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The existence of solitonic excitations is a generic feature of a broad class of homogeneous models for18

nonlinear DNA internal torsional dynamics, but many properties of solitonic propagation depend19

on the actual model one is considering. In this paper we perform a detailed and comparative20

numerical investigation of the profiles and time evolution of solitons for two different models, the21

Yakushevich one and the more recent “composite” model of [1], and for two different choices of22

the potential describing the pairing interaction between bases (harmonic and Morse potential).23

We consider not only homogeneous DNA chains but also inhomogeneous ones (with sequence of24

bases corresponding to a real organism, the Human Adenovirus 2). We show that twist solitons25

can propagate in inhomogeneous chains over biologically significant distances. It is also shown that26

stable soliton propagation is possible for inhomogeneous chains when dissipation and an external27

force are present. On a more general level, our results indicate that solitonic propagation can take28

place in highly inhomogeneous nonlinear media.29

Keywords:30

1. Introduction31

The idea that solitons could play a functional role in DNA dynamics, in particular in32

transcription and denaturation, goes back to early works on solitons in biological systems33

[2, 3] and is attractive in many ways. Thus the study of nonlinear DNA dynamics by means34

of mesoscopic models [4–8] did to a large extent focus on breathers, domain walls and soliton35

solutions.36

On the other hand, this conjecture is subject to several solid objections both from the37

biological point of view and from the point of view of nonlinear dynamics. In fact, the38

mesoscopic models usually considered are: (i) homogeneous, hence disregarding the differ-39

ences between the bases which embody the genetical information; (ii) Hamiltonian, hence40

conservative and disregard dissipation due to interactions with the DNA environment and41

1
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external forcing; (iii) considering DNA per se, hence disregarding not only interaction with1

its environment, as already mentioned above, but also interaction with other molecules2

playing a substantial role in biological process, e.g. RNA Polymerase (RNAP) in transcrip-3

tion (iiii) a rough simplified model of real DNA because they use a bunch of degrees of4

freedom (usually two or four) to describe each base pair, which contains about 200 degrees5

of freedom (DOF). It is generally believed that renouncing to any of these features would6

produce a model in which nonlinear excitations of solitonic nature could not propagate over7

biologically significant distances, in particular for models of DNA internal torsion dynamics8

such as the Yakushevich model and related ones [4].a9

On the other hand, perturbation analysis of a recently introduced “composite” model10

[1, 11–13] suggests that the latter could be able to support solitons with a significantly long11

life also for inhomogeneous chains, thus providing a way to remove limitation (i) above. The12

aim of this paper is to study this question beyond the perturbation approach — which is of13

course possible only numerically. We will find that indeed the inhomogeneous version of such14

a “composite” model supports solitons able to travel over a biologically significant distance.15

We will, for the sake of completeness, study both “simple” and “composite” versions of16

the model (the “simple” version being just the classical Yakushevich model), and different17

choices for the pairing potential (the harmonic potential first considered by Yakushevich18

and a Morse potential). We anticipate that — not surprisingly — the Morse potential yields19

physically better results. Throughout the paper we refer to these models with Y for the20

Yakushevich model, CY for the composite Yakushevich model and with YM and CYM for21

the respective models with the harmonic potential replaced by a Morse one.22

We will also look at limitation (ii), i.e. consider a version of the (homogeneous and23

inhomogeneous) models in which one introduces — in the simplest manner — dissipative24

effects originating in interaction with the fluid environment, and external forcing. Here25

again we draw inspiration on work by Yakushevich [14], we find that stable soliton prop-26

agation in the inhomogeneous chains is possible even in presence of dissipative effects if27

an external force is also present. Again we get better results by using the Morse pairing28

potential.29

In this paper we will not address the problems related with the limitation (iiii) — we30

will still work in the framework of a mesoscopic model which uses four DOF to model each31

base pair. The existence of solitons in a model taking fully into account the 200 DOF of a32

single base pair remains therefore an open question, which has to be approached with single33

molecule computational methods.34

When considering inhomogeneous models, we will routinely use the base sequence35

corresponding to a real organism, i.e. the Human Adenovirus 2 (HA2); we will often refer36

to such a model as “a real DNA model” for short.37

It is natural to ask about correspondence of the numerical experiments to be discussed38

below with real experiments, in particular — as our model investigates the behavior of a39

single DNA molecule — single molecule experiments (SME) [15, 16]. In recent years SME40

aBreather solutions are more robust, and they have been widely studied in inhomogeneous chains, e.g. via
the Peyrard–Bishop–Dauxois model and related ones [5, 9]. Also, it is known that this class of models —
which deals with internal stretch rather than torsion dynamics — can support travelling solitons even in the
presence of inhomogeneities [10].
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have been quite successful in several aspects, and in particular in analyzing DNA elastic1

properties (also involving global DNA torsion dynamics) and structural transitions [17–30];2

SME can also be performed for DNA unzipping, and actually the base sequence can be3

reconstructed from such measurements [31]; similarly, base stacking forces can be directly4

measured in SME [32]. SME testing the Peyrard–Bishop–Dauxois model [9] have been5

recently proposed [33].6

As mentioned above, the DNA torsion analyzed by SME is that of the two strands7

as a whole, i.e. global DNA torsion, while in the present paper we consider internal DNA8

torsion, i.e. torsional movements at the level of single nucleotides or even their components.9

At present, SME are not able to resolve internal DNA dynamics in such detail.10

In the context of DNA transcription, a process for which it is conjectured that torsional11

solitons could accompany the RNAP motion, it is possible to track the movement of RNAP12

and the global DNA rotation [34]; one observes a behavior compatible with the hypothesis13

that RNAP moves at nearly constant speed between stopsb (see also [35–39]). We are not14

aware of any experiment directly investigating the presence of solitons in DNA with no15

RNAP attached.c16

On a more general level our paper can be also considered as a purely theoretical nonlinear17

science study of soliton propagation in homogeneous and inhomogeneous molecular chains18

described by models inspired by DNA torsional dynamics. From this general point of view,19

the main outcome of our investigation is that solitonic propagation can take place also in20

inhomogeneous molecular chains — and more generally in highly inhomogeneous nonlinear21

media.22

The structure of the paper is as follows. In Sec. 2, we present the inhomogeneous,23

discrete, version of the CY model for DNA torsional dynamics, and derive the Y model as24

limiting case of the model. In Sec. 3, we briefly discuss the physical parameters entering25

in the model.d In Sec. 4, we illustrate the algorithms we use for the evaluation of the26

initial profiles and time evolution of the solitons. In Sec. 5, we present the results for the27

time evolution of solitons in a homogeneous DNA in the case of the Y, C, YM and CYM28

models. In Sec. 6, we present our main results, i.e. those regarding the time evolution of29

solitons in inhomogeneous chains. Here we consider both a real DNA sequence (the Human30

Adenovirus 2) and a purely random DNA sequence. Again, we investigate the cases of the31

four models Y, C, YM and CYM. The discussion up to this point considers DNA as an32

isolated, conservative system. In Sec. 7, we take into account the effect of dissipation and of33

external forces, thus inserting the interaction of DNA with its environment in our model.34

Our approach follows the recent work by Yakushevich [14] (see [41] for a different approach),35

and fully confirms her result concerning the homogeneous Y model; here we also study the36

inhomogeneous Y model, as well as (homogeneous and inhomogeneous versions of) the YM37

model, deferring consideration of the CY and CYM models with dissipation and external38

forces to later work. The final Sec. 9 summarizes our discussion and results.39

bThis is necessary if RNAP motion is related to a soliton-like excitation traveling along the DNA chain.
cThis appears to be still beyond our technical possibilities. It was proposed by Yakushevich to use neutron
scattering to this aim, but the experiment was never realized.
dAll the estimates of the geometrical and dynamical parameters included in this paper are an improvement
and/or an update of the corresponding ones published in [1] and [40].



1st Reading

June 24, 2011 15:53 WSPC/1402-9251 259-JNMP 00154

4 M. Cadoni, R. De Leo & S. Demelio

2. The Inhomogeneous Version of the Composite Yakushevich1

Model for DNA Torsional Dynamics2

Following the characterization of relevant internal DOF of the DNA chain, two classes of3

mesoscopic model, aiming to describe the DNA internal dynamics, have been extensively4

studied in the Nonlinear Physics literature: the “radial” model by Peyrard and Bishop [42]5

and its extensions [5, 9, 43–46]; and the “torsional” model by Yakushevich [4, 47] and its6

extensions [1, 48–52] (see [41, 53–55] for more recent developments). In this paper we will7

focus on torsional models for DNA dynamics.8

The simplest mesoscopic model describing the dynamics of DNA rotational modes, was9

proposed by Yakushevich [4, 47] (see [4] for previous similar models) and considers a single10

torsional DOF per nucleotide; this is a homogeneous model and supports sine-Gordon (SG)11

solitons. Some time ago a CY model generalizing the Y model was proposed by some of us12

[1] (see also [11, 13, 40]). This considers that internal torsional motions can take place both13

as a rotation of the nitrogen base with respect to the sugar ring and as a rotation of the14

sugar-phosphate group [56, 57]. Thus the “composite” torsional model describes the state of15

each nucleotide by two independent angular DOF (one related to the sugar-phosphate group16

and one to the nitrogen base). Modeling the DNA as a double chain of double rotators gives17

room to a somewhat more detailed description of both the DNA geometry and its internal18

interactions, and turned out to solve some problem of the Yakushevich model [1].19

The CY model for DNA is a double chain of some large but finite number N of coupled20

double pendula. It is a natural generalization of the well-known model by Yakushevich21

where, at every node of each chain, the whole group base-sugar-phosphate is represented22

by a single disc centered at the chain’s backbone axis [58].23

In this model we split the group in two components represented in concrete by two discs:24

one again centered about the backbone axis and representing the sugar-phosphate group and25

the other, representing the base, which can rotate about a fixed point on the sugar as shown26

in Fig. 1. Note that the genetic information encoded in DNA’s molecule is entirely con-27

tained in the sequence of bases while the sugar-phosphate backbone is homogeneous, so the28

increase we introduce in the geometric detail of the model is rather naturally suggested by29

the general principle to treat separately the homogeneous and inhomogeneous components30

of the chain.31

In Fig. 1, we show in detail the structure of the model (left) and the geometry of a
single node (right). The coordinates of points A, B, C and D, with respect to a coordinate
system centered in DNA’s symmetry axis and with the x axis directed along the centers of
the sugars, are given by the following:

An,i = ((−1)ihn,i, 0, nδ),

Bn,i = An,i + R((−1)i+1 cos θn,i, (−1)i+1 sin θn,i, 0),

Cn,i = Bn,i + (dbs + rn,i)(cos(θn,i + ϕn,i), sin(θn,i + ϕn,i), 0),

Dn,i = Cn,i + rn,i(cos(θn,i + ϕn,i), sin(θn,i + ϕn,i), 0),

where hn,i = R + dbs + 2rn,i + deq/2, n = 1, . . . , N , i = 1, 2, deq is the equilibrium distance32

between the bases, dbs is the distance of the bases from the sugar and δ is the distance33

between sites along the chain.34
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(a) (b)

Fig. 1. (a) (adapted from [58]) A fragment of the nonhomogeneous CY model of the DNA’s double chain: at
every node of the chain there are four degrees of freedom, two for each sugar-phosphate group (the {θn,i})
and two for each base (the {ϕn,i}). (b) Detail of a chain node. Every base {n, i} is allowed to rotate about
the atom of the corresponding sugar, represented by the point Bn,i, only by an angle between [−φ0, φ0],
with φ0 < π, because of the physical constraint represented by the sugar pentagon. This steric constraint
is implemented in the model dynamically through an effective potential. See Sec. 3 for an evaluation of all
geometrical constants that appear in the pictures above.

From the mechanical point of view our DNA model is a conservative system with a1

4N -dimensional torus with coordinates (θn,i, ϕn,i), n = 1, . . . , N , i = 1, 2. The bases though2

cannot make a complete rotation about the sugar-phosphate group because they would3

collapse on it (see Fig. 1) and electrostatic forces would not allow this. We model this fact4

through an effective confining potential Vc whose energy wall is high enough to restrict the5

range of the bases’ angles ϕn,i to some segment I = [−φ0, φ0], φ0 < π; for this reason we6

call the sugar-phosphate angles topological and the bases angles nontopological.7

The kinetic and potential energies of the system are given by the following quantities:8

(1) The kinetic energy Tt of the sugar-phosphate group:

Tt =
N∑

n=1

2∑

i=1

1
2
msḂ

2
n,i =

N∑

n=1

2∑

i=1

1
2
Itθ̇

2
n,i, (2.1)

where ms is the mass of the sugar ring and It = msR
2.9

(2) The kinetic energy Ts of the bases:

Ts =
N∑

n=1

2∑

i=1

1
2
mbn,i

Ċ2
n,i =

N∑

n=1

2∑

i=1

1
2
Isn,i [δ

2
n,iϕ̇

2
n,i

+ 2δn,i(δn,i + α cos ϕn,i)ϕ̇n,iθ̇n,i + (δ2
n,i + 2αδn,i cos ϕn,i + α2)θ̇2

n,i], (2.2)

where bn,i is the sequence of bases in the chain, mbn,i
their masses, Isn,i = mbn,i

r2
n,i10

their inertia momenta with respect to the points Bi,n, δn,i = (dbs + rn,i)/(dbs + r̄) and11

α = R/(dbs + r̄) (r̄ is the mean value of the rni’s, see below). Notice, however, that in12

our calculations we evaluate the inertia momenta of the bases directly out of DNA’s13

molecular structure in order to obtain more reliable values for them.14
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(3) The torsional potential energy Vt, modelling the interaction between next-neighbor
sugar-phosphate groups on the same chain, i.e. the torsional elasticity of the backbone.
This force is the result of complex molecular interactions at the backbone level and
it has to be considered an “effective” interaction term. In order to keep the poten-
tial expression as simple as possible, we use for it the “physical pendulum” periodic
potential:

Vt =
N−1∑

n=1

2∑

i=1

Kt[1 − cos(∆θn,i)], (2.3)

where ∆θn,i = θn+1,i − θn,i and Kt is the torsional coupling constant.1

(4) The stacking potential models the π − π bonds between the rings that constitute the
bases. This interaction is much better understood than the previous one and in partic-
ular it is clear that it only depends on the relative displacement between next-neighbor
bases, going rapidly to zero together with the overlapping portion of their surface, e.g.
like in a Morse-like potential. For simplicity we use for it a simple harmonic bond on the
“xy” distance between the centers of the bases d2

xy(Cn+1,i;Cn,i). We will disregard in
this work all inhomogeneities in this potential and we leave to a future work the study
of a fully inhomogeneous model. In particular we consider a mean value r̄ for the four
values rn,i of the radii of the basis and we set (ks is the stacking coupling constant)

Vs =
N−1∑

n=1

2∑

i=1

1
2
ks d2

xy(Cn+1,i;Cn,i) =
N−1∑

n=1

2∑

i=1

1
2
Ks l2n,i, (2.4)

where Ks = ks(dbs + r̄)2 and l2n,i = d2
xy(Cn+1,i;Cn,i)/(dbs + r̄)2.2

(5) The pairing potential Vp models the ionic bonds between base-pairs. This is the best
understood force among the ones we are considering and, like in the stacking case, it
is known to go rapidly to zero a few Angstrom from the equilibrium position. Follow-
ing [59], we model this behaviour with a Morse-like potential. For the YM and CYM
model we have therefore:

Vp =
N∑

n=1

kbnκ[1 − e−a(dxy(Dn,1;Dn,2)−d0)]2 =
N∑

n=1

kbnκ[1 − e−µ(lp−l0)]2, (2.5)

where κ is the Morse coupling constant, kbn is the inhomogeneity factor (equal to 13

for bn = A,T and to 1.5 for bn = G,C) and µ, lp, l0, β and γn,i are the dimensionless4

quantities corresponding respectively to a, dxy(Dn,1;Dn,2), deq, R and (dbs +2rn,i) with5

respect to the reference length (dbs + 2r̄). In order to simplify the numerical analysis6

we use the so-called contact approximation l0 = 0 (see [1, 40] for a justification of this7

approximation). Furthermore, in order to compare our results with analytical results8

and with several other numerical results available in literature (e.g. in [14, 58, 60])9

we also consider, in the case of the Y and CY models, the harmonic approximation10

Vp =
∑N

n=1
1
2kbnKp(dbs + 2r̄)2(lp − l0)2 of the previous Morse potential, where Kp =11

2κµ2/(dbs + 2r̄)2.12

(6) The helicoidal potential Vh models the forces between nucleotides in solution due to
the Bernal-Fowler filaments. We will consider only those being on opposite helices at
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half-pitch distance, as they are near enough in three-dimensional space due to the
double helical geometry, and only those between the sugar-phosphate groups. As the
nucleotide moves, the hydrogen bonds in these filaments and those connecting the fil-
aments to the nucleotides are stretched and thus resist differential motions of the two
connected nucleotides. Since the pitch of the helix corresponds to 10 bases in the B-DNA
equilibrium configuration we set

Vh =
N−5∑

n=1

2∑

i=1

Kh[1 − cos(θn+5,i+1 − θn,i)] (2.6)

where the sum i + 1 is meant modulo 2.1

(7) The confining potential Vc models an “effective” interaction representing the steric
constraint of the sugars, which prevents the bases bound to them from doing a complete
rotation about them. In order to keep it as simple as possible we use

Vc =
N∑

n=1

2∑

i=1

Kc(sin ϕn,i)2M (2.7)

where M is some large integer and the coupling constant Kc must be taken big enough2

to prevent the bases from passing through a ±π/2 barrier but also not so big to interfere3

too much with the dynamics when the ϕn,i are closer to the equilibrium position.4

2.1. The Yakushevich model as a particular case of the composite model5

If we set the nontopological angles ϕn,i identically to zero, so that the bases rotate rigidly6

with the sugars, the coordinate space reduces to a 2N -dimensional torus and the energies,7

disregarding the helicoidal interaction, reduce to the following three terms:8

(1) Kinetic energy

T =
N∑

n=1

2∑

i=1

1
2
[It + (δn,i + α)2Isn,i ]θ̇

2
n,i =

N∑

n=1

2∑

i=1

1
2
IY
n,iθ̇

2
n,i

(2) Torsional energy

Vt =
N−1∑

n=1

2∑

i=1

[Kt + (1 + α)2(dbs + r̄)2Ks](1 − cos ∆θn,i) =
N−1∑

n=1

2∑

i=1

1
2
KY (1 − cos ∆θn,i)

(3) Pairing energy

Vp =
N∑

n=1

kbnD[1 − e−µ lp(θn,i,0)] =
N∑

n=1

kbnD[1 − e−µY lYp (θn,i)]

where µY = (1 + β)µ and ρn,i = (γn,i + β)/(1 + β).9

This is the YM model. In the harmonic approximation it reduces to the usual Y model, as10

given e.g. in [58], with KY = 2κ(µY )2; in particular the radii of the discs in the Yakushevich11

model are given by RY
n,i = hn,i − deq/2. These three models reduce to their homogeneous12
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counterparts, discussed e.g. in [1, 40, 58], by replacing rn,i with r̄, Isn,i with Is and both1

γn,i and δn,i with 1.2

3. Physical Parameters of the Model3

The evaluation of the main geometrical and dynamical physical parameters involved in4

DNA’s dynamics is far from trivial because of the complexity of its molecular structure5

and of the difficulty in making measurements of the mechanical quantities associated to6

it. In [40] the values of these parameters for the CY model have been discussed in detail;7

these are summarized in the Tables 1 (kinetic parameters) and 3 (coupling constants). In8

particular, in Table 3 we show the physical range for both the coupling constants a, Kt,9

Ks, Kp, κ, Kh and the corresponding dimensionless quantities µ = a(dbs +2r̄), gt = Kt/E0,10

gs = Ks(dbs + r̄)2/2/E0, gp = Kp/E0 (in the harmonic case) or gp = D/E0 (in the Morse11

case), gh = Kh/E0, where the reference energy E0 = 223 kJ/mol has been chosen as the12

energy of the pairing coupling in the harmonic approximation (so that in the harmonic13

approximation gp = 1). In Table 2 we show the corresponding values induced by those14

above in the Y and YM models.15

There are two major criteria to select a set of coupling constants within the range of16

physically possible values. One is the compliance with set of dispersion relations associated17

to the homogeneous system ([40] for more details); in particular the speed of acoustic18

Table 1. Values of masses, momenta of inertia and basic geometrical parameters occurring in our CY
and CYM models of DNA.

A T G C Mean Sugar

m 134 125 150 110 130 85

I 3.6 × 103 3.0 × 103 4.4 × 103 2.3 × 103 3.3 × 103 2.9 × 103

l(2r̄) 3.9 2.9 4.1 2.7 3.4 3.1
dbs 1.0 1.0 1.0 1.0 1.0 —
deq 3.0 3.0 3.0 3.0 3.0 —

Units of measure are: atomic unit for masses m, 1.67×10−47Kg·m2 for momenta of inertia I , Angstrom
for l (the longitudinal width of bases and sugar), dbs (the distances sugar-base) and deq (the distance
at the equilibrium for the pairs AT and GC). Note in particular that r̄ = l̄/2. These values have been
extracted from the sample “generic” B-DNA PDB data [61], provided by the Glactone Project [62], and
agrees within 5% with the data from [63]. The lengths of bases and sugar were taken by projecting
them on the direction passing through the two phosphate atoms of the chain node to best fit the
geometry of the model; the (real) measure for the diameters of the bases A, T, G, C, and the sugar
and for dbs are respectively (in Å): 4.6, 4.0, 5.7, 4.0, 3.3 and 1.5.

Table 2. Masses, momenta of inertia and radii for the Y and YM models, obtained through
a dynamical reduction of the values of Table 1.

A T G C Mean

mY 219 210 235 195 214.75

IY 21 × 103 15.6 × 103 25.7 × 103 12.3 × 103 18.6 × 103

RY 8 7 8.2 6.8 7.5

Units are atomic units for masses mY, 1.67 × 10−47 Kg ·m2 for the inertia momenta IY,
Angstrom for RY .
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Table 3. (above) Upper and lower bounds of the coupling constants appearing in the CY and CYM
models and (below) upper and lower bounds of the corresponding dimensionless quantities (see [40]),
defined as µ = a(dbs + 2r̄), gt = Kt/E0, gs = Ks(dbs + r̄)2/2/E0, gh = Kh/E0, gp = Kp/E0 in the
harmonic case and gp = D/E0 in the Morse case, where E0 = Kp(dbs +2r̄)2/2 � 223 kJ/mol. Note that
in the remaining of the paper we use the same symbol gp for the pairing coupling constant in the cases
of harmonic and Morse versions of it; it will be clear from the context which one we refer to.

Kt Ks Kp κ a Kh

lo bd 130 kJ/mol — 3.5 N/m 30meV 2 Å
−1

Kt/100

up bd 720 kJ/mol 16.6 N/m 30 N/m 50 meV 4 Å
−1

Kt/25

gt gs gp (harm) gp (Morse) µ gh

lo bd 0.58 — 0.91 0.013 8.8 gt/100
up bd 3.2 1.6 7.8 0.02 17.6 gt/25

phonons in DNA is thought to be between 1.9 km/s and 3.5 km/s and the lowest optical1

frequency ω0 to be about 35 cm−1. The other is that if we want soliton propagation to model2

DNA transcription, the width of kinks should be compatible with the diameter of the DNA3

transcription bubbles.4

As often happens, these two requirements are somehow in contrast: in order to have5

narrow kinks we must keep low Ks and Kt, but this tends to lower the phonons speed below6

the range above and vice versa. Moreover the diameter of a kinke is also affected sensibly7

by its speed, which instead does not play any role in the phonons quantities. Several choices8

are of course viable. The set used in [40] is not a good choice because induces very wide9

kink diameters; in this paper we rather use the set shown in Table 4. Observe that we have10

set the dimensionless confining coupling constant gc = Kc/E0 to the value gc = 10.11

With this choice the velocities of acoustic phonons are c2 = δ
√

(Kt + 25Kh)/It �12

1.3 km/s and c3 = δ
√

Ks/mb � 1.3 km/s and the optical frequency is q4 =
√

2Kp/mb �13

28 cm−1 (the variables names refer to [40]), which are reasonably close to the the physical14

range mentioned above. On the other hand kinks diameters have a range of variability from15

80 bp (base-pairs) at v = 0 to 46 bp when the soliton velocity is close to the sound speed.16

4. Numerical Analysis of Solitons Motion17

We now will investigate, numerically, soliton motion in the models we are considering. This18

study will involve two independent tasks: first we will determine the initial profile of the19

Table 4. Values of the dimensionless dynamical constants chosen as default for the

CYM model, where it =
v2
0

δ2E0
It and is =

v2
0

δ2E0
Is with v0 = 1km/s. After fixing to zero

the bases angles we get the YM model with the following values for the corresponding
dimensionless parameters: m = it + (1 + α)2is � 7, g = 2gt + 4(1 + α)2gs � 7.5,
K = Kp = 0.02, µY = µ(1 + β) � 11.

it is gt gs gp µ gh gc

1.1 1.3 1 0.3 0.02 6.3 0.01 10

eThroughout the paper we evaluate the diameter of a kink on a chain as the number of nodes close to the
center and for which the topological angle is between π/20 and 2π − π/20. The center is defined as the last
node such that the sum of energies of all nodes before it is smaller than half of the whole energy.
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soliton, which will be the initial condition of the system; and then study how it evolves in1

time when travelling along the chain. We have performed a systematic numerical analysis2

of the dynamics of the kink solutions of lowest topological charges (0, 1), (1, 0) and (1, 1)3

(see below for their definition) of our system with N = 2000bp and N = 3000bp.4

4.1. Evaluation of initial profiles5

Once the dynamical, geometrical parameters and coupling constants are fixed, the profile of6

the soliton is determined, as an extremum of the action I =
∫

L, by two data: the boundary7

conditions and the position of its center.8

Since we are interested only in kinks, we apply as boundary conditions ϕ1,i = ϕN,i = 09

for the nontopological angles and θ1,i = 0, θN,i = 2kiπ, for some integers ki (winding —10

topological — numbers), for the topological ones. We correspondingly use the notation11

(k1, k2) to indicate topological solitons for the angles θi. Note that for our purposes we can12

consider the solution invariant by translations — at least far enough from the boundaries —13

in the homogeneous approximation while this is far from true in the case of real DNA14

sequences.15

It is very difficult to find exact solutions of our models. In analogy with the continuous
case, where solitons solutions φv(x, t) move with constant speed and therefore satisfy the
relation ∂tφv = −v∂xφv, we look for solutions qn(t) = (θn,1(t), θn,2(t), ϕn,1(t), ϕn,2(t)) that
satisfy its discrete analog

q̇n = −v∆nq/δ. (4.1)

Note that the accuracy of this approximation is better when the diameter of the kink is big16

with respect to the chain step δ and it becomes worse when v approaches the sound speed.17

With this ansatz the kinetic energies become

Tt =
N∑

n=1

2∑

i=1

v2It

2δ2
[∆θn,i]2

Ts =
N∑

n=1

2∑

i=1

v2Isn,i

2δ2
{δ2

n,i[∆ϕn,i]2 + 2δn,i(δn,i + α cos ϕn,i)∆ϕn,i∆θn,i

+ (δ2
n,i + 2δn,iα cos ϕn,i + α2)[∆θn,i]2}

(4.2)

and the Lagrangian L(θ̇n,i, ϕ̇n,i, θn,i, ϕn,i) can be written as a sum L =
∑N

n=1

∑2
i=1 Ln,i,18

where Ln,i = L(qn, qn+1), and therefore it can be seen as a discrete-time action over the19

circle (see e.g. [64]). The solution of the discrete-time equations are extrema of L and20

therefore solutions of dL = (∂θn,i
L, ∂ϕn,iL) = 0.21

We extremize the discrete action with the method of conjugate gradients in the inde-22

pendent implementations of NR [65] and GNU’s GSL [66], as it has been done in the23

homogeneous case in [40]; we do not repeat here the discussion and refer the reader to that24

paper for more details. The CY model is a natural extension of the Y model which, in turn,25

is a pair of discrete coupled sine-Gordon chains. This is why we tested successfully our code26

using a simple discrete sine-Gordon chain.27

As expected, no kink solutions exist for soliton speeds above a limiting value c depending28

on all kinetic parameters and coupling constants. This is a generic feature of relativistic29
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Fig. 2. (above) Plot of kinks’ diameters D (left, in bp) and energies E (right) versus their velocity v for the
following cases: CYM model, default parameters, topological type (1, 1) (squares, red) and (1, 0) � (0, 1)
(∇’s, magenta); YM model, default parameters, topological type (1, 1) (∆’s, blue) and (1, 0) � (0, 1) (circles,
green). (below) Logarithmic plot of (1, 1) kinks’ diameters (left, in bp) and energies (right) versus their
velocity parameter v for the following case. We use the default parameters except for the torsion and stacking,
which have been increased by a factor 4 to allow the existence of the kinks in the harmonic approximation:
SG model (circles, green), Y model (empty circles, grey), CY model (∇’s, magenta), YM model (∆’s, blue)
and CYM model (squares, red) — the black dotted line represents the analytical width (left) and energy
(right) of the continuous SG kinks. Energies are in units of E0.

solitons and applies also in the case under consideration. Because of the relativistic behavior1

we expect the soliton diameters to shrink and their energy to increase when the soliton speed2

grows. This can be shown to happen for all the models we are considering in this paper. In3

Fig. 2 (upper row) we show the dependence of energy and diameter of kinks for the lowest4

topological types (1, 0), (0, 1) and (1, 1) as function of their speed v.f5

In Fig. 2 (lower row) we show similar results after increasing by a factor 4 the coupling6

constants of torsion and stacking interactions; after this rescaling, kinks are present in all7

four models, giving us the opportunity to compare energies and diameters between the8

models with a Morse potential and those with its harmonic approximation.9

4.2. Time evolution10

The initial data obtained through the previous algorithm represent for us the coordinates11

(qn) = (θn,1, θn,2, ϕn,1, ϕn,2) at time t = 0. Their graph, as function of the discrete variable n,12

fFrom now on, by the symbol v we mean the dimensionless ratio between the speed of the soliton and the
reference speed v0 = 1km/s. Since there is no ambiguity, we keep calling such v the velocity of the soliton.
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is the initial profile of a kink with speed v. We recover the initial values of the velocities q̇n1

(and therefore of the momenta pn = ∂L/∂q̇n) using again (4.1) — we insist that this2

approximation works well when D/δ is big so we cannot expect a behaviour close to the3

continuous one for very narrow kinks. Luckily, as we will show below, in our case kinks do4

not get too narrow.5

To study the evolution of the system we were forced to use the Hamiltonian approach6

rather than the Lagrangian one for the following practical (and unexpected) reason. As7

shown in Fig. 1, at every node on each chain the geometry of the system is exactly the8

same of a double pendulum and in particular the coefficients of the kinetic energy are not9

constant (see Eq. (2.2)). To our knowledge, it seems that there is no numerical algorithm10

widely available for second order ODEs able to deal with energies whose quadratic form has11

non-constant coefficients. Hence we were forced to switch to the Hamiltonian formulation,12

where this complexity is transferred into the Legendre transform between the q̇n and the13

pn and the evolution is represented by a first order ODE.14

For the (Hamiltonian) evolution of the system we decided to use two completely differ-15

ent algorithms: the first is the GSL version of the standard Runge–Kutta Prince–Dormand16

method implemented by M. Galassi et al. [66]; the second is a Hamiltonian symplectic17

integrator implemented and kindly sent to us by its author E. Hairer [67].g Several imple-18

mentations of algorithms based on symplectic integrators are available online, e.g. on the19

Hairer’s website.h We made use of them in the Lagrangian (GNI IRK2, a symplectic and20

symmetric implicit Runge–Kutta method) and Hamiltonian implementation (GRKAAD).21

Both codes were provided to us by Hairer in Fortran and translated by us in C/C++.22

In principle, the soliton speed v is a free parameter, which can be varied continuously23

in the range 0 ≤ v ≤ c, where c is the limiting velocity. Because we want to investigate the24

possible role played by solitons in replication process, it will be meaningful to consider in25

our numerical calculations soliton speeds of the same order of magnitude of the replication26

process in real DNA, that is v ∼ 1000 bp/s ∼ 10−7 m/s. However, there is a computational27

problem that prevent us to perform numerical calculations with soliton speeds of this order28

of magnitude.29

This problem is due to the fact that the natural time scale of our system is of order
10−13 s. This can be easily understood by considering our model as a system of two coupled
the Sine–Gordon equations of the form

Itφtt − Ktφnn + K sin φ = 0, (4.3)

where It are momenta of inertia and Kt,K the torsional and pairing coupling constants30

and φnn indicates the discretized spatial second derivative. The order of magnitude of the31

momenta of inertia in play is very small It � 1.3 · 10−25 kJ s2/mol whereas Kt,K are of32

gWe recall that symplectic integrators are algorithms such that the step function evolution itself is symplectic,
i.e. it conserves the symplectic form and therefore the energy; this clearly means that conservation of energy is
violated at a much lower rate than nonsymplectic same-order algorithms (see e.g. [67], Chap. 1). Incidentally
this fact is very convenient also at the debugging stage, especially when dealing — as we do — with quite
complex expressions (the Hamiltonian and its gradient are rather bulky formulas in 4N variables), as with
such an algorithm even the smallest error in these causes immediate changes in the energy while, when all
expressions are correct, energy remains unchanged up to 10−8 within (at least) t < 2000.
hhttp://www.unige.ch/∼hairer/software.html.
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order kJ/mol — see Tables 1–4. If one uses a time unit (TU) of order of magnitude of the1

second the first term in the right hand side of Eq. (4.3) differs by 25 order of magnitude from2

the the other two. This scenario is a classical source of errors in numerical analysis, since a3

huge precision would be needed to evaluate the difference between the two numbers or the4

multiplication by a factor � 1025 would enhance so much the error to make any algorithm5

useless. On the other hand, using a precision able to deal with this problem would slow6

down the evolution algorithm so much to make it useless.7

The problem is rather solved by defining a a Time Unit 1TU � δ/v0 � 3.4 · 10−13 s,8

so that with this unit all the three terms of Eq. (4.3) are of O(1). In terms of this TU9

our reference speed is v0 = 1km/s � 1 bp/TU . It follows immediately that our evolution10

algorithm can be used for soliton speeds of order of magnitude of the limiting speed for our11

solitons, i.e v � v0 = 1km/s whereas it becomes useless for soliton speeds of order of the12

speed of replication process in real DNA, i.e. v ∼ 1000 bp/s ∼ 10−7 m/s.13

For this reason in the next sections of this paper we will mainly consider the time14

evolution of solitons with velocity v of the order of magnitude of 1 km/s and only in Sec. 8,15

we will study the evolution of solitons with speed about 5 orders of magnitude less than v0.16

5. Soliton’s Motion in Homogeneous DNA Models17

DNA is a discrete system and therefore the correct way to describe its dynamics is through18

the discrete ODE system d/dt(∂L/∂q̇n) − ∂L/∂qn = 0, rather than its continuous limit19

for δ → 0, albeit the latter may be more convenient for analytical discussion. We have20

thus to discuss solitons in a discrete chain; we will refer to these as discrete solitons. In21

the continuous limit of the homogeneous DNA chain, kinks, if they exist and are stable,22

propagate at constant speed without loosing energy. We expect this to be not completely23

true for the discrete homogeneous DNA chain, as invariance under continuous translation is24

lost. Owing to discreteness of the chain we expect the propagating solitons to loose kinetic25

energy through phonon emission, although at low rate. Moreover, the phonon emission rate26

should increase with the soliton speed.27

In this section we will investigate in detail the time evolution of discrete solitons for28

the various DNA models under consideration in the homogeneous approximation, that is29

all the bases are considered as identical and all the inter-pair hydrogen bonds between30

bases are taken with the same strength. In the next section we will discuss the general31

case in which the differences between bases and pairing bonds in a given DNA sequence32

are taken into account. We will discuss separately the time evolution of solitons under33

harmonic potential (Subsec. 5.1) and under a Morse potential (Subsec. 5.2), respectively34

for the Y model (Subsecs. 5.1.1 and 5.2.1) and for the CY model (Subsecs. 5.1.2 and 5.2.2).35

5.1. Time evolution under harmonic pairing potential36

5.1.1. Yakushevich model37

Motion of kinks in the homogeneous and inhomogeneous Y model has been extensively38

studied in several papers (see e.g. [58]). Here we study the evolution of Yakushevich kinks as39

a test for our software and also to produce the profiles with the parameters corresponding —40

via the dynamical reduction — to those we are using for the CY model; this will allow us41

to compare the results for the Yakushevich model with those for our generalized model.42
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(a) (b)

(c) (d)

Fig. 3. Time evolution of speeds (in km/s) and profiles of solitons of topological type (1, 1) in the Y model
with m = 7, g = 21, K = 1. Homogeneous chain: (a) Evolution of the speed of the center of kinks
corresponding to the velocity parameters (from bottom to top) v = 0.1, 0.2, 0.3, 0.4, 0.484 � c. As expected,
when v � c the speed of the kink center is close to constant while as v gets close to the limit speed c the
kink tends to lose energy and slows down. (b) Evolution of the profile of the kink with v = 0.484, showing
clearly the deceleration of the kink and the emission of phonons. HA2 chain: (c) Evolution of the speed
of the center of kinks corresponding to v = 0.2 (top) and v = 0.38 � c (bottom). In both cases the kink
immediately starts making small oscillations about its initial position. (d) Evolution of the profile of the
kink with v = 0.2.

In Figs. 3(a) and 3(b), we show the numerical results for the coupling constants m = 7,1

g = 21 and K = 1, already used in [40] when we discussed the existence of static profiles,2

and compare them with the corresponding solution in the continuous approximation. It3

turns out that, when v is not close to the limit speed, the motion is still close to a constant4

speed one. When v is very close to the limit speed, instead, at the beginning of motion a5

strong phonon emission takes place, causing a deceleration until the speed reaches some6

smaller value.7

5.1.2. Composite model8

The time evolution of solitons in the CY model in the harmonic approximation is very9

simple: solitons do not propagate. In Fig. 5, we show profiles and time evolution of two10
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(a) (b)

(c) (d)

Fig. 4. Time evolution of speeds (in km/s) and profiles of solitons of topological type (1, 1) in the YM model
with m = 7, g = 7.5, K = 0.02, µY = 11. Homogeneous chain: (a) Evolution of the speed of the center of
kinks corresponding to (from bottom to top): v = 0.2, 0.4, 0.6, 0.71 � c. The qualitative behavior is identical
to the harmonic case. (b) Evolution of the profile of the kink with v = 0.4. HA2 chain: (c) Evolution of
the speed of the center of kinks corresponding to (from bottom to top): v = 0.2, 0.3, 0.4, 0.5, 0.57 � c. The
motion stops in all cases after between 1000 TU and 2000 TU; for v ≥ 0.4 in this time the kink has moved
by about 4 times its diameter. (d) Evolution of the profile of the kink with v = 0.4.

kinks with the same geometric and dynamic parameters used in [40] for topological numbers1

(1, 1) and velocities v = 0.4 km/s and v = 0.62 km/s � c. In both cases the profiles do not2

change while phonons are visibly emitted forwards and backwards.3

There are two possible explanations for this unexpected behavior: (1) the continuous4

soliton solutions are unstable, so that any perturbation — no matter how small — would5

destroy it; (2) the discrete solutions we find do not correspond to any continuous propagating6

soliton.7

There are some facts supporting the second possibility. The profiles of the nontopological8

angles jump sharply — within a single node — from an angle of about −1 to an angle of9

about 1 and this remain true when the parameters’ values are in a large region of the10

phase space; a lot of phonons are immediately emitted in both directions even at small11

speeds, which is exactly what is supposed to happen when the initial profile is not close to12

a continuous soliton; the nonlinear interactions Vp (pairing) and Vc (the effective confining13
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potential) increase drastically when the nontopological angles move from their from the1

equilibrium position, effectively freezing them on some stable static position.2

5.2. Time evolution under Morse pairing potential3

It is well known that using a harmonic potential for the pairing interaction is nothing but4

a rough approximation: pairing is due to hydrogen bonds, which are highly directional and5

basically disappear completely once the bases rotate by a few degrees about the respec-6

tive backbone segment; on the contrary a harmonic potential corresponds to a force which7

(a) (e)

(b) (f)

(c) (g)

Fig. 5. Profiles and time evolution of kinks in the homogeneous CY model with it = 1.1, is = 1.3, gt = 0.58,
gs = 6.5, gp = 1, gh = 0.03, and gc = 100 (these are the values used in [40]) and topological numbers (1, 1)
for speeds v = 0.4 km/s (left) and v = 0.62 km/s � c (right). (a,e) Initial profile. (b,f) Evolution of the
soliton after 200 TU — the kink did not move but its shape is clearly modified by the continuous emission of
phonons in both directions. (c,g) Motion of the soliton center (green thick line) compared to the motion of
its continuous counterpart (grey thin line). (d,h) Motion of the soliton — phonon emission is clearly visible
in both directions.
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(d) (h)

Fig. 5. (Continued)

increases linearly with the distance, something that hence is quite different from the phys-1

ical phenomenon. This is the reason that urged us to introduce a more realistic potential2

for the pairing interaction and, as it turned out, this is enough to restore the capability3

of solitons of moving along the chain. In other words, our choice of the Morse potential4

for the pairing interaction has been naturally suggested by the geometrodynamics of the5

model itself.6

Note that this potential nearby the equilibrium position coincides with the harmonic7

one for Kp = 2κa2, so it gives rise to the very same dispersion relations. Its main phys-8

ical improvement with respect to its quadratic approximation is that base-pair forces go9

exponentially to zero after they get apart by more than a distance of the order of a−1; in10

particular the energy of Morse solitons is much lower than their corresponding harmonic11

counterpart. In general it turns out also that Morse profiles are always wider than the12

corresponding harmonic counterpart (see e.g. Fig. 2(left)) and their limit velocity is higher.13

5.2.1. Yakushevich model14

Motivated by the absence of motion of kinks in our CY model in the harmonic approxima-15

tion, we turn now to the study of the YM model. In Figs. 4(a) and 4(b), we show profiles16

and motion of some YM kink. As expected, kinks are much wider than those of the har-17

monic counterpart. We also observed that the limit speed is about 1.5 times the one of18

that appearing in the harmonic approximation. For solitons’ speed near to the limit speed19

c, phonon emission is smaller than in the harmonic case, even though this phenomenon20

might depend crucially on how close is the soliton speed to c. This shows that switching21

to Morse potential does not alter significantly the behavior of kinks evolution in a homoge-22

neous chain with the Yakushevich geometry (but we will show later that it does alter it for23

inhomogeneous chains). Conversely, we will show in the following that this switching makes24

a substantial difference in the case of composite model.25

5.2.2. Composite model26

Now we consider the CYM model. In Fig. 6, we show profiles and motion of kinks with27

the default values of the coupling constants (see Table 4) and topological numbers (1, 1).28
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A first observation is that, as already pointed out in [40], the profiles of the nontopological1

angles are smooth rather than jumpy like it happens in the harmonic approximation (see2

e.g. Fig. 8 in [40]). This is due to the fact that profiles in the harmonic approximation tend3

to be too steep. The diameter of the kink at v = 0.4 km/s is just slightly wider (69 bp) than4

(a) (e)

(b) (f)

(c) (g)

Fig. 6. Profiles and time evolution of kinks with topological numbers (1, 1) in the homogeneous CYM model
with it = 1.1, is = 1.3, gt = 1, gs = 0.3, gh = 0.01, gp = 0.02, µ = 6.3 and gc = 10. (a) Initial profile
for v = 0.4 km/s � c — the profile is just slightly wider than the corresponding one in the YM model.
(b) Evolution of the soliton after 2000 TU — its shape is almost identical to the initial one. (c) Motion of
the centers of kinks with speed parameter equal to (from bottom to top) v = 0.1, 0.2, 0.3, 0.4, 0.5, 0.62 � c.
Except for the case v = 0.62, very close to the limit speed, all motions have speed very close to constant.
(d) Profiles of the soliton in the first 2000 TU — no phonons emission is visible. (e) Initial profile for
v = 0.62 km/s � c — diameter is just slightly smaller than the v = 0.4 km/s one. (f) After 2000 TU the
diameter of the topological component is just slightly wider and its shape slightly changed. The diameter
of the non topological component also changed just slightly but its shape changed a lot: the minimum got
wider while the maximum almost disappeared. (g) Evolution of the speed of the center of kinks of point (c).
(h) Profiles of the soliton in the first 2000 TU — phonons are clearly emitted in both directions but much
more in the opposite direction.
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(d) (h)

Fig. 6. (Continued)

the corresponding one in the YM model (64 bp) and the limit speed c � 0.62 is just slightly1

smaller than the corresponding one in YM (c � 0.71). The motion appears to be very close2

to the continuous counterpart for v = 0.4 km/s and slightly decelerated after a while when3

closer to the limit speed. Nevertheless, like in the YM model, the emission of phonons looks4

absent in the first case and not very high in the second.5

We conclude the section by pointing out again the substantial qualitative difference,6

in the CY model, between dynamics with the Morse and harmonic pairing potential. The7

CY and Y model behave qualitatively in the same way under a Morse pairing potential.8

Conversely, their behavior under an harmonic pairing potential is drastically different: in9

the CY model kinks stop immediately their motion while in the Y model they move happily10

like in the YM case. We believe this is due to the fact that the CY model has a geometry11

detailed enough to feel the roughness of the harmonic approximation and this disrupts12

the delicate equilibria that make possible the motion of solitons along the chain. It is a13

remarkable fact that a refinement of geometry of the model requires, in turn, a refinement14

of its dynamics.15

6. Soliton’s Motion in Inhomogeneous DNA Models16

In this section we discuss our results on the dynamics of kinks in inhomogeneous DNA17

models, in particular for a real base sequence (the Human Adenovirus 2). To model the18

inhomogeneities in the real DNA sequence we now use the exact Hamiltonian described in19

Sec. 2, where differences in both the dynamical parameters of the bases (masses, momenta20

of inertia) and in the strength of the hydrogen bonds for the base-pairs A-T, G-C are taken21

into account.22

It is well known that propagation of solitons in non-homogeneous molecular chains is a23

rather complicate issue. One expects the motion of the soliton to depend crucially both on24

the interaction and on the spatial distribution of the inhomogeneities in the chain. Solitons25

behave as point-particles so that inhomogeneities may act as an effective potential affecting26

their motion. For instance, they may be trapped in some potential well and keep oscillating27

inside it or they may bounce back when scattered by a potential barrier. Generically, they28
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will emit phonons while moving, resulting in a deceleration that will ultimately bring the1

soliton to stop. Moreover the soliton parameters, e.g. its energy, diameter and maximum dis-2

tance reached, vary quite a lot depending on the particular distribution of inhomogeneities3

along the chain and on the starting point of the soliton.4

Therefore we are not so much interested in the motion of a single soliton but rather in5

the “average” properties of solitonic propagation all along the DNA chain. In particular our6

aim is investigating about the existence, within the range of our geometric and dynamical7

parameters and all along a DNA chain, of kink-like torsional configurations whose diameter8

is reasonably narrow (about 60 bp) and which are able to move far enough to be relevant9

for the DNA transcription process, that is over at least 2–300 base-pairs.10

In the rest of the section we will use as base sequence for our simulations the one found11

in the DNA of the Human Adenovirus 2i (HA2), whose length is 35937 bp; we will also12

compare some of our results with those obtained for random chains of the same length.13

Similarly to what we have done in Sec. 5, we discuss separately the time evolution of14

solitons under harmonic potential (Subsec. 6.1) and under a Morse potential (Subsec. 6.2),15

respectively for the Y model (Subsecs. 6.1.1 and 6.2.1) and for the CY model (Subsecs. 6.1.216

and 6.2.2).17

6.1. Time evolution under harmonic pairing potential18

6.1.1. Yakushevich model19

In Figs. 3(c) and 3(d), we show profiles and time evolution of kinks with topological number20

(1, 1) for the inhomogeneous Y model in the HA2 chain for speeds v = 0.2 km/s and21

v = 0.38 km/s � c. In the first case the kink tries to start its motion but it is stopped by22

a potential barrier and starts bouncing back and forth emitting phonons until its kinetic23

energy is over. In the second case the energy of the kink is enough to make it pass the barrier24

but it bounces back after about 40 bp, not even its own diameter, and starts oscillating,25

trapped within some potential well.26

In Fig. 7, we show the distance ran by kinks as a function of their starting position on27

the HA2 chain and the corresponding statistical distribution. As expected, the distribution28

of lengths ran by the kinks is a Gaussian centered about a distance of a few bp. In concrete,29

while a few kinks manage to move up to 100 bp, 90% of them move by less then 41 bp.30

This suggests that solitons in the inhomogeneous version of the Y model cannot be used31

to describe phenomena like transcription or duplication of DNA because kinks are not able32

to move for large enough distances. In the case of a (physically more realistic) Morse-type33

pairing potential this problem disappears.34

6.1.2. Composite model35

Inhomogeneities in the chain clearly make motion harder rather than easier. Since kinks36

were not able to move in the homogeneous CY model, we expected no motion in the37

inhomogeneous CY model too and numerical experiments fully confirmed this.38

ihttp://www.binf.gmu.edu/adenovirus database/images/h2.htm.
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(a) (b)

Fig. 7. (a) Maximum distance reached vs. initial center for (1, 1) kinks in the inhomogeneous Y model in
a HA2 chain with constants m = 7, g = 21, K = 1 and speed v = 0.38 km/s; (b) Number of kinks in the
previous plot vs. maximum distance reached: 50% of the kinks run by no more than 5 bp, 90% of them by
no more than 41 bp.

6.2. Time evolution under Morse pairing potential1

6.2.1. Yakushevich model2

The motion of kinks along the chain shows different features depending on the region the3

soliton starts from. In Figs. 4(c) and 4(d), we show profiles and motion of a kink in the4

inhomogeneous YM model in the HA2 chain sequence and with v = 0.4 km/s and one with5

v = 0.57 km/s. The profiles are slightly more “wavy” than in the homogeneous case and6

emit phonons, as expected, even far from the limit velocity; moreover phonons in this case7

are clearly emitted in both directions and, again, much more when the velocity is close8

to the limit speed. The soliton evolution is close to the continuous limit in the first few9

hundreds TU after that the soliton either starts making small oscillations about some point10

or bounces back and eventually starts oscillating within some potential well.11

Every kink along the chain has a behavior of this kind and both diameter and energy do12

not change much (within 10−2) from point to point; what does change a lot is the maximum13

distance the soliton reaches, as shown in Fig. 8. Soliton’s diameters are about 56 bp. The kink14

travels for considerable distances before stopping owing to phonon emission. The average15

length run by kinks is about 250 bp, i.e. about 4 times the diameter of the soliton. The16

distance reached by the soliton is always between 100 bp and 400 bp, namely between 2 and17

8 times their diameter.18

6.2.2. Composite model19

As in the YM case, even in the CYM model the distances run by kinks in inhomogeneous20

chains change a lot from point to point.21

In Fig. 9, we show profiles and motion of a kink for the CYM model in a HA222

chain sequence and with topological numbers (1, 1) and v = 0.4 km/s and one with23

v = 0.45 km/s � c. The shapes of profiles are just slightly different from the homoge-24

neous case, especially the nontopological ones, and the motion of center is qualitatively the25

same as in YM. Again, phonons are emitted in both directions and much more when v is26
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(a) (b)

Fig. 8. (a) Maximum distance reached vs. initial center for (1, 1) kinks in the inhomogeneous YM model in
a HA2 chain with constants m = 7, g = 7.5, K = 0.02, µY = 11 and speed v = 0.4 km/s; (b) Number of
kinks in the previous plot vs. maximum distance reached: 90% of the kinks run between 197 bp and 347 bp.
Since the diameter of such solitons is about 60 bp, these kinks move between 3 and 6 times their diameter.

close to the limit velocity. Note also that phonons seem to propagate at constant speed even1

though the medium is nonhomogeneous. The first kink moves for about 500 bp at almost2

constant speed before starting to decelerate and is able to move for about 400 bp; the second3

starts decelerating almost immediately and stops after less than 200 bp. This corresponds4

(a) (e)

Fig. 9. Profiles and time evolution of kinks with topological numbers (1, 1) in the inhomogeneous CYM
model in a HA2 chain and constants it = 1.1, is = 1.3, gt = 1, gs = 0.3, gh = 0.01, gp = 0.02, µ = 6.3 and
gc = 10 at speed v = 0.4 km/s < c (left) and v = 0.45 km/s � c (right). (a) Initial profile for v = 0.4 km/s —
the profile is just slightly wider than the corresponding one in the Y model. (b) Evolution of the soliton after
2000 TU — its shape is almost identical to the initial one but a little “wavy”, as expected. (c) Motion of the
centers of kinks with center at n = 1000 and speed parameter equal to v = 0.1 (thin, dashed), 0.2 (magenta,
thick, dashed), 0.3 (blue, thick, dotted), 0.4 (green, thin), 0.45 � c (red, dotted and dashed). The kink with
v = 0.1 loses immediately its kinetic energy, basically does not move at all; all others move for at least
100 bp before stopping and their maximum distance ran on the chain increases with the velocity parameter
v except for the case v = 0.45, which is very close to the limit speed. (d) Profiles of the soliton in the first
2000 TU — very little phonons emission is visible in both directions. (e) Initial profile for v = 0.45 km/s —
diameter is just slightly smaller than the v = 0.4 km/s one but the shape is significantly more “shaky”.
(f) After 2000 TU the diameter of the topological component is just slightly wider and its shape slightly
changed but the presence of phonons is much more evident. (g) Evolution of the speed of the center of kinks
of point (c). (h) Profiles of the soliton in the first 2000 TU — phonons are clearly emitted in both directions
but much more in the opposite direction.
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(b) (f)

(c) (g)

(d) (h)

Fig. 9. (Continued)

to the fact that, close to the limit speed, there is a big emission of phonons and therefore1

the kink decelerate more rapidly.2

The most important result of this paper is illustrated in Fig. 10. In the left hand side3

of the figure we show both the distances reached by (1, 1) kinks as function of the starting4

point on the HA2 chain, the distribution of the maximum distance reached by the kinks5

and the mean distance run by (1, 1), (1, 0), (0, 1) solitons versus their speed. The diameter6

of the kinks is about 60 bp. The maximum distance run by kinks lie all between 150 bp7

and 650 bp, i.e. about 2-10 times their diameter. The mean distance run is 353 bp, that is8

about 6 times the diameter of the soliton; and 90% of kinks run between 237 bp and 468 bp,9
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Fig. 10. (First row) Max distance reached vs. initial center for (1, 1) kinks in the CYM model in a HA2
chain (left) and in a random chain (right) with constants It = 1.1, Is = 1.3, gt = 1, gs = 0.3, gp = 0.02,
µ = 6.3, gh = 0.01, gc = 10 and v = 0.4 km/s. (Second row, left) Number of kinks in the HA2 chain vs.
maximum distance reached: the mean distance run is 353 bp and 90% of kinks run between 237 bp and
468 bp. Since the diameter of such kinks is about 60 bp, this means that they run between 4 and 8 times
their diameter. (Second row, right) Mean distance run vs. speed for (1, 1) kinks with coupling constants
as above in the interval between 0 speed (static solitons) and the limit speed c � 0.45 for a HA2 chain
(blue, circles), a random chain (red, squares) and a chain of human mitochondrial DNA (green, triangles).
The data plot, outside of some small neighborhood of the extremes of the interval [0, 0.45], is well fitted by
the graph of the function y = 180 tanh(8x − 2) + 180. Note that when the speed of the kink gets too close
to the limit speed the distance ran gets very small. (Third row) Analogue plots for kinks with topological
number (1, 0) (left) and (0, 1) (right). In this case the data plots are both well approximated by the graph
of the function y = 68 tanh(8x− 2)+68 and in both cases deviations are more pronounced close to the limit
speed c � 0.4.



1st Reading

June 24, 2011 15:53 WSPC/1402-9251 259-JNMP 00154

Soliton Propagation in Homogeneous and Inhomogeneous Models for DNA Torsion Dynamics 25

i.e. between 4 and 8 times their diameter. The picture is similar to the one corresponding1

to the Y model but is shifted above by about 50%, i.e. kinks in the CYM model move in2

average 50% more than the corresponding kinks in the YM model even though they have3

similar energies and diameters.4

A second important result is illustrated on the upper right hand part of Fig. 10, where5

we show that the average length traveled by the solitons and the soliton distribution does6

not depend on the particular combinatorics of the DNA sequence. Indeed we evaluated the7

same quantities on a random sequence of same bp length and found the very same statistics8

(Fig. 10(right)).9

This means that the DNA sequence, which is of course fundamental in all biological10

processes, does not play a significant role in torsional dynamics, i.e. from the torsional11

dynamic point of view all “generic” chains look more or less the same. Note that this12

fact means that the mechanical, torsional, features of DNA which allow for the existence13

of twist solitons are “almost” decoupled from the combinatorics aspects of DNA, which14

encode genetic information.15

7. Effects of Dissipation and External Forces on Soliton’s Motion16

Until now we have modelled the DNA chain as a conservative system and disregard all the17

interaction of the DNA molecule with its environment. However, DNA is an overdamped18

system subject to forces, including random ones, arising from interactions with its environ-19

ment and, obviously, these interactions are relevant for understanding functional properties20

of DNA such as the transcription process. In this section we will discuss these effects for the21

case of the inhomogeneous Y model both with a harmonic and a Morse pairing potential;22

the discussion of kink propagation in presence of damping effects and external forces in23

the CY model is deferred to a later work for the sake of brevity. Our result represent the24

generalization to the inhomogeneous chain of previous results obtained by Yakushevich for25

the homogeneous chain [14].26

As a first and rough approximation we can, following Yakushevich [14], describe the
interaction of the DNA with its environment by introducing, in the equations of motion
for θ in the Y model of Subsec. 2.1, a (torsional) damping term and an external (torsional,
constant) force:

(−ν0θ̇n,i + F0)E0. (7.1)

Notice that we are analyzing rotational dynamics so that Eq. (7.1) describes a torque acting27

on the system, which has the dimension of an energy and can be measured either in kJ/mol28

or Nm/mol. The parameter F0 is dimensionless while ν0 has the dimension of a time.29

Since we are working with a discrete DNA chain of finite length (between 103 and 104
30

sites depending on the parameters), the presence of a constant external force at both ends31

of the chain is not compatible with the boundary conditions, which fix θ = 2nπ. To solve32

this problem, F0 is set to zero at the 200 sites at each end of the chain.33

The range of variation for the parameters ν0 and F0 can be found in the literature34

(see [14] and the references therein). In our computations we used for the damping coefficient35

the model value ν0 = 6 · 10−2TU , so that ν0v0/δ = 6 · 10−2. For F0 we have used values36

ranging from 5 · 10−1 ∼ 110 kJ/mol/E0 to 10−2 ∼ 2.2 kJ/mol/E0.37
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We have determined, numerically, the time evolution of the kinks with topological num-1

bers (1, 1) when a dissipative and/or an external force are present for: (1) the homogeneous2

Y model (harmonic pairing potential) and YM model (Morse pairing potential); (2) the3

inhomogeneous Y and YM models in a HA2 chain sequence. The results of our computa-4

tions are summarized in Figs. 11 and 12.5

For what concerns time evolution of the kink in homogeneous chains, our results fully6

confirm the previous results by Yakushevich [14] (see Figs. 11(a) and 11(b)) and extend7

them to the YM model (see Figs. 12(a) and 12(b)). There exists a critical value F0c of the8

external force above which the kink can propagate at constant speed also in the presence of9

dissipation. F0c = 10−4 in the case of the Y model, whereas F0c = 10−5 for the YM model.10

There is also an upper critical value F0C for the external force, above which the soliton is11

(a) (b)

(c) (d)

Fig. 11. Time evolution of speeds (in km/s) and profiles of solitons of topological type (1, 1) in case of a
DNA chain in presence of dissipation ν and constant external force F . Our model value for the dissipation
coefficient is νM = 6 · 10−2. Homogeneous Y model, v = 0.2, m = 7, g = 21, K = 1; (a) Speed
vs Time with (ν0, F0) equal to (0, 0) (red, dot-dashed), (νM , 0) (thick, pink, dashed), (0, 10−2) (green),
(νM , 10−2) (blue, dashed); (b) Motion of the kink with (ν0, F0) = (νM , 10−2). Inhomogeneous Y model
(HA2 sequence) (c) Speed vs Time with (ν0, F0) equal to (0, 0) (red, dot-dashed), (νM , 0) (thick, pink,
dashed), (0, 10−1) (green), (νM , 10−1) (blue, dashed), (νM , 5 · 10−1) (cyan, thick). (d) Motion of the kink
with (ν0, F0) = (νM , 10−1).
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(a) (b)

(c) (d)

Fig. 12. Time evolution of speeds (in km/s) and profiles of kinks of topological type (1, 1) in a DNA chain
in presence of dissipation ν and constant external force F0. Our model value for the dissipation coefficient is
νM = 6 ·10−2. Homogeneous YM model, v = 0.4, m = 7, g = 7.5, K = 0.02, µY = 11; (a) Speed vs Time
with (ν0, F0) equal to (0, 0) (red, dot-dashed), (νM , 0) (thick, pink, dashed), (0, 10−3) (green), (νM , 10−3)
(blue, dashed); (b) Motion of the kink with (ν0, F0) = (νM , 10−3). Inhomogeneous YM model (HA2
sequence), v = 0.4, m = 7, g = 7.5, K = 0.02, µY = 11; (c) Speed vs Time with (ν0, F0) equal to (0, 0)
(red, dot-dashed), (νM , 0) (thick, pink, dashed), (0, 10−3) (green), (νM , 10−3) (blue, dashed). (d) Motion of
the kink with (ν0, F0) = (νM , 10−3).

strongly distorted and eventually becomes too steep and stops moving or the DNA chain1

as a whole opens and closes (F0C = 1 for the Y model and F0C = 2.5 · 10−3 for the YM2

model).3

The most interesting results concern the time evolution of the kink in the inhomogeneous4

YM model with a HA2 chain. When an external force above the critical value F0c = 7.5·10−4
5

is present, the kink moves all the time with nonvanishing speed both in absence of dissipation6

(green line in Fig. 12(c)) and with dissipation (blue, dashed line in Fig. 12(c)). Because7

now we are dealing with an inhomogeneous chain, the soliton speed does not approach8

asymptotically to a constant value (as in the homogeneous case) but oscillates around a9

nonvanishing value. Also in this case we have an upper critical value for the external force10

given by F0C = 2.5 · 10−2.11
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In the case of the inhomogeneous Y model with a HA2 chain (see Fig. 11(c)) we have1

similar results but the window of the external force for which kinks propagates along the2

chin without stopping is now very narrow: 7.5 · 10−2 ≤ F0c ≤ 2.5 · 10−1. This peculiar3

behavior of the inhomogeneous Y model can be probably traced back to the features of4

the harmonic pairing potential that make the kink more sensible to inhomogeneities on the5

chain.6

8. Motion of Kinks at Low Speeds7

So far we considered only kinks with speeds of the same order of magnitude of DNA’s8

speed of sound, which is of the same order of magnitude of the limiting speed c of solitons.9

The velocity of transcription and replication though is much smaller, between 50 bp/s and10

103 bp/s [52], namely at least about 10 orders of magnitude smaller than our reference11

speed v0. Since we are bound (see Subsec. 4.2) to use a time unit about 10−13 s, the com-12

puting time needed to study numerically such a slow motion is way too long for a concrete13

simulation.14

A second difficulty, which prevents us to investigate numerically soliton motion with15

speeds of order of magnitude 103 bp/s, is the presence of the well-known Peyerls–Nabarro16

potential (e.g. see [68]). This is a discreteness effect which implies that, in the homogeneous17

case, there is a lower bound on kinks’ speeds equal to 6 · 10−3 in Y and to 2 · 10−4 in YM.18

In view of these difficulties in this section we investigate soliton motion at speeds which are19

compatible with the presence of the Peyerls–Nabarro potential and with our tiny time unit.20

These speeds are up to 4–5 orders of magnitude smaller than v0. For simplicity we will also21

only consider the case of (1, 1) kinks in the Y and YM models.22

Considering soliton speeds of order of magnitude 10−5v0 we are still far away by 5 order23

of magnitude from the speed of transcription and replication in real DNA. However we24

should keep in mind that in these processes are actually involved many external factors,25

not last the RNA polymerase, which acts as external forces on the DNA chain. The ques-26

tion therefore is whether the Y and YM models support kinks moving with speeds slower27

than the lower bounds for the free solitons after external forces are put in play. For this28

reason we we discuss here the case of DNA subject to a constant external force F and a29

friction ν.30

Because at this stage our investigation is purely qualitative we choose arbitrarily the31

values of F0 and ν0 (see the previous section). We use the inhomogeneous sequence of HA232

in our simulations. The results of our numerical computations are shown in Fig. 13. They33

show clearly that in the presence of external forces and dissipation soliton motion at roughly34

constant speed is possible at speeds of order 10−5v0. For example, by choosing F0 = 0.4 and35

ν0 = 5 ·103TU in Y the kink moves at a speed of about 2 ·10−4, about a order of magnitude36

smaller than the allowed speed for free kinks, and by choosing F0 = 10−3 and ν0 = 256TU37

in YM the kink moves at speed of about 4 · 10−5, again about a order of magnitude slower38

than the allowed speed for free kinks. Numerical experiments seem to indicate that, in both39

models, by increasing the friction the speed of the kink slows down continuously.40

This analysis suggests that, even though no kink can freely move in Y and YM at the41

real speed for transcription and replication, such speeds can be reached under the action of42

an external force and therefore this mechanism could play a role in these phenomena.43
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(a) (b)

(c) (d)

Fig. 13. Time evolution of centers and profiles of kinks of topological type (1, 1) in a DNA chain in presence
of dissipation ν and constant external force F at low speed. Y model, m = 7, g = 21, K = 1, F0 = 0.4;
(a) Evolution of the center of kinks corresponding to the dissipation coefficients (from top to bottom)
ν0 = 200, 300, 500, 1000, 5000. The corresponding averaged speed are v = 4.7 ·10−3, 3.1 ·10−3, 1.9 ·10−3, 9.3 ·
10−4, 2.1 · 10−4. (b) Evolution of the profile of the kink with ν = 1000. There is clearly a large emission of
phonons but the kink’s profile moves at reasonably constant speed without changing sensibly. YM model,
m = 7, g = 21, K = 1, F0 = 0.4; (c) Evolution of the center of kinks corresponding to the dissipation
coefficients (from top to bottom) ν0 = 8, 16, 32, 64, 128. The corresponding averaged speed are v = 1.1 ·
10−3, 5.5 ·10−4 , 2.4 ·10−4 , 1.5 ·10−4, 7.1 ·10−5 . (d) Evolution of the profile of the kink with ν = 128. There is
no visible emission of phonons and the kink’s profile moves at reasonably constant speed without changing
sensibly.

9. Conclusions1

In this paper we have performed a detailed and comparative numerical investigation of the2

initial profiles and time evolution of solitons in models describing DNA nonlinear torsional3

dynamics. In our investigations we have considered the most important mesoscopic models4

for DNA torsional dynamics with parameters entering in the model within the physical range5

allowed by the experimental results. We have studied the propagation of solitons in models6

with different geometries (the Y and the CY model), different pairing potentials (harmonic7

and Morse), and different uniformity features of the DNA chain (homogeneous and inho-8

mogeneous chains). The inhomogeneities in a real DNA sequence have been modelled by9
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considering the differences in both the dynamical parameters of the bases (masses, momenta1

of inertia) and in the strength of the hydrogen bonds for the base-pairs A-T, G-C. Here is2

a summary of our main results.3

• Although the existence of static kinks is a generic and robust feature of basically all4

continuous and discrete models of DNA nonlinear torsional dynamics, for discrete models5

time evolution of the soliton is rather selective. The time evolution of the soliton shows6

high sensitivity to the interplay between geometrical, dynamical and uniformity features7

of the DNA model.8

• The simplest model from the geometrical point of view — the Y model — is less sensitive9

to the choice of the pairing potential for the base-pairs. In the case of the Y model,10

solitons propagate along the chain both using a harmonic and a Morse pairing potential.11

Conversely, in the case of the CY model propagation of solitons is possible only when the12

pairing interaction is modelled by a Morse potential. This gives a nice coupling between13

geometry and dynamics: a more realistic modelling geometry of the DNA chain necessarily14

requires a more realistic modelling for the pairing interaction.15

• Independently of the geometrical and uniformity features of the DNA chain, soliton16

propagation discriminates between the Morse and the harmonic potentials. In all our17

simulations (Y and CY model, homogeneous and inhomogeneous DNA chain) soliton18

propagation turns out to be favored when using a Morse potential to model the pairing19

interaction. This is again a welcome feature: a more realistic choice for the interaction20

potential enhances soliton propagation.21

• In the case of the more realistic inhomogeneous chains, and in particular the chain cor-22

responding to the real DNA base sequence of the Human Adenovirus 2, the best results23

concerning soliton propagation are obtained using the CY model with Morse pairing24

potential. Twist solitons propagate for considerable distances along the chain before25

stopping due to phonon emission. The mean distance is 6 times the soliton diameter,26

which is about 60 bp, and the maximum distance reached is about 10 times the soliton27

diameter. This has to be compared with soliton propagation when the same DNA chain28

is described by the Y model with a Morse pairing potential. In this case the mean and29

the maximum distance reached by solitons is, respectively, 4 times and 8 times the soliton30

diameter. Thus, soliton propagation in real inhomogeneous DNA chains seems to favor31

the CY model with Morse pairing potential.32

• Soliton dynamics appears to be substantially equivalent for a real DNA base sequence33

and for a random one. This means that the DNA base sequence, which is of course34

fundamental for biological processes, does not play a significant role (at least at the level35

of the mesoscopic models considered here) in the torsional dynamics of DNA. This fact36

is a confirmation of the results of Cuenda and Sánchez [69].37

• Strong limitation of our investigation are that we have mainly considered kinks with38

speeds of order 1 km/s and the impossibility of performing simulations at speeds of the39

order of magnitude of the replication speed in real DNA (about 1000 bp/s). However, by40

considering the motion of kinks in DNA chains subject to external forces and dissipation,41

we have shown that we can slow down the soliton speed to reach speeds which are42

only 5 order of magnitude higher than the replication speed in real DNA. This gives43

a strong indication that solitons can propagate in the DNA chain also with speed of44

order 1000 bp/s.45
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• Our investigation have shown that solitons propagation with average constant, non-1

vanishing, speed is possible also in inhomogeneous chains with real base sequences and2

with dissipation if an external force is present. Soliton propagation discriminates between3

the Morse and the harmonic potentials also when dissipative effects and external forces4

are present. Again, a Morse pairing potential favors soliton propagation.5

• In our investigation we have not considered the effect of random thermal effects. It is6

therefore an open question whether soliton propagation is robust upon the inclusion of7

these effects. Previous numerical investigations of statistical mechanics of DNA models8

have shown that big excitations of the DNA chain can grow by collecting the energy of9

small ones [52].10

• As a byproduct, our numerical investigation has shown that soliton propagation is also11

possible in highly inhomogeneous media. This possibility can be traced back to two12

different features of our mechanical system. The first is the presence in the molecular chain13

of both a homogeneous part that supports the topological soliton (the sugar-phosphate14

group) and an inhomogeneous part (the bases) that plays the role of a dissipative medium.15

The second is that the Morse potential localizes the interaction of the inhomogeneous part16

essentially near the potential minimum; away from this minimum the interaction becomes17

very weak: again, this weakens the soliton sensitivity to inhomogeneities in the chain.18
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