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The problem of Novikov about the asymptotic structure of leaves induced by constant 1-forms in
R

3 on 3-ply periodic surfaces has been studied extensively [Zor84, Dyn97, Dyn99, DL03] after the
problem was posed in [Nov82].

In particular, fundamental results by A.V. Zorich and I.A. Dynnikov lead to the following picture:
the set of directions of 1-forms that induce open leaves on a 3-ply periodic surface M2 embedded in
R

3 is, in the generic case, the disjoint union of a finite number of open subsets {Dl(M
2)} of RP2,

each of whom is labeled by a point l ∈ RP2 that is a rational direction with respect to any triple of
base symmetry vectors of M2 (i.e. any set of generators for the group of translations that leaves M2

invariant). The correspondance between D and l is given by the following property: the open leaves
induced by a 1-form of direction ω ∈ Dl are all strongly asymptotic to a straight line with direction
given by the intersection of the straight lines dual of ω and l (i.e. “ω × l”). All directions falling
outside of the {Dl} give rise to closed leaves only (modulo saddle connections).

We call {Dl(M
2)} the set of “stability zones” of M2. As Dynnikov showed, stability zones cor-

responding to surfaces that do not intersect each other are compatible, namely zones that overlaps
must share the same label, so that it is also possible to associate a set of “stability zones” {Dl(f)} to
any Morse 3-ply periodic function f , defining it as the union of the stability zones of all of its level
sets. In this case, the set of “stability zones” either is a single set covering the whole projective plane
or contains an infinite countable number of elements distributed, loosely speaking, in a fractal-like
manner.

In the second case
⋃
Dl(f) is dense in RP2 but it does not cover it fully: its complement is the

union of all zones boundaries plus a set of “ergodic” directions; these last directions form a closed
perfect set with empty interior (whose measure is still unknown) and induce leaves with complicated
topology at a single level of f and only closed leaves at every other level. Recently [DL03b] we showed
that, when we are in the second case, the limit points of the set of all labels are exactly the set
of all boundary points and all ergodic directions. Our proof relies on a Dynnikov’s claim based on
non-rigorous arguments; the goal of this communication is to provide a full proof for it.

Let us point out first of all that, once a symmetry base for M2 is chosen, every label l can be
represented uniquely (modulo sign) by a triple L of indivisible integers. This correspodance provides
us a “norm” for such points (as the norm of the corresponding vector L). Now, be d(l, l′) the distance
on RP2 given by the smallest angle between the straight lines l and l′:

Lemma 1. For any 3-ply periodic surface M there exists a stricly-positive finite constant C s.t.

d(Dl(M), l) ≤ C/‖l‖.

Proof. Be ω a constant 1-form with a generic direction l′ ∈ Dl(M
2); then [Dyn97] all open leaves

induced on M2 by ω lie on periodic submanifolds with boundary N̄i(l
′) that are periodic with respect

to the rank-2 sublattice ker l and whose boundary is a set of disjoint isolated flat discs (the critical
leaves separating open orbits from closed ones). By filling the holes in the natural way we get genus-
zero manifolds Ni that are a finite periodic deformation of a plane of direction l.

We claim that d(l, l′) ≤ C/‖l‖ for some constant finite positive constant C depending only on M .
Indeed, be N a fundamental domain for any of the Ni and let us project it orthogonally over the
plane π of direction l′ × (l × l′). On one side, since π is perpendicular to the flat discs on N , we get
an upper bound for the area of the projection as A(Nπ) = A((N \ {Discs})π) ≤ A(N \ {Discs}) ≤
A(M2) := C/2 < ∞. On the other side, since by repeating N periodically we get a surface that
is a finite deformation of a plane of direction l (whose fundamental domain has area ‖l‖), then also
A(Nπ) ≥ ‖l‖ sind(l, l′), as any finite deformation of a plane can only increase its projection in any
direction. These two facts imply that sin d(l, l′) ≤ C/2‖l‖, ∀l′ ∈ Dl(M

2), and therefore d(l, l′) ≤ C/‖l‖
for l big enough.

Theorem 1. For every 3-ply periodic Morse function f there is a finite constant Cf such that every

stability zone Dl(f) is contained inside a circle of radius Cf/‖l‖ centered at l.
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Proof. Using Lemma 1 we see that, for every level Me = f−1(e), the set Dl(M
2

e ) is contained in a
circle of radius Ce = 2A(M2

e ) centered at l, so Dl(f) = ∪e∈RDl(M
2

e ) is contained inside a disc of radius
Cf = supe∈R

Ce, that is finite because Ce is a continous function of e with compact support.
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