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Abstract

Given a free finitely generated semigroup S of the (normed) set of
linear maps of a real or complex vector space V into itself, we provide
sufficient conditions for the exponential growth of the number N(k)
of elements of S contained in the sphere of radius k as k → ∞ and
we relate the growth rate limk→∞ logN(k)/ log k to the exponent of
a zeta function naturally defined on S. When V = R2 (resp. C2)
and S is a semigroup of volume-preserving maps, we also relate this
growth rate to the Hausdorff dimension of the attractor of the induced
semigroup of automorphisms of RP 1 (resp. CP 1).

1 Introduction

The basic problem of the asymptotic behaviour of the norms of products
of some fixed finite set of square matrices has been extensively studied in
the context of the theory of random matrices. In particular, in a celebrated
paper [FK60], Furstenberg and Kesten proved that, given some finite number
of square matrices Ai and under some suitable measure, the norm of almost
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all products of k of the Ai grows as γk, where γ is some Lyapunov exponent
associated to the Ai.

In this paper, we address the same subject from a different point of view.
We consider a choice of finitely many (possibly repeated) real or complex
matrices Ai such that there are only finitely many of their products whose
norm is not larger than k for every k > 0 and denote this number by N(k).
We are interested in the asymptotics of N(k) for k → ∞. Equivalently, we
are interested in the asymptotics of the sequence of norms of the products of
the Ai when they are sorted in monotonically non-decreasing order. As an
application, we show how, in particular cases, these asymptotics are related
to the theory of real and complex self-projective Iterated Function Systems,
whose rich geometrical and topological properties have been recently inves-
tigated in the real case by M.F. Barnsley and A. Vince [BV12] and in the
complex case by A. Vince [Vin13].

A simple example, containing already the full complexity of the problem,
is given by the free semigroup C ⊂ SL2(R+) generated by

C1 =

(
1 0
1 1

)
, C2 =

(
1 1
0 1

)
.

While the generators of C are parabolic elements of SL2(R+), so that the
norm of their powers grows linearly, their products

C2C1 =

(
2 1
1 1

)
, C1C2 =

(
1 1
1 2

)
,

are hyperbolic, and therefore the norms of their powers grow exponentially.
The log-log plot of the norms of elements Cn ∈ C in lexicographic order
shows clearly this difference in speed growths (see Fig. 1, left): the fastest
products grow exponentially with rate asymptotically equal to the joint spec-
tral radius [Jun09], which in this case equals the Golden Ratio g, while the
slowest grow only linearly. On the other side, the log-log plot of the norms or-
dered monotonically with the norm suggests a fast convergence to a straight
line (see Fig. 1, right). Since this can be seen, loosely speaking, as the log-log
plot of the inverse of N(k), it suggests that the limit of logN(k)/ log k for
k →∞ exists and is bounded.

To the best of our knowledge this problem was first studied (implicitly) by
D.W. Boyd in a series of papers dedicated to the determination of the Haus-
dorff dimension of the Apollonian gasket [Boy70, Boy71, Boy72, Boy73a,
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Figure 1: (Left) Log-log plot of the norms of the first 1048574 elements of C in lexi-
cographic order. The norms (in blue) are asymptotically bounded by the curves y = gx,
where g is the Golden Ratio, and y = lnx − ln ln 2 (in red). (Right) Log-log plot of the
norms of the first 300000 elements of C reordered, according to some permutation σ(n),
in non-decreasing norm order (in blue). The norms appear to tend asymptotically to the
line y = 0.5x+ 0.3 (in red).

Boy73b, Boy82]. Indeed, the geometry of the Apollonian gasket can be de-
scribed through the norms of the products of three unimodular 4×4 matrices
Hi (introduced by K.E. Hirst in [Hir67]) which freely generate a semigroup
H . Boyd proved that the quantity d = limk→∞ logN(k)/ log k (where, as
above, N(k) is the number of elements of H with norm not larger than k)
exists, is finite and coincides with the Hausdorff dimension of the gasket.
Recently Kontorovich and Oh strenghtened this result by showing that, for
the semigroup H , N(k) � kd, i.e. there are constants A,B > 0 such that
Akd ≤ N(k) ≤ Bkd for all k [KO11].

In Section 2, we generalize Boyd’s ideas and techniques and provide a
general sufficient condition for the existence and boundedness of the limit
above for a free semigroup of (not necessarily invertible) square matrices
(Theorem 3). As a byproduct, we define on semigroups of square matrices
a natural zeta function whose critical exponent does not depend on the par-
ticular norm chosen (Theorem 1) and equals the limit above (Theorem 3).
We provide an alternate characterization of this exponent in terms of partial
sums of the zeta function restricted to the elements of the semigroup which
are products of some fixed number of the semigroup generators (Theorem 2).
We leave to a future paper the problem of finding sufficient condition for N(k)
to be asymptotic to some power of k as in case of the Apollonian gasket.

In Section 3, in the spirit of a seminal paper of Sullivan [Sul84] which
relates the Hausdorff dimension of the attractor of a geometrically finite
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Kleinian group to a critical exponent defined in the context of hyperbolic
geometry, we consider the action induced by a free semigroup of unimodular
2 × 2 real (resp. complex) matrices on RP 1 ' S1 (resp. CP 1 ' S2) and
show that, under suitable natural conditions, the Hausdorff dimension of
the attractor of this action is determined by the critical exponent of the
semigroup (Theorem 4). We leave to a future paper the study of the case of
n× n matrices for n ≥ 3.

2 Asymptotic growth of norms

We endow the vector space Mn(K), K = R or C, of all n× n matrices with
coefficients in K with the max norm, i.e., given a matrix M = (M i

j), we set

‖M‖ = maxi,j=1,...,n

{∣∣M i
j

∣∣}. Note that this norm is not sub-multiplicative:

sup
P,Q∈Mn(K)

‖PQ‖
‖P‖‖Q‖

= n . (1)

Since in finite dimension all norms are equivalent, the main results of the
paper will not depend on this particular choice.

2.1 The multi-indices semigroup.

We denote by Im the infinite m-ary tree of multi-indices of integers ranging
from 1 to m defined as follow. The root of the tree is the number 0. The
m children of 0 (the 1-indices, whose set we denote by Im1 ) are the integers
from 1 to m. Their children (the 2-indices, whose set we denote by Im2 ) are
the ordered pairs 1i, . . . ,mi, i ∈ Im1 , and so on recursively for the k-indices,
k > 2, which we denote by Imk . Since we will use them often, we denote
by Dm` , ` ≥ 0, the sets of all diagonal multi-indices I = i1 . . . i` ∈ Im, i.e.
such that i1 = · · · = i`, and set Dm = ∪`≥0Dm` . Similarly, we denote by Jm

` ,
` ≥ 2, the set of all next-to-diagonal multi-indices I = i1i2 . . . i` ∈ Im, i.e.
those such that i1 6= i2 = · · · = i`, and set Jm = ∪`≥2Jm

` .
We endow Im with the canonical structure of the semigroup given by

i1 . . . ik · i′1 . . . i′k′ = i1 . . . iki
′
1 . . . i

′
k′ with 0 as identity element. Finally, we

denote by I ′ = i1 . . . ik the k-index obtained from the (k + 1)-index I =
i0i1 . . . ik by dropping the first index on the left.
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2.2 Gaskets of matrices.

Given m matrices A1, . . . , Am ∈ Mn(K), we denote by A = 〈A1, . . . , Am〉
the semigroup they generate. In this paper, we are mainly interested in the
asymptotic growth of norms of matrices in free semigroups but, since our
results hold for the more general case when there are relations between the
generators as long as we take into account the multiplicity of each element,
we formulate most theorems of the present paper in terms of semigroup
homomorphisms Im → Mn(K). We often denote such objects with the
letter A and use the notation

AI
def
=A(i1 . . . ik) = Ai1 · · · · · Aik ,

where Ai
def
=A(i), i = 0, 1, . . . ,m. We say that the matrices A1, . . . , Am gen-

erate A.
Note that A0 can be any idempotent matrix such that A0Ai = AiA0 = Ai

for every i = 0, . . . ,m; in this paper A0 will always be the identity matrix 1n.
The space of all semigroup homomorphisms with A0 = 1n can be naturally
identified with (Mn(K))m and inherits from this space the structure of vector
normed space. We shall use the following ‖A‖ = max1≤i≤m{‖Ai‖}.

When there is no relation between the Ai, there is a bijection between
A(Im), the image of Im in Mn(K) via A, and {1n}∪A. In other words, when
the Ai are free generators, it is essentially equivalent referring to either the
semigroup homomorphism A or the semigroup A. Given any M ∈ GLn(K),

we denote by AM the “right coset” map defined by AM(I)
def
=AIM . If A is

free, then there is a bijection between AM(Im) and {M} ∪AM , where AM
is a right coset of A. Clearly A1n = A.

Definition 1. Given a semigroup homomorphism A : Im → GLn(K), we
denote by NAM (r) the cardinality of the set of matrices in AM(Im) whose
norms are not larger than r and say that AM is a m-gasket (or simply a
gasket) if NAM (r) <∞ for every r > 0. Moreover, we say that the gasket AM
is hyperbolic if the sequence ak = minI∈Imk ‖AIM‖ diverges exponentially,

namely if there exists α > 1 such that ak � αk, where � means that the ratio
of the terms on either side is bounded away from 0 and ∞ for all k. When
ak is slower than exponential we say that AM is parabolic1.

The proofs of the next four statements are immediate and we omit them.

1Note that ak cannot be faster than exponential so this covers all possible cases.
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Proposition 1. If AM is a gasket with respect to some norm, it is a gasket
with respect to every norm. Similarly, AM is a gasket iff A is.

Proposition 2. A necessary condition for AM to be a gasket is that each
of its generators Ai have either an eigenvalue of modulus larger than 1 or a
non-trivial Jordan block with respect to an eigenvalue of modulus 1.

Corollary 1. For every A, we can find a small enough λ > 0 such that the
homomorphism λA, generated by the matrices λAi, is not a gasket.

Lemma 1. Let A be a gasket. Then λA is also a gasket for every λ ≥ 1.

For every 1-dimensional subspace V ⊂ (Mn(K))m, we call critical radius
the number ρV = supA∈V{‖A‖, A is not a gasket}. By Corollary 1, every
direction has a critical radius larger than 0 (possibly infinite). By Proposi-
tion 2, all A ∈ V with ‖A‖ < ρV are not a gasket. Nothing can be said in
general when ‖A‖ = ρV (see Example 4).

We write sometimes ρA to indicate the critical radius of the 1-dimensional
subspace generated by A 6= 0. Next example shows that, if A is generated
by invertible matrices, the corresponding critical radius is always finite.

Example 1. Every homomorphism A : Im → GLn(C) whose generators Ai
have all their spectrum outside the open unit disc and their largest modulus
eigenvalue λi outside the unit circle is a hyperbolic gasket. Indeed no Ai
shortens vectors and so, for every k ∈ N, ‖AI‖ ≥ min1≤i≤n |λi|k when |I| ≥
km.

Example 2. This elementary but still non-trivial example was suggested to
the author by I.A. Dynnikov and was the starting point for the author’s study
of the asymptotics of norm’s growth in semigroups of linear maps in full gen-
erality. The (free) semigroup C ⊂ SL2(N) generated by the two parabolic
(i.e. with trace equal to ±2) matrices C1 and C2 mentioned in the introduc-
tion is a parabolic gasket. It is a gasket because, if M ∈ SL2(N) is distinct
from the identity, then ‖CiM‖ ≥ ‖M‖ + 1 since M has at least a column
with both entries different from 0. It is parabolic because

min
I∈Imk
{‖CI‖} ≤ ‖Ck

1‖ = k.

Note that, as we already pointed out in the introduction, C contains also
hyperbolic elements, so that in the sets Ck = {CI , |I| = k} there are some
elements whose norm grows polynomially and some others whose norm grows
exponentially with k. Note, finally, that ‖C‖ = 1 and ρC = 1.
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Example 3. Suppose that A1, . . . , Am ∈ Mn(Z), where Z = Z or Z[i], gen-
erate freely A. Then A is a gasket, since in Mn(Z) there are only finitely
many matrices whose norm is smaller than any fixed r > 0 and, by the
freedom hypothesis, the products of any number of Ai are all distinct.

Definition 2. Let A : Im → GLn(K) be a gasket and M ∈ GLn(K). We
call zeta function of AM the series

ζAM (s) =
∑
I∈Im

‖AIM‖−s.

We call exponent of AM the number sAM defined as follows:

sAM = sup
s≥0
{ s | ζAM (s) =∞}.

Note that, if sAM <∞, we also have that sAM = infs≥0{s | ζAM (s) <∞}.
The elementary inequality n‖P‖‖M‖ ≥ ‖PM‖ ≥ ‖P‖/(n‖M−1‖) grants

the following:

Proposition 3. Let A : Im → Mn(K) be a gasket. The exponent sA does
not depend on the particular norm used in Mn(K). Similarly, sAM = sA for
all M ∈ GLn(K).

Note that the series ζAM (s) surely diverges for all s if AM is not a gasket.
On the other side, next example shows that the property of being a gasket
is not sufficient for its convergence.

Example 4. Let A be the (parabolic) gasket generated by

A1 =

(
1 1
0 1

)
, A2 = A1 ∈ SL2(N).

In this case ‖AI‖ = |I|, so that ζA(s) =
∑

k≥0 2kk−s diverges for all s, i.e.
sA = ∞. Note that ‖A‖ = 1 and ρA = 1, namely in the subspace generated
by A elements with norms equal to the critical radius are gaskets.

Now, let B be the (hyperbolic) gasket generated by

B1 =

(
2 1
1 1

)
, B2 = B1 ∈ SL2(N).

Then ‖BI‖ = F2|I|+2, where F = (0, 1, 1, 2, 3, 5, . . . ) is the Fibonacci se-

quence. Hence, asymptotically, ‖BI‖ ' g2|I|, where g = 1+
√

5
2

is the golden
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ratio, and so ζB(s) diverges or converges with
∑

k≥0 2kg−2sk, i.e. sB = 1
2 log2 g

.

Note, finally, that in this case we have ‖B‖ = 2 and ρB = 2/g2. Since both
generators of the homomorphism ρBB/2 have 1 as their largest eigenvalue,
in this case the elements of the subspace generated by B with norm equal to
the critical radius are not gaskets.

Showing that all hyperbolic gaskets have a finite exponent does not re-
quire any effort:

Proposition 4. Let A : Im → Mn(K) be a hyperbolic gasket. Then sA is
finite.

Proof. Since A is hyperbolic, then ‖AI‖ ≥ Aα|I| for some A > 0 and α > 1.
Hence

ζA(s) ≤
∞∑
k=0

mkA−sα−ks =
∞∑
k=0

A−smk(1−s logm α),

so that ζA(s) ≤ ∞ for s ≥ logαm, namely sA ≤ logαm.

As Example 4 shows, in order to prove a similar statement for the parabolic
case, we must require some growth condition on the norms of products.

Definition 3. We say that a homomorphism AM : Im → Mn(K), M ∈
GLn(K), is fast if there is a constant c > 0 such that

‖AIJKM‖ ≥ c‖AIM‖‖AJKM‖ (2)

for every multi-index I,K ∈ Im and J ∈ Jm. We call

cAM = inf
I,K∈Im
J∈Jm

‖AIJKM‖
‖AIM‖‖AJKM‖

the coefficient of the homomorphism.

Note that inequality (2) is homogeneous and therefore, if it is valid for
a homomorphism, it is valid for every homomorphism proportional to it.
Notice, moreover, that the coefficient of a gasket depends on the particular
norm chosen but, because of the topological equivalence of norms in finite
dimension, the property of being fast does not:

Proposition 5. Let M ∈ GLn(K). Then, if AM is fast for some norm, it
is fast for all norms. Similarly, AM is fast iff A is.
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Example 5. Consider the parabolic and hyperbolic gaskets of Example 4.
Since

‖Ak′1 A2A
k
1‖ = ‖Ak+k′+1

1 ‖ = 1 + k + k′

and infk,k′≥1{(1 + k + k′)/(kk′)} = 0, it follows that A is not fast.
On the contrary, since any product of N = k + k′ copies of B1,2 is equal

to BN
1 and

‖Bk′

1 B
k
1‖ = ‖Bk+k′

1 ‖ = F2k+2k′ > F2k′F2k−2 = ‖Bk′

1 ‖‖Bk−1
1 ‖,

then B is fast with cB ≥ 1. To see that in fact cB = 1 it is enough to consider
the case k′ = 1, k →∞.

Example 6. The (parabolic) cubic gasket C of Example 2 is fast. Indeed,

consider first J = 21L, with CL =

(
a b
c d

)
, so that

CJ =

(
1 0
1 1

)(
1 1
0 1

)(
a b
c d

)
=

(
a+ c b+ d
a+ 2c b+ 2d

)
.

Clearly, ‖CJ‖ = max{a+ 2c, b+ 2d} ≤ 2 max{a+ c, b+ d} and, therefore,

‖MCJ‖ ≥
1

2
‖M‖‖CJ‖

for every M ∈ SL2(N). The same argument applies to J = 12L. Since
‖Ck′

1 C1C2C
k
1‖ = k′(k + 1), ‖Ck′

1 ‖ = k′ and ‖C1C2C
k
1‖ = 2k + 1, it follows at

once that in fact cC = 1/2.

Example 7. A hyperbolic gasket is not necessarily fast. Consider for in-
stance A : I2 → GL2(Z[i]) with

A1 =

(
2 0
0 α

)
, A2 =

(
β 0
0 2

)
,

where |α|, |β| = 1. A is hyperbolic since every AI , |I| = 2k, contains an
entry with modulus 2k

′
and k′ ≥ k. On the other side, A is not fast. Indeed,

‖Ak1A1A
k′
2 ‖ = 2−k‖Ak1‖‖A1A

k′
2 ‖ for all k ≤ k′ and so

inf
I∈I2,J∈J 2

‖AIJ‖
‖AI‖‖AJ‖

= 0.
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2.3 Exponent of a fast gasket. The case m = 1.

Let us briefly discuss the exponent of a gasket in the trivial case m = 1, since
these results will be useful later in this section.

Here I = N, A is generated by a single matrix A ∈ Mn(K), K = R
or C, and A(k) = Ak. In order for A to be a gasket, then, it is necessary
and sufficient that either A has an eigenvalue with modulus larger than 1 (in
which case it will be a hyperbolic gasket) or that it has a non-trivial Jordan
block with respect to an eigenvalue of modulus 1 (in which case it will be a
parabolic gasket).

If A is hyperbolic, then ‖Ak‖ grows exponentially with k and so s = 0 is
the only exponent that can make the series ζA(s) =

∑
k∈N ‖Ak‖−s divergent,

i.e. sA = 0.
If A is parabolic, then its generator A has no eigenvalue of modulus larger

than 1 and a Jordan block of maximal size d+ 1 with eigenvalue of modulus
1, so that its norm grows as some polynomial of degree d < n. Hence, ζA(s)
diverges for s ≤ 1/d and is finite for s > 1/d, i.e. sA = 1/d.

Now, consider the number NA(r) of powers of A whose norm is not
larger than r. When ‖Ak‖ is a polynomial of order d, their number grows
as r1/d, so that the limit limk→∞ logNA(r)/ log r = 1/d equals sA. When
‖Ak‖ grows exponentially, then NA(r) grows logarithmically and therefore
limk→∞ logNA(r)/ log r = 0 again equals sA. Theorems 1 and 3 shall extend
these results to the case m > 1 under suitable conditions.

2.4 Exponent of a fast gasket. The case m > 1.

When there is more than one generator, things are qualitatively different:
the number of terms of order k (i.e. products of k generators) increases
exponentially and there can be coexistence of polynomial and exponential
growths of norms for terms of the same order (e.g. see Example 6).

Generalizing Boyd’s arguments in [Boy73b], we will show in this section
how to build upper and lower bounds for ζAM (s) in terms of the series of
the norms of the “diagonal” terms ADM , D ∈ Dm, and of those “next-to-
diagonal” ones AJM , J ∈ Jm. The key point of the next arguments is the
following elementary recursive re-writing of the zeta function:

ζAM (s) =
∑
D∈Dm

‖ADM‖−s +
∑
J∈Jm

ζAAJM (s). (3)
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Using (3), we can now write the following fundamental inequalities:

Proposition 6. Let A : Im → Mn(K) be a fast gasket with coefficient cA
and let J ∈ Jm and I,K ∈ Im. Then, the following inequalities hold:

n−s‖AJK‖−sζA(s) ≤ ζAAJK (s) ≤ c−sA ‖AJK‖
−sζA(s) (4)

ζAAI (s) ≥ νAAI (s) + n−sµAAI (s)ζA(s) (5)

ζAAI (s) ≤ νAAI (s) + c−sA µAAI (s)ζA(s), (6)

where νAM (s) =
∑
D∈Dm

‖ADM‖−s and µAM (s) =
∑
J∈Jm

‖AJM‖−s.

Proof. The left and right sides of (4) are a direct consequence, respectively,
of (2) and of the definition of fast gasket. The starting point to prove in-
equalities (5,6) is (3), from which we get

ζAAI (s) = νAAI (s) +
∑
J∈Jm

ζAAJI (s).

Applying the right side of (4) to the summation above, we get that∑
J∈Jm

ζAAJI (s) ≤
∑
J∈Jm

c−sA ‖AJI‖
−sζA(s) = c−sA µAAI (s)ζA(s).

Hence (6) follows and analogously it is proven (5).

Remark 1. The function νA has the same complexity as the zeta functions
of 1-gaskets since νA(s) =

∑
1≤i≤m ζAi(s), where Ai = 〈Ai〉 are the 1-gaskets

generated by the m generators of A. In particular, by Proposition 2, this
means that, unlike ζA(s), even in the case m > 1 the series νA(s) converges
for some finite s > 0 for every gasket A. The main idea for proving Theorem
1 is to exploit this fact to find upper and lower bounds for ζA using the much
simpler series νA.

Remark 2. For every s, the series µA(s) and νA(s) converge or diverge
together. Indeed, if J = iD ∈ Jm, then J ′ = D ∈ Dm and

‖AD‖
n‖A−1

i ‖
≤ ‖AiD‖ ≤ n‖Ai‖‖AD‖,
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so that

(m− 1)n−s min
1≤i≤m

‖Ai‖−sνA(s) ≤ µA(s) ≤ (m− 1)ns max
1≤i≤m

‖A−1
i ‖sνA(s).

For similar reasons, νAM (s) and µAM (s) converge or diverge together with
νA(s) for every M ∈ GLn(K).

Let us now examine closely the two inequalities (5,6) for I = 0. The first
one becomes

ζA(s) ≥ νA(s) + n−sµA(s)ζA(s)

Since we are going to use this inequality to get lower bounds for ζA(s), we
can proceed without loss of generality by assuming that ζA(s) < ∞. Then,

for n−sµA(s) < 1, we get that ζA(s) ≥ νA(s)
1−n−sµA(s)

. Analogously, the right one
becomes

ζA(s) ≤ νA(s) + c−sA µA(s)ζA(s).

This time though, since we aim at using this inequality to provide upper
bounds to the zeta function, we need to truncate the infinite series to a finite
sum, in order to ensure that we are dealing with finite numbers. A natural
recursive definition, inspired by the structure of (3), is the following:

ζ0
AM (s) = ν0

AM (s)

ζ`AM (s) = ν`AM (s) +
∑
J∈Jm
|J |≤`+1

ζ
`+1−|J |
AAJM

(s), ` ≥ 1 ,

where ν`AM (s) =
∑

D∈Dm,|D|≤` ‖ADM‖−s.

Proposition 7. Let the sets Pm` ⊂ Im be defined recursively as follows:

Pm0 = Dm0 ,

Pm` =

[⋃̀
i=0

Dmi

]⋃[
`+1⋃
i=2

Pm`+1−i · Jmi

]
, ` ≥ 1.

Then, the following properties hold:

1. Pm` ⊂ Pm`+1 for all ` ≥ 0;

2.
⋃
`≥0

Pm` = Im;
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3. ζ`AM (s) =
∑
I∈Pm`

‖AIM‖−s.

Proof. 1. We prove this by induction. Clearly Pm0 ⊂ Pm1 . Now, assume that
Pmk ⊂ Pmk+1 for all k ≤ `− 1 and let I ∈ Pm` . Then, either I ∈ Dmi for some
0 ≤ i ≤ `, and therefore clearly I ∈ Pm`+1, or I = PJ with J ∈ Jm

`+1 and
P ∈ Pm`+1−|J |. In this case, we have that `+1−|J | ≤ `−1, since every element
of Jm has at least rank two and therefore, by the inductive hypothesis,
Pm`+1−|J | ⊂ Pm`+1−|J |+1. Hence, by definition, I ∈ Pm`+2−|J | · J ⊂ Pm`+1.

2. Notice, first of all, that every index I ∈ Im either belongs to Dm (and
so to some Pm` ) or it can be factored out as a product I = D0J1 · · · Jk, with
Ji ∈ Jm and D0 ∈ Dm (possibily D0 = 0). This factorization simply consists
in singling out the patterns of the form i1 6= i2 = i3 = · · · = ip inside I
starting from the right and is clearly unique. In case I’s two leftmost indices
are equal, then also a non-trivial D0 ∈ Dm will appear in the decomposition.
Now, let ji = |Ji| ≥ 2 and d = |D0| ≥ 0. By construction, we have that
D0 ∈ Pmd , D0J1 ∈ Pmd Jm

j1
⊂ Pmd+j1−1, D0J1J2 ∈ Pmd+j1−1Jm

j2
⊂ Pmd+j1+j2−2 and

so on until we get I ∈ Pm|I|−k.
3. Let us write ζ`AM (s) =

∑
I∈G` ‖AIM‖−s. Then, if I ∈ G` either

‖AIM‖−s appears in ν`AM (s), in which case I ∈ Dm, |I| ≤ `, by defini-

tion, or in some of the ζ
`+1−|J |
AAJM

(s), in which case I = KJ with K ∈ G`+1−|J |.

This is exactly the rule that defines recursively the Pm` . Since we also have,
by the definition of ζ0

AM (s), that G0 = Dm0 , it follows that G` = Pm` .

Corollary 2. Let A be a fast gasket. Then, the ζ`AM (s) satisfy the following
properties:

ζ`AM (s) ≤ ζ`+1
AM (s) for all ` ≥ 0; (7)

lim
`→∞

ζ`AM (s) = ζAM (s); (8)

n−s‖AJ‖−sζ`A(s) ≤ ζ`AAJ
(s) ≤ c−sA ‖AJ‖

−sζ`A(s); (9)

ζ`AAI
(s) ≤ νAAI (s) + c−sA µAAI (s)ζ

`
A(s). (10)

Proof. (7,8) are a direct consequence of points 1. and 2. of the previous
proposition. (9) is a direct consequence of (1) (left) and of the definition of
fast gasket (right). Using the rhs of (9) and then (7), we get that

ζ`AM (s) ≤ ν`AM (s) + c−sA µ
`
AM (s)ζ`A(s),
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where µ`AM (s) =
∑

J∈Jm,|J |≤`+1 ‖AJM‖−s. From this, (10) follows after set-

ting M = AI and thanks to the monotonicity in ` of ν`AM (s) and µ`AM (s).

In particular, for I = 0 we get ζ`A(s) ≤ νA(s) + c−sA µA(s)ζ`A(s). Hence,
when µA(s) < csA, we have that ζ`A(s) ≤ νA(s)/(1 − c−sA µA(s)) for all ` and

therefore, finally, ζA(s) ≤ νA(s)

1−c−sA µA(s)
when c−sA µA(s) < 1.

With this, we proved the following:

Lemma 2. Let A be a fast gasket with coefficient cA. Then

ζA(s) ≥ νA(s)

1− n−sµA(s)
for all s such that µA(s) < ns (11)

and

ζA(s) ≤ νA(s)

1− c−sA µA(s)
for all s such that µA(s) < csA. (12)

This Lemma implies immediately our first main result (Theorem 1) in
particular cases, e.g. when all generators of A have non-negative coefficients
and norms larger than the maximum between 1 and the inverse of the coef-
ficient cA of the gasket.

Consider indeed (11). Under these assumptions, the function gA(s) =
n−sµA(s) is clearly monotonically decreasing with s and both its domain and
its image equal (0,∞). In particular, the set gA(s) < 1 is not empty and
therefore (11) holds for s > sg, with sg = g−1

A (1). When we let s → s+
g ,

the right hand side of (11) goes to infinity, so that ζA(sg) diverges, namely
sA ≥ sg.

Now, consider (12). The function fA(s) = c−sµA(s) satisfies the same
properties listed above for gA. Let sf = f−1

A (1). Then fA(s) < 1 for s > sf
so that (11) holds. This proves that ζA(s) < ∞ for all s > sf , namely
sf ≥ sA.

This simple argument not only implies that sA is finite, but also provides
for it non-trivial lower and upper bounds. In order to obtain a similar result
in full generality we need to refine (12). This shall lead us to refine also (11)
and to generate a pair of sequences converging to sA from the left and from
the right at logarithmic speed. The idea is to apply over and over recursively
first the inequalities (5,6) and then the inequality (4) to the truncated zeta
function.
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The starting point is the sequence of sets of multi-indices QA,k built as
follows. We define Q0

A,k = Jm. Then we consider the sets recursively defined
as

Q`A,k =
{
J ∈ Q`−1

A,k | ‖AJ‖ > k
}⋃

Jm ·
{
J ∈ Jm | J ∈ Q`−1

A,k , ‖AJ‖ ≤ k
}

with ` ≥ 1.

Proposition 8. For every gasket A and every k > 0 there exists a ¯̀ such
that Q`′A,k = Q`′+1

A,k for every `′ ≥ ¯̀.

Proof. The sole effect of the algorithm is replacing all indices I ∈ Q`A,k,
corresponding to matrices AI such that ‖AI‖ ≤ k, with indices of higher
order. The set Q`+1

A,k thus obtained might still contain indices corresponding
to matrices with norm not larger than k, but in a finite number of steps all
such indices will disappear because, by definition of gasket, there is only a
finite amount of them. Hence, there exists a finite ¯̀ such that ‖AI‖ > k
for all I ∈ Q¯̀

A,k. Clearly the algorithm leaves unchanged all sets Q`′A,k with

`′ ≥ ¯̀.

Definition 4. We use the notation QA,k = Q¯̀
A,k and, correspondingly,

f `A,k(s) = c−sA
∑

J∈Q`A,k

‖AJ‖−s, fA,k(s) = c−sA
∑

J∈QA,k

‖AJ‖−s (13)

g`A,k(s) = n−s
∑

J∈Q`A,k

‖AJ‖−s, gA,k(s) = n−s
∑

J∈QA,k

‖AJ‖−s. (14)

Note that fA,0(s) = fA(s) and gA,0(s) = gA(s). Next proposition, though,
shows that, in the general case, for k big enough, fA,k and gA,k have a nicer
behaviour than fA and gA.

Proposition 9. For every fast gasket A, there exists a k̄ such that, for all
k > k̄, fA,k(s) and gA,k(s) are strictly decreasing continuous functions of s
defined in some non-empty positive half-line (γA,k,∞) and have image (0,∞).

Proof. By construction, fA,k(s) and gA,k(s) are proportional to each other
and, respectively with constants c−sA and n−s, to the sum of a finite number

of functions µ
(k)
AAI

defined as the series µAAI from which all terms with norm

smaller than k have been subtracted.
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By Remarks 1 and 2 then

µ
(k)
AAI

(s) ≤ (m− 1)ns max
1≤i≤m

‖A−1
i ‖s

∑
I∈G

ν
(k)
AAI

(s), (15)

where G ⊂ Im is some finite set of indices and the series ν
(k)
AAI

is equal to νAAI
minus those terms with indices D ∈ Dm such that ‖AJI‖ ≤ k for all J ∈ Jm

with J ′ = D. In particular then, fA,k(s) and gA,k(s) are bounded above and

below by a finite sum of series ν
(k)
AAI

(s) so that, by the same arguments used in

Section 2.3, they are finite on some connected non-empty interval (γA,k,∞).
Now, let k̄ = n2 max1≤i≤m ‖A−1

i ‖max1≤i≤m ‖Ai‖. For every k > k̄ we

have that, for every J ∈ Jm such that the term ‖AJ ′I‖−s appears in ν
(k)
AAI

(s)

and ‖AJI‖ > k,

‖AJ ′I‖ ≥
‖AJI‖
n‖Ai‖

>
k

n‖Ai‖
> n max

1≤i≤m
‖A−1

i ‖,

namely
n max

1≤i≤m
‖A−1

i ‖

‖AJ ′I‖
≤
n2 max

1≤i≤m
‖A−1

i ‖ max
1≤i≤m

‖Ai‖

k
< 1.

This means that all summands in the series in the right hand side of (15) are
s-powers of numbers uniformly bounded from above by some number strictly
smaller than 1 and therefore they are strictly decreasing with s and their
image equals (0,∞). By (15), the same holds for fA,k(s) and gA,k(s).

Theorem 1. Let A be a fast gasket. Then 0 < sA < ∞ and both sg,k =
g−1
A,k(1) and sf,k = f−1

A,k(1) are uniquely defined and converge to sA, respec-
tively from left and right, with speed at least logarithmic as k →∞.

Proof. We start by showing that

ζA(s) ≥ hA,k(s) + gA,k(s)ζA(s) (16)

and
ζA(s) ≤ hA,k(s) + fA,k(s)ζA(s) (17)

for every k, where hA,k is some positive continuous function. We prove it in
detail for the most complicated case, namely the second one, where we need
to use the partial sums ζ`A. First, we notice that (10) writes as

ζ`AAI
(s) ≤ h0

AAI ,k
+ f 0

AAI ,k
(s)ζ`A(s) (18)
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after putting h0
AAI ,k

(s) = νAAI (s). Now, we write the definition of ζ`AAI
(s)

splitting the last term in two

ζ`AAI
(s) = ν`AAI

(s) +
∑

J∈Jm`+1

‖AJ‖≤k

ζ
`+1−|J |
AAJI

(s) +
∑

J∈Jm`+1

‖AJ‖>k

ζ
`+1−|J |
AAJI

(s). (19)

By using the monotonicity in ` of ν`AAI
on the first term and applying (10)

to the second term and (9) to the third, we get that

ζ`AAI
(s) ≤ νAAI (s)+

∑
J∈Jm
‖AJ‖≤k

[
ν`AAJI

(s) + c−sA µAAJI (s)ζ
`
A(s)

]
+c−sA

∑
J∈Jm
‖AJ‖>k

‖AJI‖−sζ`A(s)

= h1
AAI ,k

(s) + c−sA
∑

L∈Q1
A,k

‖AL‖−sζ`A(s) = h1
AAI ,k

(s) + f 1
AAI ,k

(s)ζ`A(s),

where we set h1
AAI ,k

(s) = h0
AAI ,k

(s) +
∑

J∈Jm
‖AJ‖≤k

νAAJI (s).

By repeating recursively this procedure, we get that

ζ`A(s) ≤ hrA,k(s) + f rA,k(s)ζ
`
A(s)

for all r ≥ 0. Since the QrA,k stabilize eventually into the QA,k and the ζ` are
monotonically increasing in `, we proved that

ζ`A(s) ≤ hA,k(s) + fA,k(s)ζA(s).

for every ` and therefore (17) follows; (16) is proved analogously.
By Proposition 9, for k big enough the points sf,k = f−1

A,k(1) and sg,k =

g−1
A,k(1) are uniquely defined and strictly between 0 and ∞. As already

pointed out right after Lemma 2, inequalities (16) and (17) imply that
sg,k ≤ sA ≤ sf,k for every such k. In particular, we have that 0 < sA < ∞,
since every sf,k is finite and every sg,k is larger than 0.

In order to prove the last part of the theorem, we note that gA,k(s) =
csAn

−sfA,k(s) and that, for any s′ > 0,

fA,k(s) > (cAk)s
′
c−s−s

′

A

∑
J∈QA,k

‖AJ‖−s−s
′
= (cAk)s

′
fA,k(s+ s′).

Hence
1 = gA,k(sg,k) = c

sg,k
A n−sg,kfA,k(sg,k) >

17



> c
sg,k
A n−sg,k(cAk)sf,k−sg,kfA,k(sg,k + sf,k − sg,k) = c

sf,k
A n−sg,kksf,k−sg,k ,

so that
0 > sf,k(log k + log cA)− sg,k(log k + log n)

and finally

0 ≤ sf,k − sg,k < sg,k

(
log k + log n

log k + log cA
− 1

)
≤ sA

log n− log cA
log k + log cA

.

2.5 An alternate characterization of sA

Our second main result shows that the exponent sA of a gasket A can also
be extracted from the asymptotics of the partial sums of the ‖AI‖−s over
same-rank multi-indices, namely from the sequence of functions ζA,k(s) =∑

I∈Imk
‖AI‖−s.

Lemma 3. The sequence of analytical log-convex monotonically decreasing
functions ζ

1/k
A,k(s) converges pointwise, for every s ∈ [0,∞), to a bounded

continuous log-convex monotonically decreasing function ξA(s).

Proof. Since A is a gasket, from some k̄ on each AI , |I| ≥ k̄, has norm larger

than 1. Hence, the ζ
1/k
A,k(s), k ≥ k̄, are analytical log-convex monotonically

decreasing functions, because every summand ‖AI‖−s of the ζA,k satisfies
those properties and so does every finite or infinite (converging) sum and
positive power of them.

In order to prove the convergence of the sequence, we can replace, without
loss of generality, the max norm in the expression of the ζA,k (by abuse of no-
tation we will denote the new functions still by ζA,k) with any submultiplica-
tive norm ‖·‖′ and notice that, since ‖AIJ‖′ ≤ ‖AI‖′‖AJ‖′, then ζA,k+k′(s) ≥
ζA,k(s)ζA,k′(s). It follows that, for every s, the sequence ζ

1/k
A,k(s) can have

only one accumulation point and this point must be equal to supk∈N ζ
1/k
A,k(s).

The main point is that, for every element ζ
1/k0
A,k0(s), almost all other elements

of the sequence are not smaller than ζ
1/k
A,k0(s) − ε for every ε > 0. Indeed,

if k = Nk0, then immediately ζ
1/k
A,k(s) ≥

[
ζNA,k0(s)

]1/k0 = ζ
1/k0
A,k0(s), while if

k = Nk0 + `, with 1 ≤ ` ≤ k0 − 1, then ζA,k(s) ≥ ζNA,k0(s)ζA,`(s), so that

ζ
1/k
A,k(s) ≥ ζ

N
Nk0+`

A,k0 (s)ζ
1

Nk0+`

A,` (s) =
[
ζ

1/k0
A,k0(s)

] 1
1+`/(Nk0) ζ

1
Nk0+`

A,` (s).
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Since there are only a finite number of possible values of `, for every ε′ > 0 we

can find a N big enough such that both

∣∣∣∣[ζ1/k0
A,k0(s)

] 1
1+`/(Nk0) − ζ1/k0

A,k0(s)

∣∣∣∣ < ε′

and

∣∣∣∣ζ 1
Nk0+`

A,` (s)− 1

∣∣∣∣ < ε′ hold for all `. Hence

ζ
1/k
A,k(s) ≥ ζ

1/k0
A,k0(s)− ε′

(
ζ

1/k0
A,k0(s) + 1− ε′

)
≥ ζ

1/k0
A,k0(s)− ε

for small enough ε′.
That ξA(s) = supk∈N ζ

1/k
A,k(s) is finite for all s it is clear from the fact that

all ζ
1/k
A,k(s) are positive decreasing functions bounded by ζ

1/k
A,k(0) = m.

Theorem 2. The function ξA satisfies the following properties:

1. ξA(s) > 1 for s < sA;

2. ξA(sA) = 1;

3. ξA(s) < 1 for s > sA, if A is a hyperbolic gasket;

4. ξA(s) = 1 for s > sA, if A is a parabolic fast gasket.

Proof. Directly from the n-th root test, we get that ξA(s) ≥ 1 for s < sA
and ξA(s) ≤ 1 for s > sA, so that in particular ξA(sA) = 1.

Assume first that A is hyperbolic, so that there exist constants α > 1
and K > 0 such that ‖AI‖ ≥ Kα|I| for every I ∈ Im. Hence

d

ds
ln ζ

1/k
k (s) = −1

k

∑
|I|=k (‖AI‖−s ln ‖AI‖)∑

|I|=k ‖AI‖−s
≤ − lnα− lnK

k
,

namely for every ε > 0 we can find a α′ > 1, with |α − α′| ≤ ε, and a

k̄ > 0 such that (ln ζ
1/k
k (s))′ ≤ − lnα′ for all k ≥ k̄. Since ln ζ

1/k
k (sA) = 0,

this means that, for every k ∈ N and s > 0, ln ζ
1/k
k (sA + s) ≤ −s lnα′ and

ln ζ
1/k
k (sA − s) ≥ s lnα′, namely ζ

1/k
k (s) ≥ (α′)s > 1 at the left of sA and

ζ
1/k
k (s) ≤ (α′)−s < 1 at its right. Since this is true for almost all k, the same

properties hold for ξA.
Assume now thatA is fast parabolic and that sA <∞ (e.g. in case thatA

is fast). In this case, the sequence ak = min|I|=k{‖AI‖} grows polynomially
and therefore, for s > sA,

1 ≥ ζ
1/k
k (s) ≥ a

−s/k
k

k→∞−→ 1, i.e. ξA(s) = lim
k→∞

ζ
1/k
k (s) = 1.
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Let now s < sA. Analogously to (4) and (3), we have the inequality

ζAAI ,k(s) ≥
1

ns‖AI‖s
ζA,k(s) (20)

and we can re-write ζAAI ,k as follows:

ζAAI,k(s) =
∑
D∈Dm
|D|=k

ζAADI ,0(s) +
∑
J∈Jm
|J |≤k

ζAAJI ,k−|J |(s). (21)

By repeating step by step arguments used in Theorem 1, we get that

ζAAI,k(s) ≥ HA,κ(s) +
∑

2≤j≤k

Gj
AAI ,κ

(s)ζA,k−j(s),

for every κ > 0, where

Gj
AAI ,κ

(s) = n−s
∑

J∈QmA,κ
⋂
Imj

‖AJI‖−s. (22)

Now, consider the polynomials pk(x) = xk −
∑

2≤j≤kG
j
AAI ,κ

(s)xk−j, k ∈ N.

By Descartes’ rule of signs, they all have a single positive root. Moreover,
for every κ and s < sg,κ, we can find a k̄ big enough so that this root is
larger than 1. Indeed, by (22), the finite sum

∑
2≤j≤kG

j
AAI ,κ

(s) is equal to

the restriction of the series gAAI ,κ(s) to the terms ‖AI‖−s with |I| ≤ k and,
by the definition of sg,κ, gAAI ,κ(s) > 1 for s < sg,κ. Then pk̄(1) < 0 and,
therefore, its only positive root σ must be larger than 1. Hence

µ
def
= min

0≤j≤k̄
{ζA,j(s)σ−j} = inf

0≤j≤∞
{ζA,j(s)σ−j},

which follows by induction as a consequence of the following observation:

ζA,k̄+1(s) ≥
∑

2≤j≤k̄

Gj
AAI ,κ

(s)ζA,k̄+1−j(s) ≥ µ
∑

2≤j≤k̄

Gj
AAI ,κ

(s)σk̄+1−j ≥ µσk̄+1.

Finally then, ξA(s) = limj→∞ ζ
1/j
A,j(s) ≥ σ > 1 for every s ≤ sg,κ. Since, by

choosing big enough κ, we can get sg,κ as close as we please to sA, it follows
that ξA(s) > 1 for every s < sA.
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Example 8. Let M1, . . . ,Mm be upper triangular matrices of the form

Mi =

(
αi βi
0 1

)
∈ SL2(R+),

and assume that max1≤i≤m{βi} ≤ 1 −max1≤i≤m{αi}. It is easy to prove by
induction that, under this assumption, the non-zero off-diagonal term never
gets larger than 1, so that ‖MI‖ = 1 for every I ∈ Im.

Now, consider the gasket A generated by Ai = ρiMi, ρi > 1. By the
observation above, for every I = i1 . . . ik, we have that ‖AI‖ = ρi1 · · · ρik and,
therefore,

ζA,k =
∑
I∈Imk

‖AI‖−s =
∑
I∈Imk

ρ−si1 · · · ρ
−s
ik

=
(
ρ−s1 + · · ·+ ρ−sm

)k
.

Since A is clearly a hyperbolic gasket, by Theorem 2 its exponent sA is the
unique solution of the equation ρ−s1 + · · · + ρ−sm = 1. Similar, but more
complicated, conditions can be found for upper triangular matrices in higher
dimension.

2.6 Norm asymptotics of fast gaskets

Our third main result gives a further characterization of the exponent sA of
a gasket A in terms of the asymptotic properties of the function NA(r) (see
Definition 1).

Lemma 4. Let A : Im → Mn(K) be a semigroup homomorphism and M ∈
GLn(K). Then

NAM (r) > NA

(
r

n‖M‖

)
. (23)

Proof. Since ‖AM‖ ≤ n‖A‖‖M‖, we have that ‖AI‖ ≤ r
n‖M‖ =⇒ ‖AIM‖ ≤

r, namely {AI |‖AI‖ ≤ r
n‖M‖} ⊂ {AIM |‖AIM‖ ≤ r}

Theorem 3. Let A : Im → Mn(K) be a hyperbolic or fast parabolic gasket.
Then

lim
r→∞

logNAM (r)

log r
= sA

for every M ∈ GLn(K).
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Proof. Since ‖A‖/(n‖M−1‖) ≤ ‖AM‖ ≤ n‖A‖‖M‖, we can prove the theo-
rem without loss of generality in the particular case M = 1n.

lim sup
r→∞

log NA(r)

log r
≤ sA. Let s > sA. Then

∞ > ζA(s) >
∑
‖AI‖≤r

‖AI‖−s ≥
∑
‖AI‖≤r

r−s = NA(r)r−s,

so that

s+
log ζA(s)

log r
>

logNA(r)

log r

and therefore lim supr→∞
logNA(r)

log r
≤ s. Since this is true for every s > sA, it

follows at once that lim supr→∞
logNA(r)

log r
≤ sA.

lim inf
r→∞

log NA(r)

log r
≥ sA. From the elementary observation that

{AI |‖AI‖ ≤ r, I ∈ Im} ⊃
⋃

K∈Imk

{AIK |‖AIK‖ ≤ r, I ∈ Im}

and using (23), we get that, for every k ∈ N,

NA(r) ≥
∑
K∈Imk

NAAK (r) ≥
∑
K∈Imk

NA

(
r

n‖AK‖

)
.

Assume now s < sA. Since A is, by hypothesis, either a hyperbolic or
a fast parabolic gasket, by the definition of gasket and Theorem 2, we can
always choose a k0 such that ‖AI‖ > 1/n for |I| ≥ k0 and

∑
I∈Imk0

‖AI‖−s >
ns.

Now, set am = nminI∈Imk0
‖AI‖ and aM = nmaxI∈Imk0

‖AI‖, let r0 > 0 be

such that NA(r0) > 0 and set r1 = aMr0 and ri = ai−1
m r1, i ≥ 2. Similar to

the proof of Theorem 2, we have by induction that,

M
def
= min

r∈[r0,r1]
NA(r0)r−s = inf

r∈[r0,∞]
NA(r0)r−s.

Indeed, note first of all that limi→∞ ri =∞, since we chose k0 so that am > 1.
Assume now that NA(r) ≥ Mrs in [r0, ri] and let r ∈ [ri, ri+1]. Then, for
every I ∈ Imk0 , we have that r/(n‖AI‖) ∈ [r0, ri], since

ri =
ri+1

am
≥ r

n‖AI‖
≥ ri
aM

= ai−1
m r0 ≥ r0.
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and, therefore,

NA(r) ≥
∑
I∈Imk

NA

(
r

n‖AI‖

)
≥
∑
I∈Imk

M

[
r

n‖AI‖

]s
≥Mrs.

Hence, it follows at once that

logNA(r)

log r
≥ logM

log r
+ s

and, therefore, lim infr→∞
logNA(r)

log r
≥ s. Since this is true for all s < sA, it

follows that lim infr→∞
logNA(r)

log r
≥ sA.

Corollary 3. Let {In} be an ordering of all indices in Im such that ‖AIn‖ ≤
‖AIn′‖ for n < n′. Then

lim
n→∞

log ‖AIn‖
log n

=
1

sA
.

Proof. This is a direct consequence of the fact that, for a given r = ‖AIn‖,
the number of matrices with norm not larger than r is n = N(r).

Corollary 4. Let rA = limk→∞max|I|=k ‖AI‖1/k be the joint spectral radius
of the m generators of A. Then rA ≥ m1/sA.

Proof. Assume first that all terms AI , |I| = k, have the same norm Nk = λk,

so that rA = limk→∞N
1/k
k = λ. Then NA(Nk) = mk−1

m−1
and, therefore,

sA = limk→∞ logNA(Nk)/ logNk = 1/ logm λ, so that rA = m1/sA . When
not all the products of k generators of A have the same norm, it means
that NA(Nk) is larger than in the previous case and, consequently, sA might
increase. Hence, in general, rA ≥ m1/sA .

Now assume that Nk is polynomial in k. Then sA = ∞ and rA = 1, so
even in this case the relation holds.

Remark 3. This inequality cannot be improved. Indeed, let A be the gasket
generated by the two matrices ρM1, ρM2, where ρ > 1 and M1,M2 ∈ SL2(R+)
are like in Example 8. Then, clearly, rA = ρ and, as explained within the
same example, sA = logρ 2, namely rA = 21/sA. Now, let B be the gasket
generated by ρM1,

√
ρM2. Then rB = rA = ρ but, this time, sB = 2 logρ g,

where g is the golden ratio, so that sB > sA and 21/sB = ρlogg2 2 < rB.

Note that, since we are considering only finitely generated semigroups, the
notions of joint spectral radius and generalized spectral radius coincide [Jun09].
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3 Hausdorff dimension of attractors of finitely

generated free semigroups of PSL±2 (R) and

PSL2(C).

In this section, we show how the exponent of a free finitely generated semi-
group A ⊂ SL±2 (R) (resp. A ⊂ SL2(C)) is sometimes related to the Haus-
dorff dimension of the attractor of a generic orbit in RP 1 (resp. CP 1) of the
semigroup Ψ(A) ⊂ PSL±2 (R) (resp. Ψ(A) ⊂ PSL2(C)) naturally associated
to A (equivalently, to the attractor of the IFS corresponding to Ψ(A)).

Let {f1, . . . , fm} be a free set of linear automorphisms of R2 (resp. C2),
preserving a volume 2-form modulo sign. With respect to any frame E =
{e1, e2}, these automorphisms are represented by matrices Ai ∈ SL±2 (R)
(resp. Ai ∈ SL2(C)). We denote by A the semigroup generated by the
Ai and by ψI ∈ PSL±2 (R) (resp. ψI ∈ PSL2(C)) the automorphism of
RP 1 ' S1 (resp. CP 1 ' S2) naturally induced by fI , I ∈ I2. The similarity
between the characterization of the exponent sA given in Theorem 2 and the
formula for the Hausdorff dimension of a 1-dimensional IFS given in [Fal90]
(Theorem 9.9, p. 126) suggests the following claim:

Theorem 4. Assume that the fi are all hyperbolic and that there exists some
proper open set V ⊂ RP 1 (resp. V ⊂ CP 1) invariant under the ψi such
that, for some affine chart ϕ : RP 1 → R (resp. some complex affine chart
ϕ : CP 1 → C1), the ψi are contractions on ϕ(V ) with respect to the Euclidean
distance, satsisfy 0 < a ≤ |ψ′i(v)| ≤ c < 1 for all 1 ≤ i ≤ m, v ∈ V and
some constants a, c. Finally assume that the ψi satisfy the open set condition
ψ1(V ) ∩ ψ2(V ) = ∅. Let RA = ∩∞k=1

(
∪|I|=kψI(V )

)
be the corresponding

attractor. Then 2 dimH RA = sA.

Proof. Let us first consider the real case. In the chart ϕ by the hypothesis the
ψi are a cookie-cutter system (see Chapter 4 of [Fal97]). In particular they
satisfy the principle of bounded distortion (see Prop. 4.2 of [Fal97]), namely

|ψI(V )| � |ψ′I(x)|

for all x ∈ ψI(V ), where |ψI(V )| is the diameter of ψI(V ). Let xI be the
stable fixed point of ψI and ‖·‖s the spectral norm. Then a direct calculation
shows that ψ′I(xI) = ‖AI‖−2

s and, therefore,

|ψI(V )| � ‖AI‖−2
s � ‖AI‖−2.
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Now, by Theorem 5.3 in Chapter 5 of [Fal97], we have also that dimH RA is
the unique solution to the equation

1 = lim
k→∞

∑
|I|=k

|ψI(V )|s
 1
k

.

Since, on the other side,

lim
k→∞

∑
|I|=k

|ψI(V )|s
 1
k

= lim
k→∞

∑
|I|=k

‖AI‖−2s

 1
k

= ξA(2s),

it follows by Theorem 2 that sA = 2 dimH RA.
In the complex case, the maps ψI are all conformal and so the same

theorems mentioned above hold (see Section 5.5 in Chapter 5 of [Fal97]).

An interesting consequence of the previous theorem is the following con-
straint posed by geometry to the (algebraic) exponent of the semigroups
satisfying its conditions:

Corollary 5. Let A ⊂ SL±2 (R) (resp. A ⊂ SL2(C)) be a semigroup satisfy-
ing the conditions of the theorem above. Then sA ≤ 2 (resp. sA ≤ 4).

Proof. This is a direct consequence of the fact that the Hausdorff dimension
of a subset of Rn cannot be bigger than n.

3.1 Matrices with non-negative entries

SL±2 (R+) is a source for several interesting semigroups that satisfy the hy-
potheses of Theorem 4. In this simple setting there is an elementary sufficient
condition to determine whether a gasket is fast:

Proposition 10. Consider a homomorphism A : Im → SL±2 (R+) and as-
sume that all elements AI , |I| = 2, have no entry equal to zero. Then A is
fast.

Proof. Let A12 =

(
p q
r s

)
and AK =

(
a b
c d

)
, so that

A12K =

(
pa+ qc pb+ qd
ra+ sc rb+ bd

)
.
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Assume, for the argument’s sake, that ‖A12K‖ = ra+ sc. Then, since

pa+ qc ≥ min{p, q}
max{r, s}

(ra+ sc),

we have that, for every M ∈M2(R+),

‖MA12K‖ ≥ ‖M‖(pa+ qc) ≥ min{p, q}
max{r, s}

‖M‖‖A12K‖.

By repeating this argument for every index of order 2 and denoting by c
the smallest of these (finitely many) coefficients, we have that ‖MAJ‖ ≥
c‖M‖‖AJ‖ for every M ∈ M2(R+) and J ∈ Jm. In particular then, A is a
fast homomorphism with coefficient not smaller than c.

Example 9. Let E = {e1, e2} be a frame on R2 and f1,2 defined by

f1(e1) = e1 + e2, f1(e2) = e2; f2(e1) = 2e1 + e2, f2(e2) = e2.

With respect to E, the fi are represented by the matrices

F1 =

(
1 1
1 0

)
, F2 =

(
2 1
1 0

)
.

The semigroup F = 〈F1, F2〉 ⊂ SL−(N) is free because, if FI ∈ A, I ∈ I2,
then the entries in FI ’s lower row are equal to the entries in the upper row
of the matrix FI′ and, according to whether the upper left entry of FI is
larger or smaller than its lower left entry, we get either I = 2I ′ or I = 1I ′.
Proceeding recursively this way, we see that there is no other index J 6= I
such that FJ = FI . In particular then, F is a gasket. Moreover, F is
hyperbolic: indeed, ‖FI‖ ≥ ‖F |I|1 ‖, since F2 has no entry smaller than the
corresponding entry of F1, and ‖F k

1 ‖ ' gk, where g is the golden ratio, because

clearly F k
1 =

(
fk+2 fk+1

fk+1 fk

)
, where fk, k ≥ 1, is the Fibonacci sequence

0, 1, 1, 2, 3, 5, . . . Finally, F is fast (with coefficient not smaller than 1/3) by
the previous proposition.

The ψ1,2 leave invariant the projective image of the positive cone S(E)
over E, but they are not contractions on it. However, they are contractions
over the projective image of the smaller cone S(E ′), with

E ′ = {e′1 = (1 +
√

3, 2), e′2 = (1 +
√

3, 1)}.
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Let [x : y] be homogeneous coordinates on RP 1 corresponding to E ′. In the
canonical chart ϕ = x/y, the maps ψi induced by fi can be written as

ψ1(ϕ) =
ϕ+ 1

ϕ
, ψ2(ϕ) =

2ϕ+ 1

ϕ
,

which reveals that this example coincides with Example 9.8 of [Fal90], coming
from the theory of continued fractions.

To obtain analytical bounds for sF we can use Theorem 2. Since both
generators have an eigenvalue larger than 1, the norms of the terms F1F

k
2

and F2F
k
1 grow exponentially, so that we can get a good approximation of

µF ,` by truncating the sums after just a few terms. By considering only
the terms with k ≤ 10 in µF ,0 and solving the equation µF ,0(s) = 2s in
this approximation, we get sF ≥ .51, with a relative error of about 6% on
the more precise estimate sF ≥ .54 obtained by considering k ≥ 20. Since
c = 1/3, the first µF ,` we can get upper bounds is µF ,3. Here we just mention
that from µF ,8, considering the first 30 summands of all series that appear
in its expression, we get 0.95 ≤ sF ≤ 1.76. In terms of the dimension of
RF , this translates to 0.474 ≤ dimH RF ≤ 0.877. By evaluating NF (k) for
k = 2p, 1 ≤ p ≤ 35, we get the estimate sF ' 1.062 (see Table 1 for the
corresponding values of NF ), with a (heuristic) error of 2 on the last digit.
This corresponds to the well-known fact dimH RF ' 0.531.

Example 10. Consider now

f1(e1) = e1, f1(e2) = e1 + e2; f2(e1) = e1 + e2, f2(e2) = e2.

The corresponding matrices (with respect to E)

C1 =

(
1 0
1 1

)
, C2 =

(
1 1
0 1

)
generate the semigroup C ⊂ SL2(N) we already met in Examples 2 and 6. In
particular, we already know that C is a parabolic fast gasket with coefficient
c = 1/2. A direct check shows that the slowest and fastest growths, with
respect to the order k of the multi-index I of CI ∈ A, correspond respectively
to the pure powers Ck

i , for which ‖Ck
i ‖ = k, and to the “cyclic” products

CiCi+1Ci+2 · · ·Ci+k−1, for which ‖CiCi+1Ci+2 · · ·Ci+k−1‖ ' gk, where the
sums in the indices are meant “modulo 2” in the sense that 3 means 1, 4
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means 2 and so on. The reason why the golden ration g appears is that,
similarly to the previous case,

C1C2C1 · · ·Ci+k−1 =

(
fk+2 fk+1

fk+1 fk

)
for k odd while if k is even the two rows get exchanged and analogously for
the cyclic products beginning by C2.

In the affine chart ϕ : [x : y]→ x/(x+ y), the maps ψi induced by the fi
can be written as

ψ1(ϕ) =
ϕ

1 + ϕ
, ψ2(ϕ) =

1

2− ϕ
and the segment S(E) maps into [0, 1]. Note that this choice of chart corre-
sponds to writing e1 = e′1 and e2 = e′1 + e′2, expressing the fi with respect to
E ′ = {e′1, e′2} and using the canonical chart y′ = 1 for the corresponding ho-
mogeneous coordinates [x′ : y′]. In terms of the semigroup, this corresponds

to the adjunction via the matrix M =

(
1 1
0 1

)
. A direct calculation shows

that the |ψ′i(ϕ)| ≤ 1 on [0, 1], with the equal sign holding at 0 for ψ1 and at
1 for ψ2, namely the IFS {ψ1, ψ2} is parabolic.

Evaluating the Hausdorff dimension of the attractor RC2 of a point w ∈
(0, 1) under the action of C2 is nevertheless an easy task. Indeed, since
ψ1((0, 1)) = (0, 1/2) and ψ2((0, 1)) = (1/2, 1), the ψI , |I| = k, subdivide (0, 1)
into 2k disjoint segments dI = ψI(0, 1) in such a way that ∪|I|=kdI = [0, 1].
Moreover, the length of these segments goes to zero for k → ∞. Indeed, if

CI =

(
a b
c d

)
∈ C2, then ψI(ϕ) = (a−c)ϕ+c

(a+b−c−d)ϕ+c+d
and, therefore,

|dI | =
∣∣∣ c

c+ d
− a

a+ b

∣∣∣ =
1

(a+ b)(c+ d)
,

from which we get
1

4‖CI‖2
≤ |dI | ≤

1

‖CI‖
.

Hence, the orbit under the ψI of every w ∈ (0, 1) is dense in (0, 1) and,
therefore, dimH RC = 1. Note that, since this IFS is not hyperbolic, Theorem
4 does not apply to it and therefore we cannot conclude that sC = 2.

Let us get analytical bounds for sC via µC,`. Unlike the previous example,
the presence of parabolic elements in the semigroup does not allow to truncate
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the series to just a few terms because of its very slow convergence. Since
‖CiCk

i+1‖ = k + 1, we get easily that

µC,0(s) =
∑
J∈J 2

‖CJ‖−s = 2
∞∑
k=1

‖C1C
k
2‖−s = 2

∞∑
k=2

k−s = 2(ζ(s)− 1),

where ζ(s) is the Riemann’s zeta function. The solution of µC,0(s) = 2s

gives us the bound sC ≥ 1.54. The first upper bound can be gotten from µC,2,
obtained by replacing the two terms of norm 2 in µC,0(s) , namely ‖C12‖−s
and ‖C21‖−s, with, respectively, µCA12(s) and µCA21(s). A direct calculation
shows that

µCA12(s) =
∞∑
k=2

(2k + 1)−s +
∞∑
k=4

k−s = 2−sζ(s,
5

2
) + ζ(s)− 1− 2−s − 3−s,

where ζ(s, t) is the Hurwitz zeta function, and, by symmetry, we know that
µCA12 = µCA21. Hence

µC,2(s) = 2

(
2ζ(s) + 2−sζ(s,

5

2
)− 2− 21−s − 3−s

)
,

which gives the bounds 1.7 ≤ sC ≤ 3.93 as solutions of µC,2(s) = 2s and
µC,2(s) = 2−s. A numerical evaluation of NC(k) for k = 2p, 1 ≤ p ≤ 21,
(see Table 1 for the evaluated values) gives sC = 2.000002 with a (heuristic)
error of 2 on the last digit. This and the evaluation of dimH RC above strongly
suggest that sC = 2.

It is interesting to consider the following generalization of the previous
example, namely the free semigroups C2,α ⊂ SL2(R+) generated by

C1,α =

(
α 0

1/α 1/α

)
, C2,α =

(
1/α 1/α

0 α

)
.

In this case, in the same framework used above,

ψ1,α(ϕ) =
ϕ

α2 + (2− α2)ϕ
, ψ2,α(ϕ) =

1 + (α2 − 1)ϕ

2 + (α2 − 2)ϕ
.

A direct check shows that, for every fixed α ∈ (1, 2), the ψi,α are contractions
on the invariant interval [0, 1] and that they satisfy the open set condition
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with respect to it. Let RC2,α be the attractor of the orbit of any point
w ∈ (0, 1) under the action induced by C2,α. The very same argument used
in the example above shows that dimH RC2,α = 1. As a corollary of Theorem
4 we get the following:

Proposition 11. sC2,α = 2 for every α ∈ (1, 2).

Remark 4. The restriction on the possible values of α looks more like an
artificial effect of a poor choice for the distance function rather than a true
property of the semigroups. We believe that by choosing an ad-hoc metric and
maybe slightly modifying the argument the proposition above can be extended
to the half-line [1,∞).

3.2 Complex Sierpinsky Gaskets

Here we define a new class of complex self-projective sets whose construction
is topologically equivalent to the one of the well-known Sierpinsky gasket.

Definition 5. Let f1, f2, f3 be volume-preserving linear automorphisms of C2

and denote by A1, A2, A3 ∈ SL2(C) the corresponding matrices with respect
to some coordinate system and by ψ1, ψ2, ψ3 ∈ PSL2(C) their corresponding
Möbius transformations acting on the Riemann sphere. Let xi ∈ CP1 be the
stable fixed point of ψi. We say that the semigroup F generated by the fi (or,
equivalently, the semigroup A generated by the Ai) is a complex projective
Sierpinski gasket if ψi(xj) = ψj(xi) for every pair i 6= j and there exists a
curvilinear triangle TA having the xi as vertices that is invariant under the
action of the ψi.

By construction, every such gasket A is free and satisfies the open set
condition with respect to the interior of TA. Since the Möbius group PSL2(C)
is transitive on triples of distinct points, we assume without loss of generality
in the rest of this section that TA has vertices x1 = [1 : 1], x2 = [i : 1],
x3 = [−1 : 1] with respect to homogeneous coordinates [z : w] and use the
affine chart w = 1 with complex coordinate z = x+ iy for all calculations.

Proposition 12. Let f1, f2, f3 be volume-preserving linear automorphisms
with real spectrum having respectively e1 = (1, 1), e2 = (i, 1), e3 = (−1, 1) as
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eigenvectors corresponding to the largest eigenvalue and assume that
ψ1([e3]) = ψ3([e1]) = u+ iv,

ψ2([e1]) = ψ1([e2]) = is,

ψ3([e2]) = ψ2([e3]) = −u+ iv.

A necessary condition for f1, f2, f3 to generate a Sierpinski gasket symmetric
with respect to the imaginary axes, namely such that f1(z) = f2(−z) and
f3(z) = f3(−z), is that ψ1([e3]) ∈ Γ, where Γ is the circle

x2 + y2 − x(1− s2)− s2 = 0. (24)

For s = 0 the condition is sufficient for u ∈ [1/5, α], where α ' 0.651.

Proof. A long but straightforward direct calculation shows that condition
(24) is the only one coming from imposing that each one of the tetruples
[e1], [e3], ψ1([e3]), ψ11([e3]) and [e1], [e2], ψ1([e2]), ψ11([e2]) identifies a single
circumference. No further condition comes from ψ3 and by symmetry we
obtain an equivalent condition with respect to ψ2.

When s = 0 another direct calculation shows that if u < 1/5 then e1

is not anymore the eigenvector of f1 corresponding to its largest eigenvalue.
When u = α the circles Γ13 and Γ12 are tangent to each other and for u > α
they intersect inside TA.

Example 11. Let us give a short survey of the kind of geometry we meet in
case of complex projective Sierpinski gaskets symmetric with respect to the
imaginary axes. For u = 16/25 ' α we get the gasket

A1 =
1√
544

(
20 12i
−3i 29

)
, A2 =

1√
24

(
4 4
1 7

)
, A3 =

1√
24

(
4 −4
−1 7

)
.

In Fig. 2 we show the orbit of a point under the action of the semigroup
A 16

25
generated by the Ai. The triangle TA 16

25

is convex and, correspondingly,

the triangle ZA 16
25

= TA 16
25

\ (∪3
i=1TA 16

25
Ai) is concave. Each angle is almost

zero because the sides of the triangle are almost tangent to each other, which
corresponds to the fact that the limit value α is close to 16/25. The restriction
to TA 16

25

of corresponding maps ψi are contractive, so that Theorem 5 applies.

A rough numerical evaluation of the exponent of A 16
25

gives sA 16
25

' 2.88, so

that dimRA 16
25

' 1.44.
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a b

c d

Figure 2: Attractors of complex self-projective Sierpinski gaskets: (a) u = 16/25, sA '
2.88, dimRA ' 1.44; (b) u = 1/2, sA = 2 log2 3, dimRA = log2 3; (c) u = 9/25, sA ' 2.88,
dimRA ' 1.44; (d) u = 1/5, sA ' 2.60, dimRA ' 1.30. Above we show for each case
the 19683 points of the orbit of a random point under the action of all matrices AI of the
gasket with |I| = 9.
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By increasing u, the curvature of the sides increases (we consider negative
the curvature of concave sides) until it gets zero for u = 1/2. The semigroup
is now generated by

A1 =
1√
2

(
1 i
0 2

)
, A2 =

1√
2

(
1 1
0 2

)
, A3 =

1√
2

(
1 −1
0 2

)
.

In this case all sides are segments of straight lines and the gasket is diffeo-
morphic to the standard Sierpinski gasket in R2. It is easy to prove that
sA 1

2

= 2 log2 3. Correspondingly, we get the well-known result dimRA 1
2

=

log2 3.
By increasing u further, the curvature of the sides keeps increasing and,

therefore, TA becomes convex. For u = 9/25 the semigroup is generated by

A1 =
1

45

(
3 6i
2i 11

)
, A2 =

1√
24

(
3 3
−1 7

)
, A3 =

1√
24

(
3 −3
1 7

)
.

The corresponding ψi are contractive over TA 9
25

, so that Theorem 5 applies.

A rough numerical evaluation of the exponent gives sA 9
25

' 2.88, so that

dimRA 9
25

' 1.44.

At the extremal value u = 1/5, every angle of the triangle is equal to π,
namely every triangle ZA 1

5

is actually a circle. Indeed this gasket, generated

by

A1 =

(
0 i
i 2

)
, A2 =

1

2

(
1 1
−1 3

)
, A3 =

1

2

(
1 −1
1 3

)
.

is the well-known Apollonian gasket. This time, the corresponding ψi are
only non-expansive, which corresponds to the fact that the generators of A 1

5

are parabolic. Nevertheless, the numerical evaluation of the exponent gives
sA 1

5

' 2.60, compatible with the known estimate dimRA 1
5

= 1.30568... (e.g.

see [McM98]), and therefore suggests that the result of Theorem 4 holds even
in the parabolic case.

Finally, we point out that all these gaskets are fast. Here we outline the
argument in case of the Apollonian gasket A 1

5
, but the same argument holds

for all complex projective gaskets symmetric with respect to the imaginary
axes. Note, first of all, that it is straightforward proving by induction that
‖AI‖ = |(AI)22| for every matrix AI ∈ A 1

5
. Now, consider the case

AI =

(
α β
γ δ

)
, A23 =

1

2

(
1 1
1 5

)
, AL =

(
a b
c d

)
.
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NC(2k)
k=1,. . . ,21

3, 15, 71, 287, 1231, 4911, 19831, 79279, 318383, 1273807, 5098247, 20391887, 81590055,
326364583, 1305483999, 5221928631, 20888160751, 83552534287, 334211194663,

1336844299831, 5347382007359

NF (2k)
k=1,. . . ,35

2, 7, 16, 34, 84, 151, 348, 679, 1546, 3034, 6546, 13476, 28409, 59578, 122139, 261698,
531191, 1144823, 2314772, 4986951, 10132768, 21667197, 44400099, 94074745, 194587388,
408651488, 852101402, 1777247239, 3726410796, 7738675037, 16274400897, 33739772516,

71002774691, 147235829060, 309533001058

NA 1
5

(1.4k)

k=1,. . . ,29

3, 3, 5, 12, 29, 64, 123, 255, 594, 1372, 3222, 7388, 17636, 41302, 95748, 226607, 534766,
1271425, 3032945, 7221236, 17258732, 41170226, 98428382, 235630679, 563928974,

1351059074, 3238344644, 7765525872, 18627071753

Table 1: Several values of NA for the cubic semigroup C, the semigroup F
of Example 9 and the Apollonian semigroup A 1

5
.

Then

A23L =
1

2

(
a+ c b+ d
a+ 5c b+ 5d

)
,

so that ‖AI23L‖ = 1
2
|γ(b+ d) + δ(b+ 5d)| ≥ 2|δ||d| ≥ 1

3
‖AI‖‖A23L‖. The case

of A32 is completely analogous to this. The remaining four combinations are
instead analogous to the case of

A12 =
1

2

(
−i 3i
−2 + i 6 + i

)
.

This time

A12L =
1

2

(
−ia+ 3ic −ib+ 3id

(−2 + i)a+ (6 + i)c (−2 + i)b+ (6 + i)d

)
and ‖AI12L‖ = 1

2
|γ(3id− ib)+δ((i−2)b+(6+ i)d)| ≥ 2|δ||d| ≥ 1

5
‖AI‖‖A12L‖.

Hence, A 1
5

is a fast gasket with coefficient not smaller than 1/5.
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