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Plan of the presentation:

• General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions,

Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations

between classical and quantum mechanics, optics, non-Hausdorff

manifolds, Completely Integrable Systems, KAM

• Poissonian dynamical systems
Poisson braket, odd-dimensional Hamiltonian systems, relations with

quantum mechanics

• Systems with symmetries
Noether’s theorem, symplectic reduction, momentum map,

Atiyah-Sternberg theorem

Slide 2/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Plan of the presentation:

• General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions,

Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations

between classical and quantum mechanics, optics, non-Hausdorff

manifolds, Completely Integrable Systems, KAM

• Poissonian dynamical systems
Poisson braket, odd-dimensional Hamiltonian systems, relations with

quantum mechanics

• Systems with symmetries
Noether’s theorem, symplectic reduction, momentum map,

Atiyah-Sternberg theorem

Slide 2/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Plan of the presentation:

• General properties of Hamiltonian systems
geodesics equations, Maupertuis principle, generating functions,

Lagrange submanifolds, Hamilton-Jacobi, Huygens principle, relations

between classical and quantum mechanics, optics, non-Hausdorff

manifolds, Completely Integrable Systems, KAM

• Poissonian dynamical systems
Poisson braket, odd-dimensional Hamiltonian systems, relations with

quantum mechanics

• Systems with symmetries
Noether’s theorem, symplectic reduction, momentum map,

Atiyah-Sternberg theorem

Slide 2/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Main Sources
• V.I. Arnold, “Mathematical Methods of Classical Mechanics”, GTM
60, Springer, 1989
• B. Dubrovin, A. Fomenko, S.P. Novikov, “Modern Geometry”, GTM
93, Springer, 1992
• R. Abraham & J.E. Marsden, “Foundations of Mechanics”,
Addison-Wesley, 1978
• J.M. Sourieau, “Structure of Dynamical Systems”, Springer, 1997
• V. Guillemin & S. Sternberg, “Symplectic techniques in Physics”,
CUP, 1984
• V. Guillemin & S. Sternberg, “Semi-classical analysis”, Int. Press,
2011
•W. Thirring, “Classical Mathematical Physics”, Springer, 1992
• G. Esposito, G. Marmo, S. Sudarshan, “From Classical to Quantum
Mechanics”, CUP, 2004
• A. Cannas da Silva, “Lectures on Symplectic Geometry”, LNM
1764, Springer, 2006

Slide 3/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Introduction

Slide 4/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Basic concepts and notations
The concept of Dynamical System can vary a considerably,
depending on the degree of abstraction one aims at.

Definition
A Dynamical System on a smooth manifold Mn of dimension n
and a smooth vector field ξ ∈ X(M).

Definition
The Flow φt

ξ
of ξ is a smooth map φξ : R×M→M s.t.

1 φ0
ξ

= idM ;

2
d
dt

φ
t
ξ
(x) = ξ(φ

t
ξ
(x));

3 φt
ξ
φs

ξ
= φ

t+s
ξ

when all three maps are defined.
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Main goal
Find as much as possible on the flow of ξ.

When a non-degenerate (0,2) tensor h = hαβdxα⊗dxβ is
defined on M, then we define iξH

h = dH, i.e. have a map

C∞(M) → X(M)

H 7→ ξH = hαβ ∂αH ∂β

where hαβhβγ = δ
γ

α.
In these systems, we can specialize the definition of DS:

Definition
A Dynamical system on the manifold (M,h) is given by a
smooth function H ∈ C∞(M).

Main goal
Find as much as possible on the flow of ξH .
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Example: Riemannian Manifolds
Here h is symmetrical and ξH is known as the gradient of H

LξH
H(x)

def
=

d
dt

H(φ
t
ξ
(x))

∣∣∣∣
t=0

=

[
d
dt

φ
t
ξ
(x)

∣∣∣∣
t=0

]α

∂αH(x) = hαβ
∂βH(x)∂αH(x) = ‖ξH(x)‖2≥ 0

This means that the flow lines of ξH are everywhere transversal

to the level curves of H at every non-critical point.

It turns out thought that the dynamics is much richer when h is
antisymmetric.
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Hamiltonian

Systems
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Definition
A Hamiltonian system on the symplectic manifold (M2n,ω) is
given by a smooth function H ∈ C∞(M).

By definition iξH
ω = dH. In this case

LξH
H(x) = ω(ξH ,ξH) = 0 ,

i.e. ξH is tangent to the level sets of H at every point. Moreover,

LξH
ω = iξH

dω + d(iξH
ω) = d(dH) = 0 ,

namely the flow is symplectic, i.e. φt
ξH
∈ Sp(M,ω) ∀t .

Locally we have coordinates (q1, . . . ,qn,p1, . . . ,pn) where
ω = dqα∧dpα (Darboux Theorem), so that

ξH =
∂H
∂pα

∂

∂qα
− ∂H

∂qα

∂

∂pα

=
∂H
∂pα

∂α−
∂H
∂qα

∂
α
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Example: Harmonic Oscillator
Manifold: (R2,ω = dq∧dp).

Hamiltonian: H(q,p) = 1
2(p2 + q2)

Hamiltonian vector field: ξH = p∂q−q∂p.

Equations of motion:(
q̇
ṗ

)
=

(
0 1
−1 0

)(
q
p

)

Flow: φt
H = e

(
0 1
−1 0

)
t

=

(
cos t sin t
−sin t cos t

)
∈ Sp(R2,dq∧dp)

This is the qualitative behviour of Hamiltonian orbits in 2
dimensions close to a stable equilibrium point.
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Example: Classical Mechanics on a
Riemannian manifold
Manifold: (T ∗M,ω = dqα∧dpα,g = gαβdqα⊗dqβ).

Hamiltonian: H(q,p) = m
2 gαβpαpβ + V (q)

Hamiltonian vector field:
ξH = gαβpβ ∂α−

(m
2 ∂αgµν pµpν + ∂αV

)
∂α

Equations of motion:(
q̇α

ṗα

)
=

(
gαβpβ

−m
2 ∂αgµν pµpν−∂αV

)
In case V ≡ 0, m = 1, we get the equation of geodesics:
d/dt(gαβq̇α) + 1

2∂αgµνgλµgρνq̇λq̇ρ = 0
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Example: motion under a potential in R2

Here H = 1
2p2 + V (q) and ξH(q,p) = p ∂q−V ′(q)∂p.

In particular, all critical points of ξH lie on the q axis and we get
centers for V ′′ > 0 and saddles for V ′′ < 0 (e.g. see Arn 2.4C):
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Locally

Hamiltonian
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Locally Hamiltonian vector fields
Given (M,ω), XHam(M) = {ξ ∈ X(M) | iξω is exact} and

Xloc Ham(M) = {ξ∈X(M) | iξω is closed}= {ξ∈X(M) |Lξω = 0}

Equivalently, ξ is locally Hamiltonian if ξ(M)⊂ TM is
Lagrangian with respect to ω = dq̇α∧dpα + dqα∧dṗα

Both XHam(M) and Xloc Ham(M) are Lie subalgebras of X(M).

Note: ξH = hαβ ∂αH ∂β depends only on the deriv. of H!

This means that the “Hamiltonian machinery” works even when
ξ is just locally Hamiltonian. In this case, the corresponding H is
a multivalued function.

Such systems have not been studied much so far, mainly
because they do not arise from the framework of classical
mechanics.
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Example 1: topological obstructions
Consider (T2,ω = dq∧dp) and η = dp.

Clearly η is not exact, so the vector field ξη = ∂q such that

iξη
ω = η

is only locally Hamiltonian.
Nevertheless, it can be considered as the differential of the
multivalued function H(q,p) = p.
The corresponding equations of motion are(

q̇
ṗ

)
=

(
1
0

)
and the corresponding flow is made of translations:
φt

η(q,p) = (q + t,p).
A sign that ξη is not Hamiltonian is that its orbits, i.e. the level
sets of H, are topologically non-trivial.
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Example 2: smooth obstructions

Definition
A regular 1-dim. foliation F of R2 is Hamiltonian if its leaves are
the level sets of a regular smooth function H, i.e. if
F = {dH = 0}, i.e. if TxF = span{ξH(x)} for all x ∈ R2.

Remark: F is usually a non-Hausdorff space, but this is not an
obstruction to define a smooth structure1.

In this concrete case, for example, Ck (F ) can be defined as the
set of Ck (R2) functions that are constant on the leaves of F ,
i.e. kerLξH

.

Of course, though, fundamental properties such as the
existence of a partition of unity do not hold in non-Hausdorff
spaces!

1Haefliger & Reeb, “Variétés (non séparés) a une dimension et structures
feullietées du plan”, Ens.Math. 3, 1957
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Locally every regular foliation is Hamiltonian but globally things
are different:

Theorem (Haefliger, Reeb 1957)
F is Hamiltonian iff C1(F ) contains regular functions.

This is the exception rather than the rule. It turns out, for
example, that there exist foliations such that C1(F ) contains
only constant functions! (see the article by Haefliger and Reeb
and the references therein).
Incidentally, we have an interesting related property:

Theorem (Haefliger, Reeb 1957)
On non-Hausdorff smooth manifolds of every dimension there
are infinitely many inequivalent smooth structures.
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Example: a non-Hamiltonian foliation of R2

Consider (R2,dq∧dp) and η = (1−p2)dq + 2(1−2p)dp.
Its leaves are shown below:
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Clearly Fη = {η = 0} is a regular foliation but no regular
function has this foliation as the set of its level curves.

Correspondigly, the vector field ξη = 2(2p−1)∂q + (1−p2)∂p

is regular and everywhere tangent to Fη but kerLξη
is generated

by

H(q,p) = (p + 1)3(p−1)eq

whose differential vanishes on the leaf p =−1.

Hence the derivative of every function of

C1(Fη) = {f ◦H | f ∈ C1(R)}

is null in that point.
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In coordinates, consider on

Fη ' Y = RtR/{x ∼ y if x = y and x < 0}
the two charts ψ,φ : (−ε,ε)→ Y s.t.
ψ(w) is the leaf of η passing through (0,−1−w) and
φ(z) is the on passing through (0,z + 1).

Since w and z are the coords of the same leaf iff
H(0,−1−w) = H(0,z + 1), the coords change is given by

w3(1 + w) = z(z + 2)3

which reduces to z ' w3 close enough to 0.

Given f ∈ C1(Fη), then its representatives in coordinates are
fψ(w) = f (ψ(w)) and fφ(z) = f (φ(z)). Then

fψ(w) = fφ ◦φ
−1 ◦ψ(w) = fφ(w3)

and
f ′ψ(w)|w=0 = 3w2fφ(w3)|w=0 = 0.
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Given f ∈ C1(Fη), then its representatives in coordinates are
fψ(w) = f (ψ(w)) and fφ(z) = f (φ(z)). Then

fψ(w) = fφ ◦φ
−1 ◦ψ(w) = fφ(w3)

and
f ′ψ(w)|w=0 = 3w2fφ(w3)|w=0 = 0.
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While in the example of the torus the vector field was only
locally Hamiltonian for topological (C0) reasons, here it depends
on the smooth (C1) structure:

Theorem (DL, 2014)
There exists a continuous funtion G such that (H,G) is locally
injective and Fη is Hamiltonian with respect to the (inequivalent)
smooth structure on the plane given by the charts (H,G) at
every point.
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The Poincaré-Cartan 1-form
θH = pαdqα−Hdt
Recall that the trajectory of a Hamiltonian system on M starting
at time t0 from q0 and arriving at time t1 in q1 is an extremal of
the action

S =
∫

γ

L(q, q̇)dt =
∫

γ

(pαdqα−Hdt),

γ ∈ {γ : [t0, t1]→M |γ(t0) = q0,γ(t1) = q1}

The Poincaré-Cartan 1-form

θH(t,q,p) = pαdqα−H(p,q)dt ∈ Ω1(R×T ∗M)

plays a fundamental role in Hamiltonian systems.
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Least Action principle in R×T ∗M

Theorem (see Arnold, 45C)
The extremals of the “extended action”

SR×T∗M
[γ] =

∫
γ

θH

in the space of all paths γ : [t0, t1]→ R×T ∗M such that

πt(γ(t)) = t , πM(γ(t0)) = (t0,q0) and πM(γ(t1)) = (t1,q1),

where πt(t,q,p) = t and πM(t,q,p) = (t,q),

are the solutions γ = (t,q(t),p(t)) : [t0, t1]→ R×T ∗M

of the Hamilton equations satisfying the initial conditions

q(t0) = q0, q(t1) = q1.

Remark: no condition is put on p(t0),p(t1)!
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Proof.
We consider a family of paths γε and set δ = d

dε

∣∣
ε=0. Then

δ

∫
γε

θH =
∫

γ

[pαδq̇α + q̇α
δpα−∂αH δqα−∂

αH δpα]dt =

= pαδqα

∣∣∣∣t1
t0

+
∫

γ

[(q̇α−∂
αH)δpα + (−ṗα + ∂αH)δqα]dt

From the line above it is clear why we need to fix the initial
conditions for the q (i.e. δq = 0 at t0 and t1) but not for the p.

It looks surprising that the extremals of the action on M coincide
with those of the corresponding action on R×T ∗M, where the
pα are allowed to vary independently from the qα.
The reason behind this is that, for fixed q̇α on TM, the value of
pα = ∂L(q,q̇)

∂q̇α is, by definition of Legendre transform, an extremal
of the function L = pαq̇α−H.
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Least Action Principle in ME = H−1(E)
Maupertuis Principle, Hamiltonian version

Theorem (Mapertuis principle I, see DFN Thm33.3.1)
The extremals of the “truncated action”

SE [γ] =
∫

γ

θ , θ = pα dqα (Liouville 1-form),

in the space Ω of all paths γ : [t0, t1]→ T ∗M such that

πM(γ(t0)) = q0, πM(γ(t1)) = q1, γ([t0, t1])⊂ME ,

where πM : T ∗M→M is the projection that “drops” the p,

are all the reparametrizations of the solutions γ : [t0, t1]→ T ∗M

of the Hamilton equations contained inside Ω.
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Proof.
Proceeding as in the previous case, we find that

δ

∫
γε

θ =
∫

γ

[q̇α
δpα− ṗαδqα]dt.

This time though the δq and δp are not independent:
since H is constant over all paths, then

0 = δ [H(qε(t),pε(t))] = ∂αH δqα + ∂
αH δpα

Since this is the only constraint, it means that

(q̇α, ṗα) ∝ (∂
αH,−∂αH) ,

namely the paths γ that extremizes the truncated action are
those whose image γ(M)⊂ME coincides with the image of a
solution of the coresponding Hamiltonian equations of motions,
i.e. is a solution modulo reparametrization.
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Least Action Principle in ME = H−1(E)
Maupertuis Principle, Lagrangian version

Theorem (Mapertuis pr. II, Arn 45D & AM Thm3.8.5)
Consider a Hamiltonian system H with Lagrangian
L(q, q̇) = q̇∂L/∂q̇−H(q,∂L/∂q̇).

Among all curves γ = q(t) : R→M connecting q0,q1 ∈M and
parametrized so that H(q,∂L/∂q̇) = E, the extremals of the
“truncated action”

SE [γ] =
∫

γ

θ =
∫ t1

t0

∂L
∂q̇α

q̇αdt ,

are all reparametrizations of the solutions of the Lagrangian
equations of motion which keep the energy equal to E.
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Proof.
Let L : TM→ T ∗M be the Legendre transformation and
consider any curve γ = q(t) : R→M connecting q0 with q1

in such a way that H(q(t),∂L/∂q̇) = E .

Then the curve γ̃ = L ◦ γ : R→ T ∗M satisfies the conditions of
the Maupertuis’ principle in the Hamiltonian version

and therefore it is an extremal of the truncated action

iff γ̃ is a reparametrization of the solutions of the Hamiltonian
equations of motion

iff γ is a reparametrization of the solutions of the Lagrangian
equations of motion.
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Example 1: Geodesics

Theorem
On a Riemannian manifold (M,g), the extremals of the action

S =
∫

γ

√
gαβq̇αq̇βdt are (unparametrized) geodesics.

Proof.
Geodesics are the solutions of the Hamiltonian dynamical
system given by the purely kinetic energy Hamiltonian

H(q,p) = 1
2gαβpαpβ. On H = E , gαβpαpβ =

√
E
√

gαβpαpβ

and so the extremals of
∫

γ

gαβq̇αq̇βdt are also extremals of∫
γ

√
gαβq̇αq̇βdt .
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Example 2: Motion in a Riemann Manifold

Theorem
A particle of mass m on a Riemannian manifold (M,g)

subjected to a potential V (q) moves, at the energy level E,

along the geodesics of the new metric

g̃αβ = 2m(E−V (x))gαβ .
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Example 2: Motion in a Riemann Manifold

Proof.
If H(q,p) = 1

2gαβpαpβ + V (q) = 1
2gαβq̇αq̇β + V (q), then, in ME ,

gαβq̇αq̇β = 2(E−V (q)) .
Hence

S[γ] =
∫

γ

pαdqα =
∫

γ

gαβq̇αq̇βdt ,

which we can write as

S[γ] =
∫

γ

√
2(E−V (q))

√
gαβq̇αq̇βdt =

∫
γ

√
g̃αβq̇αq̇βdt ,

from which it is clear that the extremals of the Maupertuis action
with energy E coincide with the geodesics of M with respect to
the metric

g̃αβ = 2(E−V (q))gαβ.
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Maupertuis’ principle allows us to apply to Hamiltonian
dynamics important results of Riemannian geometry, e.g. the
fact that, if in some homotopy class of loops there is a curve of
shortest length, this is a geodesics:

Double Pendulum

Corollary (See Arn 45C)
For every n1,n2 there is a periodic motion of the double
pendulum (M = T2) such that one pendulum makes n1

oscillations while the other makes n2 oscillations.

Rigid Body

Corollary (See Arn 45C)
Given a rigid body (M = SO3), in any potential field there exists
at least one periodic motion of the body. Moreveor, there are
periodic motions for every arbitrary high value of the energy.
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Example: Motion of light
The Hamiltonian for rays of light is H(q,p) = c(q)‖p‖.

On ME , ‖p‖=
E

c(q)
and q̇α = c(q) pα

‖p‖ so

S0 =
∫

γ

θ =
∫

γ

pαq̇αdt = E
∫

γ

‖q̇‖gdt

where gαβ = 1
c(q)2 δαβ

Theorem (Fermat’s principle – Novikov 33.3.3)
The path that light rays take by passing from a point A to a point
B in a isotropic media are geodesics with respect to the metric
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Generating Functions
Symplectic diffeomorphisms of a manifold M2n, which are 2n
maps of 2n variables, are actually determined by a single
function of 2n variables:

Theorem
f : (M2n,ω1)→ (N2n,ω2) is symplectic iff f ’s graph Γf ⊂M×N
is Lagrangian submanifold of (M×N,ω1−ω2).

Definition
Let θ1,2 be local Liouville 1-forms for ω1,2 and i : Γf →M×N
the inclusion of the graph. Then locally i∗(θ1−θ2) = dS.
S is the generating function for f .

This means that locally θ1−θ2 = pαdqα−PadQa = dS(q,Q),
i.e. locally

pα =
∂S
∂qα

, Pa =
∂S

∂Qa .
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Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds
Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

T ∗M T ∗(T ∗M) T (T ∗M) T ∗(TM)

(qα,pα) ((qα,pα),(wα,vα)) ((qα,pα),(vα,wα)) ((qα,vα),(pα,wα))

pαdqα wαdqα + vαdpα vαdpα−wαdqα pαdqα + wαdvα

ψ : T (T ∗M) → T ∗(T ∗M)
((qα,pα),(vα,wα)) 7→ ((qα,pα),(−wα,vα))

φ : T (T ∗M) → T ∗(TM)
((qα,pα),(vα,wα)) 7→ ((qα,vα),(wα,pα))

Slide 39/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds
Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

T ∗M T ∗(T ∗M) T (T ∗M) T ∗(TM)

(qα,pα) ((qα,pα),(wα,vα)) ((qα,pα),(vα,wα)) ((qα,vα),(pα,wα))

pαdqα wαdqα + vαdpα vαdpα−wαdqα pαdqα + wαdvα

ψ : T (T ∗M) → T ∗(T ∗M)
((qα,pα),(vα,wα)) 7→ ((qα,pα),(−wα,vα))

φ : T (T ∗M) → T ∗(TM)
((qα,pα),(vα,wα)) 7→ ((qα,vα),(wα,pα))

Slide 39/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds
Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

T ∗M T ∗(T ∗M) T (T ∗M) T ∗(TM)

(qα,pα) ((qα,pα),(wα,vα)) ((qα,pα),(vα,wα)) ((qα,vα),(pα,wα))

pαdqα wαdqα + vαdpα vαdpα−wαdqα pαdqα + wαdvα

ψ : T (T ∗M) → T ∗(T ∗M)
((qα,pα),(vα,wα)) 7→ ((qα,pα),(−wα,vα))

φ : T (T ∗M) → T ∗(TM)
((qα,pα),(vα,wα)) 7→ ((qα,vα),(wα,pα))

Slide 39/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Hamiltonian and Lagrangian formulations
via Lagrangian submanifolds
Lagrangian submanifolds are a powerful language in the
framework of Hamiltonian dynamics. In particular we can
reformulate the whole theory with this language:

Consider the following symplectic bundles and diffeomorphisms:

T ∗M T ∗(T ∗M) T (T ∗M) T ∗(TM)

(qα,pα) ((qα,pα),(wα,vα)) ((qα,pα),(vα,wα)) ((qα,vα),(pα,wα))

pαdqα wαdqα + vαdpα vαdpα−wαdqα pαdqα + wαdvα

ψ : T (T ∗M) → T ∗(T ∗M)
((qα,pα),(vα,wα)) 7→ ((qα,pα),(−wα,vα))

φ : T (T ∗M) → T ∗(TM)
((qα,pα),(vα,wα)) 7→ ((qα,vα),(wα,pα))

Slide 39/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

The pull-back ψ∗θ
T∗(T∗M)

, φ∗
T∗(TM)

θ2 on T (T ∗M) of the canonical

Liouville 1-forms on T ∗(T ∗M) and T ∗(TM) are given by:

ψ
∗
θ

T∗(T∗M)
= vαdpα−wαdqα , φ

∗
θ

T∗(TM)
= pαdvα + wαdqα

Theorem (Tulczyjew 1974)
Consider the symplectic structure ω = dvα∧dpα−dwα∧dqα

on T (T ∗M). Then:
1 ψ is symplectic, φ is anti-symplectic;

2 ψ∗θ
T∗(T∗M)

+ φ∗θ
T∗(TM)

= d(pαvα);

3 if i : F ↪→ T (T ∗M) is a Lagrangian submanifold, then
ψ(F)⊂ T ∗(T ∗M) is Lagrangian with generating function
H : T ∗M→ R (i.e. (ψ◦ i)∗θ

T∗(T∗M)
= dH) and

φ(F)⊂ T ∗(TM) is Lagrangian with generating function
L : TM→ R (i.e. (φ◦ i)∗θ

T∗(TM)
= dL);

4 H(q,p) = pαvα−L(q,v), with pα =
∂L

∂vα
.
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Hamilton-Jacobi

Equation
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Huygens principle
The idea behind Hamilton-Jacobi equations comes from the
Huygens principle in optics:

Theorem (Huygens principle, Arn 46A, DNF 35.2)
Consider the light emanating from a point q0. The wave front
Φq0(t + s) is the envelope of the fronts Φq(s) for all q ∈ Φq0(t).
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Huygens principle
The level set of Sq0(q) (optical length) is the wave front.

Its grad. p =
∂S
∂q

is the vector of normal slowness of the front.

Note that the directions of q̇ and p do not coincide in an
anisotropic medium!
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Optical-Mechanics Analogy
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Hamilton-Jacobi equations v1
The connection between Huygens principle and Hamiltonian
equations comes from the three following observations:

Theorem 1
The 1-form η ∈ Ω1(M) is closed iff η∗ω = 0, i.e. iff its graph
η(M)⊂ T ∗M is a Lagrangian submanifold of T ∗M.

Proof.
η∗ω = dqα∧dηα = ∂βηαdqα∧dqβ =

= 1
2(∂βηα−∂αηβ)dqα∧dqβ

Hence locally α = dS, namely α(M) writes as pα =
∂S
∂qα

.
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Theorem 2
Let Γn ⊂ T ∗Mn be Lagrangian and contained in H−1(E0).
Then ξH ∈ T Γ.

Proof.
Since ω(ξH ,ζ) = dH(ζ) = 0, ∀ζ ∈ T Γ, and Γ is Lagrangian,
then ξH ∈ T Γ at every point.

Theorem 3
Let Γn−1 ⊂ T ∗Mn be isotropic. Then

Γn
T =

⋃
t∈[0,T ]

φ
t
H(Γn−1)

is Lagrangian ∀T > 0.
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Theorem (HJ v1, DFN 35.1.6, AM 5.2.18)
Given a Hamiltonian H on T ∗M and a closed 1-form η on M,
the following are equivalent:

1 d(η∗H) = 0;

2 η(M) is a Lagrangian submanifold of T ∗M invariant by the
Hamiltonian flow φt

H ;

3 for every curve γ = q(t) : R→M satisfying q̇α =
∂H
∂pα

∣∣∣∣
η(q)

,

the curve γ̃(t) = η(q(t)) is an integral curve of ξH ;

4 if S is a generating function for η(M), namely if locally
η = dS, then S satisfies the (time-independent)
Hamilton-Jacobi equation

H

(
q,

∂S
∂q

)
= E0
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The name S for the generating function was not by chance:

Theorem
Let Γ⊂ T ∗M be Lagrangian and contained in H = E0,
m0,m ∈ Γ two “close enough” points and γ1,2 : [0,1]→ Γ two
paths s.t. γ1,2(0) = m0 and γ1,2(1) = m.
Then

∫
γ1

θ =
∫

γ2
θ.

Proof.
Since Γ is Lagrangian,

dθ|Γ = ω|Γ = 0

and so locally θ = dS, i.e.

pα =
∂S
∂qα

,

and therefore ∫
γi

θ = S(m)−S(m0) .
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Corollary (“Method of Characteristics”)
For a fixed q0, assume that the Lagrangian submanifold
Γn ⊂ {H(q,p) = E0} ⊂ T ∗M projects with full rank on M close
to q0. Then the “truncated action”

SE0(q) =
∫ q

q0

pαdqα

solves the Hamilton-Jacobi equation

H

(
q,

∂SE0

∂q

)
= E0

Proof.
Since dSE0 = pαdqα, we have that

pα =
∂SE0

∂qα

so that, since Γ⊂ {H(q,p) = E0}, H(q,∂qSE0) = E0.
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Application to solving 1st order PDEs
Consider the 1st order implicit PDE with “Cauchy boundary
conditions”:

H(q,∂qS) = E0 , S
∣∣
Γn−1 = s0 ∈ C∞(Γn−1)

where H|Γn−1 = E0, Γn−1 is transversal to the Hamiltonian flow
of H and projects diffeomorphically on M.

Then the previous Corollary shows that, at least for small T , the
solution on πM(ΓT ) is given by

SE0(q) = s0(q0) +
∫ q

q0

pαdqα ,

where q0 is the point of Γn−1 such that q = Φt
H(q0) for some t .
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Example 1: Harmonic Oscillator

H(x ,y ,px ,py ) =
1
2

(
p2

x + p2
y + x2 + y2)

The level set H = 1
2 is the unitary 3-sphere S3.

The corresponding HJ equation is

(∂xS)2 + (∂yS)2 + x2 + y2 = 1

Every orbit is periodic with period 2π and lies on a torus

p2
x + x2 = α2, p2

y + y2 = 1−α2, so the manifold of trajectories
Γ2π of every loop Γ1 ⊂ S3 transversal to the flow is a 2-torus.

Take Γ1 = {py = px = 0,x2 + y2 = 1}. Then the surface ΓT is

x = cosφcos t , y = sinφcos t

px =−cosφsin t , py =−sinφsin t
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Hence

S(x(T ),y(T )) =
∫ T

0
(px dx + py dy) =

∫ T

0
cos2 t dt =

1
2

(T + sin(2T ))

At time T , x(T ) = r(T )cosφ, namely r(T ) = cos−1 T , so

S(r) =
1
2

cos−1 r + r
√

1− r2

The solution in the annullus 1≥ r ≥ r0 > 0 is therefore

S(r ,θ) = s0(θ) +
1
2

cos−1 r + r
√

1− r2

Remarks: 1. In order to have a solution on the whole r ≤ 1, we

must have s0 = const.
2. The solution is singular where Γt is not a graph.
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Example 2: Cohomological Equation
Lξf = g , ξ ∈ χ(M) , f ,g ∈ C∞(M)

Every ξ ∈ χ(M) is the base component of a Ham. vector field
ξH : just take H(q,p) = pαξα(q).

In order to solve the equation
Lξf = g

with the Method of Characteristics consider the Hamiltonian
H(q,p) = pαξ

α(q)−g(q)

Its associated HJ equation corresponding to Energy level 0 is

0 = H

(
q,

∂f
∂q

)
= ξ

α(q)
∂f

∂qα
(q)−g(q) = Lξf −g

Once the value of f is given on some n−1-dimensional
submanifold transversal to ξ, its (local) solution is given by

f (q) =
∫ q

q0

pαdqα =
∫ t

t0

∂f
∂q

q̇αdt =
∫ t

t0

∂f
∂q

ξ
αdt =

∫ t

t0
g(q(t))dt ,

(the integral is taken over the integral traj. of ξ joining q0 and q)
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Hamilton-Jacobi equations v2
An alternate way to look at the HJ equation is that we want to
find a symplectic diffeomorphism ψ : (q,p)→ (Q,P) where the
Hamiltonian writes in a simpler way.

E.g. in the best case scenario ψ∗H(Q,P) only depends on P ’s,
so that the flow of φt

H is conjugated with the flow of the “free
particle”.

We recall that such a ψ is actually determined by a single
function S(q,Q) such that

pαdqα−PαdQα = dS

This new generating function S therefore satisfies the HJ eq.
but it also depends on n “external parameters” Qα, so that it
gives rise to a Lagrangian foliation of T ∗Q where every leaf is
isoenergetic.
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Hamilton-Jacobi equation (time-dependent)
In case of time-dependent Hamiltonians H(t,q,p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.

base space M R×M

phase space T ∗M T ∗R×T ∗M

coordinates (qα,pα) (t,E ,qα,pα)

symp. form dqα∧dpα dqα∧dpα−dt ∧dE

Hamiltonian H(t,q,p) H̃(t,E ,q,p) = H(t,q,p)−E

Ham. eqs.

(
q̇
ṗ

)
=

(
∂H/∂p
−∂H/∂q

) 
q̇
ṗ
ṫ
Ė

=


∂H/∂p
−∂H/∂q

1
∂H/∂t


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repeat verbatim all we did so far using the following dictionary:

time ind. time dep.

base space M R×M

phase space T ∗M T ∗R×T ∗M

coordinates (qα,pα) (t,E ,qα,pα)

symp. form dqα∧dpα dqα∧dpα−dt ∧dE

Hamiltonian H(t,q,p) H̃(t,E ,q,p) = H(t,q,p)−E

Ham. eqs.

(
q̇
ṗ

)
=

(
∂H/∂p
−∂H/∂q

) 
q̇
ṗ
ṫ
Ė

=


∂H/∂p
−∂H/∂q

1
∂H/∂t



Slide 56/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Hamilton-Jacobi equation (time-dependent)
In case of time-dependent Hamiltonians H(t,q,p) we can
repeat verbatim all we did so far using the following dictionary:

time ind. time dep.

base space M R×M

phase space T ∗M T ∗R×T ∗M

coordinates (qα,pα) (t,E ,qα,pα)

symp. form dqα∧dpα dqα∧dpα−dt ∧dE

Hamiltonian H(t,q,p) H̃(t,E ,q,p) = H(t,q,p)−E

Ham. eqs.

(
q̇
ṗ
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ṗ

)
=

(
∂H/∂p
−∂H/∂q

) 
q̇
ṗ
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Hamilton-Jacobi equation (time-dependent)
In this environment, the generating function is given by

S(m) = S(m0) +
∫

γ

[pαdqα−H(t,q,p)]dt

and satisfies the complete Hamilton-Jacobi equation

H

(
q,

∂S
∂q

)
=−∂S

∂t

The solution to this equation provides a 1-parameter family of
symplectomorphisms St which make the Hamiltonian H equal to
constant at all time.
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HJ equation and Quantum Mechanics
Feynmans’ two postulates for QM on Rn:

1 The probability 〈q1|ψt |q2〉 that a particle represented by
the wavefunction ψt ∈ L2(Rn) moves from q1 to q2 under a
Hamiltonian H(q,p) = 1

2m δijpipj + V (q) is the “sum” over
all contribution from all possible paths joining the two
points;

2 The contribution to ψt of a path γ is given by e
i
~S[γ], where

S[γ] =
∫

γ
θH is the classical action.

Consider a single contribution ψt(q) = e
i
~S[γ] and assume that

S is a solution of the HJ time-dependent equation.

Which equation does ψ satisfy?
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S(q, t) =−i~ lnψ

∂S
∂qα

=− i~
ψ

∂ψ

∂qα
=⇒

[
∂S
∂qα

]2

=−~2

ψ

∂2ψ

∂(qα)2

so the HJ equation

∂S
∂t

=
1

2m

[
δ

ij ∂S
∂qα

∂S

∂qβ

]
+ V (q)

writes as

−i~ψ̇ =− ~2

2m
∆ψ + V (q)ψ +

i~
2m

ψ∆S

Apart for the non-linear term, this is exactly the Schrodinger
equation of quantum mechanics −i~ψ̇ = Ĥψ, where Ĥ is comes
from H via pα→−i~∂

∂qα and qα→ “multiplication by qα”.

Slide 59/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

S(q, t) =−i~ lnψ

∂S
∂qα

=− i~
ψ

∂ψ

∂qα
=⇒

[
∂S
∂qα

]2

=−~2

ψ

∂2ψ

∂(qα)2

so the HJ equation

∂S
∂t

=
1

2m

[
δ

ij ∂S
∂qα

∂S

∂qβ

]
+ V (q)

writes as

−i~ψ̇ =− ~2

2m
∆ψ + V (q)ψ +

i~
2m

ψ∆S

Apart for the non-linear term, this is exactly the Schrodinger
equation of quantum mechanics −i~ψ̇ = Ĥψ, where Ĥ is comes
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Now consider instead the Schrodinger equation

~
i

ψ̇ =− ~2

2m
∆ψ + V (q)ψ

and write ψt(q) = e
i
~S[γ] . Which eq. does S satisfy?

Proceeding like above we find

−∂S
∂t

=
1

2m

[
δ

ij ∂S
∂qi

∂S
∂qj

]
+ V (q)− i~

2m
∆S

namely

−∂S
∂t

= H

(
q,

∂S
∂q

)
− i~

2m
∆S

that, for ~→ 0, reduces exactly to the HJ equation!

This is the simplest way to show that QM reduces to CM for
~→ 0.
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The WKB Method
Consider again the Schrodinger equation in Rn

−i~ψ̇ =− ~2

2m
∆ψ + V (q)ψ

Under the ansatz ψ(x) = eiS(x)/~, at 1st order in ~ then S is the
solution of the corresponding HJ equation.
This though is a very poor approximation, e.g. ψ 6∈ L2(Rn).
Under the ansatz

ψ(x) = a(x)eiS(x)/~

ψ is an eigenfunction for the quantum Hamiltonian Ĥ iff

i~
(

a∆S + 2δ
αβ

∂βa∂αS
)

+~2∆a = 0

At the 1st order in ~ we get the homogeneous transport
equation

a∆S + 2δ
αβ

∂αa∂βS = 0 .
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Example: QM on the line
The 2nd order solution ψ = aeiS/~ is called semiclassical
approximation of the exact solution of the Schrodinger equation.
In R, the homegenous transport equation writes

aS′′+ 2a′S′ = 0

so that
a(x) =

c√
S′(x)

=
c

[4(E0−V (x)]1/4
.

This method, called WKB (Wentzel, Kramers, Brillouin), is at the
base of microlocal analysis.
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Completely

Integrable

Systems
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Poisson bracket & First Integrals
Let (M2n,ω) be a symplectic mfd. Functions in C∞(M) are
called observables.

An observable f is a constant of motion if LξH
f = 0, i.e. iff

ω(ξH ,ξf ) = 0.

We set {f ,g}= ω(ξf ,ξg) and we say that f is a first integral for
H iff {H, f}= 0.

We say that H is completely integrable if it has n independent
1st integrals in involution (i.e. commuting with each other).

Theorem
If {f1, . . . , fn} are n commuting observables in involution, all level
submanifolds f1 = c1, . . . , fn = cn are Lagrangian.
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Arnold-Liouville Theorem

Theorem (Arnold-Liouville Theorem)
If {H = f1, . . . , fn} is a CIS on M and Mc = {fi = ci}. Then:

1 if Mf is compact, each connected component is
diffeomorphic to Tn;

2 in the neighborhood of each such torus, there exists
action-angle symplectic coordinates I1, . . . , In,ϕ1, . . . ,ϕn

such that the ϕα are coordinates on the torus and
H = H(I1, . . . , In).

In particular in such coordinates the Hamilton eqs writes

İα = 0 , ϕ̇
α =

∂H
∂Iα
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1 if Mf is compact, each connected component is
diffeomorphic to Tn;

2 in the neighborhood of each such torus, there exists
action-angle symplectic coordinates I1, . . . , In,ϕ1, . . . ,ϕn

such that the ϕα are coordinates on the torus and
H = H(I1, . . . , In).
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Hamilton-Jacobi and CIS
Finding coordinates where the HJ PDE is separable is the only
general effective method to find integrals of motion:

Theorem (Jacobi, see Arn 47B)
If the Hamilton-Jacobi equation H (q,∂qS) = E0 admits a
solution S(q,Q), depending on n parameters Q1, . . . ,Qn, such
that the Hessian

∂2S
∂q∂Q

is always non-degenerate, then the corresponding Hamiltonian
equations (

q̇
ṗ

)
=

(
∂H/∂p
−∂H/∂q

)
can be solved explicitly by quadratures and the n functions
Qα(q,p) are all integrals of motion.
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Example 1: Harmonic Oscillator
Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(q,p) = 1

2

(
p2 + ω2q2

)
.

Every leaf ME = {H = E > 0} is an ellipse with interior SE .

Define I =
1

2π

∫
ME

p dq =
1

2π

∫
SE

dp∧dq =
E
ω
.

Hence we set I = H/ω and define

S(q, I) =
∫

p dq =
∫ √

2Iω−ω2q2dq .
Then we get

ϕ =
∂S
∂I

=
∫

ω√
2Iω−ω2q2

dq = sin−1
(

q

√
ω

2I

)
−ϕ0

The coord. change (q,p) 7→ (ϕ, I) is symplectic (i.e.
dϕ∧dI = dq∧dp) and the equations of motion now write

ϕ̇ = ω , İ = 0

Slide 68/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Example 1: Harmonic Oscillator
Clearly every Hamiltonian system on a symplectic 2-manifold is
a CIS. E.g. consider H(q,p) = 1

2

(
p2 + ω2q2

)
.

Every leaf ME = {H = E > 0} is an ellipse with interior SE .

Define I =
1

2π

∫
ME

p dq =
1

2π

∫
SE

dp∧dq =
E
ω
.

Hence we set I = H/ω and define

S(q, I) =
∫

p dq =
∫ √

2Iω−ω2q2dq .
Then we get

ϕ =
∂S
∂I

=
∫

ω√
2Iω−ω2q2

dq = sin−1
(

q

√
ω

2I

)
−ϕ0

The coord. change (q,p) 7→ (ϕ, I) is symplectic (i.e.
dϕ∧dI = dq∧dp) and the equations of motion now write

ϕ̇ = ω , İ = 0
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Example 2: Geodesics on an Ellipsoid
(Jacobi, 1835)

Problem: study geodesics on
x2

a2 +
y2

b2 +
z2

c2 = 1.

Consider confocal ellipsoidal coordinates λ1,λ2,λ3 defined by

x2

a2−λ
+

y2

b2−λ
+

z2

c2−λ
= 1

If a < b < c then λ1 < a < λ2 < b < λ3 < c. Hence Ei given by

x2

a2−λi
+

y2

b2−λi
+

z2

c2−λi
= 1

is an ellipsoid, elliptic hyperboloid and hyperbolic hyperboloid for
respectively i = 1,2,3.
Note that λi ,λj can be used as local coordinates on Ek .
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In coordinates λ2,λ3 on the ellipsoid E1 the metric is

g = (λ3−λ2)

[
λ3−λ1

f (λ3)
dλ

2
3−

λ2−λ1

f (λ2)
dλ

2
2

]
,

where f (λ) = 4(a−λ)(b−λ)(c−λ) .

So H(λ2,λ3) =
1

λ3−λ2

[
f (λ3)

λ3−λ1
p2

3 +
f (λ2)

λ2−λ1
p2

2

]
and therefore the Hamilton-Jacobi equation

1
λ3−λ2

[
f (λ3)

λ3−λ1

(
∂S
∂λ3

)2

+
f (λ2)

λ2−λ1

(
∂S
∂λ2

)2
]

= 1

is separable.
Hence the system is completely integrable!
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Remainder: classic Galois theory in 1 slide
Consider a field k and a polynomial p ∈ k [x]. The splitting field
(SF) L(p) is the field extension (modulo isomorphisms) of
minimal degree over k in which p splits as p(x) = Π∂p

i=1(x−ai).

E.g. C = R[x]/(x2 + 1) is the SF of p(x) = x2 + 1 over R.
and Q[3

√
2,ei2π/3] is the SF of p(x) = x3−2 over Q.

The Galois group Aut(L(p)/k) of L(p) is the group of
automorphisms of L that leaves k invariant.

E.g. Aut(C/R)' {±1}, Aut(Q[3
√

2,ei2π/3]/Q)' D6

Theorem
If the roots of p(x) can be written in terms of radicals, then its
SF is soluble. If ∂p < 5, then L(p) is soluble.

E.g. Aut(L(x5− x−1)/Q)' S5 is not soluble (Artin).
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Galois theory of CIS
How to find out whether a Hamiltonian system (M2n,ω,H) is or
not a Completely Integrable System?

The idea is to study the equations of second variations on TM

Ẋ α(t) =
∂ξα

H

∂xβ

∣∣∣∣
γ(t)

X β(t) , X(t) ∈ Tγ(t)M

defined on integral trajectories γ of the Hamiltonian equations of
motion,
where (xα) are coords on M and (X α) the variations along γ.
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defined on integral trajectories γ of the Hamiltonian equations of
motion,
where (xα) are coords on M and (X α) the variations along γ.
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Example: the Hénon-Heiles system

H(x ,y ,px ,py ) =
1
2

(
p2

x + p2
y

)
− y2(A + x)− λ

3
x3

ẋ
ẏ
ṗx

ṗy

=


px

py

y2 + λx2

2(A + x)y



Clearly there are orbits with y(t) = py (t) = 0 for all t .
Along these trjectories the linearized equation writes

Ẋ
Ẏ
Ṗx

Ṗy

=


Px

Py

2λxX
2AY + 2xY


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Theorem (Audin, III.1.12)
If f : M→ R is a first integral of ξH and k is the first order where
the k-th order derivative Dk f : Sk (TM)→ R is not zero on γ,
then

f o
γ (t,X ,P) = Dk f

∣∣
γ(t)((X ,P), . . . ,(X ,P))

is a first integral of the second variations equation on γ.

E.g., in case of the Henon-Heiles system, on a solution of the
form γ(t) = (x(t),0,px (t),0) the integral of motion associated to
the Hamiltonian H = 1

2

(
p2

x + p2
y

)
− y2(A + x)− λ

3 x3 is

Ho
γ (t,X ,Y ,Px ,Py ) = dH

∣∣
γ(t)(X ,Y ,Px ,Py ) = px (t)Px −λx2(t)X

Indeed, on a solution of the linearized equation, we have that

dHo
γ

dt
= ṗxPx + px Ṗx −2λxẋX −λx2Ẋ =

= λx2Px + px2λxX −2λxpxX −λx2Px = 0
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Differential Galois Theory

Definition
Given an algebraically close field k with a derivation D
(e.g. C(t) with d/dt) and a linear ODE

Ẋ = AX , A ∈Mn(k) ,

the Picard-Vessiot extension L(A) of k for A is the field
generated on k by the solutions of the ODE.

Like in the standard Galois theory, such extension is unique
modulo differential isomorphisms.

Definition
The Galois group Gal(A)⊂ GLn(k) of the linear ODE Ẋ = AX
is the group of differential automorphisms of L(A) that fixes k .

Slide 76/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Differential Galois Theory

Definition
Given an algebraically close field k with a derivation D
(e.g. C(t) with d/dt) and a linear ODE
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Example 1
Consider the linear ODE

x ′ =
α

t
x

on C(t), namely A =
(

α

t

)
∈M1(C(t)),

whose solution is x(t) = tα + c.

Then

1 L(A)' C(t), Gal(A)' {1} if α ∈ Z;

2 L(A)' C(t)[u]/〈uq− tp〉, Gal(A)' Zq if α = p/q ∈Q;

3 L(A)' C(t,u), Gal(A)' GL1(C)' C∗ if α 6∈Q.
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Example 2 – the Cauchy equation
Consider the Cauchy equation x ′′ = α

t2 x on C(t), namely

A =

(
0 1
α

t2 0

)
∈M2(C(t)), and assume α 6=−1

4 .

Two independent solutions are the solutions of the 1-st order
eqs x ′ = αi

t x , where α1,2 are the two distinct solutions of
z2− z−α = 0.
These two solutions u1,2 are independent and if σ ∈Gal(A) then

σ(ui)
′ = σ(u′i ) = σ

(
αi

t
ui

)
=

αi

t
σ(ui)

namely σ(ui) = λui , λ ∈ C, i.e. all matrices of Gal(A) are
diagonal. In particular Gal(A) is abelian.
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Example 3 – the Airy equation
Finally consider the Airy equation x ′′ = tx on C(t), namely

A =

(
0 1
t 0

)
∈M2(C(t)).

Let u and v be two independent solutions. Then their Wronskian
is a constant, since

(uv ′−u′v)′ = uv ′′−u′′v = t(uv−uv) = 0

Redefine u and v so that their Wronskian is 1. Then, if
σ ∈ Gal(A)⊂ GL2(C), a direct calculation shows that, with
respecct to the base (u,v),

detσ = det

(
σ(u) σ(v)
σ(u′) σ(v ′)

)
= σ

(
u v
u′ v ′

)
= 1

namely Gal(A)⊂ SL2(C).
It can be proved that indeed Gal(A)' SL2(C).
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Three fundamental theorems

Theorem (Morales & Ramis, Audin III.1.13)
If f is a first integral, the Galois group of the second variations
equation leaves f o invariant.

Theorem (Audin III.2.3)
The Galois group of the second variations equation is a
symplectic subgroup of GL(TM).

Theorem (Audin III.3.10)
The Lie algebra of the Galois group of the second variation
equation of a CIS is abelian.
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Example: H = 1
2

(
p2

x +p2
y

)
− y2(A+ x)− λ

3x3

Apply these results to the Henon-Heiles system.

For λ 6= 0 we consider the trajectory

x(t) =
6

λt2 ,px (t) = ẋ(t),y(t) = 0,py (t) = 0.

For λ = 0 we consider the trajectory

x(t) =
t
2
−A,px (t) = ẋ(t),y(t) = 0,py (t) = 0.

The second variations equations can be reduced to

Ẍ(t) = 2

(
A +

6
λt2

)
X(t),λ 6= 0 ; Ẍ(t) = tX(t) , λ = 0
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Example: H = 1
2

(
p2

x +p2
y

)
− y2(A+ x)− λ

3x3

The ODE Ẍ(t) = tX(t) is the Airy equation. We saw that its
Galois group is SL2(C), so there cannot be any further
integral of motion for λ = 0.

When A 6= 0, Ẍ(t) = 2
(
A + 6

λt2

)
X(t) is the Whittaker equation.

It can be proved that its Galois group is non-abelian when
6
λ
6= k(k+1)

2 , k ∈ Z. This result can be made even stronger:

Theorem (Morales, Thm 6.4)
The Henon-Heiles system is non integrable for λ 6= 1,2,6,16.

For A = 0 we get the Cachy equation, whose Galois group is
abelian, so in this case we cannot exclude the possibility of
further integrals of motion.
Note finally that for A = 0,λ = 6 the HH system is indeed a CIS:
K = 4py (xpy − ypx ) + y4 + 4x2y2
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Hamiltonian

Systems
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Integrable
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Recall that, if (M2n,ω,H) is a CIS and in a neighborhood
T n×Dn ⊂ T n×Rn of a Lagrangian torus invariant by the flow,
there exists action-angle coordinates (q,p) , so that H = H(p)
and the equations of motion write

q̇α =
∂H
∂pα

, ṗα = 0 .

If
∂2H

∂pα∂pβ

is non-singular at every point, then the n frequencies

ν(p) = ∂H
∂pα

(p) : Dn→ Rn label the Lagrangian tori in T n×Dn.

Definition
The frequencies (ν1, . . . ,νn) are non-resonant if there exists
c > 0 such that

|kαν
α| ≥ c

‖k‖n , for all k ∈ Zn \0.
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The sets Φc ⊂ Rn, c > 0, of non-resonant frequencies are
Cantor sets (closed, perfect and nowhere dense) such that
µ(Ω\Φc) = O(c) for every bounded Ω⊂ Rn.

Theorem (Kolmogorov, Arnold, Moser)
Suppose that (M2n,ω,H) is a CIS, T n a Lagrangian torus
invariant by the flow and a neighborhood where we have Then,
if the map ν = ( ∂H

∂pα
) : Dn→ Rn is an immersion and the

Hamiltonian Hε(q,p) = H(p) + εF(q,p) is analytic on T n×Dn,
there exists δ > 0 such that for

|ε|< δc2

all tori of the unperturbed systems whose frequency ν belongs
to Φc persists as Lagrangian tori in the perturbed system, being
only slightly deformed. Moreover they depend in a Lipschitz way
on ν and fill the phase space T n×Dn with measure O(c).
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Example: Hénon-Heiles Hamiltonian
Close to integrable...
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Example: Hénon-Heiles Hamiltonian
Not so close anymore...
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Quantum Hamiltonian Chaos
It was conjectured by Berry and Tabor that the integrability of a
Hamiltonian H can be read, in its quantum counterpart Ĥ, from
its eigenvalues distribution:
Conjecture (Berry & Tabor)
Let H be a Hamitonian on Rn and let P(s) the distribution
function of the nearest-neighbour spacings λn+1−λn of the
eigenvalues of Ĥ. Then:

1 if the classical dynamics is integrable, then P(s) coincides
with the distribution of uncorrelated levels with the same
mean spacing (Poisson distr.), i.e.

P(s) ∝ e−cs

2 if the classic dynamics is chaotic, then P(s) coincides with
the distribution of a suitable ensamble of random matrices.

Quite interestingly, this conjecture relates Quantum chaology
with Number Theory, and in particular with the Riemann Zeta
function.
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Quantum Hamiltonian Chaos
Poisson distribution:
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Quantum Hamiltonian Chaos
GOE distribution:
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Poissonian

Systems
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Main Definitions and examples

Definition
A Poisson manifold is a pair (Mn,{,}), where M is a manifold
and the bilinear map {,} : C∞(M)×C∞(M)→ C∞(M) (Poisson
bracket) satisfies the following properties:

1 {f ,g}=−{g, f};
2 {f ,{g,h}}+{h,{f ,g}}+{g,{h, f}}= 0;

3 {f ,gh}= {f ,g}h + g{f ,h}.

Example 1: every symplectic manifold (M2n,ω) is an
even-dimensional Poisson manifold with

{f ,g}= ω(ξf ,ξg)

Example 2: on a 3-dimensional Riemannian manifold (M,s),
every h ∈ C∞(M) gives rise to the Poisson bracket

{f ,g}h = ?s(df ∧dg∧dh)
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Main Definitions and examples
Like on a symplectic manifold, via the Poisson braket we can
associate a vector field ξH to each function H ∈ C∞(M) as

ξH(f )
def
= {H, f}

On a symplectic manifold (M,ω), in a symplectic chart (qα,pα),

{qα,qβ}= 0 , {qα,pβ}= δ
α

β
, {pα,pβ}= 0

so that
ξH(f ) = ω(ξH ,ξf}= ∂αH∂

αf −∂αf∂αH

Clearly ξH is the same vector field from the symplectic structure.
In case of 3-dim Riemannian manifolds (M,s) and h ∈ C∞(M),

{x i ,x j}h =
√

dets ε
ijk

∂kh

so that
ξH =

√
dets ε

ijk
∂jH ∂kh ∂i
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Poisson dynamics

Definition
A Poissonian system on the Poissonian manifold (M,{,}) is
given by a smooth function H ∈ C∞(M).

The variation of an observable f ∈ C∞(M) over the flow φt
H of H

is given by

d
dt

f ◦φ
t
H = LξH

f = ω(ξH ,ξf ) = {H, f}

This relation is written simply as

ḟ = {H, f}

E.g. if the system is symplectic then

q̇α = {H,qα}= ∂
αH , ṗα = {H,pα}=−∂αH
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Integrals of motion

Theorem
f is constant over the integral trajectories of H iff {H, f}= 0.

In odd dimension {,} is degenerate, i.e. there exists
observables that commute with all other observables.
Such observables are called Casimirs.

E.g. in a 3-dim Riemannian manifold

ẋ i = {H,x i}h =
√

dets ε
ijk

∂jH ∂kh

and h is a Casimir since

{f ,h}h =
√

dets ε
ijk

∂i f ∂jh ∂kh = 0.

This means that the image of the integral trajectories of H under
{,}h are the intersections between the level sets of H and of h.
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Example: a Multivalued Poisson DS
Consider (T3,{,}B), where B = Bi(p)dpi is a closed 1-form and

{pi ,pj}B = εijkBk

A direct calculation shows that {,}B is a Poisson structure on
T3.

Given H ∈ C∞(T3), the equations of motion are

ṗi = {H,pi}B = εijk∂
jH Bk

Locally B = db. Clearly {f ,b}= 0 for every f , so we can think of
b as a multi-valued Casimir.

The image of the integral trajectories of H are given by the
intersections between the level surfaces of H and the leaves of
the foliation B = 0.

Slide 98/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Example: a Multivalued Poisson DS
Consider (T3,{,}B), where B = Bi(p)dpi is a closed 1-form and

{pi ,pj}B = εijkBk

A direct calculation shows that {,}B is a Poisson structure on
T3.

Given H ∈ C∞(T3), the equations of motion are
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Example: a Multivalued Poisson DS
This system was extracted in 1982 by S.P. Novikov from the
physics of metals:

in the WKB approximation the (quasi-)electrons are points in T3

and under a magnetic field B they are bound to move
perpendicularly to it.

Moreover, every metal give rise to a Hailtonian H ∈ C∞(T3)
(Fermi energy function) which dictates its main physical
properties. The eqs. of motion then are

p = {H,p}B = B×∂pH

The geometry of trajectories here is trivial: in the universal
covering R3 they are planar sections of the level surfaces of H.

Their topology instead, i.e. their asymptotics, turns out to be
exceptionally rich.
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Example: a Multivalued Poisson DS

H(x ,y ,z) = cosx + cosy + cosz
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Example: a Multivalued Poisson DS

H(x ,y ,z) = cosx cosy + cosy cosz + cosz cosx
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Poisson brackets and QM
The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

Indeed in QM on Rn the position and momentum observables
qα,pα ∈ C∞(Rn) are replaced resp. by the operators q̂α

(multiplication by qα) and p̂α = i
~∂qα acting on L2(Rn).

As operators, their commuting relations are

[q̂α, q̂β] = 0 , [q̂α, p̂β] = i~δ
α

β
, [p̂α, p̂β] = 0.

Recall that, in the symplectic setting,

{qα,qβ}= 0 , {qα,pβ}= δ
α

β
, {pα,pβ}= 0.

Slide 104/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Poisson brackets and QM
The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

Indeed in QM on Rn the position and momentum observables
qα,pα ∈ C∞(Rn) are replaced resp. by the operators q̂α

(multiplication by qα) and p̂α = i
~∂qα acting on L2(Rn).

As operators, their commuting relations are

[q̂α, q̂β] = 0 , [q̂α, p̂β] = i~δ
α

β
, [p̂α, p̂β] = 0.

Recall that, in the symplectic setting,

{qα,qβ}= 0 , {qα,pβ}= δ
α

β
, {pα,pβ}= 0.

Slide 104/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Poisson brackets and QM
The Poisson brackets give a new point of view (wrt HJ) on the
interplay between CM and QM.

Indeed in QM on Rn the position and momentum observables
qα,pα ∈ C∞(Rn) are replaced resp. by the operators q̂α

(multiplication by qα) and p̂α = i
~∂qα acting on L2(Rn).

As operators, their commuting relations are

[q̂α, q̂β] = 0 , [q̂α, p̂β] = i~δ
α

β
, [p̂α, p̂β] = 0.

Recall that, in the symplectic setting,

{qα,qβ}= 0 , {qα,pβ}= δ
α

β
, {pα,pβ}= 0.

Slide 104/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Poisson brackets and QM
In other words, “[̂f , ĝ] = i~{f ,g}”. This analogy is the base of
two attempts to fully understanding the relation between CM
and QM:

• geometric quantization (Souriau, Weinstein, Guillemin,
Sternberg...), which uses symplectic geometry to find
some natural way to foliate T ∗M in Lagrangian leaves (to
mimic the separation of q’s and p’s in QM (polarization);

• deformation quantization (Kontsevich, Connes...), which
deformes the product in C∞(M) in order to get a
non-commutative algebra A~ that, in the limit ~→ 0,
reduces to the multiplication in C∞(M).

Neither of these attempts, which we have no space to illustrate
here, succeeded to date.
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Cyclic Coordinates
The form of the Lagrange equations

d
dt

(
∂L

∂q̇α

)
=

∂L
∂qα

suggests the following simple observation:

if L(q, q̇) does not depend on, say, q1,
then the associated momentum p1 = ∂L

∂q̇1 is a first integral.

In a classical mechanical system in Rn,

L(q, q̇) =
1
2
‖q̇‖−V (q)

from which we see that invariance of the potential by
translations in the direction qi implies the conservation of the
corresponding momentum pi .
This is the starting point for all results that follow.
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First generalization: Noether’s Theorem

Definition
An action Φ of R on M is a homomorphism R→ Diff (M). We
use the shortcut notation Φ(λ,q) = qλ.

To Φ it is associate a vector field ξΦ(q) = dqλ

dλ

∣∣
λ=0.

Φ induces an action Φ̂ on TM as Φ̂(λ,q,v) = (qλ,v ·∂qΦ(λ,q))

Theorem (Noether, Arnold 20A)

If L(q,v) is invariant by Φ, i.e. if Φ̂∗L = L,

then pΦ(q, q̇) = ξα

Φ(q)
∂L

∂q̇α
(q, q̇) is a first integral.
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Proof: since L is invariant

0 =
d
dλ

L(qλ(t), q̇λ(t))

∣∣∣∣
λ=0

=

=
d
dλ

qλ(t)

∣∣∣∣
λ=0

∂L
∂qα

(q, q̇) +
d
dλ

q̇λ(t)

∣∣∣∣
λ=0

∂L
∂q̇α

(q(t), q̇(t)) =

= ξ
α

Φ(q(t))
∂L

∂qα
(q(t), q̇(t)) +

d
dt

[ξα

Φ(q(t))]
∂L

∂q̇α
(q, q̇)

Hence

d
dt

pΦ(q(t), q̇(t)) =
d
dt

[
ξ

α

Φ(q(t))
∂L

∂q̇α
(q(t), q̇(t))

]
=

=
d
dt

[ξα

Φ(q(t))]
∂L

∂q̇α
(q(t), q̇(t))+ξ

α

Φ(q(t))
d
dt

∂L
∂q̇α

(q(t), q̇(t)) = 0.
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Example: Rotations
Consider the case of M = R3 and L(q,v) = 1

2‖v‖−V (q), with
V invariant by rotations, i.e. depending only on the distance of q
from the origin
(e.g. electric or gravitational field generated by a point particle).

Then L is invariant by SO3.
E.g. consider the 1-dim subgroup of rotations arount the z axis.

The action is
Φz(λ,x ,y ,z) = (x cosλ + y sinλ,−x sinλ + y cosλ)
and ξΦz (x ,y) =−y∂x + x∂y .

The corresponding first integral
(z component of the angular momentum)
is pΦz (x ,y ,z, ẋ , ẏ , ż) =−yẋ + xẏ .
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Second generalization: Momentum Map
Consider an action Φ : G×P→ P on a Poisson manifold
(P,{,}).

We say that Φ is canonical if Φ∗g{F ,G}= {Φ∗gF ,Φ∗gG}.
If P = T ∗M, then Φ is canonical iff is symplectic,
i.e. iff Φ∗gω = ω, ∀g ∈ G.

To every element a ∈ g = TeG it corresponds a 1-dimensional
subgroup of G and therefore a vector field ξa ∈ χ(M).

A direct calculation shows that this map is a homomorphism of
Lie Algebras:

ξ[a,b]g = [ξa,ξb]χ(P)

Every such ξa satisfies ξa{F ,G}= {ξaF ,G}+{F ,ξaG}
If P = T ∗M then Lξa

ω = 0, i.e. ξa is locally Hamiltonian.

In both cases, locally ξa is the Ham. v.f. of some function Ha.
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In order to define the momentum map we must make two
assumptions:

1 all ξa are Hamiltonian;
2 {Ha,Hb}= H[a,b]g .

Note that all Ha are defined modulo constant. Hence they can
be chosen so that g→ C∞(P) is linear. In general tough

{Ha,Hb}= H[a,b]g + C(a,b)

where C is a 2-cocycle of g.

We say that the canonical action Φ is Poissonian when C = 0.

Example: an action on T ∗M induced from an action on M is
always Poissonian (see Arnold, Appendix 5).

Definition
If Φ is Poissonian, we call Momentum Map the map J : P→ g∗

defined by Jx (a) = Ha(x).

Slide 113/121 — Roberto De Leo — A quick survey of Hamiltonian systems



H O W A R D U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

In order to define the momentum map we must make two
assumptions:

1 all ξa are Hamiltonian;
2 {Ha,Hb}= H[a,b]g .

Note that all Ha are defined modulo constant. Hence they can
be chosen so that g→ C∞(P) is linear. In general tough

{Ha,Hb}= H[a,b]g + C(a,b)

where C is a 2-cocycle of g.

We say that the canonical action Φ is Poissonian when C = 0.

Example: an action on T ∗M induced from an action on M is
always Poissonian (see Arnold, Appendix 5).

Definition
If Φ is Poissonian, we call Momentum Map the map J : P→ g∗

defined by Jx (a) = Ha(x).
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Example: Rotations
Consider the action Φ of SO3 on T ∗R3 induced by the rotations
on the base space.
We choose a frame (x ,y ,z) and identify so3 with R3.

We saw earlier that to (0,0,1) ∈ so3 (generator of rotations
about the z axis) it corresponds the vector field ξz = x∂y − y∂x .
Similarly, ξx = y∂z− z∂y and ξy = z∂x − x∂z .

This action is Poissonian. The first integrals corresponding to
these vector fields are the three components of the angular
momentum:

Lx = ypx − xpy , Ly = zpy − ypz , Lz = xpz− zpx .

The momentum map is exactly the “angular momentum vector”:

J(x ,y ,z,px ,py ,pz) = (Lx ,Ly ,Lz) ∈ so(3)∗

and {Lx i ,Lx j}= εijkLxk = L[x i ,x j ]so(3)∗
.
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Theorem (Covariance of the Momentum Map)
Under JΦ, the action Φ is taken into the coadjoint action of G on
g∗, namely JΦ(Φ(g,x)) = Ad∗g−1(JΦ(x)).
Equivalently, Ha(Φ(g,x)) = HAdga(x).

Proof.
Let gλ a 1-parameter subgroup of G with Hamiltonian Hb. Then
d
dλ

Ha(Φ(g,x)) = {Ha,Hb}(x) = H[a,b](x) = HAd∗
g−1a(x).

Corollary (Noether Theorem in T ∗M)
If H is invariant under Φ, then JΦ is a first integral of H.

Proof.
Let gλ a 1-parameter subgroup of G with Hamiltonian Ha. Then
0 = d

dλ
H(Φ(g,x)) = {H,Ha}.
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Symplectic Reduction
Consider a Hamiltonian on a symplectic manifold (P,ω)
invariant by some Poissonian action Φ of G on P and set
Pµ = J−1

Φ (µ), µ ∈ g.

The Lie subgroup Gµ ⊂ G that keeps µ fixed, i.e. s.t. Ad∗g µ = µ,
leaves Pµ invariant.

Assume Φ satisfies the following properties:

1 µ is a regular value (so Pµ is a smooth manifold);

2 Φ is proper (e.g. G is compact);

3 Gµ acts on Pµ with no fixed points.

Theorem (Marsden & Weinstein, Arnold App. 5)
The quotient Mµ = Pµ/G is a smooth manifold and inherits from
(P,ω) a symplectic structure ωµ.
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Example: Harmonic Oscillator
Consider the action of S1 on P = R2n induced by the flow of the
Harmonic Oscillator Hamiltonian H(q,p) = 1

2

(
‖p‖2 +‖q‖2

)
.

The momentum map then is simply the Hamiltonian
H : P→ so∗2 ' R.

All values are non-critical except for 0.

All level sets Pµ, µ 6= 0, are spheres S2n−1.

All quotient spaces Mµ, µ 6= 0, are symplectomorphic to CPn−1

with a symplectic structure proportional to the Fubini-Study
2-form

ω =
i

2π
∂∂̄ ln |z|2
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Convexity of the Momentum Map

Theorem (Atiyah, Guillemin, Sternberg (1981))
Consider a Poisson action Φ : Tk ×P2n→ P2n on a compact
connected symplectic manifold P.
Then JΦ(P)⊂ g∗ is a convex polytope.

Example. Consider P2n = CPn and G = Tn+1 acting on it as
x = (z1 : · · · : zn+1)→ (eiθ1z1 : · · · : eiθn+1zn+1).

Each 1-parameter sugroup of rotations θk is induced by
Hk (x) = |zk |2/(|z1|2 + · · ·+ |zn+1|2).
The momentum map is J(x) = (H1(x), . . . ,Hn+1(x)).
Its image is the simplex

{(s1, . . . ,sn+1) | s1 + · · ·+ sn+1 = 1 , s1, . . . ,sn+1 ≥ 0} ⊂ Rn+1 ,

whose vertices are the images of the fixed points
xi = (0 : · · · : zi : · · · : 0) of the action.
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Convexity of multivalued Momentum Maps

Theorem (A. Giacobbe (2000))
Consider a Poisson action Φ : Tk ×P2n→ P2n on a closed
connected symplectic manifold P with a multivalued momentum
map JΦ. Then JΦ(P)⊂ g∗ is a cylinder over a convex polytope.

Example. Consider P4 = T2×CP1 with coordinates
((φ,ψ),(z : w)) and symplectic structure
ω = dφ∧dψ + i

2π
dd̄ ln | zw |

2

and consider the action of G = T3 on it defined by

((φ,ψ),(z : w))→ ((φ + θ1,ψ),(eiθ2z : eiθ3w))

The corresponding momentum map is multivalued:

J((φ,ψ),(z : w)) =

(
ψ,

|z|2

|z|2 + |w |2
,
|w |2

|z|2 + |w |2

)
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Its image is J(T2×CP1) = R×S ⊂ R3,

where S = {(s, t) | s + t = 1, s, t ≥ 0}
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