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An example of a fractal set of plane directions
having chaotic intersections with a fixed 3-periodic surface

R. De Leo and I.A. Dynnikov

The problem of the asymptotic behaviour of unbounded connected components of plane
sections of a 3-periodic surface in R3 and the structure of the associated foliations on
a surface in the three-torus T3 = R3/Z3 was posed by S. P. Novikov in [1]. This problem
comes from the theory of normal metals and is formulated as follows. In the space R3

with coordinates (x1, x2, x3) one fixes an embedded surface M that is invariant under
shifts by vectors in Z3 ⊂ R3 and has null homologous projection on T3 = R3/Z3. For
all covectors H = (H1, H2, H3) one considers the sections of M by planes ⟨H,x⟩ = const
(we call them H-sections) and asks about the asymptotic behaviour of their unbounded
regular connected components (if any). This question has been studied in a number of
papers [2]–[4]. Physical consequences of the results are discussed in [5].

There are the following three possibilities for the behaviour of the H-sections, and
moreover, the type of a section is the same for parallel planes.

Trivial case. All connected components are bounded.

Integrable case. Every regular non-closed component of an H-section is a finitely
deformed straight line: γ(t) = t·v+O(1), v ∈ R3\{0}. Moreover, there is a covector LM,H ,
defined up to sign, with relatively prime integral coordinates (L1, L2, L3) that annihilates
the vector v. (If we assume our three-space is Euclidean, we can write v = LM,H ×H.)
The projection of such a component on T3 is contained in an embedded two-torus whose
homology class is Poincaré dual to the covector LM,H . We denote the projective class
(L1 : L2 : L3) ∈ RP2 of LM,H by ℓM,H .

Chaotic case. The closure of the projection on T3 of any unbounded component is
a surface of genus greater than two. The behaviour of such components has not been
studied. In some explicitly described examples such a curve ‘wanders all around the
plane’, that is, the d-neighbourhood of the curve is the whole plane for some finite d.
Apparently, such behaviour is typical for the chaotic case, but this has not been proved.

If H1, H2, H3 are linearly dependent over Q, then the definitions above have to be
refined. Moreover, in this case the covector LM,H may be not uniquely defined. We skip
these details in the present paper.

For a fixed surface M and a rational point ℓ ∈ QP2 ⊂ RP2 let DM,ℓ denote the set
DM,ℓ = {(H1 : H2 : H3) ∈ RP2; ℓM,H = ℓ}.

It is known that for a generic 3-periodic surface M the sets DM,ℓ are disjoint closed
domains with piecewise smooth boundary, and the set of directions H with chaotic
H-sections has measure zero. (Of course, for some ℓ ∈ QP2 the set DM,ℓ may be empty.)
The set of directions H with trivial H-sections is open. We call the non-empty domains
DM,ℓ stability zones.

For studying the stability zones it is useful to consider a 1-parameter family Mc =
{x ∈ R3; f(x) = c} of level surfaces of a fixed smooth function and to introduce generalized
stability zones Df,ℓ =

⋃
cDMc,ℓ. They are also domains with piecewise smooth boundary.

If ℓ ̸= ℓ′, then the zones Df,ℓ and Df,ℓ′ can intersect only at the boundary, and moreover,
the set of their common points is at most countable (in all examples known to us, two
zones have at most one common point). If there are at least two zones, then there must
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be infinitely many of them. For any point (H1 : H2 : H3) ∈ E(f) = RP2 \
⋃
ℓDf,ℓ of the

complement there is exactly one level c for which a chaotic regime occurs on Mc, and all
the other level surfaces have trivial H-sections. The union

⋃
ℓ int(Df,ℓ) of the interiors

of the zones is an open dense subset of RP2 and its complement E(f) has the form of
a ‘two-dimensional Cantor set’. However, it is still unknown whether or not E(f) always
has zero measure. According to Novikov’s conjecture, the Hausdorff dimension of this set
is strictly between 1 and 2.

The facts above are valid for generic smooth and piecewise linear surfaces. A number
of examples have been analysed numerically [6]. In this paper we consider one piece-
wise linear surface and completely describe its stability zones. This surface is called
the regular skew polyhedron {4, 6|4} in [7]. It can be given by the equation f = 0 for
f(x1, x2, x3) = mid

(
cos(2πx1), cos(2πx2), cos(2πx3)

)
, where mid(a, b, c) = a + b + c −

max(a, b, c) − min(a, b, c). In this case we have DM0,ℓ = Df,ℓ for all ℓ, and all chaotic
H-sections occur at the same level f = 0. This is a consequence of the symmetry f(x1 +
1/2, x2 + 1/2, x3 + 1/2) = −f(x) and is not true in the general case. Denote by ψ1, ψ2, ψ3

the following projective transformations: ψ1(h1 : h2 : h3) = (h1 : h2 + h1 : h3 + h1),
ψ2(h1 : h2 : h3) = (h1 + h2 : h2 : h3 + h2), ψ3(h1 : h2 : h3) = (h1 + h3 : h2 + h3 : h3).

Proposition 1. For the surface M0 = {f = 0} the stability zones are

D(1:0:0)(M0) = {(h1 : h2 : h3) ∈ RP2; h1 > |h2|+ |h3|},

D(1:1:1)(M0) = {(h1 : h2 : h3) ∈ RP2; 0 6 h1 + h2 + h3 6 4h1, 4h2, 4h3},
Dψi1 (ψi2 (...ψik

((1:1:1))...))(M0) = ψi1
(
ψi2(. . . ψik (D(1:1:1)(M0)) . . .)

)
,

where (i1, . . . , ik) is an arbitrary finite sequence of elements in {1, 2, 3}, together with all
the zones obtained from these by cubic symmetries : permutations and sign changes of
coordinates.

Thus, there are three quadrilateral zones D(1:0:0), D(0:1:0), D(0:0:1), and all the rest are
triangles. The set E(f) consists of four parts whose closures are homeomorphic (but not
isometric) to the Sierpiński triangle.

Proposition 2. The intersection E(f) ∩ {(h1 : h2 : h3) ∈ RP2; h1, h2, h3 > 0} consists
of all points of the form limk→∞ ψi1

(
ψi2(. . . ψik ((1 : 1 : 1)) . . .)

)
, where (i1, i2, . . .) runs

over all possible sequences of elements in {1, 2, 3} containing each index infinitely many
times. The other points in E(f) are obtained from these by cubic symmetries.

For example, in the case of the periodic sequence (1, 2, 3, 1, 2, 3, . . .) we get
(1, α2 − α, α) ∈ E(f), where α is the real solution of the equation α3 − α2 − α− 1 = 0.

Proposition 3. The measure of the set E(f) is zero.

We leave the proofs for a more detailed paper. So far we have not been able to estimate
the Hausdorff dimension of E(f) analytically in our example, but several independent
numerical computations have given the approximate value ≈ 1.7.

We thank S. P. Novikov for an invitation to the University of Maryland during this
spring, and the university itself for financial support.
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