pi_{M}\left(\gamma\left(t_{0}\right)\right)=\left(t_{0}, q_{0}\right)$ and $\pi_{M}\left(\gamma\left(t_{1}\right)\right)=\left(t_{1}, q_{1}\right)$, where $\pi_{t}(t, q, p)=t$ and $\pi_{M}(t, q, p)=(t, q)$,
are the solutions $\gamma=(t, q(t), p(t)):\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R} \times T^{*} M$
of the Hamilton equations satisfying the initial conditions
$q\left(t_{0}\right)=q_{0}, q\left(t_{1}\right)=q_{1}$.
Remark: no condition is put on $p\left(t_{0}\right), p\left(t_{1}\right)$ !

## Proof.

We consider a family of paths $\gamma_{\varepsilon}$ and set $\delta=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$. Then

$$
\begin{aligned}
& \delta \int_{\gamma_{\varepsilon}} \theta_{H}=\int_{\gamma}\left[p_{\alpha} \delta \dot{q}^{\alpha}+\dot{q}^{\alpha} \delta p_{\alpha}-\partial_{\alpha} H \delta q^{\alpha}-\partial^{\alpha} H \delta p_{\alpha}\right] d t= \\
& =\left.p_{\alpha} \delta q^{\alpha}\right|_{t_{0}} ^{t_{1}}+\int_{\gamma}\left[\left(\dot{q}^{\alpha}-\partial^{\alpha} H\right) \delta p_{\alpha}+\left(-\dot{p}_{\alpha}+\partial_{\alpha} H\right) \delta q^{\alpha}\right] d t
\end{aligned}
$$

## Proof.

We consider a family of paths $\gamma_{\varepsilon}$ and set $\delta=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$. Then

$$
\begin{aligned}
& \delta \int_{\gamma_{\varepsilon}} \theta_{H}=\int_{\gamma}\left[p_{\alpha} \delta \dot{q}^{\alpha}+\dot{q}^{\alpha} \delta p_{\alpha}-\partial_{\alpha} H \delta q^{\alpha}-\partial^{\alpha} H \delta p_{\alpha}\right] d t= \\
& =\left.p_{\alpha} \delta q^{\alpha}\right|_{t_{0}} ^{t_{1}}+\int_{\gamma}\left[\left(\dot{q}^{\alpha}-\partial^{\alpha} H\right) \delta p_{\alpha}+\left(-\dot{p}_{\alpha}+\partial_{\alpha} H\right) \delta q^{\alpha}\right] d t
\end{aligned}
$$

From the line above it is clear why we need to fix the initial conditions for the $q$ (i.e. $\delta q=0$ at $t_{0}$ and $t_{1}$ ) but not for the $p$.

## Proof.

We consider a family of paths $\gamma_{\varepsilon}$ and set $\delta=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$. Then

$$
\begin{aligned}
& \delta \int_{\gamma_{\varepsilon}} \theta_{H}=\int_{\gamma}\left[p_{\alpha} \delta \dot{q}^{\alpha}+\dot{q}^{\alpha} \delta p_{\alpha}-\partial_{\alpha} H \delta q^{\alpha}-\partial^{\alpha} H \delta p_{\alpha}\right] d t= \\
& =\left.p_{\alpha} \delta q^{\alpha}\right|_{t_{0}} ^{t_{1}}+\int_{\gamma}\left[\left(\dot{q}^{\alpha}-\partial^{\alpha} H\right) \delta p_{\alpha}+\left(-\dot{p}_{\alpha}+\partial_{\alpha} H\right) \delta q^{\alpha}\right] d t
\end{aligned}
$$

From the line above it is clear why we need to fix the initial conditions for the $q$ (i.e. $\delta q=0$ at $t_{0}$ and $t_{1}$ ) but not for the $p$.

It looks surprising that the extremals of the action on $M$ coincide with those of the corresponding action on $\mathbb{R} \times T^{*} M$, where the $p_{\alpha}$ are allowed to vary independently from the $q^{\alpha}$.

## Proof.

We consider a family of paths $\gamma_{\varepsilon}$ and set $\delta=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}$. Then

$$
\begin{aligned}
& \delta \int_{\gamma_{\varepsilon}} \theta_{H}=\int_{\gamma}\left[p_{\alpha} \delta \dot{q}^{\alpha}+\dot{q}^{\alpha} \delta p_{\alpha}-\partial_{\alpha} H \delta q^{\alpha}-\partial^{\alpha} H \delta p_{\alpha}\right] d t= \\
& =\left.p_{\alpha} \delta q^{\alpha}\right|_{t_{0}} ^{t_{1}}+\int_{\gamma}\left[\left(\dot{q}^{\alpha}-\partial^{\alpha} H\right) \delta p_{\alpha}+\left(-\dot{p}_{\alpha}+\partial_{\alpha} H\right) \delta q^{\alpha}\right] d t
\end{aligned}
$$

From the line above it is clear why we need to fix the initial conditions for the $q$ (i.e. $\delta q=0$ at $t_{0}$ and $t_{1}$ ) but not for the $p$.

It looks surprising that the extremals of the action on $M$ coincide with those of the corresponding action on $\mathbb{R} \times T^{*} M$, where the $p_{\alpha}$ are allowed to vary independently from the $q^{\alpha}$.
The reason behind this is that, for fixed $\dot{q}^{\alpha}$ on $T M$, the value of $p_{\alpha}=\frac{\partial L(q, \dot{,})}{\partial \dot{q}^{\alpha}}$ is, by definition of Legendre transform, an extremal of the function $L=p_{\alpha} \dot{q}^{\alpha}-H$.

# Least Action Principle in $M_{E}=H^{-1}(E)$ Maupertuis Principle, Hamiltonian version 

## Theorem (Mapertuis principle I, see DFN Thm33.3.1)

The extremals of the "truncated action"

$$
S_{E}[\gamma]=\int_{\gamma} \theta, \quad \theta=p_{\alpha} d q^{\alpha}(\text { Liouville 1-form), }
$$

in the space $\Omega$ of all paths $\gamma:\left[t_{0}, t_{1}\right] \rightarrow T^{*} M$ such that $\pi_{M}\left(\gamma\left(t_{0}\right)\right)=q_{0}, \pi_{M}\left(\gamma\left(t_{1}\right)\right)=q_{1}, \gamma\left(\left[t_{0}, t_{1}\right]\right) \subset M_{E}$, where $\pi_{M}: T^{*} M \rightarrow M$ is the projection that "drops" the $p$, are all the reparametrizations of the solutions $\gamma:\left[t_{0}, t_{1}\right] \rightarrow T^{*} M$ of the Hamilton equations contained inside $\Omega$.

## Proof.

Proceeding as in the previous case, we find that

$$
\delta \int_{\gamma_{\varepsilon}} \theta=\int_{\gamma}\left[\dot{q}^{\alpha} \delta p_{\alpha}-\dot{p}_{\alpha} \delta q^{\alpha}\right] d t
$$

## Proof.

Proceeding as in the previous case, we find that

$$
\delta \int_{\gamma_{\varepsilon}} \theta=\int_{\gamma}\left[\dot{q}^{\alpha} \delta p_{\alpha}-\dot{p}_{\alpha} \delta q^{\alpha}\right] d t
$$

This time though the $\delta q$ and $\delta p$ are not independent: since $H$ is constant over all paths, then

$$
0=\delta\left[H\left(q_{\varepsilon}(t), p_{\varepsilon}(t)\right)\right]=\partial_{\alpha} H \delta q^{\alpha}+\partial^{\alpha} H \delta p_{\alpha}
$$

## Proof.

Proceeding as in the previous case, we find that

$$
\delta \int_{\gamma_{\varepsilon}} \theta=\int_{\gamma}\left[\dot{q}^{\alpha} \delta p_{\alpha}-\dot{p}_{\alpha} \delta q^{\alpha}\right] d t
$$

This time though the $\delta q$ and $\delta p$ are not independent: since $H$ is constant over all paths, then

$$
0=\delta\left[H\left(q_{\varepsilon}(t), p_{\varepsilon}(t)\right)\right]=\partial_{\alpha} H \delta q^{\alpha}+\partial^{\alpha} H \delta p_{\alpha}
$$

Since this is the only constraint, it means that

$$
\left(\dot{q}^{\alpha}, \dot{p}_{\alpha}\right) \propto\left(\partial^{\alpha} H,-\partial_{\alpha} H\right),
$$

namely the paths $\gamma$ that extremizes the truncated action are those whose image $\gamma(M) \subset M_{E}$ coincides with the image of a solution of the coresponding Hamiltonian equations of motions, i.e. is a solution modulo reparametrization.

## Least Action Principle in $M_{E}=H^{-1}(E)$ Maupertuis Principle, Lagrangian version

## Theorem (Mapertuis pr. II, Arn 45D \& AM Thm3.8.5)

Consider a Hamiltonian system H with Lagrangian $L(q, \dot{q})=\dot{q} \partial L / \partial \dot{q}-H(q, \partial L / \partial \dot{q})$.
Among all curves $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}, q_{1} \in M$ and parametrized so that $H(q, \partial L / \partial \dot{q})=E$, the extremals of the "truncated action"

$$
S_{E}[\gamma]=\int_{\gamma} \theta=\int_{t_{0}}^{t_{1}} \frac{\partial L}{\partial \dot{q}^{\alpha}} \dot{q}^{\alpha} d t,
$$

are all reparametrizations of the solutions of the Lagrangian equations of motion which keep the energy equal to $E$.

## Proof.

Let $\mathcal{L}: T M \rightarrow T^{*} M$ be the Legendre transformation and consider any curve $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}$ with $q_{1}$ in such a way that $H(q(t), \partial L / \partial \dot{q})=E$.

## Proof.

Let $\mathcal{L}: T M \rightarrow T^{*} M$ be the Legendre transformation and consider any curve $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}$ with $q_{1}$ in such a way that $H(q(t), \partial L / \partial \dot{q})=E$.

Then the curve $\tilde{\gamma}=\mathcal{L} \circ \gamma: \mathbb{R} \rightarrow T^{*} M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version

## Proof.

Let $\mathcal{L}: T M \rightarrow T^{*} M$ be the Legendre transformation and consider any curve $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}$ with $q_{1}$ in such a way that $H(q(t), \partial L / \partial \dot{q})=E$.

Then the curve $\tilde{\gamma}=\mathcal{L} \circ \gamma: \mathbb{R} \rightarrow T^{*} M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version and therefore it is an extremal of the truncated action

## Proof.

Let $\mathcal{L}: T M \rightarrow T^{*} M$ be the Legendre transformation and consider any curve $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}$ with $q_{1}$ in such a way that $H(q(t), \partial L / \partial \dot{q})=E$.

Then the curve $\tilde{\gamma}=\mathcal{L} \circ \gamma: \mathbb{R} \rightarrow T^{*} M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version and therefore it is an extremal of the truncated action iff $\tilde{\gamma}$ is a reparametrization of the solutions of the Hamiltonian equations of motion

## Proof.

Let $\mathcal{L}: T M \rightarrow T^{*} M$ be the Legendre transformation and consider any curve $\gamma=q(t): \mathbb{R} \rightarrow M$ connecting $q_{0}$ with $q_{1}$ in such a way that $H(q(t), \partial L / \partial \dot{q})=E$.

Then the curve $\tilde{\gamma}=\mathcal{L} \circ \gamma: \mathbb{R} \rightarrow T^{*} M$ satisfies the conditions of the Maupertuis' principle in the Hamiltonian version and therefore it is an extremal of the truncated action iff $\tilde{\gamma}$ is a reparametrization of the solutions of the Hamiltonian equations of motion
iff $\gamma$ is a reparametrization of the solutions of the Lagrangian equations of motion.

## Example 1: Geodesics

## Theorem

On a Riemannian manifold $(M, g)$, the extremals of the action $S=\int_{\gamma} \sqrt{g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t$ are (unparametrized) geodesics.

## Example 1: Geodesics

## Theorem

On a Riemannian manifold $(M, g)$, the extremals of the action $S=\int_{\gamma} \sqrt{g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t$ are (unparametrized) geodesics.

## Proof.

Geodesics are the solutions of the Hamiltonian dynamical system given by the purely kinetic energy Hamiltonian $H(q, p)=\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}$. On $H=E, g^{\alpha \beta} p_{\alpha} p_{\beta}=\sqrt{E} \sqrt{g^{\alpha \beta} p_{\alpha} p_{\beta}}$ and so the extremals of $\int_{\gamma} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta} d t$ are also extremals of $\int_{\gamma} \sqrt{g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t$.

## Example 2: Motion in a Riemann Manifold

## Theorem

A particle of mass $m$ on a Riemannian manifold ( $M, g$ ) subjected to a potential $V(q)$ moves, at the energy level $E$, along the geodesics of the new metric

$$
\tilde{g}_{\alpha \beta}=2 m(E-V(x)) g_{\alpha \beta} .
$$

## Example 2: Motion in a Riemann Manifold

## Proof.

If $H(q, p)=\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)=\frac{1}{2} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}+V(q)$, then, in $M_{E}$,
Hence

$$
g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}=2(E-V(q))
$$

$$
S[\gamma]=\int_{\gamma} p_{\alpha} d q^{\alpha}=\int_{\gamma} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta} d t
$$

## Example 2: Motion in a Riemann Manifold

## Proof.

If $H(q, p)=\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)=\frac{1}{2} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}+V(q)$, then, in $M_{E}$,
Hence

$$
g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}=2(E-V(q))
$$

$$
S[\gamma]=\int_{\gamma} p_{\alpha} d q^{\alpha}=\int_{\gamma} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta} d t
$$

which we can write as

$$
S[\gamma]=\int_{\gamma} \sqrt{2(E-V(q))} \sqrt{g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t=\int_{\gamma} \sqrt{\tilde{g}_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t
$$

## Example 2: Motion in a Riemann Manifold

## Proof.

If $H(q, p)=\frac{1}{2} g^{\alpha \beta} p_{\alpha} p_{\beta}+V(q)=\frac{1}{2} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}+V(q)$, then, in $M_{E}$,
Hence

$$
g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}=2(E-V(q))
$$

$$
S[\gamma]=\int_{\gamma} p_{\alpha} d q^{\alpha}=\int_{\gamma} g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta} d t,
$$

which we can write as

$$
S[\gamma]=\int_{\gamma} \sqrt{2(E-V(q))} \sqrt{g_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t=\int_{\gamma} \sqrt{\tilde{g}_{\alpha \beta} \dot{q}^{\alpha} \dot{q}^{\beta}} d t
$$

from which it is clear that the extremals of the Maupertuis action with energy $E$ coincide with the geodesics of $M$ with respect to the metric

$$
\tilde{g}_{\alpha \beta}=2(E-V(q)) g_{\alpha \beta} .
$$

Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

## Double Pendulum

## Corollary (See Arn 45C)

For every $n_{1}, n_{2}$ there is a periodic motion of the double pendulum ( $M=\mathbb{T}^{2}$ ) such that one pendulum makes $n_{1}$ oscillations while the other makes $n_{2}$ oscillations.

Maupertuis' principle allows us to apply to Hamiltonian dynamics important results of Riemannian geometry, e.g. the fact that, if in some homotopy class of loops there is a curve of shortest length, this is a geodesics:

## Double Pendulum

## Corollary (See Arn 45C)

For every $n_{1}, n_{2}$ there is a periodic motion of the double pendulum ( $M=\mathbb{T}^{2}$ ) such that one pendulum makes $n_{1}$ oscillations while the other makes $n_{2}$ oscillations.

## Rigid Body

## Corollary (See Arn 45C)

Given a rigid body ( $\mathrm{M}=\mathrm{SO}_{3}$ ), in any potential field there exists at least one periodic motion of the body. Moreveor, there are periodic motions for every arbitrary high value of the energy.

## Example: Motion of light

The Hamiltonian for rays of light is $H(q, p)=c(q)\|p\|$.

## Example: Motion of light

The Hamiltonian for rays of light is $H(q, p)=c(q)\|p\|$. On $M_{E},\|p\|=\frac{E}{c(q)}$ and $\dot{q}^{\alpha}=c(q) \frac{p_{\alpha}}{\|p\|}$ so

$$
S_{0}=\int_{\gamma} \theta=\int_{\gamma} p_{\alpha} \dot{q}^{\alpha} d t=E \int_{\gamma}\|\dot{q}\|_{g} d t
$$

where $g_{\alpha \beta}=\frac{1}{c(q)^{2}} \delta_{\alpha \beta}$

## Example: Motion of light

The Hamiltonian for rays of light is $H(q, p)=c(q)\|p\|$.
On $M_{E},\|p\|=\frac{E}{c(q)}$ and $\dot{q}^{\alpha}=c(q) \frac{p_{\alpha}}{\|p\|}$ so

$$
S_{0}=\int_{\gamma} \theta=\int_{\gamma} p_{\alpha} \dot{q}^{\alpha} d t=E \int_{\gamma}\|\dot{q}\|_{g} d t
$$

where $g_{\alpha \beta}=\frac{1}{c(q)^{2}} \delta_{\alpha \beta}$

## Theorem (Fermat's principle - Novikov 33.3.3)

The path that light rays take by passing from a point A to a point $B$ in a isotropic media are geodesics with respect to the metric $g_{\alpha \beta}=\frac{1}{c(q)^{2}} \delta_{\alpha \beta}$.

## Related Literature

- S.P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory, RMS , 1982, 37:5, 3-49.
- S.P. Novikov, Variational methods and periodic solutions of equations of Kirchhoff type. II, Funktsional Anal. i Prilozhen., 1981, 15:4, 37-52.
- A.V. Bolsinov, V.V. Kozlov, A.T. Fomenko, The Mapertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body, RMS, 1995, 50:3, 473-501
- A.V. Tsiganov, The Maupertuis Principle and Canonical Trnasformations of the Extended Phase Space, J. of Nonlin. Math. Phys., 2001, 8:1, 157-182


## Hamiltonian

## Systems

# as Lagrangian Submanifolds 

## Generating Functions

Symplectic diffeomorphisms of a manifold $M^{2 n}$, which are $2 n$ maps of $2 n$ variables, are actually determined by a single function of $2 n$ variables:

## Generating Functions

Symplectic diffeomorphisms of a manifold $M^{2 n}$, which are $2 n$ maps of $2 n$ variables, are actually determined by a single function of $2 n$ variables:

## Theorem

$f:\left(M^{2 n}, \omega_{1}\right) \rightarrow\left(N^{2 n}, \omega_{2}\right)$ is symplectic iff $f$ 's graph $\Gamma_{f} \subset M \times N$ is Lagrangian submanifold of $\left(M \times N, \omega_{1}-\omega_{2}\right)$.

## Definition

Let $\theta_{1,2}$ be local Liouville 1-forms for $\omega_{1,2}$ and $i: \Gamma_{f} \rightarrow M \times N$ the inclusion of the graph. Then locally $i^{*}\left(\theta_{1}-\theta_{2}\right)=d S$.
$S$ is the generating function for $f$.

## Generating Functions

Symplectic diffeomorphisms of a manifold $M^{2 n}$, which are $2 n$ maps of $2 n$ variables, are actually determined by a single function of $2 n$ variables:

## Theorem

$f:\left(M^{2 n}, \omega_{1}\right) \rightarrow\left(N^{2 n}, \omega_{2}\right)$ is symplectic iff f's graph $\Gamma_{f} \subset M \times N$ is Lagrangian submanifold of $\left(M \times N, \omega_{1}-\omega_{2}\right)$.

## Definition

Let $\theta_{1,2}$ be local Liouville 1-forms for $\omega_{1,2}$ and $i: \Gamma_{f} \rightarrow M \times N$ the inclusion of the graph. Then locally $i^{*}\left(\theta_{1}-\theta_{2}\right)=d S$.
$S$ is the generating function for $f$.
This means that locally $\theta_{1}-\theta_{2}=p_{\alpha} d q^{\alpha}-P_{a} d Q^{a}=d S(q, Q)$, i.e. locally

$$
p_{\alpha}=\frac{\partial S}{\partial q^{\alpha}}, P_{a}=\frac{\partial S}{\partial Q^{a}}
$$

## Hamiltonian and Lagrangian formulations via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

## Hamiltonian and Lagrangian formulations via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

| $T^{*} M$ | $T^{*}\left(T^{*} M\right)$ | $T\left(T^{*} M\right)$ | $T^{*}(T M)$ |
| :---: | :---: | :---: | :---: |
| $\left(q^{\alpha}, p_{\alpha}\right)$ | $\left(\left(q^{\alpha}, p_{\alpha}\right),\left(w_{\alpha}, v^{\alpha}\right)\right)$ | $\left(\left(q^{\alpha}, p_{\alpha}\right),\left(v^{\alpha}, w_{\alpha}\right)\right)$ | $\left(\left(q^{\alpha}, v^{\alpha}\right),\left(p_{\alpha}, w_{\alpha}\right)\right)$ |
| $p_{\alpha} d q^{\alpha}$ | $w_{\alpha} d q^{\alpha}+v^{\alpha} d p_{\alpha}$ | $v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}$ | $p_{\alpha} d q^{\alpha}+w_{\alpha} d v^{\alpha}$ |

## Hamiltonian and Lagrangian formulations via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:
Consider the following symplectic bundles and diffeomorphisms:

$$
\begin{array}{cccc}
T^{*} M & T^{*}\left(T^{*} M\right) & T\left(T^{*} M\right) & T^{*}(T M) \\
\left(q^{\alpha}, p_{\alpha}\right) & \left(\left(q^{\alpha}, p_{\alpha}\right),\left(w_{\alpha}, v^{\alpha}\right)\right) & \left(\left(q^{\alpha}, p_{\alpha}\right),\left(v^{\alpha}, w_{\alpha}\right)\right) & \left(\left(q^{\alpha}, v^{\alpha}\right),\left(p_{\alpha}, w_{\alpha}\right)\right) \\
p_{\alpha} d q^{\alpha} & w_{\alpha} d q^{\alpha}+v^{\alpha} d p_{\alpha} & v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha} & p_{\alpha} d q^{\alpha}+w_{\alpha} d v^{\alpha} \\
& \psi: & T\left(T^{*} M\right) & \rightarrow
\end{array}
$$

## Hamiltonian and Lagrangian formulations via Lagrangian submanifolds

Lagrangian submanifolds are a powerful language in the framework of Hamiltonian dynamics. In particular we can reformulate the whole theory with this language:
Consider the following symplectic bundles and diffeomorphisms:

$$
\begin{array}{cccc}
T^{*} M & T^{*}\left(T^{*} M\right) & T\left(T^{*} M\right) & T^{*}(T M) \\
\left(q^{\alpha}, p_{\alpha}\right) & \left(\left(q^{\alpha}, p_{\alpha}\right),\left(w_{\alpha}, v^{\alpha}\right)\right) & \left(\left(q^{\alpha}, p_{\alpha}\right),\left(v^{\alpha}, w_{\alpha}\right)\right) & \left(\left(q^{\alpha}, v^{\alpha}\right),\left(p_{\alpha}, w_{\alpha}\right)\right) \\
p_{\alpha} d q^{\alpha} & w_{\alpha} d q^{\alpha}+v^{\alpha} d p_{\alpha} & v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha} & p_{\alpha} d q^{\alpha}+w_{\alpha} d v^{\alpha} \\
& \psi: & T\left(T^{*} M\right) & \rightarrow
\end{array} T^{*}\left(T^{*} M\right) .
$$

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

## Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega=d v^{\alpha} \wedge d p_{\alpha}-d w_{\alpha} \wedge d q^{\alpha}$ on $T\left(T^{*} M\right)$. Then:
(1) $\psi$ is symplectic, $\phi$ is anti-symplectic;

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

## Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega=d v^{\alpha} \wedge d p_{\alpha}-d w_{\alpha} \wedge d q^{\alpha}$ on $T\left(T^{*} M\right)$. Then:
(1) $\psi$ is symplectic, $\phi$ is anti-symplectic;
(2) $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}+\phi^{*} \theta_{T^{*}(T M)}=d\left(p_{\alpha} V^{\alpha}\right)$;

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

## Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega=d v^{\alpha} \wedge d p_{\alpha}-d w_{\alpha} \wedge d q^{\alpha}$ on $T\left(T^{*} M\right)$. Then:
(1) $\psi$ is symplectic, $\phi$ is anti-symplectic;
(2) $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}+\phi^{*} \theta_{T^{*}(T M)}=d\left(p_{\alpha} V^{\alpha}\right)$;
(3) if $i: F \hookrightarrow T\left(T^{*} M\right)$ is a Lagrangian submanifold, then $\psi(F) \subset T^{*}\left(T^{*} M\right)$ is Lagrangian with generating function $H: T^{*} M \rightarrow \mathbb{R}\left(\right.$ i.e. $\left.(\psi \circ i)^{*} \theta_{T^{*}\left(T^{*} M\right)}=d H\right)$

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

## Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega=d v^{\alpha} \wedge d p_{\alpha}-d w_{\alpha} \wedge d q^{\alpha}$ on $T\left(T^{*} M\right)$. Then:
(1) $\psi$ is symplectic, $\phi$ is anti-symplectic;
(2) $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}+\phi^{*} \theta_{T^{*}(T M)}=d\left(p_{\alpha} V^{\alpha}\right)$;
(3) if $i: F \hookrightarrow T\left(T^{*} M\right)$ is a Lagrangian submanifold, then $\psi(F) \subset T^{*}\left(T^{*} M\right)$ is Lagrangian with generating function $H: T^{*} M \rightarrow \mathbb{R}$ (i.e. $\left.(\psi \circ i)^{*} \theta_{T^{*}\left(T^{*} M\right)}=d H\right)$ and $\phi(F) \subset T^{*}(T M)$ is Lagrangian with generating function $L: T M \rightarrow \mathbb{R}$ (i.e. $(\phi \circ i)^{*} \theta_{T^{*}(T M)}=d L$ );

The pull-back $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}, \phi_{T^{*}(T M)}^{*} \theta_{2}$ on $T\left(T^{*} M\right)$ of the canonical Liouville 1-forms on $T^{*}\left(T^{*} M\right)$ and $T^{*}(T M)$ are given by:

$$
\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}=v^{\alpha} d p_{\alpha}-w_{\alpha} d q^{\alpha}, \quad \phi^{*} \theta_{T^{*}(T M)}=p^{\alpha} d v_{\alpha}+w_{\alpha} d q^{\alpha}
$$

## Theorem (Tulczyjew 1974)

Consider the symplectic structure $\omega=d v^{\alpha} \wedge d p_{\alpha}-d w_{\alpha} \wedge d q^{\alpha}$ on $T\left(T^{*} M\right)$. Then:
(1) $\psi$ is symplectic, $\phi$ is anti-symplectic;
(2) $\psi^{*} \theta_{T^{*}\left(T^{*} M\right)}+\phi^{*} \theta_{T^{*}(T M)}=d\left(p_{\alpha} V^{\alpha}\right)$;
(3) if $i: F \hookrightarrow T\left(T^{*} M\right)$ is a Lagrangian submanifold, then $\psi(F) \subset T^{*}\left(T^{*} M\right)$ is Lagrangian with generating function $H: T^{*} M \rightarrow \mathbb{R}\left(\right.$ i.e. $\left.(\psi \circ i)^{*} \theta_{T^{*}\left(T^{*} M\right)}=d H\right)$ and $\phi(F) \subset T^{*}(T M)$ is Lagrangian with generating function $L: T M \rightarrow \mathbb{R}\left(i . e .(\phi \circ i)^{*} \theta_{T^{*}(T M)}=d L\right) ;$
(4) $H(q, p)=p_{\alpha} v^{\alpha}-L(q, v)$, with $p_{\alpha}=\frac{\partial L}{\partial v^{\alpha}}$.

## Related Literature

- W.M. Tulczyjew Hamiltonian Systems, Lagrangian systems and the Legendre transformation, Symp. Math. 14, 247-258
- K. Konieczna, P. Urbanski Double vector bundles and duality, Archivum Mathematicum, 1999
- M. de Leon, D. Martin de Diego, Tulczyjew's triples and lagrangian submanifolds in classical field theories, in "Applied Differential Geometry and Mechanics,", Eds. W. Sarlet and F. Cantrijn, U. of Gent, Gent, Academia Press (2003), 21-47.
- J. Grabowski, G. Marmo, Deformed Tulczyjew triples and Legendre transform, Rend. Sem. Univ. Pol. Torino, 1999, 54:3


# Hamilton-Jacobi 

## Equation

## Huygens principle

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

## Huygens principle

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

## Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point $q_{0}$. The wave front $\Phi_{q_{0}}(t+s)$ is the envelope of the fronts $\Phi_{q}(s)$ for all $q \in \Phi_{q_{0}}(t)$.

## Huygens principle

The idea behind Hamilton-Jacobi equations comes from the Huygens principle in optics:

## Theorem (Huygens principle, Arn 46A, DNF 35.2)

Consider the light emanating from a point $q_{0}$. The wave front $\Phi_{q_{0}}(t+s)$ is the envelope of the fronts $\Phi_{q}(s)$ for all $q \in \Phi_{q_{0}}(t)$.


Figure 193 Envelope of wave fronts

## Huygens principle

The level set of $S_{q_{0}}(q)$ (optical length) is the wave front.

## Huygens principle

The level set of $S_{q_{0}}(q)$ (optical length) is the wave front.
Its grad. $p=\frac{\partial S}{\partial q}$ is the vector of normal slowness of the front.

## Huygens principle

The level set of $S_{q_{0}}(q)$ (optical length) is the wave front. Its grad. $p=\frac{\partial S}{\partial q}$ is the vector of normal slowness of the front.
Note that the directions of $\dot{q}$ and $p$ do not coincide in an anisotropic medium!


Figure 195 Direction of a ray and direction of motion of the wave front

## Huygens principle

The level set of $S_{q_{0}}(q)$ (optical length) is the wave front. Its grad. $p=\frac{\partial S}{\partial q}$ is the vector of normal slowness of the front.
Note that the directions of $\dot{q}$ and $p$ do not coincide in an anisotropic medium!


Figure 197 Conjugacy of the direction of a wave and of the front

## Optical-Mechanics Analogy

Optics
Optical medium
Fermat's principle
Rays
Indicatrices
Normal slowness vector $\mathbf{p}$ of the front
Expression of $\mathbf{p}$ in terms of the velocity of the ray, $\dot{\mathbf{q}}$
1 -form $\mathbf{p} d \mathbf{q}$

Mechanics
Extended configuration space $\{(\mathbf{q}, t)\}$
Hamilton's principle $\delta \int L d t=0$
Trajectories $\mathbf{q}(t)$
Lagrangian $L$
Momentum $\mathbf{p}$
Legendre transformation
1 -form $\mathbf{p} d \mathbf{q}-H d t$

## Hamilton-Jacobi equations v1

The connection between Huygens principle and Hamiltonian equations comes from the three following observations:

## Theorem 1

The 1 -form $\eta \in \Omega^{1}(M)$ is closed iff $\eta^{*} \omega=0$, i.e. iff its graph $\eta(M) \subset T^{*} M$ is a Lagrangian submanifold of $T^{*} M$.

## Proof.

$\eta^{*} \omega=d q^{\alpha} \wedge d \eta_{\alpha}=\partial_{\beta} \eta_{\alpha} d q^{\alpha} \wedge d q^{\beta}=$
$=\frac{1}{2}\left(\partial_{\beta} \eta_{\alpha}-\partial_{\alpha} \eta_{\beta}\right) d q^{\alpha} \wedge d q^{\beta}$
Hence locally $\alpha=d S$, namely $\alpha(M)$ writes as $p_{\alpha}=\frac{\partial S}{\partial q^{\alpha}}$.

## Theorem 2

Let $\Gamma^{n} \subset T^{*} M^{n}$ be Lagrangian and contained in $H^{-1}\left(E_{0}\right)$. Then $\xi_{H} \in T \Gamma$.

## Proof.

Since $\omega\left(\xi_{H}, \zeta\right)=d H(\zeta)=0, \forall \zeta \in T \Gamma$, and $\Gamma$ is Lagrangian, then $\xi_{H} \in T \Gamma$ at every point.

## Theorem 2

Let $\Gamma^{n} \subset T^{*} M^{n}$ be Lagrangian and contained in $H^{-1}\left(E_{0}\right)$. Then $\xi_{H} \in T \Gamma$.

## Proof.

Since $\omega\left(\xi_{H}, \zeta\right)=d H(\zeta)=0, \forall \zeta \in T \Gamma$, and $\Gamma$ is Lagrangian, then $\xi_{H} \in T \Gamma$ at every point.

Theorem 3
Let $\Gamma^{n-1} \subset T^{*} M^{n}$ be isotropic. Then

$$
\Gamma_{T}^{n}=\bigcup_{t \in[0, T]} \phi_{H}^{t}\left(\Gamma^{n-1}\right)
$$

is Lagrangian $\forall T>0$.

## Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian $H$ on $T^{*} M$ and a closed 1 -form $\eta$ on $M$, the following are equivalent:
(1) $d\left(\eta^{*} H\right)=0$;

## Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian $H$ on $T^{*} M$ and a closed 1 -form $\eta$ on $M$, the following are equivalent:
(1) $d\left(\eta^{*} H\right)=0$;
(2) $\eta(M)$ is a Lagrangian submanifold of $T^{*} M$ invariant by the Hamiltonian flow $\phi_{H}^{t}$;

## Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian $H$ on $T^{*} M$ and a closed 1 -form $\eta$ on $M$, the following are equivalent:
(1) $d\left(\eta^{*} H\right)=0$;
(2) $\eta(M)$ is a Lagrangian submanifold of $T^{*} M$ invariant by the Hamiltonian flow $\phi_{H}^{t}$;
(3) for every curve $\gamma=q(t): \mathbb{R} \rightarrow M$ satisfying $\dot{q}^{\alpha}=\left.\frac{\partial H}{\partial p_{\alpha}}\right|_{\eta(q)}$, the curve $\tilde{\gamma}(t)=\eta(q(t))$ is an integral curve of $\xi_{H}$;

## Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)

Given a Hamiltonian $H$ on $T^{*} M$ and a closed 1 -form $\eta$ on $M$, the following are equivalent:
(1) $d\left(\eta^{*} H\right)=0$;
(2) $\eta(M)$ is a Lagrangian submanifold of $T^{*} M$ invariant by the Hamiltonian flow $\phi_{H}^{t}$;
(3) for every curve $\gamma=q(t): \mathbb{R} \rightarrow M$ satisfying $\dot{q}^{\alpha}=\left.\frac{\partial H}{\partial p_{\alpha}}\right|_{\eta(q)}$, the curve $\tilde{\gamma}(t)=\eta(q(t))$ is an integral curve of $\xi_{H}$;
(4) if $S$ is a generating function for $\eta(M)$, namely if locally $\eta=d S$, then $S$ satisfies the (time-independent) Hamilton-Jacobi equation

$$
H\left(q, \frac{\partial S}{\partial q}\right)=E_{0}
$$

The name $S$ for the generating function was not by chance:
Theorem
Let $\Gamma \subset T^{*} M$ be Lagrangian and contained in $H=E_{0}$, $m_{0}, m \in \Gamma$ two "close enough" points and $\gamma_{1,2}:[0,1] \rightarrow \Gamma$ two paths s.t. $\gamma_{1,2}(0)=m_{0}$ and $\gamma_{1,2}(1)=m$.
Then $\int_{\gamma_{1}} \theta=\int_{\gamma_{2}} \theta$.

The name $S$ for the generating function was not by chance:

## Theorem

Let $\Gamma \subset T^{*} M$ be Lagrangian and contained in $H=E_{0}$, $m_{0}, m \in \Gamma$ two "close enough" points and $\gamma_{1,2}:[0,1] \rightarrow \Gamma$ two paths s.t. $\gamma_{1,2}(0)=m_{0}$ and $\gamma_{1,2}(1)=m$.
Then $\int_{\gamma_{1}} \theta=\int_{\gamma_{2}} \theta$.

## Proof.

Since $\Gamma$ is Lagrangian,

$$
\left.d \theta\right|_{\Gamma}=\left.\omega\right|_{\Gamma=0}=0
$$

and so locally $\theta=d S$, i.e.

$$
p_{\alpha}=\frac{\partial S}{\partial q^{\alpha}},
$$

and therefore

$$
\int_{\gamma_{i}} \theta=S(m)-S\left(m_{0}\right) .
$$

## Corollary ("Method of Characteristics")

For a fixed $q_{0}$, assume that the Lagrangian submanifold $\Gamma^{n} \subset\left\{H(q, p)=E_{0}\right\} \subset T^{*} M$ projects with full rank on $M$ close to $q_{0}$. Then the "truncated action"

$$
S_{E_{0}}(q)=\int_{q_{0}}^{q} p_{\alpha} d q^{\alpha}
$$

solves the Hamilton-Jacobi equation

$$
H\left(q, \frac{\partial S_{E_{0}}}{\partial q}\right)=E_{0}
$$

## Corollary ("Method of Characteristics")

For a fixed $q_{0}$, assume that the Lagrangian submanifold $\Gamma^{n} \subset\left\{H(q, p)=E_{0}\right\} \subset T^{*} M$ projects with full rank on $M$ close to $q_{0}$. Then the "truncated action"

$$
S_{E_{0}}(q)=\int_{q_{0}}^{q} p_{\alpha} d q^{\alpha}
$$

solves the Hamilton-Jacobi equation

$$
H\left(q, \frac{\partial S_{E_{0}}}{\partial q}\right)=E_{0}
$$

## Proof.

Since $d S_{E_{0}}=p_{\alpha} d q^{\alpha}$, we have that

$$
p_{\alpha}=\frac{\partial S_{E_{0}}}{\partial q^{\alpha}}
$$

so that, since $\Gamma \subset\left\{H(q, p)=E_{0}\right\}, H\left(q, \partial_{q} S_{E_{0}}\right)=E_{0}$.

## Application to solving 1st order PDEs

Consider the 1st order implicit PDE with "Cauchy boundary conditions":

$$
H\left(q, \partial_{q} S\right)=E_{0},\left.S\right|_{\Gamma^{n-1}}=s_{0} \in C^{\infty}\left(\Gamma^{n-1}\right)
$$

where $\left.H\right|_{\Gamma^{n-1}}=E_{0}, \Gamma^{n-1}$ is transversal to the Hamiltonian flow of $H$ and projects diffeomorphically on $M$.

## Application to solving 1st order PDEs

Consider the 1st order implicit PDE with "Cauchy boundary conditions":

$$
H\left(q, \partial_{q} S\right)=E_{0},\left.S\right|_{\Gamma^{n-1}}=s_{0} \in C^{\infty}\left(\Gamma^{n-1}\right)
$$

where $\left.H\right|_{\Gamma n-1}=E_{0}, \Gamma^{n-1}$ is transversal to the Hamiltonian flow of $H$ and projects diffeomorphically on $M$.
Then the previous Corollary shows that, at least for small $T$, the solution on $\pi_{M}\left(\Gamma_{T}\right)$ is given by

$$
s_{E_{0}}(q)=s_{0}\left(q_{0}\right)+\int_{q_{0}}^{q} p_{\alpha} d q^{\alpha},
$$

where $q_{0}$ is the point of $\Gamma^{n-1}$ such that $q=\Phi_{H}^{t}\left(q_{0}\right)$ for some $t$.

## Example 1: Harmonic Oscillator

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right)
$$

The level set $H=\frac{1}{2}$ is the unitary 3 -sphere $\mathbb{S}^{3}$.

## Example 1: Harmonic Oscillator

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right)
$$

The level set $H=\frac{1}{2}$ is the unitary 3 -sphere $\mathbb{S}^{3}$.
The corresponding HJ equation is

$$
\left(\partial_{x} S\right)^{2}+\left(\partial_{y} S\right)^{2}+x^{2}+y^{2}=1
$$

## Example 1: Harmonic Oscillator

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right)
$$

The level set $H=\frac{1}{2}$ is the unitary 3 -sphere $\mathbb{S}^{3}$.
The corresponding HJ equation is

$$
\left(\partial_{x} S\right)^{2}+\left(\partial_{y} S\right)^{2}+x^{2}+y^{2}=1
$$

Every orbit is periodic with period $2 \pi$ and lies on a torus $p_{x}^{2}+x^{2}=\alpha^{2}, p_{y}^{2}+y^{2}=1-\alpha^{2}$, so the manifold of trajectories $\Gamma_{2 \pi}$ of every loop $\Gamma^{1} \subset \mathbb{S}^{3}$ transversal to the flow is a 2 -torus.

## Example 1: Harmonic Oscillator

$$
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+x^{2}+y^{2}\right)
$$

The level set $H=\frac{1}{2}$ is the unitary 3 -sphere $\mathbb{S}^{3}$.
The corresponding HJ equation is

$$
\left(\partial_{x} S\right)^{2}+\left(\partial_{y} S\right)^{2}+x^{2}+y^{2}=1
$$

Every orbit is periodic with period $2 \pi$ and lies on a torus $p_{x}^{2}+x^{2}=\alpha^{2}, p_{y}^{2}+y^{2}=1-\alpha^{2}$, so the manifold of trajectories $\Gamma_{2 \pi}$ of every loop $\Gamma^{1} \subset \mathbb{S}^{3}$ transversal to the flow is a 2 -torus. Take $\Gamma^{1}=\left\{p_{y}=p_{x}=0, x^{2}+y^{2}=1\right\}$. Then the surface $\Gamma_{T}$ is

$$
x=\cos \phi \cos t, \quad y=\sin \phi \cos t
$$

$$
p_{x}=-\cos \phi \sin t, \quad p_{y}=-\sin \phi \sin t
$$

Hence

$$
S(x(T), y(T))=\int_{0}^{T}\left(p_{x} d x+p_{y} d y\right)=\int_{0}^{T} \cos ^{2} t d t=\frac{1}{2}(T+\sin (2 T))
$$

Hence
$S(x(T), y(T))=\int_{0}^{T}\left(p_{x} d x+p_{y} d y\right)=\int_{0}^{T} \cos ^{2} t d t=\frac{1}{2}(T+\sin (2 T))$
At time $T, x(T)=r(T) \cos \phi$, namely $r(T)=\cos ^{-1} T$, so

$$
S(r)=\frac{1}{2} \cos ^{-1} r+r \sqrt{1-r^{2}}
$$

Hence
$S(x(T), y(T))=\int_{0}^{T}\left(p_{x} d x+p_{y} d y\right)=\int_{0}^{T} \cos ^{2} t d t=\frac{1}{2}(T+\sin (2 T))$
At time $T, x(T)=r(T) \cos \phi$, namely $r(T)=\cos ^{-1} T$, so

$$
S(r)=\frac{1}{2} \cos ^{-1} r+r \sqrt{1-r^{2}}
$$

The solution in the annullus $1 \geq r \geq r_{0}>0$ is therefore

$$
S(r, \theta)=s_{0}(\theta)+\frac{1}{2} \cos ^{-1} r+r \sqrt{1-r^{2}}
$$

Hence
$S(x(T), y(T))=\int_{0}^{T}\left(p_{x} d x+p_{y} d y\right)=\int_{0}^{T} \cos ^{2} t d t=\frac{1}{2}(T+\sin (2 T))$
At time $T, x(T)=r(T) \cos \phi$, namely $r(T)=\cos ^{-1} T$, so

$$
S(r)=\frac{1}{2} \cos ^{-1} r+r \sqrt{1-r^{2}}
$$

The solution in the annullus $1 \geq r \geq r_{0}>0$ is therefore

$$
S(r, \theta)=s_{0}(\theta)+\frac{1}{2} \cos ^{-1} r+r \sqrt{1-r^{2}}
$$

Remarks: 1. In order to have a solution on the whole $r \leq 1$, we must have $s_{0}=$ const.
2. The solution is singular where $\Gamma_{t}$ is not a graph.

## Example 2: Cohomological Equation

$$
L_{\xi} f=g, \xi \in \chi(M), f, g \in C^{\infty}(M)
$$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field $\xi_{H}$ : just take $H(q, p)=p_{\alpha} \xi^{\alpha}(q)$.

## Example 2: Cohomological Equation

$$
L_{\xi} f=g, \xi \in \chi(M), f, g \in C^{\infty}(M)
$$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field $\xi_{H}$ : just take $H(q, p)=p_{\alpha} \xi^{\alpha}(q)$. In order to solve the equation

$$
L_{\xi} f=g
$$

with the Method of Characteristics consider the Hamiltonian

$$
H(q, p)=p_{\alpha} \xi^{\alpha}(q)-g(q)
$$

## Example 2: Cohomological Equation

$$
L_{\xi} f=g, \xi \in \chi(M), f, g \in C^{\infty}(M)
$$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field $\xi_{H:}$ just take $H(q, p)=p_{\alpha} \xi^{\alpha}(q)$. In order to solve the equation

$$
L_{\xi} f=g
$$

with the Method of Characteristics consider the Hamiltonian

$$
H(q, p)=p_{\alpha} \xi^{\alpha}(q)-g(q)
$$

Its associated HJ equation corresponding to Energy level 0 is

$$
0=H\left(q, \frac{\partial f}{\partial q}\right)=\xi^{\alpha}(q) \frac{\partial f}{\partial q^{\alpha}}(q)-g(q)=L_{\xi} f-g
$$

## Example 2: Cohomological Equation

$$
L_{\xi} f=g, \xi \in \chi(M), f, g \in C^{\infty}(M)
$$

Every $\xi \in \chi(M)$ is the base component of a Ham. vector field $\xi_{H}$ : just take $H(q, p)=p_{\alpha} \xi^{\alpha}(q)$. In order to solve the equation

$$
L_{\xi} f=g
$$

with the Method of Characteristics consider the Hamiltonian

$$
H(q, p)=p_{\alpha} \xi^{\alpha}(q)-g(q)
$$

Its associated HJ equation corresponding to Energy level 0 is

$$
0=H\left(q, \frac{\partial f}{\partial q}\right)=\xi^{\alpha}(q) \frac{\partial f}{\partial q^{\alpha}}(q)-g(q)=L_{\xi} f-g
$$

Once the value of $f$ is given on some $n$ - 1 -dimensional submanifold transversal to $\xi$, its (local) solution is given by

$$
f(q)=\int_{q_{0}}^{q} p_{\alpha} d q^{\alpha}=\int_{t_{0}}^{t} \frac{\partial f}{\partial q} \dot{q}^{\alpha} d t=\int_{t_{0}}^{t} \frac{\partial f}{\partial q} \xi^{\alpha} d t=\int_{t_{0}}^{t} g(q(t)) d t,
$$

(the integral is taken over the integral traj. of $\xi$ joining $q_{0}$ and $q$ )

## Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi:(q, p) \rightarrow(Q, P)$ where the Hamiltonian writes in a simpler way.

## Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi:(q, p) \rightarrow(Q, P)$ where the Hamiltonian writes in a simpler way.
E.g. in the best case scenario $\psi_{*} H(Q, P)$ only depends on $P$ 's, so that the flow of $\phi_{H}^{t}$ is conjugated with the flow of the "free particle".

## Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi:(q, p) \rightarrow(Q, P)$ where the Hamiltonian writes in a simpler way.
E.g. in the best case scenario $\psi_{*} H(Q, P)$ only depends on $P$ 's, so that the flow of $\phi_{H}^{t}$ is conjugated with the flow of the "free particle".
We recall that such a $\psi$ is actually determined by a single function $S(q, Q)$ such that

$$
p_{\alpha} d q^{\alpha}-P_{\alpha} d Q^{\alpha}=d S
$$

## Hamilton-Jacobi equations v2

An alternate way to look at the HJ equation is that we want to find a symplectic diffeomorphism $\psi:(q, p) \rightarrow(Q, P)$ where the Hamiltonian writes in a simpler way.
E.g. in the best case scenario $\psi_{*} H(Q, P)$ only depends on $P$ 's, so that the flow of $\phi_{H}^{t}$ is conjugated with the flow of the "free particle".
We recall that such a $\psi$ is actually determined by a single function $S(q, Q)$ such that

$$
p_{\alpha} d q^{\alpha}-P_{\alpha} d Q^{\alpha}=d S
$$

This new generating function $S$ therefore satisfies the HJ eq. but it also depends on $n$ "external parameters" $Q^{\alpha}$, so that it gives rise to a Lagrangian foliation of $T^{*} Q$ where every leaf is isoenergetic.

## Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary: time ind.
base space
M time dep.
$\mathbb{R} \times M$

## Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary: time ind.
base space
phase space

M
$T^{*} M$
time dep.
$\mathbb{R} \times M$
$T^{*} \mathbb{R} \times T^{*} M$

## Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary: time ind. time dep.
base space
phase space
coordinates

M
$T^{*} M$
$\left(q^{\alpha}, p_{\alpha}\right)$
$\mathbb{R} \times M$
$T^{*} \mathbb{R} \times T^{*} M$
$\left(t, E, q^{\alpha}, p_{\alpha}\right)$

## Hamilton-Jacobi equation (time-dependent)

In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary: time ind. time dep.
base space
phase space
coordinates
symp. form

M
$T^{*} M$
$\left(q^{\alpha}, p_{\alpha}\right)$
$d q^{\alpha} \wedge d p_{\alpha}$
$\mathbb{R} \times M$
$T^{*} \mathbb{R} \times T^{*} M$
$\left(t, E, q^{\alpha}, p_{\alpha}\right)$
$d q^{\alpha} \wedge d p_{\alpha}-d t \wedge d E$

## Hamilton-Jacobi equation (time-dependent)

 In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary:time ind.
base space
phase space
coordinates
symp. form
Hamiltonian

M
$T^{*} M$
$\left(q^{\alpha}, p_{\alpha}\right)$
$d q^{\alpha} \wedge d p_{\alpha}$
$H(t, q, p)$
time dep.

$$
\begin{gathered}
\mathbb{R} \times M \\
T^{*} \mathbb{R} \times T^{*} M \\
\left(t, E, q^{\alpha}, p_{\alpha}\right)
\end{gathered}
$$

$$
d q^{\alpha} \wedge d p_{\alpha}-d t \wedge d E
$$

$$
\tilde{H}(t, E, q, p)=H(t, q, p)-E
$$

## Hamilton-Jacobi equation (time-dependent)

 In case of time-dependent Hamiltonians $H(t, q, p)$ we can repeat verbatim all we did so far using the following dictionary:base space
phase space coordinates
symp. form
Hamiltonian
time ind. time dep.
$\left(q^{\alpha}, p_{\alpha}\right)$
$H(t, q, p)$

## M

$T^{*} M$
$d q^{\alpha} \wedge d p_{\alpha}$

$$
\binom{\dot{q}}{\dot{p}}=\binom{\partial H / \partial p}{-\partial H / \partial q}
$$

$$
T^{*} \mathbb{R} \times T^{*} M
$$

$$
\left(t, E, q^{\alpha}, p_{\alpha}\right)
$$

$$
d q^{\alpha} \wedge d p_{\alpha}-d t \wedge d E
$$

$\tilde{H}(t, E, q, p)=H(t, q, p)-E$

$$
\tilde{H}(t, E, q, p)=H(t, q, p)-E
$$

$$
\left(\begin{array}{c}
\dot{q} \\
\dot{p} \\
\dot{t} \\
\dot{E}
\end{array}\right)=\left(\begin{array}{c}
\partial H / \partial p \\
-\partial H / \partial q \\
1 \\
\partial H / \partial t
\end{array}\right)
$$

## Hamilton-Jacobi equation (time-dependent)

In this environment, the generating function is given by

$$
S(m)=S\left(m_{0}\right)+\int_{\gamma}\left[p_{\alpha} d q^{\alpha}-H(t, q, p)\right] d t
$$

and satisfies the complete Hamilton-Jacobi equation

$$
H\left(q, \frac{\partial S}{\partial q}\right)=-\frac{\partial S}{\partial t}
$$

The solution to this equation provides a 1-parameter family of symplectomorphisms $S_{t}$ which make the Hamiltonian $H$ equal to constant at all time.

## HJ equation and Quantum Mechanics

Feynmans' two postulates for QM on $\mathbb{R}^{n}$ :
(1) The probability $\left\langle q_{1}\right| \psi_{t}\left|q_{2}\right\rangle$ that a particle represented by the wavefunction $\psi_{t} \in L^{2}\left(\mathbb{R}^{n}\right)$ moves from $q_{1}$ to $q_{2}$ under a Hamiltonian $H(q, p)=\frac{1}{2 m} \delta^{i j} p_{i} p_{j}+V(q)$ is the "sum" over all contribution from all possible paths joining the two points;

## HJ equation and Quantum Mechanics

Feynmans' two postulates for QM on $\mathbb{R}^{n}$ :
(1) The probability $\left\langle q_{1}\right| \psi_{t}\left|q_{2}\right\rangle$ that a particle represented by the wavefunction $\psi_{t} \in L^{2}\left(\mathbb{R}^{n}\right)$ moves from $q_{1}$ to $q_{2}$ under a Hamiltonian $H(q, p)=\frac{1}{2 m} \delta^{i j} p_{i} p_{j}+V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
(2) The contribution to $\psi_{t}$ of a path $\gamma$ is given by $e^{\frac{i}{\hbar} S[\gamma]}$, where $S[\gamma]=\int_{\gamma} \theta_{H}$ is the classical action.

## HJ equation and Quantum Mechanics

Feynmans' two postulates for QM on $\mathbb{R}^{n}$ :
(1) The probability $\left\langle q_{1}\right| \psi_{t}\left|q_{2}\right\rangle$ that a particle represented by the wavefunction $\psi_{t} \in L^{2}\left(\mathbb{R}^{n}\right)$ moves from $q_{1}$ to $q_{2}$ under a Hamiltonian $H(q, p)=\frac{1}{2 m} \delta^{i j} p_{i} p_{j}+V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
(2) The contribution to $\psi_{t}$ of a path $\gamma$ is given by $e^{\frac{i}{\hbar} S[\gamma]}$, where $S[\gamma]=\int_{\gamma} \theta_{H}$ is the classical action.

Consider a single contribution $\psi_{t}(q)=e^{\frac{i}{\hbar} S[\gamma]}$ and assume that $S$ is a solution of the HJ time-dependent equation.

## HJ equation and Quantum Mechanics

Feynmans' two postulates for QM on $\mathbb{R}^{n}$ :
(1) The probability $\left\langle q_{1}\right| \psi_{t}\left|q_{2}\right\rangle$ that a particle represented by the wavefunction $\psi_{t} \in L^{2}\left(\mathbb{R}^{n}\right)$ moves from $q_{1}$ to $q_{2}$ under a Hamiltonian $H(q, p)=\frac{1}{2 m} \delta^{i j} p_{i} p_{j}+V(q)$ is the "sum" over all contribution from all possible paths joining the two points;
(2) The contribution to $\psi_{t}$ of a path $\gamma$ is given by $e^{\frac{i}{\hbar} S[\gamma]}$, where $S[\gamma]=\int_{\gamma} \theta_{H}$ is the classical action.

Consider a single contribution $\psi_{t}(q)=e^{\frac{i}{\hbar} S[\gamma]}$ and assume that $S$ is a solution of the HJ time-dependent equation.

Which equation does $\psi$ satisfy?

## $S(q, t)=-i \hbar \ln \psi$

$$
S(q, t)=-i \hbar \ln \psi
$$

$$
\frac{\partial S}{\partial q^{\alpha}}=-\frac{i \hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \Longrightarrow\left[\frac{\partial S}{\partial q^{\alpha}}\right]^{2}=-\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial\left(q^{\alpha}\right)^{2}}
$$

$$
S(q, t)=-i \hbar \ln \psi
$$

$$
\frac{\partial S}{\partial q^{\alpha}}=-\frac{i \hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \Longrightarrow\left[\frac{\partial S}{\partial q^{\alpha}}\right]^{2}=-\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial\left(q^{\alpha}\right)^{2}}
$$

so the HJ equation

$$
\frac{\partial S}{\partial t}=\frac{1}{2 m}\left[\delta^{j j} \frac{\partial S}{\partial q^{\alpha}} \frac{\partial S}{\partial q^{\beta}}\right]+V(q)
$$

$$
S(q, t)=-i \hbar \ln \psi
$$

$$
\frac{\partial S}{\partial q^{\alpha}}=-\frac{i \hbar}{\psi} \frac{\partial \psi}{\partial q^{\alpha}} \Longrightarrow\left[\frac{\partial S}{\partial q^{\alpha}}\right]^{2}=-\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial\left(q^{\alpha}\right)^{2}}
$$

so the HJ equation

$$
\frac{\partial S}{\partial t}=\frac{1}{2 m}\left[\delta^{j j} \frac{\partial S}{\partial q^{\alpha}} \frac{\partial S}{\partial q^{\beta}}\right]+V(q)
$$

writes as

$$
-i \hbar \dot{\psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(q) \psi+\frac{i \hbar}{2 m} \psi \Delta S
$$

Apart for the non-linear term, this is exactly the Schrodinger equation of quantum mechanics $-i \hbar \dot{\psi}=\hat{H} \psi$, where $\hat{H}$ is comes from $H$ via $p_{\alpha} \rightarrow-i \hbar \frac{\partial}{\partial q^{\alpha}}$ and $q^{\alpha} \rightarrow$ "multiplication by $q^{\alpha "}$.

Now consider instead the Schrodinger equation

$$
\frac{\hbar}{i} \dot{\psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(q) \psi
$$

and write $\psi_{t}(q)=e^{\frac{i}{\hbar} S[\gamma]}$. Which eq. does $S$ satisfy?

Now consider instead the Schrodinger equation

$$
\frac{\hbar}{i} \dot{\psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(q) \psi
$$

and write $\psi_{t}(q)=e^{\frac{i}{\hbar} S[\gamma]}$. Which eq. does $S$ satisfy?
Proceeding like above we find

$$
-\frac{\partial S}{\partial t}=\frac{1}{2 m}\left[\delta^{j} \frac{\partial S}{\partial q^{i}} \frac{\partial S}{\partial q^{j}}\right]+V(q)-\frac{i \hbar}{2 m} \Delta S
$$

namely

$$
-\frac{\partial S}{\partial t}=H\left(q, \frac{\partial S}{\partial q}\right)-\frac{i \hbar}{2 m} \Delta S
$$

that, for $\hbar \rightarrow 0$, reduces exactly to the HJ equation!

Now consider instead the Schrodinger equation

$$
\frac{\hbar}{i} \dot{\psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(q) \psi
$$

and write $\psi_{t}(q)=e^{\frac{i}{\hbar} S[\gamma]}$. Which eq. does $S$ satisfy?
Proceeding like above we find

$$
-\frac{\partial S}{\partial t}=\frac{1}{2 m}\left[\delta^{j} \frac{\partial S}{\partial q^{i}} \frac{\partial S}{\partial q^{j}}\right]+V(q)-\frac{i \hbar}{2 m} \Delta S
$$

namely

$$
-\frac{\partial S}{\partial t}=H\left(q, \frac{\partial S}{\partial q}\right)-\frac{i \hbar}{2 m} \Delta S
$$

that, for $\hbar \rightarrow 0$, reduces exactly to the HJ equation!
This is the simplest way to show that QM reduces to CM for $\hbar \rightarrow 0$.

## The WKB Method

Consider again the Schrodinger equation in $\mathbb{R}^{n}$

$$
-i \hbar \dot{\psi}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V(q) \psi
$$

Under the ansatz $\psi(x)=e^{i S(x) / \hbar}$, at 1st order in $\hbar$ then $S$ is the solution of the corresponding HJ equation.
This though is a very poor approximation, e.g. $\psi \notin L^{2}\left(\mathbb{R}^{n}\right)$. Under the ansatz

$$
\psi(x)=a(x) e^{i S(x) / \hbar}
$$

$\psi$ is an eigenfunction for the quantum Hamiltonian $\hat{H}$ iff

$$
i \hbar\left(a \Delta S+2 \delta^{\alpha \beta} \partial_{\beta} a \partial_{\alpha} S\right)+\hbar^{2} \Delta a=0
$$

At the 1st order in $\hbar$ we get the homogeneous transport equation

$$
a \Delta S+2 \delta^{\alpha \beta} \partial_{\alpha} a \partial_{\beta} S=0
$$

## Example: QM on the line

The 2nd order solution $\psi=a e^{i S / \hbar}$ is called semiclassical approximation of the exact solution of the Schrodinger equation. In $\mathbb{R}$, the homegenous transport equation writes

$$
a S^{\prime \prime}+2 a^{\prime} S^{\prime}=0
$$

so that

$$
a(x)=\frac{c}{\sqrt{S^{\prime}(x)}}=\frac{c}{\left[4\left(E_{0}-V(x)\right]^{1 / 4}\right.} .
$$

## Example: QM on the line

The 2nd order solution $\psi=a e^{i S / \hbar}$ is called semiclassical approximation of the exact solution of the Schrodinger equation. In $\mathbb{R}$, the homegenous transport equation writes

$$
a S^{\prime \prime}+2 a^{\prime} S^{\prime}=0
$$

so that

$$
a(x)=\frac{c}{\sqrt{S^{\prime}(x)}}=\frac{c}{\left[4\left(E_{0}-V(x)\right]^{1 / 4}\right.} .
$$

This method, called WKB (Wentzel, Kramers, Brillouin), is at the base of microlocal analysis.

## Related Literature

- D. Holm, Fermat's principle and the Geometric Mechanics of Ray Optics, Summer School Lectures, Field Inst., July 2012, http://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/
- S. Bates, A. Weinstein, Lectures on the Geometric Quantization, http://math.berkeley.edu/~alanw/GofQ.pdf
- J. Carinena, X. Gracia, G. Marmo, E. Martinez, M Munoz-Lecanda, N. Roman-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys., 2006, 3, 1417-1458
- J. Carinena, X. Gracia, G. Marmo, E. Martinez, M Munoz-Lecanda, N. Roman-Roy, Hamilton-Jacobi theory and the evolution operator, arxiv.org/0907.1039
- M. Nakane, G. Fraser, The early history of Hamilton-Jacobi equations, Centaurus, 2002, 44, 161-227


# Completely 

 IntegrableSystems

## Poisson bracket \& First Integrals

Let $\left(M^{2 n}, \omega\right)$ be a symplectic mfd. Functions in $C^{\infty}(M)$ are called observables.

## Poisson bracket \& First Integrals

Let $\left(M^{2 n}, \omega\right)$ be a symplectic mfd. Functions in $C^{\infty}(M)$ are called observables.

An observable $f$ is a constant of motion if $L_{\xi_{H}} f=0$, i.e. iff $\omega\left(\xi_{H}, \xi_{f}\right)=0$.

## Poisson bracket \& First Integrals

Let $\left(M^{2 n}, \omega\right)$ be a symplectic mfd. Functions in $C^{\infty}(M)$ are called observables.

An observable $f$ is a constant of motion if $L_{\xi_{H}} f=0$, i.e. iff $\omega\left(\xi_{H}, \xi_{f}\right)=0$.

We set $\{f, g\}=\omega\left(\xi_{f}, \xi_{g}\right)$ and we say that $f$ is a first integral for $H$ iff $\{H, f\}=0$.

## Poisson bracket \& First Integrals

Let $\left(M^{2 n}, \omega\right)$ be a symplectic mfd. Functions in $C^{\infty}(M)$ are called observables.

An observable $f$ is a constant of motion if $L_{\xi_{H}} f=0$, i.e. iff $\omega\left(\xi_{H}, \xi_{f}\right)=0$.
We set $\{f, g\}=\omega\left(\xi_{f}, \xi_{g}\right)$ and we say that $f$ is a first integral for $H$ iff $\{H, f\}=0$.

We say that $H$ is completely integrable if it has $n$ independent 1 st integrals in involution (i.e. commuting with each other).

## Poisson bracket \& First Integrals

Let $\left(M^{2 n}, \omega\right)$ be a symplectic mfd. Functions in $C^{\infty}(M)$ are called observables.

An observable $f$ is a constant of motion if $L_{\xi} f=0$, i.e. iff $\omega\left(\xi_{H}, \xi_{f}\right)=0$.

We set $\{f, g\}=\omega\left(\xi_{f}, \xi_{g}\right)$ and we say that $f$ is a first integral for $H$ iff $\{H, f\}=0$.

We say that $H$ is completely integrable if it has $n$ independent 1 st integrals in involution (i.e. commuting with each other).

## Theorem

If $\left\{f_{1}, \ldots, f_{n}\right\}$ are $n$ commuting observables in involution, all level submanifolds $f_{1}=c_{1}, \ldots, f_{n}=c_{n}$ are Lagrangian.

## Arnold-Liouville Theorem

## Theorem (Arnold-Liouville Theorem) <br> If $\left\{H=f_{1}, \ldots, f_{n}\right\}$ is a CIS on $M$ and $M_{c}=\left\{f_{i}=c_{i}\right\}$. Then:

## Arnold-Liouville Theorem

## Theorem (Arnold-Liouville Theorem)

If $\left\{H=f_{1}, \ldots, f_{n}\right\}$ is a CIS on $M$ and $M_{c}=\left\{f_{i}=c_{i}\right\}$. Then:
(1) if $M_{f}$ is compact, each connected component is diffeomorphic to $\mathbb{T}^{n}$;

## Arnold-Liouville Theorem

## Theorem (Arnold-Liouville Theorem)

If $\left\{H=f_{1}, \ldots, f_{n}\right\}$ is a CIS on $M$ and $M_{c}=\left\{f_{i}=c_{i}\right\}$. Then:
(1) if $M_{f}$ is compact, each connected component is diffeomorphic to $\mathbb{T}^{n}$;
(2) in the neighborhood of each such torus, there exists action-angle symplectic coordinates $I_{1}, \ldots, I_{n}, \varphi^{1}, \ldots, \varphi^{n}$ such that the $\varphi^{\alpha}$ are coordinates on the torus and $H=H\left(I_{1}, \ldots, I_{n}\right)$.

## Arnold-Liouville Theorem

## Theorem (Arnold-Liouville Theorem)

If $\left\{H=f_{1}, \ldots, f_{n}\right\}$ is a CIS on $M$ and $M_{c}=\left\{f_{i}=c_{i}\right\}$. Then:
(1) if $M_{f}$ is compact, each connected component is diffeomorphic to $\mathbb{T}^{n}$;
(2) in the neighborhood of each such torus, there exists action-angle symplectic coordinates $I_{1}, \ldots, I_{n}, \varphi^{1}, \ldots, \varphi^{n}$ such that the $\varphi^{\alpha}$ are coordinates on the torus and $H=H\left(I_{1}, \ldots, I_{n}\right)$.

In particular in such coordinates the Hamilton eqs writes

$$
\dot{l}_{\alpha}=0, \dot{\varphi}^{\alpha}=\frac{\partial H}{\partial l_{\alpha}}
$$

## Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only general effective method to find integrals of motion:

## Hamilton-Jacobi and CIS

Finding coordinates where the HJ PDE is separable is the only general effective method to find integrals of motion:

## Theorem (Jacobi, see Arn 47B)

If the Hamilton-Jacobi equation $H\left(q, \partial_{q} S\right)=E_{0}$ admits a solution $S(q, Q)$, depending on $n$ parameters $Q^{1}, \ldots, Q^{n}$, such that the Hessian

$$
\frac{\partial^{2} S}{\partial q \partial Q}
$$

is always non-degenerate, then the corresponding Hamiltonian equations

$$
\binom{\dot{q}}{\dot{p}}=\binom{\partial H / \partial p}{-\partial H / \partial q}
$$

can be solved explicitly by quadratures and the $n$ functions $Q^{\alpha}(q, p)$ are all integrals of motion.

## Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.

## Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.
Every leaf $M_{E}=\{H=E>0\}$ is an ellipse with interior $S_{E}$.

$$
\text { Define } \quad I=\frac{1}{2 \pi} \int_{M_{E}} p d q=\frac{1}{2 \pi} \int_{S_{E}} d p \wedge d q=\frac{E}{\omega}
$$

## Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.
Every leaf $M_{E}=\{H=E>0\}$ is an ellipse with interior $S_{E}$.

$$
\text { Define } I=\frac{1}{2 \pi} \int_{M_{E}} p d q=\frac{1}{2 \pi} \int_{S_{E}} d p \wedge d q=\frac{E}{\omega} .
$$

Hence we set $I=H / \omega$ and define

$$
S(q, I)=\int p d q=\int \sqrt{2 / \omega-\omega^{2} q^{2}} d q .
$$

## Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.
Every leaf $M_{E}=\{H=E>0\}$ is an ellipse with interior $S_{E}$.

$$
\text { Define } \quad I=\frac{1}{2 \pi} \int_{M_{E}} p d q=\frac{1}{2 \pi} \int_{S_{E}} d p \wedge d q=\frac{E}{\omega} \text {. }
$$

Hence we set $I=H / \omega$ and define

Then we get

$$
S(q, I)=\int p d q=\int \sqrt{2 / \omega-\omega^{2} q^{2}} d q .
$$

$$
\varphi=\frac{\partial S}{\partial I}=\int \frac{\omega}{\sqrt{2 / \omega-\omega^{2} q^{2}}} d q=\sin ^{-1}\left(q \sqrt{\frac{\omega}{2 I}}\right)-\varphi_{0}
$$

## Example 1: Harmonic Oscillator

Clearly every Hamiltonian system on a symplectic 2-manifold is a CIS. E.g. consider $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$.
Every leaf $M_{E}=\{H=E>0\}$ is an ellipse with interior $S_{E}$.

$$
\text { Define } \quad I=\frac{1}{2 \pi} \int_{M_{E}} p d q=\frac{1}{2 \pi} \int_{S_{E}} d p \wedge d q=\frac{E}{\omega} .
$$

Hence we set $I=H / \omega$ and define

Then we get

$$
S(q, I)=\int p d q=\int \sqrt{2 l \omega-\omega^{2} q^{2}} d q .
$$

$$
\varphi=\frac{\partial S}{\partial I}=\int \frac{\omega}{\sqrt{21 \omega-\omega^{2} q^{2}}} d q=\sin ^{-1}\left(q \sqrt{\frac{\omega}{2 I}}\right)-\varphi_{0}
$$

The coord. change $(q, p) \mapsto(\varphi, /)$ is symplectic (i.e. $d \varphi \wedge d l=d q \wedge d p)$ and the equations of motion now write

$$
\dot{\varphi}=\omega, \quad \dot{I}=0
$$

## Example 2: Geodesics on an Ellipsoid (Jacobi, 1835)

Problem: study geodesics on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

## Example 2: Geodesics on an Ellipsoid (Jacobi, 1835)

Problem: study geodesics on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Consider confocal ellipsoidal coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$ defined by

$$
\frac{x^{2}}{a^{2}-\lambda}+\frac{y^{2}}{b^{2}-\lambda}+\frac{z^{2}}{c^{2}-\lambda}=1
$$

If $a<b<c$ then $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}<c$.

## Example 2: Geodesics on an Ellipsoid (Jacobi, 1835)

Problem: study geodesics on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Consider confocal ellipsoidal coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$ defined by

$$
\frac{x^{2}}{a^{2}-\lambda}+\frac{y^{2}}{b^{2}-\lambda}+\frac{z^{2}}{c^{2}-\lambda}=1
$$

If $a<b<c$ then $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}<c$. Hence $E_{i}$ given by

$$
\frac{x^{2}}{a^{2}-\lambda_{i}}+\frac{y^{2}}{b^{2}-\lambda_{i}}+\frac{z^{2}}{c^{2}-\lambda_{i}}=1
$$

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for respectively $i=1,2,3$.

## Example 2: Geodesics on an Ellipsoid (Jacobi, 1835)

Problem: study geodesics on $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Consider confocal ellipsoidal coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$ defined by

$$
\frac{x^{2}}{a^{2}-\lambda}+\frac{y^{2}}{b^{2}-\lambda}+\frac{z^{2}}{c^{2}-\lambda}=1
$$

If $a<b<c$ then $\lambda_{1}<a<\lambda_{2}<b<\lambda_{3}<c$. Hence $E_{i}$ given by

$$
\frac{x^{2}}{a^{2}-\lambda_{i}}+\frac{y^{2}}{b^{2}-\lambda_{i}}+\frac{z^{2}}{c^{2}-\lambda_{i}}=1
$$

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for respectively $i=1,2,3$.
Note that $\lambda_{i}, \lambda_{j}$ can be used as local coordinates on $E_{k}$.


In coordinates $\lambda_{2}, \lambda_{3}$ on the ellipsoid $E_{1}$ the metric is

$$
g=\left(\lambda_{3}-\lambda_{2}\right)\left[\frac{\lambda_{3}-\lambda_{1}}{f\left(\lambda_{3}\right)} d \lambda_{3}^{2}-\frac{\lambda_{2}-\lambda_{1}}{f\left(\lambda_{2}\right)} d \lambda_{2}^{2}\right],
$$

In coordinates $\lambda_{2}, \lambda_{3}$ on the ellipsoid $E_{1}$ the metric is

$$
g=\left(\lambda_{3}-\lambda_{2}\right)\left[\frac{\lambda_{3}-\lambda_{1}}{f\left(\lambda_{3}\right)} d \lambda_{3}^{2}-\frac{\lambda_{2}-\lambda_{1}}{f\left(\lambda_{2}\right)} d \lambda_{2}^{2}\right],
$$

where $f(\lambda)=4(a-\lambda)(b-\lambda)(c-\lambda)$.

In coordinates $\lambda_{2}, \lambda_{3}$ on the ellipsoid $E_{1}$ the metric is

$$
g=\left(\lambda_{3}-\lambda_{2}\right)\left[\frac{\lambda_{3}-\lambda_{1}}{f\left(\lambda_{3}\right)} d \lambda_{3}^{2}-\frac{\lambda_{2}-\lambda_{1}}{f\left(\lambda_{2}\right)} d \lambda_{2}^{2}\right],
$$

where $f(\lambda)=4(a-\lambda)(b-\lambda)(c-\lambda)$.
So $H\left(\lambda_{2}, \lambda_{3}\right)=\frac{1}{\lambda_{3}-\lambda_{2}}\left[\frac{f\left(\lambda_{3}\right)}{\lambda_{3}-\lambda_{1}} p_{3}^{2}+\frac{f\left(\lambda_{2}\right)}{\lambda_{2}-\lambda_{1}} p_{2}^{2}\right]$

In coordinates $\lambda_{2}, \lambda_{3}$ on the ellipsoid $E_{1}$ the metric is

$$
g=\left(\lambda_{3}-\lambda_{2}\right)\left[\frac{\lambda_{3}-\lambda_{1}}{f\left(\lambda_{3}\right)} d \lambda_{3}^{2}-\frac{\lambda_{2}-\lambda_{1}}{f\left(\lambda_{2}\right)} d \lambda_{2}^{2}\right],
$$

$$
\text { where } f(\lambda)=4(a-\lambda)(b-\lambda)(c-\lambda) \text {. }
$$

$$
\text { So } H\left(\lambda_{2}, \lambda_{3}\right)=\frac{1}{\lambda_{3}-\lambda_{2}}\left[\frac{f\left(\lambda_{3}\right)}{\lambda_{3}-\lambda_{1}} p_{3}^{2}+\frac{f\left(\lambda_{2}\right)}{\lambda_{2}-\lambda_{1}} p_{2}^{2}\right]
$$

and therefore the Hamilton-Jacobi equation

$$
\frac{1}{\lambda_{3}-\lambda_{2}}\left[\frac{f\left(\lambda_{3}\right)}{\lambda_{3}-\lambda_{1}}\left(\frac{\partial S}{\partial \lambda_{3}}\right)^{2}+\frac{f\left(\lambda_{2}\right)}{\lambda_{2}-\lambda_{1}}\left(\frac{\partial S}{\partial \lambda_{2}}\right)^{2}\right]=1
$$

is separable.
Hence the system is completely integrable!

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$.

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$. and $\mathbb{Q}\left[3 \sqrt{2}, e^{i 2 \pi / 3}\right]$ is the SF of $p(x)=x^{3}-2$ over $\mathbb{Q}$.

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$. and $\mathbb{Q}\left[3 \sqrt{2}, e^{i 2 \pi / 3}\right]$ is the SF of $p(x)=x^{3}-2$ over $\mathbb{Q}$.
The Galois group Aut $(L(p) / k)$ of $L(p)$ is the group of automorphisms of $L$ that leaves $k$ invariant.

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$. and $\mathbb{Q}\left[3 \sqrt{2}, e^{i 2 \pi / 3}\right]$ is the SF of $p(x)=x^{3}-2$ over $\mathbb{Q}$.
The Galois group Aut $(L(p) / k)$ of $L(p)$ is the group of automorphisms of $L$ that leaves $k$ invariant.
E.g. $\operatorname{Aut}(\mathbb{C} / \mathbb{R}) \simeq\{ \pm 1\}, \operatorname{Aut}\left(\mathbb{Q}\left[{ }^{3} \sqrt{2}, e^{i 2 \pi / 3}\right] / \mathbb{Q}\right) \simeq D_{6}$

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$. and $\mathbb{Q}\left[\sqrt{2}, e^{i 2 \pi / 3}\right]$ is the SF of $p(x)=x^{3}-2$ over $\mathbb{Q}$.
The Galois group Aut $(L(p) / k)$ of $L(p)$ is the group of automorphisms of $L$ that leaves $k$ invariant.
E.g. $\operatorname{Aut}(\mathbb{C} / \mathbb{R}) \simeq\{ \pm 1\}, \operatorname{Aut}\left(\mathbb{Q}\left[{ }^{3} \sqrt{2}, e^{i 2 \pi / 3}\right] / \mathbb{Q}\right) \simeq D_{6}$

## Theorem

If the roots of $p(x)$ can be written in terms of radicals, then its $S F$ is soluble. If $\partial p<5$, then $L(p)$ is soluble.

## Remainder: classic Galois theory in 1 slide

Consider a field $k$ and a polynomial $p \in k[x]$. The splitting field (SF) $L(p)$ is the field extension (modulo isomorphisms) of minimal degree over $k$ in which $p$ splits as $p(x)=\Pi_{i=1}^{\partial p}\left(x-a_{i}\right)$.
E.g. $\mathbb{C}=\mathbb{R}[x] /\left(x^{2}+1\right)$ is the SF of $p(x)=x^{2}+1$ over $\mathbb{R}$. and $\mathbb{Q}\left[3 \sqrt{2}, e^{i 2 \pi / 3}\right]$ is the SF of $p(x)=x^{3}-2$ over $\mathbb{Q}$.
The Galois group $\operatorname{Aut}(L(p) / k)$ of $L(p)$ is the group of automorphisms of $L$ that leaves $k$ invariant.
E.g. $\operatorname{Aut}(\mathbb{C} / \mathbb{R}) \simeq\{ \pm 1\}, \operatorname{Aut}\left(\mathbb{Q}\left[{ }^{3} \sqrt{2}, e^{i 2 \pi / 3}\right] / \mathbb{Q}\right) \simeq D_{6}$

## Theorem

If the roots of $p(x)$ can be written in terms of radicals, then its $S F$ is soluble. If $\partial p<5$, then $L(p)$ is soluble.
E.g. $\operatorname{Aut}\left(L\left(x^{5}-x-1\right) / \mathbb{Q}\right) \simeq S_{5}$ is not soluble (Artin).

## Galois theory of CIS

How to find out whether a Hamiltonian system $\left(M^{2 n}, \omega, H\right)$ is or not a Completely Integrable System?

## Galois theory of CIS

How to find out whether a Hamiltonian system $\left(M^{2 n}, \omega, H\right)$ is or not a Completely Integrable System?

The idea is to study the equations of second variations on TM

$$
\dot{x}^{\alpha}(t)=\left.\frac{\partial \xi_{H}^{\alpha}}{\partial x^{\beta}}\right|_{\gamma(t)} x^{\beta}(t), x(t) \in T_{\gamma(t)} M
$$

defined on integral trajectories $\gamma$ of the Hamiltonian equations of motion, where $\left(x^{\alpha}\right)$ are coords on $M$ and $\left(X^{\alpha}\right)$ the variations along $\gamma$.

## Example: the Hénon-Heiles system

$$
\begin{gathered}
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3} \\
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
p_{x} \\
\dot{p}_{y}
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
y^{2}+\lambda x^{2} \\
2(A+x) y
\end{array}\right)
\end{gathered}
$$

## Example: the Hénon-Heiles system

$$
\begin{gathered}
H\left(x, y, p_{x}, p_{y}\right)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3} \\
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{p}_{x} \\
\dot{p}_{y}
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
y^{2}+\lambda x^{2} \\
2(A+x) y
\end{array}\right)
\end{gathered}
$$

Clearly there are orbits with $y(t)=p_{y}(t)=0$ for all $t$. Along these trjectories the linearized equation writes

$$
\left(\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{P}_{x} \\
\dot{P}_{y}
\end{array}\right)=\left(\begin{array}{c}
P_{x} \\
P_{y} \\
2 \lambda x X \\
2 A Y+2 x Y
\end{array}\right)
$$

## Theorem (Audin, III.1.12)

If $f: M \rightarrow \mathbb{R}$ is a first integral of $\xi_{H}$ and $k$ is the first order where the $k$-th order derivative $D^{k} f: S^{k}(T M) \rightarrow \mathbb{R}$ is not zero on $\gamma$, then

$$
f_{\gamma}^{0}(t, X, P)=\left.D^{k} f\right|_{\gamma(t)}((X, P), \ldots,(X, P))
$$

is a first integral of the second variations equation on $\gamma$.

## Theorem (Audin, III.1.12)

If $f: M \rightarrow \mathbb{R}$ is a first integral of $\xi_{H}$ and $k$ is the first order where the $k$-th order derivative $D^{k} f: S^{k}(T M) \rightarrow \mathbb{R}$ is not zero on $\gamma$, then

$$
f_{\gamma}^{0}(t, X, P)=\left.D^{k} f\right|_{\gamma(t)}((X, P), \ldots,(X, P))
$$

is a first integral of the second variations equation on $\gamma$.
E.g., in case of the Henon-Heiles system, on a solution of the form $\gamma(t)=\left(x(t), 0, p_{x}(t), 0\right)$ the integral of motion associated to the Hamiltonian $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$ is $H_{\gamma}^{o}\left(t, X, Y, P_{x}, P_{y}\right)=\left.d H\right|_{\gamma(t)}\left(X, Y, P_{x}, P_{y}\right)=p_{x}(t) P_{x}-\lambda x^{2}(t) X$

## Theorem (Audin, III.1.12)

If $f: M \rightarrow \mathbb{R}$ is a first integral of $\xi_{H}$ and $k$ is the first order where the $k$-th order derivative $D^{k} f: S^{k}(T M) \rightarrow \mathbb{R}$ is not zero on $\gamma$, then

$$
f_{\gamma}^{0}(t, X, P)=\left.D^{k} f\right|_{\gamma(t)}((X, P), \ldots,(X, P))
$$

is a first integral of the second variations equation on $\gamma$.
E.g., in case of the Henon-Heiles system, on a solution of the form $\gamma(t)=\left(x(t), 0, p_{x}(t), 0\right)$ the integral of motion associated to the Hamiltonian $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$ is $H_{\gamma}^{O}\left(t, X, Y, P_{x}, P_{y}\right)=\left.d H\right|_{\gamma(t)}\left(X, Y, P_{x}, P_{y}\right)=p_{x}(t) P_{x}-\lambda x^{2}(t) X$ Indeed, on a solution of the linearized equation, we have that

$$
\begin{aligned}
& \frac{d H_{\gamma}^{o}}{d t}=\dot{p}_{x} P_{x}+p_{x} \dot{P}_{x}-2 \lambda x \dot{x} X-\lambda x^{2} \dot{X}= \\
= & \lambda x^{2} P_{x}+p_{x} 2 \lambda x X-2 \lambda x p_{x} x-\lambda x^{2} P_{x}=0
\end{aligned}
$$

## Differential Galois Theory

## Definition

Given an algebraically close field $k$ with a derivation $D$ (e.g. $\mathbb{C}(t)$ with $d / d t$ ) and a linear ODE

$$
\dot{X}=A X, \quad A \in M_{n}(k),
$$

the Picard-Vessiot extension $L(A)$ of $k$ for $A$ is the field generated on $k$ by the solutions of the ODE.

## Differential Galois Theory

## Definition

Given an algebraically close field $k$ with a derivation $D$ (e.g. $\mathbb{C}(t)$ with $d / d t$ ) and a linear ODE

$$
\dot{X}=A X, \quad A \in M_{n}(k),
$$

the Picard-Vessiot extension $L(A)$ of $k$ for $A$ is the field generated on $k$ by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique modulo differential isomorphisms.

## Differential Galois Theory

## Definition

Given an algebraically close field $k$ with a derivation $D$ (e.g. $\mathbb{C}(t)$ with $d / d t$ ) and a linear ODE

$$
\dot{X}=A X, \quad A \in M_{n}(k),
$$

the Picard-Vessiot extension $L(A)$ of $k$ for $A$ is the field generated on $k$ by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique modulo differential isomorphisms.

## Definition

The Galois group $\operatorname{Gal}(A) \subset G L_{n}(k)$ of the linear $\operatorname{ODE} \dot{X}=A X$ is the group of differential automorphisms of $L(A)$ that fixes $k$.

## Example 1

Consider the linear ODE

$$
x^{\prime}=\frac{\alpha}{t} x
$$

on $\mathbb{C}(t)$, namely $A=\left(\frac{\alpha}{t}\right) \in M_{1}(\mathbb{C}(t))$, whose solution is $x(t)=t^{\alpha}+c$.

## Example 1

Consider the linear ODE

$$
x^{\prime}=\frac{\alpha}{t} x
$$

on $\mathbb{C}(t)$, namely $A=\left(\frac{\alpha}{t}\right) \in M_{1}(\mathbb{C}(t))$, whose solution is $x(t)=t^{\alpha}+c$.
Then
(1) $L(A) \simeq \mathbb{C}(t), G a l(A) \simeq\{1\}$ if $\alpha \in \mathbb{Z}$;
(2) $L(A) \simeq \mathbb{C}(t)[u] /\left\langle u^{q}-t^{p}\right\rangle, G a l(A) \simeq \mathbb{Z}_{q}$ if $\alpha=p / q \in \mathbb{Q}$;
(3 $L(A) \simeq \mathbb{C}(t, u), G a l(A) \simeq G L_{1}(\mathbb{C}) \simeq \mathbb{C}^{*}$ if $\alpha \notin \mathbb{Q}$.

## Example 2 - the Cauchy equation

Consider the Cauchy equation $x^{\prime \prime}=\frac{\alpha}{t^{2}} x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{cc}0 & 1 \\ \frac{\alpha}{t^{2}} & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$, and assume $\alpha \neq-\frac{1}{4}$.

## Example 2 - the Cauchy equation

Consider the Cauchy equation $x^{\prime \prime}=\frac{\alpha}{t^{2}} x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{cc}0 & 1 \\ \frac{\alpha}{t^{2}} & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$, and assume $\alpha \neq-\frac{1}{4}$.
Two independent solutions are the solutions of the 1 -st order eqs $x^{\prime}=\frac{\alpha_{i}}{t} x$, where $\alpha_{1,2}$ are the two distinct solutions of $z^{2}-z-\alpha=0$.

## Example 2 - the Cauchy equation

Consider the Cauchy equation $x^{\prime \prime}=\frac{\alpha}{t^{2}} x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{cc}0 & 1 \\ \frac{\alpha}{t^{2}} & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$, and assume $\alpha \neq-\frac{1}{4}$.
Two independent solutions are the solutions of the 1 -st order eqs $x^{\prime}=\frac{\alpha_{i}}{t} x$, where $\alpha_{1,2}$ are the two distinct solutions of $z^{2}-z-\alpha=0$.
These two solutions $u_{1,2}$ are independent and if $\sigma \in \operatorname{Gal}(A)$ then

$$
\sigma\left(u_{i}\right)^{\prime}=\sigma\left(u_{i}^{\prime}\right)=\sigma\left(\frac{\alpha_{i}}{t} u_{i}\right)=\frac{\alpha_{i}}{t} \sigma\left(u_{i}\right)
$$

namely $\sigma\left(u_{i}\right)=\lambda u_{i}, \lambda \in \mathbb{C}$, i.e. all matrices of $\operatorname{Gal}(A)$ are diagonal. In particular $G a /(A)$ is abelian.

## Example 3 - the Airy equation

Finally consider the Airy equation $x^{\prime \prime}=t x$ on $\mathbb{C}(t)$, namely

$$
A=\left(\begin{array}{ll}
0 & 1 \\
t & 0
\end{array}\right) \in M_{2}(\mathbb{C}(t)) .
$$

## Example 3 - the Airy equation

Finally consider the Airy equation $x^{\prime \prime}=t x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{ll}0 & 1 \\ t & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$.
Let $u$ and $v$ be two independent solutions. Then their Wronskian is a constant, since

$$
\left(u v^{\prime}-u^{\prime} v\right)^{\prime}=u v^{\prime \prime}-u^{\prime \prime} v=t(u v-u v)=0
$$

## Example 3 - the Airy equation

Finally consider the Airy equation $x^{\prime \prime}=t x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{ll}0 & 1 \\ t & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$.
Let $u$ and $v$ be two independent solutions. Then their Wronskian is a constant, since

$$
\left(u v^{\prime}-u^{\prime} v\right)^{\prime}=u v^{\prime \prime}-u^{\prime \prime} v=t(u v-u v)=0
$$

Redefine $u$ and $v$ so that their Wronskian is 1 . Then, if $\sigma \in G a l(A) \subset G L_{2}(\mathbb{C})$, a direct calculation shows that, with respecct to the base $(u, v)$,

$$
\operatorname{det} \sigma=\operatorname{det}\left(\begin{array}{cc}
\sigma(u) & \sigma(v) \\
\sigma\left(u^{\prime}\right) & \sigma\left(v^{\prime}\right)
\end{array}\right)=\sigma\left(\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right)=1
$$

namely $G a l(A) \subset S L_{2}(\mathbb{C})$.

## Example 3 - the Airy equation

Finally consider the Airy equation $x^{\prime \prime}=t x$ on $\mathbb{C}(t)$, namely
$A=\left(\begin{array}{ll}0 & 1 \\ t & 0\end{array}\right) \in M_{2}(\mathbb{C}(t))$.
Let $u$ and $v$ be two independent solutions. Then their Wronskian is a constant, since

$$
\left(u v^{\prime}-u^{\prime} v\right)^{\prime}=u v^{\prime \prime}-u^{\prime \prime} v=t(u v-u v)=0
$$

Redefine $u$ and $v$ so that their Wronskian is 1 . Then, if $\sigma \in G a l(A) \subset G L_{2}(\mathbb{C})$, a direct calculation shows that, with respecct to the base $(u, v)$,

$$
\operatorname{det} \sigma=\operatorname{det}\left(\begin{array}{cc}
\sigma(u) & \sigma(v) \\
\sigma\left(u^{\prime}\right) & \sigma\left(v^{\prime}\right)
\end{array}\right)=\sigma\left(\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right)=1
$$

namely $G a\left((A) \subset S L_{2}(\mathbb{C})\right.$.
It can be proved that indeed $G a\left((A) \simeq S L_{2}(\mathbb{C})\right.$.

## Three fundamental theorems

Theorem (Morales \& Ramis, Audin III.1.13)
If $f$ is a first integral, the Galois group of the second variations equation leaves $f^{0}$ invariant.

## Three fundamental theorems

## Theorem (Morales \& Ramis, Audin III.1.13)

If $f$ is a first integral, the Galois group of the second variations equation leaves $f^{0}$ invariant.

## Theorem (Audin III.2.3)

The Galois group of the second variations equation is a symplectic subgroup of GL(TM).

## Three fundamental theorems

## Theorem (Morales \& Ramis, Audin III.1.13)

If $f$ is a first integral, the Galois group of the second variations equation leaves $f^{0}$ invariant.

## Theorem (Audin III.2.3)

The Galois group of the second variations equation is a symplectic subgroup of GL(TM).

## Theorem (Audin III.3.10)

The Lie algebra of the Galois group of the second variation equation of a CIS is abelian.

Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$
Apply these results to the Henon-Heiles system.
For $\lambda \neq 0$ we consider the trajectory

$$
x(t)=\frac{6}{\lambda t^{2}}, p_{x}(t)=\dot{x}(t), y(t)=0, p_{y}(t)=0 .
$$

Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$
Apply these results to the Henon-Heiles system.
For $\lambda \neq 0$ we consider the trajectory

$$
x(t)=\frac{6}{\lambda t^{2}}, p_{x}(t)=\dot{x}(t), y(t)=0, p_{y}(t)=0 .
$$

For $\lambda=0$ we consider the trajectory

$$
x(t)=\frac{t}{2}-A, p_{x}(t)=\dot{x}(t), y(t)=0, p_{y}(t)=0 .
$$

Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$
Apply these results to the Henon-Heiles system.
For $\lambda \neq 0$ we consider the trajectory

$$
x(t)=\frac{6}{\lambda t^{2}}, p_{x}(t)=\dot{x}(t), y(t)=0, p_{y}(t)=0 .
$$

For $\lambda=0$ we consider the trajectory

$$
x(t)=\frac{t}{2}-A, p_{x}(t)=\dot{x}(t), y(t)=0, p_{y}(t)=0 .
$$

The second variations equations can be reduced to

$$
\ddot{x}(t)=2\left(A+\frac{6}{\lambda t^{2}}\right) X(t), \lambda \neq 0 ; \ddot{X}(t)=t X(t), \lambda=0
$$

Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$
The ODE $\ddot{X}(t)=t X(t)$ is the Airy equation. We saw that its Galois group is $S L_{2}(\mathbb{C})$, so there cannot be any further integral of motion for $\lambda=0$.

## Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$

The ODE $\ddot{X}(t)=t X(t)$ is the Airy equation. We saw that its Galois group is $S L_{2}(\mathbb{C})$, so there cannot be any further integral of motion for $\lambda=0$.
When $A \neq 0, \ddot{X}(t)=2\left(A+\frac{6}{\lambda t^{2}}\right) X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}, k \in \mathbb{Z}$. This result can be made even stronger:

## Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1,2,6,16$.

## Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$

The ODE $\ddot{X}(t)=t X(t)$ is the Airy equation. We saw that its Galois group is $S L_{2}(\mathbb{C})$, so there cannot be any further integral of motion for $\lambda=0$.
When $A \neq 0, \ddot{X}(t)=2\left(A+\frac{6}{\lambda t^{2}}\right) X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}, k \in \mathbb{Z}$. This result can be made even stronger:

## Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1,2,6,16$.
For $A=0$ we get the Cachy equation, whose Galois group is abelian, so in this case we cannot exclude the possibility of further integrals of motion.

## Example: $H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)-y^{2}(A+x)-\frac{\lambda}{3} x^{3}$

The ODE $\ddot{X}(t)=t X(t)$ is the Airy equation. We saw that its Galois group is $S L_{2}(\mathbb{C})$, so there cannot be any further integral of motion for $\lambda=0$.
When $A \neq 0, \ddot{X}(t)=2\left(A+\frac{6}{\lambda t^{2}}\right) X(t)$ is the Whittaker equation. It can be proved that its Galois group is non-abelian when $\frac{6}{\lambda} \neq \frac{k(k+1)}{2}, k \in \mathbb{Z}$. This result can be made even stronger:

## Theorem (Morales, Thm 6.4)

The Henon-Heiles system is non integrable for $\lambda \neq 1,2,6,16$.
For $A=0$ we get the Cachy equation, whose Galois group is abelian, so in this case we cannot exclude the possibility of further integrals of motion.
Note finally that for $A=0, \lambda=6$ the HH system is indeed a CIS:
$K=4 p_{y}\left(x p_{y}-y p_{x}\right)+y^{4}+4 x^{2} y^{2}$

## Related Literature

- J. Moser, E. Zehdner, Notes on Dynamical Systems, AMS
- M. Audin, Hamiltonian systems and their integrability, AMS, 2008
- J. Morales, Differential Galois Theory and non-integrability of Hamiltonian systems, Birkauser, 1983
- V.I. Arnold, A.B. Givental', "Symplectic Geometry", in Dynamical Systems IV: Symplectic Geometry and Its Applications, edited by V.I. Arnold \& S.P. Novikov
- M. Dunajski, Integrable Systems, Lecture Notes, http://www.damtp.cam.ac.uk/user/md327/ISlecture_notes_2012_part1.pdf
- V. Jurdjevic, Jacobi's geodesics problem and Lie groups, Slides, http://www.cmap.polytechnique.fr/geometric-controlsrg/slides2/jurdjevic.pdf
- A. Maciejewski and M. Przybylska, Differential Galois theory and integrability, Int. J. of Geometric Methods in Modern Physics, 6:8, 2009, arXiv:0912.1046


# Hamiltonian 

## Systems

 close to IntegrableRecall that, if $\left(M^{2 n}, \omega, H\right)$ is a CIS and in a neighborhood $T^{n} \times D^{n} \subset T^{n} \times \mathbb{R}^{n}$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates $(q, p)$, so that $H=H(p)$ and the equations of motion write

$$
\dot{q}^{\alpha}=\frac{\partial H}{\partial p_{\alpha}}, \dot{p}_{\alpha}=0 .
$$

Recall that, if $\left(M^{2 n}, \omega, H\right)$ is a CIS and in a neighborhood $T^{n} \times D^{n} \subset T^{n} \times \mathbb{R}^{n}$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates $(q, p)$, so that $H=H(p)$ and the equations of motion write

$$
\dot{q}^{\alpha}=\frac{\partial H}{\partial p_{\alpha}}, \dot{p}_{\alpha}=0 .
$$

If $\frac{\partial^{2} H}{\partial p_{\alpha} \partial p_{\beta}}$ is non-singular at every point, then the $n$ frequencies $v(p)=\frac{\partial H}{\partial p_{\alpha}}(p): D^{n} \rightarrow \mathbb{R}^{n}$ label the Lagrangian tori in $T^{n} \times D^{n}$.

Recall that, if $\left(M^{2 n}, \omega, H\right)$ is a CIS and in a neighborhood $T^{n} \times D^{n} \subset T^{n} \times \mathbb{R}^{n}$ of a Lagrangian torus invariant by the flow, there exists action-angle coordinates $(q, p)$, so that $H=H(p)$ and the equations of motion write

$$
\dot{q}^{\alpha}=\frac{\partial H}{\partial p_{\alpha}}, \dot{p}_{\alpha}=0 .
$$

If $\frac{\partial^{2} H}{\partial p_{\alpha} \partial p_{\beta}}$ is non-singular at every point, then the $n$ frequencies $v(p)=\frac{\partial H}{\partial p_{\alpha}}(p): D^{n} \rightarrow \mathbb{R}^{n}$ label the Lagrangian tori in $T^{n} \times D^{n}$.

## Definition

The frequencies $\left(v^{1}, \ldots, v^{n}\right)$ are non-resonant if there exists $c>0$ such that

$$
\left|k_{\alpha} \nu^{\alpha}\right| \geq \frac{c}{\|k\|^{n}}, \text { for all } k \in \mathbb{Z}^{n} \backslash 0
$$

The sets $\Phi_{c} \subset \mathbb{R}^{n}, c>0$, of non-resonant frequencies are Cantor sets (closed, perfect and nowhere dense) such that $\mu\left(\Omega \backslash \Phi_{c}\right)=O(c)$ for every bounded $\Omega \subset \mathbb{R}^{n}$.

The sets $\Phi_{c} \subset \mathbb{R}^{n}, c>0$, of non-resonant frequencies are Cantor sets (closed, perfect and nowhere dense) such that $\mu\left(\Omega \backslash \Phi_{c}\right)=O(c)$ for every bounded $\Omega \subset \mathbb{R}^{n}$.

## Theorem (Kolmogorov, Arnold, Moser)

Suppose that $\left(M^{2 n}, \omega, H\right)$ is a CIS, $T^{n}$ a Lagrangian torus invariant by the flow and a neighborhood where we have Then, if the map $v=\left(\frac{\partial H}{\partial p_{\alpha}}\right): D^{n} \rightarrow \mathbb{R}^{n}$ is an immersion and the Hamiltonian $H_{\varepsilon}(q, p)=H(p)+\varepsilon F(q, p)$ is analytic on $T^{n} \times D^{n}$, there exists $\delta>0$ such that for

$$
|\varepsilon|<\delta c^{2}
$$

all tori of the unperturbed systems whose frequency v belongs to $\Phi_{c}$ persists as Lagrangian tori in the perturbed system, being only slightly deformed. Moreover they depend in a Lipschitz way on $v$ and fill the phase space $T^{n} \times D^{n}$ with measure $O(c)$.

## Example: Hénon-Heiles Hamiltonian

Close to integrable...


## Example: Hénon-Heiles Hamiltonian

Not so close anymore...


## Quantum Hamiltonian Chaos

It was conjectured by Berry and Tabor that the integrability of a Hamiltonian $H$ can be read, in its quantum counterpart $\hat{H}$, from its eigenvalues distribution:

## Conjecture (Berry \& Tabor)

Let $H$ be a Hamitonian on $\mathbb{R}^{n}$ and let $P(s)$ the distribution function of the nearest-neighbour spacings $\lambda_{n+1}-\lambda_{n}$ of the eigenvalues of $\hat{H}$. Then:
(1) if the classical dynamics is integrable, then $P(s)$ coincides with the distribution of uncorrelated levels with the same mean spacing (Poisson distr.), i.e.

$$
P(s) \propto e^{-c s}
$$

(2) if the classic dynamics is chaotic, then $P(s)$ coincides with the distribution of a suitable ensamble of random matrices.

Quite interestingly, this conjecture relates Quantum chaology

## Quantum Hamiltonian Chaos

## Poisson distribution:



## Quantum Hamiltonian Chaos

## GOE distribution:



## Related Literature

- A.N. Kolmogorov, The general theory of dynamical systems and classical mechanics, reprinted in appendix to Abraham \& Marsden's book.
- J. Poschel, A lecture on the classical KAM theorem, http://www.deas.harvard.edu/climate/eli/Courses/APM203/2003fall/Poschel_ClassicalKAM.pdf
- E. Bogomolny, Riemann Zeta function and Quantum Chaos, Prog. of Theor. Phys., 166, 2007, arXiv:0708.4223
- P. Cvitanovic et al., "Chaos Book", http://chaosbook.org/
- M. Berry, M. Tabor., "Level clustering in the regular spectrum", Proc. of the Royal Soc. A, 356, 1977
- D. Cremers, A. Mielke., "Flow equations for the Hénon-Heiles Hamiltonian", Physica D: Nonlinear Phenomena, 1999, quant-ph/9809086
- M. Brack et al, "Quantum beats and chaos in the Hénon-Heiles Hamiltonian", Phys. Rev. Lett. 70, 568 (1993)


# Poissonian 

## Systems

## Main Definitions and examples

## Definition

A Poisson manifold is a pair $\left(M^{n},\{\},\right)$, where $M$ is a manifold and the bilinear map $\{\}:, C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ (Poisson bracket) satisfies the following properties:
(1) $\{f, g\}=-\{g, f\}$;
(2) $\{f,\{g, h\}\}+\{h,\{f, g\}\}+\{g,\{h, f\}\}=0$;
(3) $\{f, g h\}=\{f, g\} h+g\{f, h\}$.

Example 1: every symplectic manifold ( $M^{2 n}, \omega$ ) is an even-dimensional Poisson manifold with

$$
\{f, g\}=\omega\left(\xi_{f}, \xi_{g}\right)
$$

Example 2: on a 3-dimensional Riemannian manifold ( $M, s$ ), every $h \in C^{\infty}(M)$ gives rise to the Poisson bracket

$$
\{f, g\}_{h}=\star_{s}(d f \wedge d g \wedge d h)
$$

## Main Definitions and examples

Like on a symplectic manifold, via the Poisson braket we can associate a vector field $\xi_{H}$ to each function $H \in C^{\infty}(M)$ as

$$
\xi_{H}(f) \stackrel{\text { def }}{=}\{H, f\}
$$

On a symplectic manifold ( $M, \omega$ ), in a symplectic chart $\left(q^{\alpha}, p_{\alpha}\right)$,

$$
\left\{q^{\alpha}, q^{\beta}\right\}=0, \quad\left\{q^{\alpha}, p_{\beta}\right\}=\delta_{\beta}^{\alpha}, \quad\left\{p_{\alpha}, p_{\beta}\right\}=0
$$

so that

$$
\xi_{H}(f)=\omega\left(\xi_{H}, \xi_{f}\right\}=\partial_{\alpha} H \partial^{\alpha} f-\partial_{\alpha} f \partial^{\alpha} H
$$

Clearly $\xi_{H}$ is the same vector field from the symplectic structure. In case of 3 -dim Riemannian manifolds $(M, s)$ and $h \in C^{\infty}(M)$,

$$
\left\{x^{i}, x^{j}\right\}_{h}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{k} h
$$

so that

$$
\xi_{H}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{j} H \partial_{k} h \partial_{i}
$$

## Poisson dynamics

## Definition

A Poissonian system on the Poissonian manifold $(M,\{\}$,$) is$ given by a smooth function $H \in C^{\infty}(M)$.

The variation of an observable $f \in C^{\infty}(M)$ over the flow $\phi_{H}^{t}$ of $H$ is given by

$$
\frac{d}{d t} f \circ \phi_{H}^{t}=L_{\xi} f=\omega\left(\xi_{H}, \xi_{f}\right)=\{H, f\}
$$

This relation is written simply as

$$
\dot{f}=\{H, f\}
$$

E.g. if the system is symplectic then

$$
\dot{q}^{\alpha}=\left\{H, q^{\alpha}\right\}=\partial^{\alpha} H, \quad \dot{p}_{\alpha}=\left\{H, p_{\alpha}\right\}=-\partial_{\alpha} H
$$

## Integrals of motion

## Theorem

$f$ is constant over the integral trajectories of $H$ iff $\{H, f\}=0$.
In odd dimension $\{$,$\} is degenerate, i.e. there exists$ observables that commute with all other observables.
Such observables are called Casimirs.

## Integrals of motion

## Theorem

$f$ is constant over the integral trajectories of $H$ iff $\{H, f\}=0$.
In odd dimension $\{$,$\} is degenerate, i.e. there exists$ observables that commute with all other observables.
Such observables are called Casimirs.
E.g. in a 3-dim Riemannian manifold

$$
\dot{x}^{i}=\left\{H, x^{i}\right\}_{h}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{j} H \partial_{k} h
$$

and $h$ is a Casimir since

$$
\{f, h\}_{h}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{i} f \partial_{j} h \partial_{k} h=0 .
$$

## Integrals of motion

## Theorem

$f$ is constant over the integral trajectories of $H$ iff $\{H, f\}=0$.
In odd dimension $\{$,$\} is degenerate, i.e. there exists$ observables that commute with all other observables.
Such observables are called Casimirs.
E.g. in a 3-dim Riemannian manifold

$$
\dot{x}^{i}=\left\{H, x^{i}\right\}_{h}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{j} H \partial_{k} h
$$

and $h$ is a Casimir since

$$
\{f, h\}_{h}=\sqrt{\operatorname{det} s} \varepsilon^{i j k} \partial_{i} f \partial_{j} h \partial_{k} h=0 .
$$

This means that the image of the integral trajectories of $H$ under $\{,\}_{h}$ are the intersections between the level sets of $H$ and of $h$.

## Example: a Multivalued Poisson DS

Consider $\left(\mathbb{T}^{3},\{,\}_{B}\right)$, where $B=B^{i}(p) d p_{i}$ is a closed 1-form and

$$
\left\{p_{i}, p_{j}\right\}_{B}=\varepsilon_{i j k} B^{k}
$$

A direct calculation shows that $\{,\}_{B}$ is a Poisson structure on $\mathbb{T}^{3}$.

## Example: a Multivalued Poisson DS

Consider $\left(\mathbb{T}^{3},\{,\}_{B}\right)$, where $B=B^{i}(p) d p_{i}$ is a closed 1-form and

$$
\left\{p_{i}, p_{j}\right\}_{B}=\varepsilon_{i j k} B^{k}
$$

A direct calculation shows that $\{,\}_{B}$ is a Poisson structure on $\mathbb{T}^{3}$.

Given $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$, the equations of motion are

$$
\dot{p}_{i}=\left\{H, p_{i}\right\}_{B}=\varepsilon_{i j k} \partial^{j} H B^{k}
$$

## Example: a Multivalued Poisson DS

Consider $\left(\mathbb{T}^{3},\{,\}_{B}\right)$, where $B=B^{i}(p) d p_{i}$ is a closed 1-form and

$$
\left\{p_{i}, p_{j}\right\}_{B}=\varepsilon_{i j k} B^{k}
$$

A direct calculation shows that $\{,\}_{B}$ is a Poisson structure on $\mathbb{T}^{3}$.

Given $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$, the equations of motion are

$$
\dot{p}_{i}=\left\{H, p_{i}\right\}_{B}=\varepsilon_{i j k} \partial^{j} H B^{k}
$$

Locally $B=d b$. Clearly $\{f, b\}=0$ for every $f$, so we can think of $b$ as a multi-valued Casimir.

## Example: a Multivalued Poisson DS

Consider $\left(\mathbb{T}^{3},\{,\}_{B}\right)$, where $B=B^{i}(p) d p_{i}$ is a closed 1-form and

$$
\left\{p_{i}, p_{j}\right\}_{B}=\varepsilon_{i j k} B^{k}
$$

A direct calculation shows that $\{,\}_{B}$ is a Poisson structure on $\mathbb{T}^{3}$.

Given $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$, the equations of motion are

$$
\dot{p}_{i}=\left\{H, p_{i}\right\}_{B}=\varepsilon_{i j k} \partial^{j} H B^{k}
$$

Locally $B=d b$. Clearly $\{f, b\}=0$ for every $f$, so we can think of $b$ as a multi-valued Casimir.

The image of the integral trajectories of $H$ are given by the intersections between the level surfaces of $H$ and the leaves of the foliation $B=0$.

## Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the physics of metals:

## Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the physics of metals: in the WKB approximation the (quasi-)electrons are points in $\mathbb{T}^{3}$ and under a magnetic field $B$ they are bound to move perpendicularly to it.

## Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the physics of metals: in the WKB approximation the (quasi-)electrons are points in $\mathbb{T}^{3}$ and under a magnetic field $B$ they are bound to move perpendicularly to it.

Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$
\boldsymbol{p}=\{H, \boldsymbol{p}\}_{B}=\boldsymbol{B} \times \partial_{\boldsymbol{p}} H
$$

## Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the physics of metals:
in the WKB approximation the (quasi-)electrons are points in $\mathbb{T}^{3}$ and under a magnetic field $B$ they are bound to move perpendicularly to it.
Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$
\boldsymbol{p}=\{H, \boldsymbol{p}\}_{B}=\boldsymbol{B} \times \partial_{p} H
$$

The geometry of trajectories here is trivial: in the universal covering $\mathbb{R}^{3}$ they are planar sections of the level surfaces of $H$.

## Example: a Multivalued Poisson DS

This system was extracted in 1982 by S.P. Novikov from the physics of metals:
in the WKB approximation the (quasi-)electrons are points in $\mathbb{T}^{3}$ and under a magnetic field $B$ they are bound to move perpendicularly to it.
Moreover, every metal give rise to a Hailtonian $H \in C^{\infty}\left(\mathbb{T}^{3}\right)$ (Fermi energy function) which dictates its main physical properties. The eqs. of motion then are

$$
\boldsymbol{p}=\{H, \boldsymbol{p}\}_{B}=\boldsymbol{B} \times \partial_{p} H
$$

The geometry of trajectories here is trivial: in the universal covering $\mathbb{R}^{3}$ they are planar sections of the level surfaces of $H$.
Their topology instead, i.e. their asymptotics, turns out to be exceptionally rich.

## Example: a Multivalued Poisson DS

$H(x, y, z)=\cos x+\cos y+\cos z$


## Example: a Multivalued Poisson DS

$$
H(x, y, z)=\cos x+\cos y+\cos z
$$



## Example: a Multivalued Poisson DS

$$
H(x, y, z)=\cos x \cos y+\cos y \cos z+\cos z \cos x
$$

## Example: a Multivalued Poisson DS

$$
H(x, y, z)=\cos x \cos y+\cos y \cos z+\cos z \cos x
$$



## Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.

## Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.

Indeed in QM on $\mathbb{R}^{n}$ the position and momentum observables $q^{\alpha}, p_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ are replaced resp. by the operators $\hat{q}^{\alpha}$ (multiplication by $q^{\alpha}$ ) and $\hat{p}_{\alpha}=\frac{i}{\hbar} \partial_{q^{\alpha}}$ acting on $L^{2}\left(\mathbb{R}^{n}\right)$.

## Poisson brackets and QM

The Poisson brackets give a new point of view (wrt HJ) on the interplay between CM and QM.
Indeed in QM on $\mathbb{R}^{n}$ the position and momentum observables $q^{\alpha}, p_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ are replaced resp. by the operators $\hat{q}^{\alpha}$ (multiplication by $q^{\alpha}$ ) and $\hat{p}_{\alpha}=\frac{i}{\hbar} \partial_{q^{\alpha}}$ acting on $L^{2}\left(\mathbb{R}^{n}\right)$.
As operators, their commuting relations are

$$
\left[\hat{q}^{\alpha}, \hat{a}^{\beta}\right]=0, \quad\left[\hat{q}^{\alpha}, \hat{p}_{\beta}\right]=i \hbar \delta_{\beta}^{\alpha}, \quad\left[\hat{p}_{\alpha}, \hat{p}_{\beta}\right]=0 .
$$

Recall that, in the symplectic setting,

$$
\left\{q^{\alpha}, q^{\beta}\right\}=0, \quad\left\{q^{\alpha}, p_{\beta}\right\}=\delta_{\beta}^{\alpha}, \quad\left\{p_{\alpha}, p_{\beta}\right\}=0 .
$$

## Poisson brackets and QM

In other words, " $[\hat{f}, \hat{g}]=i \hbar\{f, g\}$ ". This analogy is the base of two attempts to fully understanding the relation between CM and QM:

- geometric quantization (Souriau, Weinstein, Guillemin, Sternberg...), which uses symplectic geometry to find some natural way to foliate $T^{*} M$ in Lagrangian leaves (to mimic the separation of q's and p's in QM (polarization);
- deformation quantization (Kontsevich, Connes...), which deformes the product in $C^{\infty}(M)$ in order to get a non-commutative algebra $A_{\hbar}$ that, in the limit $\hbar \rightarrow 0$, reduces to the multiplication in $C^{\infty}(M)$.
Neither of these attempts, which we have no space to illustrate here, succeeded to date.


## Related Literature

- A. Weinstein, Poisson Geometry, http://math.berkeley.edu/ alanw/Poisson.tex
- S.P. Novikov, The Semiclassical Electron in a Magnetic Field and Lattice. Some Problems of the Low Dimensional Periodic Topology, Geometric and Functional Analysis, 1995, v. 5, n. 2, pp. 434-444.
- R De Leo, Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field, SIAM J. on App. Dyn. Sys., 2(4), 517-545, 2003, arXiv:math-ph/0006023
- R De Leo and I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron $\{4,6 \mid 4\}$, Geometriae Dedicata, 138:1, 51-67, 2009, arXiv:0804.1668v1
- A. Weinstein, , Lectures on the Geometric Quantization, http://math.berkeley.edu/ alanw/GofQ.pdf
- A. Connes, , Non-commutative Geometry, http://www.alainconnes.org/docs/book94bigpdf.pdf


# Hamiltonian 

## Systems

## with Symmetries

## Cyclic Coordinates

The form of the Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)=\frac{\partial L}{\partial q^{\alpha}}
$$

suggests the following simple observation:

## Cyclic Coordinates

The form of the Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)=\frac{\partial L}{\partial q^{\alpha}}
$$

suggests the following simple observation:
if $L(q, \dot{q})$ does not depend on, say, $q^{1}$, then the associated momentum $p_{1}=\frac{\partial L}{\partial \dot{q}^{1}}$ is a first integral.

## Cyclic Coordinates

The form of the Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)=\frac{\partial L}{\partial q^{\alpha}}
$$

suggests the following simple observation:
if $L(q, \dot{q})$ does not depend on, say, $q^{1}$, then the associated momentum $p_{1}=\frac{\partial L}{\partial \dot{q}^{1}}$ is a first integral.
In a classical mechanical system in $\mathbb{R}^{n}$,

$$
L(q, \dot{q})=\frac{1}{2}\|\dot{q}\|-V(q)
$$

from which we see that invariance of the potential by translations in the direction $q^{i}$ implies the conservation of the corresponding momentum $p_{i}$.

## Cyclic Coordinates

The form of the Lagrange equations

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{\alpha}}\right)=\frac{\partial L}{\partial q^{\alpha}}
$$

suggests the following simple observation:
if $L(q, \dot{q})$ does not depend on, say, $q^{1}$, then the associated momentum $p_{1}=\frac{\partial L}{\partial \dot{q}^{1}}$ is a first integral.
In a classical mechanical system in $\mathbb{R}^{n}$,

$$
L(q, \dot{q})=\frac{1}{2}\|\dot{q}\|-V(q)
$$

from which we see that invariance of the potential by translations in the direction $q^{i}$ implies the conservation of the corresponding momentum $p_{i}$.
This is the starting point for all results that follow.

## First generalization: Noether's Theorem

## Definition

An action $\Phi$ of $\mathbb{R}$ on $M$ is a homomorphism $\mathbb{R} \rightarrow \operatorname{Diff}(M)$. We use the shortcut notation $\Phi(\lambda, q)=q_{\lambda}$.

## First generalization: Noether's Theorem

## Definition

An action $\Phi$ of $\mathbb{R}$ on $M$ is a homomorphism $\mathbb{R} \rightarrow \operatorname{Diff}(M)$. We use the shortcut notation $\Phi(\lambda, q)=q_{\lambda}$.

To $\Phi$ it is associate a vector field $\xi_{\Phi}(q)=\left.\frac{d q \lambda}{d \lambda}\right|_{\lambda=0}$.

## First generalization: Noether's Theorem

## Definition

An action $\Phi$ of $\mathbb{R}$ on $M$ is a homomorphism $\mathbb{R} \rightarrow \operatorname{Diff}(M)$. We use the shortcut notation $\Phi(\lambda, q)=q_{\lambda}$.

To $\Phi$ it is associate a vector field $\xi_{\Phi}(q)=\left.\frac{d q_{\lambda}}{d \lambda}\right|_{\lambda=0}$.
$\Phi$ induces an action $\hat{\Phi}$ on $T M$ as $\hat{\Phi}(\lambda, q, v)=\left(q_{\lambda}, v \cdot \partial_{q} \Phi(\lambda, q)\right)$

## Theorem (Noether, Arnold 20A)

If $L(q, v)$ is invariant by $\Phi$, i.e. if $\hat{\Phi}^{*} L=L$,
then $p_{\Phi}(q, \dot{q})=\xi_{\Phi}^{\alpha}(q) \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q})$ is a first integral.

Proof: since $L$ is invariant

$$
0=\left.\frac{d}{d \lambda} L\left(q_{\lambda}(t), \dot{q}_{\lambda}(t)\right)\right|_{\lambda=0}=
$$

## Proof: since $L$ is invariant

$$
\begin{gathered}
0=\left.\frac{d}{d \lambda} L\left(q_{\lambda}(t), \dot{q}_{\lambda}(t)\right)\right|_{\lambda=0}= \\
=\left.\frac{d}{d \lambda} q_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q})+\left.\frac{d}{d \lambda} \dot{q}_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))=
\end{gathered}
$$

Proof: since $L$ is invariant

$$
\begin{gathered}
0=\left.\frac{d}{d \lambda} L\left(q_{\lambda}(t), \dot{q}_{\lambda}(t)\right)\right|_{\lambda=0}= \\
=\left.\frac{d}{d \lambda} q_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q})+\left.\frac{d}{d \lambda} \dot{q}_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))= \\
=\xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t))+\frac{d}{d t}\left[\xi_{\Phi}^{\alpha}(q(t))\right] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q})
\end{gathered}
$$

Proof: since $L$ is invariant

$$
\begin{gathered}
0=\left.\frac{d}{d \lambda} L\left(q_{\lambda}(t), \dot{q}_{\lambda}(t)\right)\right|_{\lambda=0}= \\
=\left.\frac{d}{d \lambda} q_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q})+\left.\frac{d}{d \lambda} \dot{q}_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))= \\
=\xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t))+\frac{d}{d t}\left[\xi_{\Phi}^{\alpha}(q(t))\right] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q})
\end{gathered}
$$

Hence

$$
\frac{d}{d t} p_{\Phi}(q(t), \dot{q}(t))=\frac{d}{d t}\left[\xi_{\Phi}^{\alpha}(q(t)) \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))\right]=
$$

Proof: since $L$ is invariant

$$
\begin{gathered}
0=\left.\frac{d}{d \lambda} L\left(q_{\lambda}(t), \dot{q}_{\lambda}(t)\right)\right|_{\lambda=0}= \\
=\left.\frac{d}{d \lambda} q_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial q^{\alpha}}(q, \dot{q})+\left.\frac{d}{d \lambda} \dot{q}_{\lambda}(t)\right|_{\lambda=0} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))= \\
=\xi_{\phi}^{\alpha}(q(t)) \frac{\partial L}{\partial q^{\alpha}}(q(t), \dot{q}(t))+\frac{d}{d t}\left[\xi_{\Phi}^{\alpha}(q(t))\right] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q, \dot{q})
\end{gathered}
$$

Hence

$$
\begin{gathered}
\frac{d}{d t} p_{\phi}(q(t), \dot{q}(t))=\frac{d}{d t}\left[\xi_{\phi}^{\alpha}(q(t)) \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))\right]= \\
=\frac{d}{d t}\left[\xi_{\phi}^{\alpha}(q(t))\right] \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))+\xi_{\phi}^{\alpha}(q(t)) \frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{\alpha}}(q(t), \dot{q}(t))=0 .
\end{gathered}
$$

## Example: Rotations

Consider the case of $M=\mathbb{R}^{3}$ and $L(q, v)=\frac{1}{2}\|v\|-V(q)$, with $V$ invariant by rotations, i.e. depending only on the distance of $q$ from the origin
(e.g. electric or gravitational field generated by a point particle).

## Example: Rotations

Consider the case of $M=\mathbb{R}^{3}$ and $L(q, v)=\frac{1}{2}\|v\|-V(q)$, with $V$ invariant by rotations, i.e. depending only on the distance of $q$ from the origin
(e.g. electric or gravitational field generated by a point particle).

Then $L$ is invariant by $\mathrm{SO}_{3}$.
E.g. consider the 1 -dim subgroup of rotations arount the $z$ axis.

## Example: Rotations

Consider the case of $M=\mathbb{R}^{3}$ and $L(q, v)=\frac{1}{2}\|v\|-V(q)$, with $V$ invariant by rotations, i.e. depending only on the distance of $q$ from the origin
(e.g. electric or gravitational field generated by a point particle).

Then $L$ is invariant by $\mathrm{SO}_{3}$.
E.g. consider the 1 -dim subgroup of rotations arount the $z$ axis.

The action is
$\Phi_{z}(\lambda, x, y, z)=(x \cos \lambda+y \sin \lambda,-x \sin \lambda+y \cos \lambda)$
and $\xi_{\Phi_{z}}(x, y)=-y \partial_{x}+x \partial_{y}$.

## Example: Rotations

Consider the case of $M=\mathbb{R}^{3}$ and $L(q, v)=\frac{1}{2}\|v\|-V(q)$, with $V$ invariant by rotations, i.e. depending only on the distance of $q$ from the origin
(e.g. electric or gravitational field generated by a point particle).

Then $L$ is invariant by $\mathrm{SO}_{3}$.
E.g. consider the 1 -dim subgroup of rotations arount the $z$ axis.

The action is
$\Phi_{z}(\lambda, x, y, z)=(x \cos \lambda+y \sin \lambda,-x \sin \lambda+y \cos \lambda)$
and $\xi_{\Phi_{z}}(x, y)=-y \partial_{x}+x \partial_{y}$.
The corresponding first integral
( $z$ component of the angular momentum)
is $p_{\phi_{z}}(x, y, z, \dot{x}, \dot{y}, \dot{z})=-y \dot{x}+x \dot{y}$.

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$
We say that $\Phi$ is canonical if $\Phi_{g}^{*}\{F, G\}=\left\{\Phi_{g}^{*} F, \Phi_{g}^{*} G\right\}$. If $P=T^{*} M$, then $\Phi$ is canonical iff is symplectic, i.e. iff $\Phi_{g}^{*} \omega=\omega, \forall g \in G$.

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$
We say that $\Phi$ is canonical if $\Phi_{g}^{*}\{F, G\}=\left\{\Phi_{g}^{*} F, \Phi_{g}^{*} G\right\}$.
If $P=T^{*} M$, then $\Phi$ is canonical iff is symplectic,
i.e. iff $\Phi_{g}^{*} \omega=\omega, \forall g \in G$.

To every element $a \in \mathfrak{g}=T_{e} G$ it corresponds a 1-dimensional subgroup of $G$ and therefore a vector field $\xi_{a} \in \chi(M)$.

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$
We say that $\Phi$ is canonical if $\Phi_{g}^{*}\{F, G\}=\left\{\Phi_{g}^{*} F, \Phi_{g}^{*} G\right\}$.
If $P=T^{*} M$, then $\Phi$ is canonical iff is symplectic,
i.e. iff $\Phi_{g}^{*} \omega=\omega, \forall g \in G$.

To every element $a \in \mathfrak{g}=T_{e} G$ it corresponds a 1-dimensional subgroup of $G$ and therefore a vector field $\xi_{a} \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$
\xi_{[a, b]_{\mathfrak{g}}}=\left[\xi_{a}, \xi_{b}\right]_{\chi(P)}
$$

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$
We say that $\Phi$ is canonical if $\Phi_{g}^{*}\{F, G\}=\left\{\Phi_{g}^{*} F, \Phi_{g}^{*} G\right\}$.
If $P=T^{*} M$, then $\Phi$ is canonical iff is symplectic,
i.e. iff $\Phi_{g}^{*} \omega=\omega, \forall g \in G$.

To every element $a \in \mathfrak{g}=T_{e} G$ it corresponds a 1-dimensional subgroup of $G$ and therefore a vector field $\xi_{a} \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$
\xi_{[a, b]_{\mathfrak{g}}}=\left[\xi_{a}, \xi_{b}\right]_{\chi(P)}
$$

Every such $\xi_{a}$ satisfies $\xi_{a}\{F, G\}=\left\{\xi_{a} F, G\right\}+\left\{F, \xi_{a} G\right\}$ If $P=T^{*} M$ then $L_{\xi_{a}} \omega=0$, i.e. $\xi_{a}$ is locally Hamiltonian.

## Second generalization: Momentum Map

Consider an action $\Phi: G \times P \rightarrow P$ on a Poisson manifold ( $P,\{$,$\} ).$
We say that $\Phi$ is canonical if $\Phi_{g}^{*}\{F, G\}=\left\{\Phi_{g}^{*} F, \Phi_{g}^{*} G\right\}$.
If $P=T^{*} M$, then $\Phi$ is canonical iff is symplectic,
i.e. iff $\Phi_{g}^{*} \omega=\omega, \forall g \in G$.

To every element $a \in \mathfrak{g}=T_{e} G$ it corresponds a 1-dimensional subgroup of $G$ and therefore a vector field $\xi_{a} \in \chi(M)$.

A direct calculation shows that this map is a homomorphism of Lie Algebras:

$$
\xi_{[a, b]_{\mathfrak{g}}}=\left[\xi_{a}, \xi_{b}\right]_{\chi(P)}
$$

Every such $\xi_{a}$ satisfies $\xi_{a}\{F, G\}=\left\{\xi_{a} F, G\right\}+\left\{F, \xi_{a} G\right\}$ If $P=T^{*} M$ then $L_{\xi_{a}} \omega=0$, i.e. $\xi_{a}$ is locally Hamiltonian. In both cases, locally $\xi_{a}$ is the Ham. v.f. of some function $H_{a}$.

In order to define the momentum map we must make two assumptions:
(1) all $\xi_{a}$ are Hamiltonian;
(2) $\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}$.

In order to define the momentum map we must make two assumptions:
(1) all $\xi_{a}$ are Hamiltonian;
(2) $\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}$.

Note that all $H_{a}$ are defined modulo constant. Hence they can be chosen so that $\mathfrak{g} \rightarrow C^{\infty}(P)$ is linear. In general tough

$$
\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}+C(a, b)
$$

where $C$ is a 2-cocycle of $\mathfrak{g}$.

In order to define the momentum map we must make two assumptions:
(1) all $\xi_{a}$ are Hamiltonian;
(2) $\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}$.

Note that all $H_{a}$ are defined modulo constant. Hence they can be chosen so that $\mathfrak{g} \rightarrow C^{\infty}(P)$ is linear. In general tough

$$
\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}+C(a, b)
$$

where $C$ is a 2-cocycle of $\mathfrak{g}$.
We say that the canonical action $\Phi$ is Poissonian when $C=0$.

In order to define the momentum map we must make two assumptions:
(1) all $\xi_{a}$ are Hamiltonian;
(2) $\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}$.

Note that all $H_{a}$ are defined modulo constant. Hence they can be chosen so that $\mathfrak{g} \rightarrow C^{\infty}(P)$ is linear. In general tough

$$
\left\{H_{a}, H_{b}\right\}=H_{[a, b]_{\mathfrak{g}}}+C(a, b)
$$

where $C$ is a 2-cocycle of $\mathfrak{g}$.
We say that the canonical action $\Phi$ is Poissonian when $C=0$.
Example: an action on $T^{*} M$ induced from an action on $M$ is always Poissonian (see Arnold, Appendix 5).

## Definition

If $\Phi$ is Poissonian, we call Momentum Map the map $J: P \rightarrow \mathfrak{g}^{*}$ defined by $J_{x}(a)=H_{a}(x)$.

## Example: Rotations

Consider the action $\Phi$ of $\mathrm{SO}_{3}$ on $T^{*} \mathbb{R}^{3}$ induced by the rotations on the base space. We choose a frame ( $x, y, z$ ) and identify $\mathrm{SO}_{3}$ with $\mathbb{R}^{3}$.

## Example: Rotations

Consider the action $\Phi$ of $\mathrm{SO}_{3}$ on $T^{*} \mathbb{R}^{3}$ induced by the rotations on the base space.
We choose a frame $(x, y, z)$ and identify $\mathrm{SO}_{3}$ with $\mathbb{R}^{3}$.
We saw earlier that to $(0,0,1) \in \operatorname{so}_{3}$ (generator of rotations about the $z$ axis) it corresponds the vector field $\xi_{z}=x \partial_{y}-y \partial_{x}$. Similarly, $\xi_{x}=y \partial_{z}-z \partial_{y}$ and $\xi_{y}=z \partial_{x}-x \partial_{z}$.

## Example: Rotations

Consider the action $\Phi$ of $\mathrm{SO}_{3}$ on $T^{*} \mathbb{R}^{3}$ induced by the rotations on the base space.
We choose a frame $(x, y, z)$ and identify $\mathrm{SO}_{3}$ with $\mathbb{R}^{3}$.
We saw earlier that to $(0,0,1) \in \mathrm{sO}_{3}$ (generator of rotations about the $z$ axis) it corresponds the vector field $\xi_{z}=x \partial_{y}-y \partial_{x}$. Similarly, $\xi_{x}=y \partial_{z}-z \partial_{y}$ and $\xi_{y}=z \partial_{x}-x \partial_{z}$.
This action is Poissonian. The first integrals corresponding to these vector fields are the three components of the angular momentum:

$$
L_{x}=y p_{x}-x p_{y}, \quad L_{y}=z p_{y}-y p_{z}, \quad L_{z}=x p_{z}-z p_{x} .
$$

## Example: Rotations

Consider the action $\Phi$ of $\mathrm{SO}_{3}$ on $T^{*} \mathbb{R}^{3}$ induced by the rotations on the base space.
We choose a frame $(x, y, z)$ and identify $\mathrm{SO}_{3}$ with $\mathbb{R}^{3}$.
We saw earlier that to $(0,0,1) \in \mathrm{sO}_{3}$ (generator of rotations about the $z$ axis) it corresponds the vector field $\xi_{z}=x \partial_{y}-y \partial_{x}$. Similarly, $\xi_{x}=y \partial_{z}-z \partial_{y}$ and $\xi_{y}=z \partial_{x}-x \partial_{z}$.
This action is Poissonian. The first integrals corresponding to these vector fields are the three components of the angular momentum:

$$
L_{x}=y p_{x}-x p_{y}, \quad L_{y}=z p_{y}-y p_{z}, \quad L_{z}=x p_{z}-z p_{x} .
$$

The momentum map is exactly the "angular momentum vector":

$$
J\left(x, y, z, p_{x}, p_{y}, p_{z}\right)=\left(L_{x}, L_{y}, L_{z}\right) \in \operatorname{so}(3)^{*}
$$

and $\left\{L_{x^{i}}, L_{x^{i}}\right\}=\varepsilon_{i j k} L_{x^{k}}=L_{\left[x^{i}, x^{j}\right]_{s(3)^{*}}}$.

## Theorem (Covariance of the Momentum Map)

Under $J_{\Phi}$, the action $\Phi$ is taken into the coadjoint action of $G$ on $\mathfrak{g}^{*}$, namely $J_{\Phi}(\Phi(g, x))=A d_{g^{-1}}^{*}\left(J_{\Phi}(x)\right)$.
Equivalently, $H_{a}(\Phi(g, x))=H_{A d_{g} a}(x)$.

## Theorem (Covariance of the Momentum Map)

Under $J_{\Phi}$, the action $\Phi$ is taken into the coadjoint action of $G$ on $\mathfrak{g}^{*}$, namely $J_{\Phi}(\Phi(g, x))=A d_{g^{-1}}^{*}\left(J_{\Phi}(x)\right)$.
Equivalently, $H_{a}(\Phi(g, x))=H_{A d_{g} a}(x)$.

## Proof.

Let $g_{\lambda}$ a 1-parameter subgroup of $G$ with Hamiltonian $H_{b}$. Then $\frac{d}{d \lambda} H_{a}(\Phi(g, x))=\left\{H_{a}, H_{b}\right\}(x)=H_{[a, b]}(x)=H_{A d^{*-1}} a(x)$.

## Theorem (Covariance of the Momentum Map)

Under $J_{\Phi}$, the action $\Phi$ is taken into the coadjoint action of $G$ on $\mathfrak{g}^{*}$, namely $J_{\Phi}(\Phi(g, x))=A d_{g^{-1}}^{*}\left(J_{\Phi}(x)\right)$.
Equivalently, $H_{a}(\Phi(g, x))=H_{A d_{g} a}(x)$.

## Proof.

Let $g_{\lambda}$ a 1-parameter subgroup of $G$ with Hamiltonian $H_{b}$. Then $\frac{d}{d \lambda} H_{a}(\Phi(g, x))=\left\{H_{a}, H_{b}\right\}(x)=H_{[a, b]}(x)=H_{A d_{g^{-1}}^{*}} a(x)$.

## Corollary (Noether Theorem in $T^{*} M$ )

If $H$ is invariant under $\Phi$, then $J_{\Phi}$ is a first integral of $H$.

## Theorem (Covariance of the Momentum Map)

Under $J_{\Phi}$, the action $\Phi$ is taken into the coadjoint action of $G$ on $\mathfrak{g}^{*}$, namely $J_{\Phi}(\Phi(g, x))=A d_{g^{-1}}^{*}\left(J_{\Phi}(x)\right)$.
Equivalently, $H_{a}(\Phi(g, x))=H_{A d_{g} a}(x)$.

## Proof.

Let $g_{\lambda}$ a 1-parameter subgroup of $G$ with Hamiltonian $H_{b}$. Then

$$
\frac{d}{d \lambda} H_{a}(\Phi(g, x))=\left\{H_{a}, H_{b}\right\}(x)=H_{[a, b]}(x)=H_{A d_{g-1}^{*}}(x) .
$$

## Corollary (Noether Theorem in $T^{*} M$ )

If $H$ is invariant under $\Phi$, then $J_{\Phi}$ is a first integral of $H$.

## Proof.

Let $g_{\lambda}$ a 1-parameter subgroup of $G$ with Hamiltonian $H_{a}$. Then $0=\frac{d}{d \lambda} H(\Phi(g, x))=\left\{H, H_{a}\right\}$.

## Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold ( $P, \omega$ ) invariant by some Poissonian action $\Phi$ of $G$ on $P$ and set $P_{\mu}=J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}$.

## Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold ( $P, \omega$ ) invariant by some Poissonian action $\Phi$ of $G$ on $P$ and set $P_{\mu}=J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}$.
The Lie subgroup $G_{\mu} \subset G$ that keeps $\mu$ fixed, i.e. s.t. $A d_{g}^{*} \mu=\mu$, leaves $P_{\mu}$ invariant.

## Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold ( $P, \omega$ ) invariant by some Poissonian action $\Phi$ of $G$ on $P$ and set $P_{\mu}=J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}$.
The Lie subgroup $G_{\mu} \subset G$ that keeps $\mu$ fixed, i.e. s.t. $A d_{g}^{*} \mu=\mu$, leaves $P_{\mu}$ invariant.
Assume $\Phi$ satisfies the following properties:
(1) $\mu$ is a regular value (so $P_{\mu}$ is a smooth manifold);
(2) $\Phi$ is proper (e.g. $G$ is compact);
(3) $G_{\mu}$ acts on $P_{\mu}$ with no fixed points.

## Symplectic Reduction

Consider a Hamiltonian on a symplectic manifold ( $P, \omega$ ) invariant by some Poissonian action $\Phi$ of $G$ on $P$ and set $P_{\mu}=J_{\Phi}^{-1}(\mu), \mu \in \mathfrak{g}$.
The Lie subgroup $G_{\mu} \subset G$ that keeps $\mu$ fixed, i.e. s.t. $A d_{g}^{*} \mu=\mu$, leaves $P_{\mu}$ invariant.
Assume $\Phi$ satisfies the following properties:
(1) $\mu$ is a regular value (so $P_{\mu}$ is a smooth manifold);
(2) $\Phi$ is proper (e.g. $G$ is compact);
(3) $G_{\mu}$ acts on $P_{\mu}$ with no fixed points.

## Theorem (Marsden \& Weinstein, Arnold App. 5)

The quotient $M_{\mu}=P_{\mu} / G$ is a smooth manifold and inherits from $(P, \omega)$ a symplectic structure $\omega_{\mu}$.

## Example: Harmonic Oscillator

Consider the action of $\mathbb{S}^{1}$ on $P=\mathbb{R}^{2 n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(\|p\|^{2}+\|q\|^{2}\right)$.

## Example: Harmonic Oscillator

Consider the action of $\mathbb{S}^{1}$ on $P=\mathbb{R}^{2 n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(\|p\|^{2}+\|q\|^{2}\right)$.
The momentum map then is simply the Hamiltonian $H: P \rightarrow s o_{2}^{*} \simeq \mathbb{R}$.

## Example: Harmonic Oscillator

Consider the action of $\mathbb{S}^{1}$ on $P=\mathbb{R}^{2 n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(\|p\|^{2}+\|q\|^{2}\right)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow S O_{2}^{*} \simeq \mathbb{R}$.

All values are non-critical except for 0 .

## Example: Harmonic Oscillator

Consider the action of $\mathbb{S}^{1}$ on $P=\mathbb{R}^{2 n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(\|p\|^{2}+\|q\|^{2}\right)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow S O_{2}^{*} \simeq \mathbb{R}$.

All values are non-critical except for 0 .
All level sets $P_{\mu}, \mu \neq 0$, are spheres $\mathbb{S}^{2 n-1}$.

## Example: Harmonic Oscillator

Consider the action of $\mathbb{S}^{1}$ on $P=\mathbb{R}^{2 n}$ induced by the flow of the Harmonic Oscillator Hamiltonian $H(q, p)=\frac{1}{2}\left(\|p\|^{2}+\|q\|^{2}\right)$.

The momentum map then is simply the Hamiltonian $H: P \rightarrow S O_{2}^{*} \simeq \mathbb{R}$.

All values are non-critical except for 0 .
All level sets $P_{\mu}, \mu \neq 0$, are spheres $\mathbb{S}^{2 n-1}$.
All quotient spaces $M_{\mu}, \mu \neq 0$, are symplectomorphic to $\mathbb{C} P^{n-1}$ with a symplectic structure proportional to the Fubini-Study 2-form

$$
\omega=\frac{i}{2 \pi} \partial \bar{\partial} \ln |z|^{2}
$$

## Convexity of the Momentum Map

## Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a compact connected symplectic manifold $P$.
Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a convex polytope.
Example. Consider $P^{2 n}=\mathbb{C} P^{n}$ and $G=\mathbb{T}^{n+1}$ acting on it as $x=\left(z_{1}: \cdots: z_{n+1}\right) \rightarrow\left(e^{i \theta_{1}} z_{1}: \cdots: e^{i \theta_{n+1}} z_{n+1}\right)$.

## Convexity of the Momentum Map

## Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a compact connected symplectic manifold $P$.
Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a convex polytope.
Example. Consider $P^{2 n}=\mathbb{C} P^{n}$ and $G=\mathbb{T}^{n+1}$ acting on it as $x=\left(z_{1}: \cdots: z_{n+1}\right) \rightarrow\left(e^{i \theta_{1}} z_{1}: \cdots: e^{i \theta_{n+1}} z_{n+1}\right)$.
Each 1-parameter sugroup of rotations $\theta_{k}$ is induced by $H_{k}(x)=\left|z_{k}\right|^{2} /\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n+1}\right|^{2}\right)$.

## Convexity of the Momentum Map

## Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a compact connected symplectic manifold $P$.
Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a convex polytope.
Example. Consider $P^{2 n}=\mathbb{C} P^{n}$ and $G=\mathbb{T}^{n+1}$ acting on it as $x=\left(z_{1}: \cdots: z_{n+1}\right) \rightarrow\left(e^{i \theta_{1}} z_{1}: \cdots: e^{i \theta_{n+1}} z_{n+1}\right)$.
Each 1-parameter sugroup of rotations $\theta_{k}$ is induced by $H_{k}(x)=\left|z_{k}\right|^{2} /\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n+1}\right|^{2}\right)$.
The momentum map is $J(x)=\left(H_{1}(x), \ldots, H_{n+1}(x)\right)$.

## Convexity of the Momentum Map

## Theorem (Atiyah, Guillemin, Sternberg (1981))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a compact connected symplectic manifold $P$.
Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a convex polytope.
Example. Consider $P^{2 n}=\mathbb{C} P^{n}$ and $G=\mathbb{T}^{n+1}$ acting on it as $x=\left(z_{1}: \cdots: z_{n+1}\right) \rightarrow\left(e^{i \theta_{1}} z_{1}: \cdots: e^{i \theta_{n+1}} z_{n+1}\right)$.
Each 1-parameter sugroup of rotations $\theta_{k}$ is induced by $H_{k}(x)=\left|z_{k}\right|^{2} /\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n+1}\right|^{2}\right)$.
The momentum map is $J(x)=\left(H_{1}(x), \ldots, H_{n+1}(x)\right)$. Its image is the simplex $\left\{\left(s_{1}, \ldots, s_{n+1}\right) \mid s_{1}+\cdots+s_{n+1}=1, s_{1}, \ldots, s_{n+1} \geq 0\right\} \subset \mathbb{R}^{n+1}$, whose vertices are the images of the fixed points $x_{i}=\left(0: \cdots: z_{i}: \cdots: 0\right)$ of the action.

## Convexity of multivalued Momentum Maps

## Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a closed connected symplectic manifold $P$ with a multivalued momentum map $J_{\Phi}$. Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a cylinder over a convex polytope.

## Convexity of multivalued Momentum Maps

## Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a closed connected symplectic manifold $P$ with a multivalued momentum map $J_{\Phi}$. Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a cylinder over a convex polytope.

Example. Consider $P^{4}=\mathbb{T}^{2} \times \mathbb{C} P^{1}$ with coordinates $((\phi, \psi),(z: w))$ and symplectic structure
$\omega=d \phi \wedge d \psi+\frac{i}{2 \pi} d \bar{d} \ln \left|\frac{z}{w}\right|^{2}$

## Convexity of multivalued Momentum Maps

## Theorem (A. Giacobbe (2000))

Consider a Poisson action $\Phi: \mathbb{T}^{k} \times P^{2 n} \rightarrow P^{2 n}$ on a closed connected symplectic manifold $P$ with a multivalued momentum map $J_{\Phi}$. Then $J_{\Phi}(P) \subset \mathfrak{g}^{*}$ is a cylinder over a convex polytope.

Example. Consider $P^{4}=\mathbb{T}^{2} \times \mathbb{C} P^{1}$ with coordinates $((\phi, \psi),(z: w))$ and symplectic structure $\omega=d \phi \wedge d \psi+\frac{i}{2 \pi} d \bar{d} \ln \left|\frac{z}{w}\right|^{2}$
and consider the action of $G=\mathbb{T}^{3}$ on it defined by

$$
((\phi, \psi),(z: w)) \rightarrow\left(\left(\phi+\theta_{1}, \psi\right),\left(e^{i \theta_{2}} z: e^{i \theta_{3}} w\right)\right)
$$

The corresponding momentum map is multivalued:

$$
J((\phi, \psi),(z: w))=\left(\psi, \frac{|z|^{2}}{|z|^{2}+|w|^{2}}, \frac{|w|^{2}}{|z|^{2}+|w|^{2}}\right)
$$

Its image is $J\left(\mathbb{T}^{2} \times \mathbb{C} P^{1}\right)=\mathbb{R} \times S \subset \mathbb{R}^{3}$, where $S=\{(s, t) \mid s+t=1, s, t \geq 0\}$

## Related Literature

- E. Noether, Invariant Variation Problems, Gott.Nachr. 235-257, 1918, arXiv:physics/0503066
- Y. Kosmann-Schwarzbach, The Noether Theorems, Springer, 2011
- J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, Springer, 2002
- J.P. May, The Atiyah-Guillemin-Sternberg Convexity Theorem, 2010, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Schmaltz.pdf
- J. Kolk, Geometry of the Momentum Map, 2005, http://www.staff.science.uu.nl/~kolk0101/SpringSchool2004/momentum.pdf
- M. Audin, Torus Actions on Symplectic Manifolds, Birkauser, 2004
- N. Berline, Hamiltonian manifolds and moment map, 2011, http://www.math.polytechnique.fr/~berline/cours-Fudan.pdf
- A. Giacobbe, Convexity of Multi-valued Momentum Maps, GeometriæDedicata, 111:1, 2005


[^0]:    ${ }^{1}$ Haefliger \& Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

[^1]:    ${ }^{1}$ Haefliger \& Reeb, "Variétés (non séparés) a une dimension et structures feullietées du plan", Ens.Math. 3, 1957

