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We present the results of our numerical exploration of the asymptotic properties of quasi-electron
orbits in Au and Ag under a strong magnetic field. Our analysis represents the first quantitative
comparison between the magnetorestance maps obtained from experimental data in early Sixties
and the Lifshitz model for the transverse magnetoresistance behaviour in metals with a topologically
non-trivial Fermi Surface.
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The relevance of the geometry and topology of the
Fermi Surface (FS) in physical phenomena is well known
since Thirties, when Justi and Scheffers showed evidences
that the FS of Gold is open [1]. One of the most striking
examples of such phenomena is the behaviour of magne-
toresistance in monocrystals at low temperatures in high
magnetic fields [2].

It was Lifshitz et al. [3] the first to notice that, un-
der the conditions stated above, the magnetoresistance
behaviour is dictated only by the topological proper-
ties of orbits of quasi-momenta: as the magnetic field
H → ∞ the magnetoresistance saturates isotropically to
an asymptotic value if the orbits are all closed, while
it grows quadratically with H if there are open orbits
(Fig. 1). Stereographic Maps (SM) showing the set of
H directions for which the magnetoresistance does not
saturate were experimentally obtained in the following
years for about thirty metals [9], initially by Gaidukov et

al. (e.g. [4, 5]) and later by several other groups.

Such SM were, in those years, one of the main tools to
study electron energy spectra; nowadays such use is out
of fashion, since many different and more precise meth-
ods are available, but nevertheless SM constitute a highly
non-trivial experimental data in themselves and no verifi-
cation of them from first principles was provided till now
in literature, except for qualitative sketches like those
published by Lifshitz (see Fig. 4b).

Several papers (e.g. [6–10]), mainly published in Fifties
and Sixties, testify a large efforts of the Physics commu-
nity to understand the relation between the direction of
H and the topology of the orbits of quasi-momenta for a
generic FS but the problem turned out to be too difficult
was eventually abandoned. The method we introduce in
this letter, suggested by I. Dynnikov and implemented
by the author, allows for the first time not only to ver-
ify the SM available in literature but also to predict ex-
tremely accurate SM for new FS. In this work we focus
our attention to Au and Ag, whose SM were measured
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by Gaidukov and Alexeevskii in early Sixties [4, 5].
In order to make fully understandable the nature of

our results we will summarize below the results [11–13]
on the subject obtained recently by Mathematicians.

The extremely rich topological structure underlying
this phenomenon was discovered indeed only in Eighties
and Nineties by former S.P. Novikov’s students A. Zorich
and I. Dynnikov after that Novikov [14] recognized the
purely topological character of the problem. Their re-
sults lead to the following picture: once a FS is given,
if open orbits arise for electrons quasi-momenta for some
direction of the magnetic field, then such directions are
sorted in some finite number of “islands” called Stabil-
ity Zones (SZ) (e.g see Fig. 4c); each SZ is labeled by a
Miller index L in such a way that each open orbit gener-
ated by any H belonging to a SZ with label L is a finite
deformation of a straight line whose direction is given by
H ×L; all directions that do not belong to these SZ give
rise only to closed orbits, except for a negligible set of
exceptional directions that can be safely disregarded in
this Letter.

The Miller index L is a new quantum first integral
whose existance was totally unexpected before the anal-
ysis by Novikov and his pupils and we will show below
that it constitutes the key to build an algorithm able to
evaluate the topology of quasi-electrons momenta.

As it is well known, under the appropriate conditions,
namely a H so strong to make electrons’ mean path big
enough to feel the FS topology (i.e. ωcτ ≫ 1) but not
strong enough to destroy the FS by magnetic breakdown
(that sets the range of H ranges roughly between 10T
and 103T ), quasi-electrons orbits are given by

ṗ = H × ∂En(p)/∂p = {p, En(p)}
H

(1)

where En(p) is the energy function for the electrons occu-
pying the n-th band and {, }

H
is the so-called “magnetic

bracket”: {pα, pβ}H
= ǫαβγHγ .

This dynamical system looks at first sight like a stan-
dard classical mechanics system but at a more accurate
look it reveals to be of a rather different nature. In clas-
sical mechanics indeed momenta belong necessarily to a
linear space while in these case the Bloch theorem dic-
tates that they belong to the first Brillouin zone, topolog-
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FIG. 1: [15] Behaviour of ρ in metals with closed and open FS. (Closed) ρ is isotropic and saturates unless the density of
electrons and holes coincide, in which case ρ ∼ H2. (Open) ρ is highly anisotropic and it shows qualitatively different behaviour
in min and max: in max ρ ∼ H2 while in min it saturates (θ is the angle between H and the crystallographic axis).

ically equivalent to a three-torus T
3 and therefore carry-

ing a non-trivial topology. It is noteworthy to point out
that not even the most trivial of such systems were stud-
ied till now by the dynamical systems community, prob-
ably because such problems only originate from quantum
mechanical systems, and it was a striking surprise to dis-
cover a rich structure even in the most simple cases.

The non-trivial topology of T
3 has strong consequences

on eq. 1: indeed the second of its two first integrals En

and p · H is not a well-defined function but rather a
multi-valued function, since it depends linearly by the
“angular” variables pi. It is exactly this fact that al-
lows the existence of open orbits, since in the three-space
any dynamical system with a closed energy surface and
a single-valued second integral of motions can give rise
only to closed orbits.

The origin of the quantum first integral L is easily seen
by looking at what happens for any rational H0, i.e. any
magnetic field pointing at some lattice direction, giving
rise to open orbits. In that case indeed we can indeed
assume with no loss of generality that H0 = (0, 0, 1) and
in the generic case all sections of the FS E(p) = EF by
the planes p · H0 = c are a finite set of disjoint closed
and/or open orbits except for some finite number of crit-
ical levels where pairs of orbits meet. The cases shown
in Fig. 2a,b represent the only critical levels that involve
open orbits: the first one represents the meeting of two
open orbits that annihilate to give rise to a closed or-
bit, or equivalently an open orbit that meets a closed
orbit and bounces back; the second one the merging of
a closed orbit in an open one. In each case it turns out
that a single open orbit will never disappear but rather
will either bounce or merge with closed orbits till it will
come back to itself by periodicity, describing so either a
warped cylinder or a warped plane with some finite num-
ber of holes corresponding to closed orbits. The critical
observation is that closed orbits are stable by small per-
turbations of H0 and therefore open orbits will be con-

fined to the warped planes and cylinders above for any
H close enough to H0. Since a generic H gives rise only
to closed orbits on any warped cylinder, we are finally
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FIG. 2: Possible kind of open saddles for rational H : (a) Fully
open saddle. (b) Half-open saddle. (c) Warped plane covered
by open orbits [13].

led to the conclusion that open orbits for a generic H

are confined to warped planes separated from each other
by cylinders of closed orbits (see Fig 2c).

Such warped planes are made by components of the
FS plus some number of flat discs covering their holes
and they are therefore periodic and can be sandwiched
between a pair of parallel lattice plane with some Miller
index L. Small perturbations in H direction cannot de-
stroy but only slightly modify warped planes so that,
since the Miller indices depend continously on the warped
planes and are a discrete set, it turns out that L is a lo-
cally constant function of the direction of H .

This quantum first integral was unknown to Physicist
that worked on the problem in Fifties and Sixties and was
first discovered by Zorich [16] in Eighties. Its knowledge
is enough on one hand to grant that no two SZ overlap,
since all warped planes appearing for some H must have
the same Miller index, and on the other hand to deter-
mine completely the asymptotic behaviour of open orbits,
since they clearly are asymptotic to a straight line with
direction H × L. In particular this shifts the numerical
problem from determining the asymptotic behaviour of
open orbits, clearly impossible to be carried out exactly
in the generic case, to evaluate the Miller index. We leave
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FIG. 3: [17] (a) SM relative to
P

cos(xi) = 0. Infinitely
many SZ appear because the symmetry of the FF makes all
SZ appear at the level 0. (b) Detail of the unitary square at
Hz = 1. (c) The FS

P

cos(xi) = 0. (d) Boundaries of the
larger SZ above found analytically.

to a longer article the detailed description of how to get
the Miller index components and we just point out that,
since L is locally constant, we can determine each SZ
with any desired degree of accuracy just sampling mag-
netic fields with rational direction, that incidentally are
the only ones we can “exactly” treat from the numerical
point of view.

We performed accurate numerical tests on simple “toy”
Fermi Functions (FF) for which it is possible to obtain
an analytical expressions of the SZ boundaries and ver-
ified that there is an excellent agreement between the
analytical boundaries and the numerical data obtained
evaluating the label for all magnetic fields in a squared
grid (e.g. see Fig. 3 [17]). Note that in this case the SZ
structure is fractal-like just because the toy FF used has
a particular symmetry such that there is an energy level
E0 for which all magnetic fields giving rise at open orbits
at some level do so also at E0. More in general, since
maps relative to different energy levels of the same FF
are always compatible [11] (i.e. the same L corresponds
to the same H at all levels where open orbits arise), it
makes sense to build “all energies” SMs labeling each H

by a label L if that label corresponds to that magnetic
field at some energy. For a generic FF all rational direc-
tions give rise to open orbits at some energy level [12]
and boundaries of SZ are always transversal it so that,
when at least two different Miller indices L appear for
two magnetic fields directions, then infinitely many SZ
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FIG. 4: (a) Experimental SM of magnetic field directions for
Gold [4] (b) Qualitative sketch of it got by Lifshitz from his
topological analysis [7] (c) Map obtained numerically (d) SZ
in the unitary square at Hz = 1 and their Miller indices for
H = (m/100, n/100, 1), 1 ≤ m,n ≤ 100.

appear in the “all energies” SM, distributed in a fractal-
like way.

SMs have been produced, mainly in Sixties and Sev-
enties, for many metals and first of all for noble metals,
whose FS is a sphere with four handles oriented like the
diagonals of a cube (see Fig. 5b). We chose Au and Ag
for our first numerical exploration with real FSs because
in the literature are available analytical expressions for
their FF and Fermi Energies [18] Much more precise FS
approximations can be currently obtained e.g. using the
Slater-Kostner tight-binding method [19], and we surely
plan to make use of such tools in the future, but we opted
for using the analytical approximation for two main rea-
sons: on one hand, dealing with an analytical expres-
sion makes the numerical exploration much faster; on the
other hand, Gaidukov experimental data have been taken
with a magnetic field intensity of the order of ≃ 10T ,
barely at the boundary of the range for which the phe-
nomenon manifests. We expect that the boundaries of
the SZ will slightly but noticeably change after increas-
ing the intensity by an order of magnitude, bringing it
well inside the validity range of the semiclassical approx-
imation, so we felt allowed to give more importance to
calculations speed than to FS accuracy for this first nu-
merical runs.

The SMs are obtained by evaluating the label (if any)
associated to every magnetic field in a 102 × 102 grid in
the unitary square, representing magnetic fields with di-
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FIG. 5: (a) SM of magnetic field directions for Silver [5] (b)
Fermi Surface of Silver (c) SM obtained numerically (d) SZ
in the unitary square at Hz = 1 and their Miller indices for
H = (m/100, n/100, 1), 1 ≤ m, n ≤ 100.

rection (m, n, 100), 1 ≤ m, n ≤ 100 (Figs. 4d and 5d),
and then by applying the stereographic projection and
extending the regions above by symmetry (Figs. 4c and
5c). Even with a non-optimal approximation for FSs and
experimental data taken just at the threshold, the corre-
spondence between the numerical and experimental SMs
turns out to be excellent for both Ag and Au (Figs. 4a,c
and 5a,c). In both cases we find three big regions cen-
tered around the lattice directions (0, 0, 1), (1, 0, 1) and
(1, 1, 1) that, once symmetrized, reproduce in number,
shape and size the seventeen SZ detected by Gaidukov.

Miller indices associated to each those regions coincide
with the lattice direction at their center, as it is sup-
posed to happen for SZ around axis of symmetry for the
FS [11]. We point out once again that the knowledge of
the Miller index enables us to predict the current direc-
tion for all magnetic fields whose direction falls inside the
SZ, except for the direction parallel to the SZ label. In
the Au case we also found a fourth small region not de-
tected experimentally with Miller index (3, 3, 4) centered
around the direction (.67, .68, 1). Only two points be-
long to the SZ at the resolution used to generate Fig. 4c
but further tests carried out at higher resolutions confirm
that the SZ exists and has a triangular shape.

In summary, our numerical investigations allowed for
the first time to compare the SMs found experimentally
for Ag and Au by Gaidukov in Sixties and the corre-
sponding ones built numerically from semiclassical con-
siderations based on the galvanometric theory of Lifs-
chitz. When open orbits occur, and therefore the con-
ducibility tensor has a null eigenvalue, we are also able to
predict the directions of the current. Our results indicate
a striking agreement between experiment and theory but
also indicate small discrepancies that may be due to the
fact that the magnetic field used for the experiments was
barely enough to let the phenomenon take place. New ex-
periments performed with magnetic fields of order 102T
would give a final answer on the degree of accuracy of the
Lifschitz model. Our next steps will be to start working
with more accurate approximation of the FSs, e.g. using
the Slater-Kostner tight-binding approach, and to pro-
duce numeric maps for the other metals for which a SM
has been published.
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