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Abstract

In a recent work [DeL14] we proved that, under natural conditions
satisfied in several important examples, the rate of growth 1/sA of
norms of matrices in a semigroup A ⊂ SL±2 (R) (resp. A ⊂ SL2(C))
dictates the Hausdorff dimension of the attractor RA of the corre-
sponding semigroups of projective transformations on RP1 (resp. CP1).

In the present work we start to study the higher dimensional case.
In particular, we introduce some family of semigroups A ⊂ SLn(R)
and we study numerically some concrete case for n = 3 and n = 4.
Our results suggest that, for n ≥ 3, (n− 1)sA/n is a lower bound for
the Hausdorff dimension of RA.

1 Introduction

The present work is motivated by the unexpected numerical discovery of a
non-trivial asymptotic property shared by two noteworthy gaskets (see be-
low). This property led us to the definition of a critical exponent that, in case
of gaskets invariant under the action of PSL2(R) or PSL2(C), completely
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determines the Hausdorff dimension of the gasket (see [DeL14]). Here we
will provide numerical evidence on how such relation might extend to higher
dimensional settings (see Conjecture 1).

Throughout the paper we will use the concepts of Hausdorff and box
dimension of a set. We recall that the Hausdorff dimension of a subset F of
a metric set (X, d) is the unique non-negative real number dimH E such that

dimH E = inf{s |Hs(E) = 0} = sup{s |Hs(E) =∞},

where

Hs(E) = lim
δ→0

inf

{
∞∑
j=1

|Uj|s
∣∣∣∣E ⊂ ∞⋃

j=1

Uj, 0 < |Uj| < δ

}
and |Uj| is the diameter of Uj. Now, let Nr(F ) be the smallest number of sets
of diameter r needed to cover F . Then the lower and upper box dimensions
of F are defined, respectively, as

dimBE = lim inf
r→0

logNr(F )

log r
, dimBE = lim sup

r→0

logNr(F )

log r
.

When dimBE = dimBE = d, we say that E has box-dimension dimB E = d.
Recall that dimBE ≥ dimH E.

Throughout the paper we will use, for matrices, the norm ‖M‖ = max{|Mij|}
whenever not stated otherwise. Since all norms are equivalent in finite di-
mension, our results will not depend on this particular choice.

To clarify the main topic of the article, now we discuss in some detail two
motivational examples.
1. The Levitt-Yoccoz gasket C3. Let E = {e1, e2, e3} be any frame of
R3 and [v] ∈ RP2 the direction corresponding to the non-zero vector v ∈ R3.
The Levitt-Yoccoz gasket can be thought as the subset of RP2 obtained by
removing, from the triangle T (E) with vertices {[e1], [e2], [e3]}, the triangle
with vertices {[e1+e2], [e2+e3], [e3+e1]} and repeating this procedure recur-
sively on the three triangles left (see Fig. 1). Of course by choosing different
frames we get different sets, but all of them are projectively diffeomorphic to
each other. Now, denote by Tk,C3 ⊂ T (E) the set obtained after repeating
this procedure k times. Clearly C3 = ∩∞k=1Tk,C3 , i.e. we can get as close
as we please to C3 with the sets Tk,C3 for large values of k. The set C3

can also be characterized as the (unique) subset of the triangle with vertices
[1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1] which is invariant under the action of the
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(free) subsemigroup of PSL3(N) generated by the projective automorphisms
ψi, i = 1, 2, 3, induced by the following three SL3(N) matrices:

C1 =

1 0 0
1 1 0
1 0 1

 , C2 =

1 1 0
0 1 0
0 1 1

 , C3 =

1 0 1
0 1 1
0 0 1

 .

By abuse of notation we denote by C3 also the semigroup generated by these
three matrices.

In the author’s knowledge, the gasket C3 has been mentioned for the
first time in 1991 in a paper by Arnoux and Rauzy [AR91], as an example in
the context of interval exchange transformations. No property of the gasket
has been investigated in that work, but it was conjectured that its Lebesgue
measure is null. The gasket was then rediscovered in 1993 in a paper by
G. Levitt [Lev93], as an example in the context of the dynamics of rotation
pseudogroups. In that work it appears for the first time a picture of the
fractal and a proof (by J.C. Yoccoz) of the conjecture above by Arnoux and
Rauzy.

No further advances were made about C3 until it was independently re-
discovered, in 2009, by I.A. Dynnikov and the present author [DD09] in the
context of S.P. Novikov’s theory of the magnetoresistance of metals under
a strong magnetic field (e.g. see [Nov00, NM03]). From the mathematical
point of view, the problem amounts to the dependance, on the Hamiltonian
function H and a constant 1-form B = Bkdpk, of the topology of the tra-
jectories of the Poissonian dynamical system defined by H on the Poisson
manifold (T3, {}B), where {pi, pj}B = εijkB

k and εijk is the totally antisym-
metric Levi-Civita tensor. The closed 1-form B (magnetic field), although
not exact, is the differential of the multi-valued function Bipi and therefore
is a multi-valued Casimir of the system [MR03]. According to a fundamen-
tal theorem by Dynnikov [Dyn92] this dynamical system is, in some sense,
generically completely integrable. However, for some directions of the mag-
netic field it can be, loosely speaking, chaotic. In the generic case, this set
of “chaotic directions” has Hausdorff dimension equal to 1 or less at every
energy level. By a Novikov Conjecture [Nov00], this dimension is strictly less
than 1, so that, presumably, the union of all of them for all levels is strictly
less than 2. This property is important.

In [DD09], in case of a simple combinatorial model of Hamiltonian in
which all chaotic directions are located at the same energy level, we were
able to show that the set of chaotic directions is equal, modulo trivial smooth
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Figure 1: (a) The Cubic gasket C3 ⊂ RP 2 in the triangle T with vertices
[0 : 0 : 1], [1 : 0 : 1], [0 : 1 : 1] (in homogeneous coordinates [x : y : z]). The
picture shows (in green) the set T7,C3 in the affine chart z = 1. (b) Log-log
plot of the norms Nk of the matrices CI ∈ C3, |I| ≤ 11, sorted in lexicographic
order. The fastest growing norms are ‖Ci · Ci+1 · · ·Ci+k‖ ' αk3, where sums
of indices are intended “modulo 3” and α3 ' 1.84 is the Tribonacci constant.
This corresponds, in the graph, to the line Nk = klog3 α3 , which bounds the
norms from above. The slowest growing norms are the ones of the powers
of the generators, ‖Ck

i ‖ = k. These correspond, in the graph, to the line
Nk = log3

2k
3

, which bounds the norms from below. (c) Log-log plots of the
functions Sk = NC3(k) (line with the largest slope), where NC3(k) is the
number of elements of C3 whose norm is not larger than k, and Sk = Nσ(k),
where σ is any permutation of the indices sorting the Nk in non-decreasing
order (line with the smallest slope). Only the first 40000 norms are included
in the graph. Our numerical data suggests that NC3(k) ' Aks for A ' 0.967
and s ' 2.444 (the values of NC3(k) shown in the graph are exact, see
Table 3). As expected, the norms sorted in non-decreasing order grow as
Nk ' k1/s. According to Conjecture 1, this entails that dimH C3 ≥ 1.63.
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transformations, to C3. It is therefore important to find bounds, in partic-
ular upper bounds, for its Hausdorff dimension. In [DD09] we provided an
independent proof that C3 has zero Lebesgue measure, in order to show that
the Hausdorff dimension of this gasket may indeed be smaller than 2. What
makes hard finding non-trivial bounds for the Hausdorff dimension of C3

is that each projective automorphisms ψi induced by the matrices Ci has
exactly one of the three vertices of the triangle T (E) as fixed point and in
that point it has Jacobian equal to 13, namely the iterated function sys-
tem (IFS) {ψ1, ψ2, ψ3} is parabolic rather than hyperbolic1. Numerical results
by the present author [DD09, DeL08] clearly indicate that such dimension
is strictly smaller than 2. This fact was recently confirmed analytically by
A. Avila, P. Hubert and S. Skripchenko [AHS13], but no stronger analytical
bounds for dimH C3 are known to date.

We finally point out that, in 2013, Arnoux, showing no sign of aware-
ness of the advances made on the subject since 1991, started studying ex
novo the fractal in the context of Sturmian words in a joint work with S.
Starosta [AS13] and provided a third, independent, proof that the measure
of the fractal is null. They named the gasket “Rauzy gasket” but we be-
lieve that the gasket should rather be given the names of those who began
studying its properties.

A key feature of the semigroup C3 is that its generators Ci, i = 1, 2, 3,
have all eigenvalues equal to 1, so that the norms of their powers cannot grow
faster than polynomially, while all their products CiCj, i 6= j, have an eigen-
value larger than 1, so that the norms of their powers grow exponentially.
Hence, when sorted in lexicographic order2, the norms Ni of the elements of
C3 grow with quite different speeds, ranging from exponential to linear. The
non-trivial asymptotic property of C3, which is our main motivation for the
present work, is that the same norms appear instead to grow asymptotically
as Nσ(i) ' Cσ(i)r, for some constants C, r > 0, when σ is any permutation
of the indices which sorts the sequence {Ni} in non-decreasing order. Equiv-
alently, the number NC3(k) of elements of C3 whose norm is not larger than
k grows as NC3(k) ' C ′ks for some C ′ > 0 and s = 1/r (see Corollary 3
in [DeL14]). In Fig. 1 we show some numerical data relative to this case. We
find that s ' 2.44 and, correspondingly, that r ' 0.41.

1Recall that a IFS {f1, . . . , fm} on a metric space (M,d) is said hyperbolic when all fi
are contractions with respect to d and parabolic when all fi are non-expanding maps.

2By this we mean that N1 = ‖C1‖, N2 = ‖C2‖, N3 = ‖C3‖, N4 = ‖C1C1‖, N5 =
‖C1C2‖, . . . , N14 = ‖C1C1C1‖ and so on.

5



Since the norm of the C3 matrices are related to the areas of the triangles
(see Lemma 3), it has to be expected that the rate of their growth is related
to the Hausdorff dimension of the fractal. According to Conjecture 1, indeed,
the value found for s entails that dimH C3 ≥ 1.63.

2. The Apollonian gasket A3. It was an enlightening seminar of Hee
Oh about apollonian packings that brought to our attention the Apollonian
gasket A3 ⊂ CP 1. This complex self-projective fractal is possibly the fractal
with the oldest ancestry, since its construction relies on a celebrated result
of the Hellenistic mathematician Apollonius of Perga (ca 262 BC – ca 190
BC), known in his times as The Great Geometer. Apollonius’ result, con-
tained in the now–lost book Tangencies but fortunately reported by Pappus
of Alexandria in his Collection [PapAD], published about five centuries later,
concerns the existence of circles tangent to a given triple of objects that can
be any combination of points, straight lines and circles. In particular, given
three circles which are mutually externally tangent to each other (sometimes
called the four coins problem [Old96]), there exist exactly two new circles
tangent to all three, one externally and one internally (see Fig. 2). The three
given circles plus any one of the new ones3 form a Descartes configuration,
since it was Descartes that stated the following remarkable relation between
the curvatures c1, . . . , c4 of the four circles (see [Cox37] for details) memo-
rialized three centuries later by the Chemistry Nobelist Frederick Soddy in
his poem “The Kiss Precise” [Sod36] after rediscovering it independently:

2
∑4

i=1 c
2
i =

(∑4
i=1 ci

)2
.

Since Möbius transformations preserve circles and are transitive on triples
of distinct points, they also act transitively on the set of all possible Descartes
configurations; this fact suggests that their most natural environment is the
Riemann sphere CP 1 rather than the plane. Any Descartes configuration D
divides CP 1 in 4 curvilinear triangles Ti in such a way that every circle of
D is one of the two Soddy circles of the remaining three circles of D. By
drawing the new Soddy circle of each of the 4 triples we are left with 4 new
Descartes configurations. By repeating this process recursively we generate
an infinite osculating circle packing of CP 1 which, not surprisingly, is called
Apollonian packing.

Here we rather focus our attention on any one of the curvilinear triangles
T and call Apollonian gasket A3 the set of points of T left after removing from

3In Soddy’s honor the two new circles are called Soddy’s circles.
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T the interior of all Soddy circles inside it. Like in case of the cubic gasket,
A3 can be characterized as the invariant set of a complex self-projective
parabolic IFS. The fact that, thanks to the complex structure of CP 1, A3 is
self-conformal was exploited by Mauldin and Urbanski to prove some of its
fundamental properties [MU98]. Unfortunately these techniques do not seem
to extend to the previous (real) case, when the IFS maps are parabolic but
not conformal.

In 1967 K.E. Hirst [Hir67] introduced the Hirst semigroup H , namely the
subsemigroup of SL4(N) generated by the matrices

H1 =


1 0 0 0
0 1 0 0
1 1 1 2
1 1 0 1

 , H2 =


1 0 0 0
0 0 1 0
1 1 1 2
1 0 1 1

 , H3 =


0 1 0 0
0 0 1 0
1 1 1 2
0 1 1 1

 ,

as an effective tool to generate the radii of the Soddy circles in the gasket.
In a series of fundamental contributions to the study of the Hausdorff

dimension of the gasket [Boy70, Boy71, Boy72, Boy73a, Boy73b, Boy82],
D.W. Boyd ultimately characterized this dimension in terms of the Hirst
semigroup by proving (implicitly, in terms of the circles’ curvatures) the
following:

Theorem 1 (Boyd). Let NH(k) be the number of matrices of the semigroup
H with norm4 not larger than k. Then:

1. limk→∞
logNH(k)

log k
= s <∞;

2. dimH A3 = s ' 1.306.

Note that, in the meantime, both results have been improved. Recently,
Kontorovich and Oh [KO11] strengthened point 1 by proving that there are
constants A,B > 0 such that Aks ≤ NH(k) ≤ Bks for almost all k. About
point 2, the most precise evaluation of dimH A3 to date is, instead, due to
McMullen [McM98] that, using the Apollonian group, namely the Schottky
group whose residual set is the Apollonian gasket, found that dimH A3 '
1.3056688 (see also Section 3.3).

A first similarity between the Apollonian and the Levitt-Yoccoz gasket
comes from the fact that the distribution of the norms of the matrices in

4Since all norms are equivalent in finite dimension, this is true for any norm.
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H is qualitatively the same as in the semigroup C3 (see Fig. 1 and Fig. 2).
Note that, unlike in C3, only one of the generators of H , namely H1, has all
eigenvalues equal to 1. The fastest growth in norms then, in this case, comes
from the powers of the matrix H3, which has the highest eigenvalue λ ' 2.89
among the three generators. This correponds, in the graph in Fig. 2(c), to
the line Nk = klog3 λ, which bounds the norms from above. The slowest
growth comes instead from the powers of H1, namely ‖Hk

1 ‖ = k2, k > 1.
This correponds, in the graph, to the line Nk = (log3(2k − 1) − 1)2, which
bounds the norms from below. As shown by Boyd though, even in this case,
if σ is a permutation of the indices that sorts the norms in non-decreasing
order, then Nσ(k) = Cσ(k)r, where r = 1/s ' 0.766, and, equivalently, the
number of elements with norm not larger than k grows as NH(k) ' Cks (see
Fig. 2(d)).

A second similarity comes from the fact that A3, as shown in [DeL12,
DeL14], can be seen as the invariant set of the parabolic Kleinian IFS corre-
sponding to the subsemigroup of SL2(C) generated by the matrices

A1 =

(
0 i
i 2

)
, A2 =

1

2

(
1 1
−1 3

)
, A3 =

1

2

(
1 −1
1 3

)
,

which by abuse of notation we will denote too by A3. Just like in case of
C3, each generator of A3 has both eigenvalues equal to 1, so that the norms
of their powers grow linearly, but each mixed product has an eigenvalue
with modulus larger than 1, so that their powers grow exponentially. The
asymptotics of the norms of the elements of A3 looks numerically the same
as in C3. In Example 11 of [DeL14] we showed that limk→∞ logNA3(k)/ log k
converges to a finite limit s and conjectured that s = 2 dimH A3, based on
numerical evidence (see Table 3) and on the fact that such relation holds for
similar semigroups that induce hyperbolic IFSs on CP2.

It is interesting now to compare the two previous non-trivial gaskets with
a simpler one, the Sierpinski gasket S3 ⊂ R2. This self-affine set is less
ancient than the Apollonian one, having been introduced in the Mathematics
literature by W. Sierpinski only in 1915 [Sie15], but it does have nevertheless
a long history too since its pattern has been known and used in art for
about a millennium [PA02] (see Fig. 3). Its dimension is easily calculated:
dimH S3 = log2 3 (e.g. see [Fal90]). Since both PSL3(R) and PSL2(C)
contain a subgroup isomorphic to the group of affine transformations of the
plane, the Sierpinski gasket can also be seen as a real (respectively complex)
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a c

b d

Figure 2: (a) Inscribed and circumscribed circles in the four coins problem.
(b) Apollonian gasket A3 in the curvilinear triangle with vertices at [1 : 1],
[−1 : 1], [i, 1] (in homogeneous coordinates [z : w]) and mutually tangent arcs
of cirles as sides, represented in the affine chart w = 1. The picture shows
(in green) the set T7,A3 . (c) Log-log plot of the norms Nk of the matrices of
the semigroup H sorted in lexicographic order. The fastest growing norms
are ‖Hk

3 ‖ ' λk, where λ ' 2.89 is the largest modulus eigenvalue of H3.
This corresponds to the line Nk = klog3 λ, which bounds the norms from the
above. The slowest growing norms are ‖Hk

1 ‖ = k2, k > 1. This corresponds
to the line Nk = (log3(2k − 1) − 1)2, which bounds the norms from below.
(d) Log-log plots of the function Sk = NH(k) (line with the largest slope),
where NH(k) is the number of elements of H with norm not larger than k,
and Sk = Nσ(k) (line with the smallest slope), where σ is any permutation
of the indices sorting the Nk in non-decreasing order. The points shown in
the graph for NH(k) are exact, see Table 3. Only the first 40000 norms are
included in the graph of Nσ(k).
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Figure 3: (left) Image of the Sierpinski gasket in the triangle T with vertices
(0, 0), (1, 0), (0, 1). In the picture it is shown, in green, the set T7,S3 . (right)
Detail of a cosmatesque [PA02] mosaic dated about 11th–12th century (photo
taken by the author at the Phillips Museum in Washington, DC).

self-projective fractal of RP 2 (respectively CP 1).
A semigroup having the Sierpinski fractal as its attractor set in RP2 is,

for example, the one generated by the matrices

SR
1 =

1
3
√

2

2 0 0
1 1 0
1 0 1

 , SR
2 =

1
3
√

2

1 1 0
0 2 0
0 1 1

 , SR
3 =

1
3
√

2

1 0 1
0 1 1
0 0 2

 .

In CP1, in turn, we can use the semigroup induced by the matrices

SC
1 =

1√
2

(
1 i
0 2

)
, SC

2 =
1√
2

(
1 1
0 2

)
, SC

3 =
1√
2

(
1 −1
0 2

)
.

The regularity of the matrices SR
i and SC

i makes possible to perform simple
direct calculations that illustrate the main points of this paper.

Consider first the real version. Let ‖S‖∞ be the norm given by the
maximum absolute row sum of S. Since all lines of the SR

i sum to 2 then
‖SR

i1
· · ·SR

ip‖∞ = (2−1/3)p · 2p = 22p/3 for every p ≥ 1. Hence in the sphere of
radius k lie

N(k) =

b 3
2
log2 kc∑
p=0

3p =
3b

3
2
log2 k+1c − 1

2
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products of the SR
i , where b3 log2 k/2c is the integer part of 3 log2 k/2, and

therefore

sR = lim
k→∞

log2N(k)

log2 k
=

3

2
log2 3.

Note that sR is also equal to the exponent that separates the values s
for which the series

∑
S∈〈SR

i 〉
‖S‖−s diverges from those for which it con-

verges, where the sum is extended to all elements of the semigroup freely
generated by the SR

i . Finally, note that the following relation holds be-
tween the Hausdorff dimension of the Sierpinski gasket and the rate growth:
3 dimH S3 = 2sR.

Consider now the complex version. Endow M2(C) with the norm ‖S‖
given by the largest modulus of the entries of S. Since the last row of each
SC
i is (0, 2), then ‖SC

i1
· · ·SC

ip‖ = (2−1/2)p · 2p = 2p/2 for every p ≥ 1. Hence in
this case

N(k) =

b2 log2 kc∑
p=0

3p =
3b2 log2 k+1c − 1

2

and therefore

sC = lim
k→∞

log2N(k)

log2 k
= 2 log2 3.

Similarly to what happens in the real case, sC is also equal to the exponent
that separates the values s for which the series

∑
S∈〈SC

i 〉
‖S‖−s diverges from

those for which it converges, where the sum is extended to all elements of
the semigroup freely generated by the SC

i . Note that in this case the relation
between the Hausdorff dimension of the Sierpinski gasket and the norms’
growth rate is the following: 2 dimH S3 = sC.

For thorough surveys on the Sierpinski gasket and, especially, on the
more challenging Apollonian gasket, we refer the reader to the book by
A.A. Kirillov [Kir13], the series of papers by Lagarias, Mallows, Wilks and
Yan [GLM+03, GLM+05, GLM+06] and the recent article by Sarnak [Sar11].

The examples above suggest two interesting research directions.
On one side, the norms’ asymptotics in several semigroups A of linear

transformations on Rn leads to the association to them of a critical exponent
sA. A natural condition for the existence and finiteness of sA was studied
in [DeL14]. In Section 2 we will generalize the Levitt-Yoccoz semigroup
C3 by defining the concept of real projective Sierpinski Gaskets (in short,
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Sierpinski Gasket) and use such condition to prove analytically the numerical
observations above on the aymptotics of those gaskets. As a byproduct,
we will moreover show that sA determines also the asymptotics of crucial
geometrical parameters of the attractors RA of the projective semigroups
induced by A on RPn−1.

On the other side, the relation between sA and the geometry of RA sug-
gests that sA might be somehow related to the Hausdorff dimension of RA.
In [DeL14], Theorem 4, we proved that, under some natural conditions, in
case of 2 × 2 real or complex matrices the exponent sA actually determines
completely dimH RA. In higher dimension it is to be expected a weaker re-
lation. In Section 3 we present and discuss our numerical results on this
matter for several significant examples of Sierpinski Gaskets coming from
semigroups of 3 × 3 and 4 × 4 matrices and, at the end of the section, we
briefly discuss also the case of the Apollonian Gasket.

The main result of this work, based on the numerical and analytical results
on the box dimension of self-affine and self-projective fractals presented in
Section 3, is the following:

Conjecture 1. Let A ⊂ SL±n (R), n ≥ 3, be a real projective Sierpinski
gasket with exponent sA and let RA be its attractor. Then, under suitable
natural assumptions, n dimH RA ≥ (n− 1)sA.

Note that, since the box dimension of a set is always not smaller than its
Hausdorff dimension, the conjecture entails the same relation for dimB RA.

2 Geometry of the Sierpinski Gaskets

The problem of determining the Hausdorff dimension of self-projective at-
tractors of subsemigroups of PSLn(R), n > 2, is non-trivial; in fact, it is
well known that even the simpler subcase of self-affine attractors is far from
trivial (e.g. see [Fal88, FL98, ABVW10, FM11]). Because of this, and in
order to provide motivation for the interest of real self-projective sets, we
restrict our attention to the following particular case:

Definition 1. Let F = 〈f1, . . . , fn〉 be a free semigroup of volume-preserving
linear automorphisms of Rn and ψ1, . . . , ψn ∈ PSLn(R) the induced projec-
tive automorphisms of RP n−1. Let E = {e1, . . . , en} be a n-frame of Rn

and E∗ = {ε1, . . . , εn} its dual frame. We say that F is a real projective
Sierpinski gasket over E if the following conditions are satisfied:
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1. fi = Akijek ⊗ εj with Akij ≥ 0;

2. fi(ei) = λiei, with λi = max1≤j≤n{Ajij};

3. fi(ej) = αei + βej with α, β > 0 for i 6= j;

4. ψi([ej]) = ψj([ei]), i 6= j.

We say that E is a proper frame for F . More generally, given m < n of
the fi, we say that they are a Sierpinski gasket if there exist automorphisms
fm+1, . . . , fn such that 〈f1, . . . , fn〉 is a Sierpinski gasket.

Note that conditions 1–3 above imply that span{ei} is the only eigenspace
of fi corresponding to its largest eigenvector, so that every proper frame for
F identifies the same n points [ei] on RPn−1.

Denote by C(E) the positive cone over E , namely the convex hull of the
set ∪ni=1{λei, λ > 0}. Then its projection on RPn−1 is the same for every
proper frame of F and we denote it by TF . This set is a (n − 1)-simplex
with the n points [ei] as vertices. By points 2 and 3 of the definition above,

[ei] is a fixed point for ψi and each set TF fi
def
=ψi(TF ) is a (n − 1)-simplex

having in common with every other TF fj , i 6= j, the vertex ψi([ej]). Like
in case of the (n − 1)-dimensional standard Sierpinski gasket in Rn−1, the
difference between TF and ∪ni=1TF fi is the interior of a convex polyhedron
with n(n− 1)/2 vertices that we denote by ZF .

By repeating this procedure recursively we see that, at every step k > 0,

Tk,F
def
=
⋃
|I|=k

TF fI = TF \

 ⋃
|I|<k

ZF fI


It is standard to call RF = ∩k≥0Tk,F the attractor of F .

For sake of simplicity and conciseness we limit our discussion to the fol-
lowing subclass of Sierpinski gaskets:

Definition 2. We say that a Sierpinski gasket F = 〈f1, . . . , fm〉 is simple of
the first kind when each fi has only one distinct eigenvalue (therefore equal to
1) and simple of the second kind when it has exactly two distinct eigenvalues
and the eigenspace corresponding to the larger one is 1-dimensional.

13



Example 1. The most important 1-parameter family of simple Sierpin-
ski gaskets we discuss in this paper is the one of cubic semigroups Cα

n =
{fα1 , . . . , fαn }, α ≥ 1,

fαi (ej) = α−
1
3

{
αei, i = j,

ei + ej, i 6= j.

These simple gaskets are all of the second kind except for α = 1. For n = 3
the fαi are represented, with respect to any proper frame, by the matrices

Aα,31 = α−
1
3

α 1 1
0 1 0
0 0 1

 , Aα,32 = α−
1
3

1 0 0
1 α 1
0 0 1

 , Aα,33 = α−
1
3

1 0 0
0 1 0
1 1 α

 .

We call them cubic because, for α = 1, we get the Levitt-Yoccoz gasket

C3
def
=C1

3, which is related to the regular cubic skew polyhedron {4, 6|4} (see [DD09]
for details). Note also that, as already shown in the introduction, C2

3 is
the (real projective generalization of the) standard Sierpinski gasket S3. See
Fig. 1 and Fig. 6 for two examples of (approximations of) residual sets of a
cubic gasket with α = 1.

Our main goal for this section is to explain the asymptotic behaviour
observed in case of the semigroup C3, shown in Figure 1. In order to achieve
this, we will prove that the function logNF (r)/ log r converges to a finite
limit for r →∞ for every simple real projective Sierpinski gasket.

Definition 3. We denote by Im the set of multi-indices in m variables and
by Jm the set of next-to-diagonal multi-indices J = i1i2 . . . i`, namely such
that i1 6= i2 = · · · = i`.

We say that a free semigroup F = 〈f1, . . . fm〉 is fast if there is a constant
c > 0 such that ‖fIJK‖ ≥ c‖fI‖‖fJK‖ for every I,K ∈ Im and J ∈ Jm.

Roughly speaking, a gasket is fast if the only elements fI for which the
norm grows “slowly” are those where I = ii . . . i, namely only the powers
of the generators. The reason for introducing this concept is the following
result:

Theorem 2 ([DeL14]). Let F be a free finitely generated fast semigroup and
let NF (r) the number of elements of F with norm not larger than r. Then

lim
r→∞

logNF (r)

log r
= sF <∞.

14



Hence, to prove the asymptotic behaviour of norms in C3 (and any other
simple Sierpinski gasket) it is enough to show that every such gasket is fast.
We need first to prove the following two technical lemmas. Consider the dual
semigroup F ∗ ⊂ Aut((Rn)∗) of a Sierpinski gasket.

Lemma 1. Let F be a simple Sierpinski gasket over a n-frame E = {e1, . . . , en}
of Rn generated by maps

fi(ei) = αiei, fi(ej) = βijei + γiei.

Then F ∗ is a simple Sierpinski gasket over the frame H = {η1, . . . , ηn} of
(Rn)∗ defined by

ηi =
∑
j 6=i

βijε
j + (αi − γi)εi. (1)

Proof. By direct calculation we see that

f ∗i (ηi) =
∑
j 6=i

βijf
∗
i (εj) + (αi − γi)f ∗i (εi) =

=
∑
j 6=i

βijε
j + (αi − γi)(αiεi +

∑
j 6=i

βijε
j) =

= αi

(∑
j 6=i

βijε
j + (αi − γi)εi

)
= αiη

i

and
f ∗i (ηk) =

∑
j 6=k

βkjf
∗
i (εj) + (αk − γk)f ∗i (εk) =

=
∑
j 6=k,i

βkjε
j + βki

(∑
j 6=i

βijε
j + αiε

i

)
+ (αk − γk)εk = βkiη

i + γiη
k.

Lemma 2. Let F = 〈fi〉 ⊂ Aut(V n) be a simple Sierpinski gasket over
E = {ei}. Then the following inequalities hold:

‖fI‖`1 ≤ C min
1≤k,k′≤n
k 6=k′

{‖fI(ek)‖`1 + ‖fI(ek′)‖`1}, if F is of the first kind.

‖fI‖`1 ≤ C min
1≤k≤n

‖fI(ek)‖`1 , if F is of the second kind,

(2)

for some C > 0, where ‖ω‖`1 =
∑

1≤j≤n |ωj|.

15



Proof. Let H = {ηi =
∑
β̂ijε

j} be the proper frame for F ∗ introduced in

(1), where β̂ij = βij > 0, j 6= i, and β̂ii = αi − γi ≥ 0. Clearly ω =∑
1≤i≤n η

i ∈ C(H). By the previous proposition, ωI = f ∗I (ω) ∈ C(H) for all
I ∈ In. This means that ωI =

∑
1≤i≤n(ωI)iε

i =
∑

1≤i≤n λiη
i (with λi ≥ 0

and
∑

1≤i≤n λi > 0) so that (ωI)i =
∑

1≤j≤n λjβ̂
j
i and therefore

‖ωI‖`1 =
∑

1≤i≤n

(ωI)i =
∑

1≤i,j≤n

λjβ̂
j
i ≤ n max

1≤i,j≤n
{β̂ij}

∑
1≤i≤n

λi.

Now note that (ωI)k ≥ (minβ̂ik>0 β̂
i
k)
∑

β̂ik>0 λi is always a non-empty con-

dition.
If F is of the second kind then β̂ij > 0 for all i, j, so that

‖ωI‖ ≤ n
max

1≤i,j≤n
{β̂ij}

min
1≤i≤n

{β̂ik}
(ωI)k

for all 1 ≤ k ≤ n.
If F is of the first kind then β̂ik = 0 iff i = k, namely every ωk has no λk

term in its expression. We can take care of this by adding to ωk any other
ωk′ , k

′ 6= k. Hence in this case we have

‖ωI‖ ≤ (n− 1)
max

1≤i,j≤n
{β̂ij}

min
1≤i,j≤n
i 6=j

{β̂ij}
((ωI)k + (ωI)k′)

for all 1 ≤ k, k′ ≤ n, k 6= k′.
Finally note that fI =

∑
1≤i,j≤nA

i
Ijei ⊗ εj, so that

ωI = f ∗I (ω) =
∑

1≤i,j,k≤n

β̂ijA
j
Ikε

k

and therefore

(ωI)k ≤ max
1≤i,j≤n

{β̂ij}
∑

1≤j≤n

AjIk = max
1≤i,j≤n

{β̂ij}‖f ∗I (ek)‖`1

and
(min
β̂ij>0

β̂ij)‖fI‖`1 = (min
β̂ij>0

β̂ij)
∑
j,k

AjIk ≤ ‖ωI‖`1

from which follows the claim of this lemma.
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Example 2. Consider the Sierpinski gaskets Cα
n introduced in Example 1.

A proper frame for (Cα
n)∗ is given by ηi = (α − 1)εi +

∑
j 6=i ε

j, so that

ω =
∑

1≤i≤n η
i = (α + n− 2)

∑
1≤i≤n ε

i and therefore

ωI = f ∗I (ω) = (α + n− 2)
∑

1≤i≤n

f ∗I (εi) = (α + n− 2)
∑

1≤i,k≤n

AiIkε
k =

= (α + n− 2)
∑

1≤k≤n

‖f ∗I (ek)‖`1εk.

If α = 1 then

‖ωI‖`1 =
∑
i,j

λjβ̂
j
i = (n− 1)

∑
j

λj

and
(ωI)i =

∑
j 6=i

λj

so that
‖ωI‖`1 ≤ (n− 1) ((ωI)k + (ωI)k′)

or, equivalently,

‖fI‖`1 ≤ (n− 1) (‖fI(ek)‖`1 + ‖f(ek′)‖`1)

for every k 6= k′

If α > 1 then

‖ωI‖`1 =
∑
i,j

λjβ̂
j
i = (n− 1) max{α− 1, 1}

∑
j

λj

and
(ωI)i ≥ min{α− 1, 1}

∑
i

λj

so that
‖ωI‖`1 ≤ (n− 1) min{α− 1, 1}(ωI),

or, equivalently,

‖fI‖`1 ≤ (n− 1) min{α− 1, 1}‖fI(ek)‖`1 ,

for all k.
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Theorem 3. Every simple Sierpinski gasket is a fast gasket.

Proof. The key fact here is that in every Sierpinski gasket F with a proper
frame E , for any i 6= j and every k, fij(ek) is linearly dependent on both ei
and ej. Indeed if k 6= j then

fij(ek) = fi(βjkej + αjkek) = αjkfi(ek) + βjk (βijei + αijej) ,

while if k = j then
fij(ej) = αjj(βijei + αijej).

Hence the matrix representing fij with respect to E has at least (as matter of
fact, exactly) two rows with all non-zero coefficients. This means that every
column of the matrix representing fijL is a linear combination with strictly
positive coefficients of fL(ei) and fL(ej) with possibly some other positive
contribution from the other vectors.

From this we deduce immediately that

‖fIijL‖`1 ≥ C‖fI‖`1 (‖fL(ei)‖`1 + ‖fL(ej)‖`1)

for some C ≥ 0 and therefore, by Lemma 2, that

‖fIijL‖`1 ≥ C ′‖fI‖`1‖fL‖`1

for some C ′ ≥ 0. Since ‖fL‖`1 ≥ C ′′‖fijL‖`1 for all i 6= j and some C ′′ > 0,
our claim follows.

The following result is a direct consequence of Theorem 2 and 3 above
and of Corollary 3 in [DeL14]:

Corollary 1. Let F = 〈f1, . . . , fn〉 be a simple Sierpinski gasket, NF (r) the
number of elements of F with norm smaller than r and σn a permutation
such that fσn are sorted in non-decreasing norm order. Then

lim
r→∞

logNF (r)

log r
= sF <∞

and

lim
n→∞

log ‖fσn‖
log n

=
1

sF
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In particular, this result confirms and explains the asymptotic behaviour
of the norms of elements of C3 we discovered numerically (see Fig. 1). A
method to evaluate analytical bounds for sF is provided within Theorem 1
in [DeL14] and will be used in Section 3.2 to get bounds for sC3 .

Our last result on simple projective Sierpinski gaskets is that they have
all zero Lebesgue measure. We recall that this is a necessary condition for the
non-integrality of their Hausdorff dimension, as suggested by our numerical
investigations (see next Section).

Lemma 3. Let F ⊂ Aut(Rn) be a simple Sierpinski gasket, E a proper frame
of F and µ any measure of RPn−1 in the measure class of the round measure,
namely the measure induced by the metric of sectional curvature identically
equal to 1. Then there exist constants A,B,C,D > 0 s.t.

A

‖fI‖n
≤ µ(TF fI ) ≤

B

‖fI‖an
,

C

‖fI‖n
≤ µ(ZF fI ) ≤

D

‖fI‖n
,

where an = n if F is of the second kind and an = n − 1 if it is of the first
kind.

Proof. It is enough to prove the claim in some chart containing TF . We fix
coordinates (x1, . . . , xn) so that the vectors of E are

e1 = (1, 0, . . . , 0, 1), . . . , en−1 = (0, . . . , 0, 1, 1), en = (0, . . . , 0, 1)

and use the chart xn = 1. In this chart we pick any smooth measure ν of
finite total volume and with constant density equal to 1 within TF .

Note that fI = AiIkei⊗εk = AiIke
j
i∂j⊗εk, where the last row of the matrix

AiIke
j
i contain the `1 norms of the vectors fI(ei). A direct calculation shows

that

µ(TF fI ) =
1

n!
n∏
k=1

AiIke
n
i

=
1

n!
n∏
k=1

‖fI(ek)‖`1
.

Clearly

n∏
k=1

‖fI(ek)‖`1

‖fI‖n`1
≤ 1. By Proposition 2, if F is of the second kind then

A ≤

n∏
k=1

‖fI(ek)‖`1

‖fI‖n`1
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for some A > 0. If it is of the first kind assume, for the argument sake, that
‖fI(e1)‖`1 ≤ . . . ‖fI(en)‖. Then

‖fI‖n−1`1

n∏
k=1

‖fI(ek)‖`1
=

(
n∑
k=1

‖fI(ek)‖`1
)n−1

n∏
k=1

‖fI(ek)‖`1
≤

≤ C
∏

k=1,n−1

‖fI(ek)‖`1 + ‖fI(ek+1)‖`1
‖fI(ek+1)‖`1

≤ 2n−1C

The geometry of ZF fI is more complex. We divide it in n (n − 1)-simplices
Zi, where Zi’s vertices are the (n−1) points [fi(fI(ej))], j 6= i, plus the point
[
∑

1≤i≤n fI(ei)]. Then

µ(Zi) =
1

n!‖fI(
∑

1≤i≤n

ei)‖`1
∏
j 6=i

‖βij(eI)i + γi(eI)j‖`1
=

=
1

n!‖fI‖`1
∏
j 6=i

‖βij(eI)i + γi(eI)j‖`1

since all components of all vectors are positive. Even in this case then

1

µ(Zi)‖fI‖n`1
≤ n!

and

‖fI‖n`1
‖fI‖`1

∏
j 6=i ‖βij(eI)i + γi(eI)j‖`1

≤
‖fI‖n−1`1

max{β, γ}
∏

j 6=i ‖fI(ei) + f(ej)‖`1
≤ A

for some A.

Theorem 4. The attractor of a simple Sierpinski gasket F ⊂ SL±n (R) is a
null set with respect to the measure class of the round measure on RP n−1.
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Proof. From the previous lemma we see that

1 ≤ µ(TF fI )

µ(ZF fI )
≤ C

‖fI‖

if F is of the first kind and

1 ≤ µ(TF fI )

µ(ZF fI )
≤ C

if it is of the second. Let us first assume that F is of the second kind and let

Sk =
∑
|I|=k+1

µ(TF fI ) and Pk =
∑
|I|=k

µ(ZF fI ).

Then
Sk+1 = Sk − Pk ≤ Sk(1− C)

and therefore
Sk − Sk+1 ≥ CSk

so that, after making a telescopic sum, we get

S1 − lim
k→∞

Sk ≥ C lim
k→∞

kSk

which immediately implies that limk→∞ Sk = 0.
If F is of the first kind then µ(TF fI )/µ(ZF fI ) ≤ C/min|J |=|I| ‖fJ‖. It is

easy to check that min|J |=|I| ‖fJ‖ is proportional to |I| and therefore

Sk+1 = Sk − Pk ≤ Sk(1− C/k)

and
Sk − Sk+1 ≥ CSk/k

so that
S1 − lim

k→∞
Sk ≥ C lim

k→∞
Sk
∑

1≤j≤k

1/j.

Since the series 1/j diverges we get again that limk→∞ Sk = 0.
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3 Numerical Results

All numerical results presented in this section were obtained through Perl
and C programs written by the author. Most of the results were obtained
through the following three elementary routines: 1) generate all triangles (or
circles) belonging to Tk,F given a simple Sierpinski (or Apollonian) gasket F
and an integer k; 2) generate all matrices of F with norm not larger than k;
3) evaluate the number of squares of a given side length needed to cover the
complement of Tk,F .

3.1 Affine Sierpinski Gaskets

In [FL98] Falconer and Lammering studied in detail the family of affine
Sierpinski gaskets Sa,b, a, b ∈ (0, 1), defined by the affine transformations

S1

(
x
y

)
= (1− a)

(
x
y

)
+

(
0
a

)
S2

(
x
y

)
=

(
b 0
0 a

)(
x
y

)
S3

(
x
y

)
=

(
1− b 1− a− b

0 a

)
+

(
b
0

)
.

Notice that the case a = 1
2
, b = 1

2
corresponds to the standard Sierpinski

gasket. In particular they proved that the box dimension of the corresponding
attractor Ra,b is given by the unique root of the equation

(1− a)s + abs−1 + a(1− b)s−1 = 1 (3)

in the triangle T1 = {(a, b) ∈ (0, 1)2, a ≥ max{b, 1− b}} and of

(1− a)s + as−1 = 1 (4)

in the opposite triangle T2 = {(a, b) ∈ (0, 1)2, a ≤ min{b, 1−b}}. This setting
provides a convenient source of examples for comparing the box dimension
of the attractor of a real projective Sierpinski gasket with the correspond-
ing gasket exponent. Indeed the injection sending the affine transformation
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S(x) = Tx + v, with T ∈ M2(R) and x, v ∈ R2, into the 3 × 3 matrices(
T v
0 1

)
, applied to the Si, gives the three matrices

M1 =

1− a 0 0
0 1− a a
0 0 1

 ,M2 =

b 0 0
0 a 0
0 0 1

 ,M3 =

1− b 1− a− b b
0 a 0
0 0 1

 ,

so that the action induced by the Mi on RP 2 in the affine chart z = 1
coincides with the action of the Si.

These matrices are all upper triangular and ‖MI‖ = 1 for all I ∈ I3. To
see this, first of all we let

M =

α λ µ
0 β ν
0 0 1


and notice that 0 ≤ λ + β ≤ 1 and 0 ≤ µ + ν ≤ 1. Indeed we can limit the
discussion to left multiplication by M1 and M3 and it is immediate to verify
by induction that, assuming the inequalities above for MI , the products

M1M =

(1− a)α (1− a)λ (1− a)µ
0 (1− a)β (1− a)ν + α
0 0 1


and

M3M =

(1− b)α (1− b)λ+ (1− a− b)β (1− b)µ+ (1− a− b)ν + b
0 aβ aν
0 0 1


satisfy the same inequalities. Now, consider the semigroup Aa,b generated by

the Ai = Mi/ detM
1/3
i ∈ SL3(R). Clearly ‖AI‖ = detM

−1/3
i1
· · · detM

−1/3
ik

for every I = i1 · · · ik and therefore

ζAa,b,k =
∑
I∈I3k

‖AI‖−s =
(

detM
s/3
1 + detM

s/3
2 + detM

s/3
3

)k
.

Then, by Theorem 2 in [DeL14], the exponent sAa,b
is the unique solution of

the equation
(1− a)2s/3 + (ab)s/3 + (a(1− b))s/3 = 1. (5)

Next proposition shows that Conjecture 1 holds for the affine Sierpinski gas-
kets Aa,b when (a, b) lies within T1 ∪ T2:
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a = 3
4
, b = 1

2
a = 1

4
, b = 1

2

a = 1
2
, b = 1

4
a = 1

2
, b = 3

4

Figure 4: Affine Sierpinski gaskets Aa,b for four possible pairs a, b. For each
one we plot (in green) the set T7,Aa,b

. For the upper two the box dimensions
can be evaluated analytically and are equal, with an error of 1 on the last
digit, to, respectively, dimB R 3

4
, 1
2

= 1.72368 and dimB R 1
4
, 1
2

= 1.68886. The
numerical evaluation of the box dimensions with an elementary box-counting
algorithm gives: dimB R 3

4
, 1
2
' 1.71, dimB R 1

4
, 1
2
' 1.66, dimB R 1

2
, 1
4
' 1.60,

dimB R 1
2
, 3
4
' 1.60. See Table 1 for a comparison of the box dimension of

these and other affine gaskets with the exponent of the corresponding real
projective Sierpinski gaskets.
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Proposition 1. The inequality 3 dimB Ra,b ≥ 2sAa,b
holds within the two

triangles T1,2, with the equal sign holding only in their common vertex.

Proof. After writing (5) in terms of t = 2s/3 and renaming t to s we are
left with the equation (1− a)s + (ab)s/2 + (a(1− b))s/2 = 1. Comparing this
expression with the left-hand sides of (3) and (4) we see that it is enough to
prove that

(ab)s/2 + (a(1− b))s/2 ≤ min{as−1, abs−1 + a(1− b)s−1}.

Since, for obvious geometrical reasons, dimB Ra,b ≤ 2 we can assume in the
following s ≥ 2. Let us denote, respectively, by fa,b(s), ga(s), ha,b(s) the three
functions above and notice that, since by hypothesis a, b, 1− b ∈ (0, 1), they
are all strictly monotonically decreasing functions of s converging to 0 as
s→∞. Moreover fa,b(2) = ga(2) = ha,b(2) = a and since these functions can
have only one intersection it is enough to verify their behaviour for s → 0.
A direct calculation shows that, for every pair a, b ∈ (0, 1)2, we have that
lims→0 fa,b(s) = 2 while lims→0 ga(s) = lims→0 ha(s) =∞.

We performed numerical investigations for seven different pairs (a, b), four
of which belonging to T1∪T2. The picture of the seventh order approximation
T7,Aa,b

of four of them is shown in Fig. 4, the numerical data for all of them
is reported in Table 1. The critical exponent sAa,b have been evaluated ana-
lytically from Eq. (5) and compared, as a check for our numerical routines,
with their numerical estimate obtained by evaluating the function NAa,b(k)
for k = 2p, p = 1, . . . , 12, and then best-fitting the points (p, log2NAa,b(2

p))
with a straight line – in the worst case, the numerical evaluation is less than
3% far from the analytical value. The box dimension of the attractors RAa,b

has been evaluated analytically from Eqs. (3,4) for the pairs (a, b) ∈ T1 ∪ T2
and numerically for all pairs via an elementary box-counting routine – in the
worst case, the numerical evaluation is less than 6% far from the analytical
value. Since we have no reason to believe that our numerical estimates for
dimB RAa,b

lose precision outside of T1 ∪ T2, our numerical results lead us
to believe that our Conjecture 1 holds for all (a, b) ∈ (0, 1)2, with the strict
inequality sign holding everywhere except at a = b = 1/2, when the two
quantities coincide. Moreover it appears that, roughly, 2

3
sAa,b

≥ 9
10

dimB RA.
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a b
sA

(num.)
sA

(anal.)
2sA/3

dimB RA

(num.)
dimB RA

(anal.)
1/4 1/2 2.44 2.42632 1.61755 1.66 1.68886
3/4 1/2 2.48 2.45425 1.63617 1.71 1.72368
1/2 3/4 2.35 2.34443 1.56295 1.60 –
1/5 3/10 2.44 2.43735 1.62490 1.76 1.71262
4/5 3/10 2.47 2.46960 1.64640 1.77 –
3/10 1/5 2.43 2.37354 1.58236 1.75 –
7/10 1/5 2.35 2.35249 1.56833 1.72 1.63373

Table 1: Values of the exponents of affine Sierpinski gaskets Aa,b for sev-
eral pairs a, b and of the box dimension of the corresponding attractors Ra,b.
Numerical evaluations for sA were done by calculating NA(k) for the values
k = 2p, p = 1, . . . , 12, and are presented to motivate our confidence in a rel-
ative error not bigger than 1% in the other evaluations provided throughout
the paper when an analytical evaluation is not available. Numerical evalua-
tions for the box dimension of Ra,b were done via an elementary box-counting
algorithm and a comparison with the available analytical evaluations suggest
that their relative error is no more than 6%.

3.2 The cubic semigroups Cα
n

Recall that, by definition, Cα
n is generated by the n linear maps fαi (ei) = αei,

fαi (ej) = ej + ei, j 6= i.

n = 3. In R3 we use coordinates (x, y, z) with respect to the frame e′1 =
e1 + e3, e

′
2 = e2 + e3, e

′
3 = e3, so that the fi are represented by the matrices

A1 =

α− 1 0 1
0 1 0

α− 2 0 2

 , A2 =

1 0 0
0 α− 1 1
0 α− 2 2

 , A3 =

 1 0 0
0 1 0

2− α 2− α α

 .

In the affine chart [x : y : z]→ (u, v) = (x/z, y/z) of RP 2 we have therefore
that 

ψ1(x, y) =
(

(α−1)u+1
(α−2)u+2

, v
(α−2)u+2

)
ψ2(x, y) =

(
u

(α−2)v+2
, (α−1)v+1
(α−2)v+2

)
ψ3(x, y) =

(
u

(2−α)(u+v)+α ,
v

(2−α)(u+v)+α

)
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α sCα
3

2sCα
3
/3 dimB RCα

3

1 2.447 1.631 1.72
1.3 2.395 1.596 1.72
1.7 2.377 1.585 1.71
2 2.359 1.573 1.59
3 2.378 1.586 1.71
4 2.389 1.593 1.73
7 2.394 1.596 1.76

Table 2: Numerical evaluation of the exponent of the real projective gaskets
Cα

3 and of the box dimension of the corresponding attractors for several
values of α. No analytical formula is known for these quantity. These data
confirms the relation 2sA/3 ≤ dimB RA already observed in Table 1 and the
fact that roughly 2sA/3 ≥ 9 dimB RA/10.

and the vertices of the invariant triangle TCα
3

are [e1] = (1, 0), [e2] = (0, 1)
and [e3] = (0, 0). A direct calculation of the eigenvalues of the Jacobian
matrices Dψi shows that, within TCα

3
,

min{ 1

α
,
α

4
}d(x, y) ≤ d(ψi(x), ψi(y)) ≤ max{ 1

α
,
α

4
}d(x, y)

for all i = 1, 2, 3, namely the semigroup 〈ψ1, ψ2, ψ3〉, as a IFS, is hyperbolic
for α ∈ (1, 4) and parabolic for α = 1, 4. The ψi are not contractions with
respect to the Euclidean distance in this chart for higher values of α (see
Fig. 5 for the plot of T7,Cα

3
for several values of α).

Analytical bounds for the Hausdorff dimension of the attractors RCα
3

can
be obtained via Propositions 9.6 and 9.7 in [Fal90], namely

min{ 1

log3
4
α

,
1

log3 α
} ≤ dimH RCα

3
≤ max{ 1

log3
4
α

,
1

log3 α
}.

For α = 2 we get, as expected, dimB RS3 = dimH RS3 = log2 3. Unfortunately
these bounds get quickly too loose to be significant for us as soon as |α−2| >
10−1. Our numerical evaluations of dimB Cα

3 and sCα
3

for several values of α
(see Table 2) indicate, though, that Conjecture 1 holds even for these gaskets.
Moreover, like for the affine gaskets, the box dimension seems to not to fall
further than a 10% away from the quantity 2sCα

3
/3.

Analytical bounds for the exponents sCα
3

can be obtained from Theorem 1
in [DeL14]. Here we present calculations for C3, the Levitt-Yoccoz gasket.
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1 1.3 1.7

2 3 4

7 10 100

Figure 5: Real projective Sierpinski gaskets Cα
3 for several values of α. For

each one we plot (in green) the set T7,Cα
3
. Heuristic numerical estimates of

their exponents and of the box dimension for the corresponding attractors
for α ≤ 7 are given in Table 2
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Due to the symmetry between the generators it turns out that

µC3(s) = 6µC3A12 = 3 · 21−sζ(s),

from which, as the unique solution of µC3(s) = 3s, we get the lower bound
1.52 ≤ sC3 . To get the first upper bound we must consider the function

µC3,2(s) = 3 · 21−s
(

3ζ(s) + 22−sζ(s,
7

4
)− 21−s − 3

)
,

from which we get 1.7 ≤ sC3 ≤ 7.1 as the unique solutions of µC3,2(s) = 3±s.
In order to get more meaningful bounds we should consider some µC3,k with
a large k but leave this to a future paper. By best-fitting with a straight line
the curve logNC3(k) as function of log k for k = 2p, 1 ≤ p ≤ 13, we get a
reliable estimate of sC3 ' 2.4438. A rough numerical evaluation of the box
dimension of RC3 by counting the number of squares needed to cover the
fractal gives dimB ' 1.72, compatible with the relation 3 dimB RC3 ≥ 2sC3

suggested in Conjecture 1.

n ≥ 4. In Rn we use coordinates (x1, . . . , xn) with respect to the frame e′1 =
e1 + en, . . . , e

′
n−1 = en−1 + en, e

′
n = en. For n = 4 the matrices A1 and A4 are

given by

A1 =


α− 1 0 0 1

0 1 0 0
0 0 1 0

α− 2 0 0 2

 , A4 =


1 0 0 0
0 1 0 0
0 0 1 0

2− α 2− α 2− α α


and A2 and A3 can be obtained from A1 via permutations of the coordinates.
Similarly, for n > 4, A1 and An are the natural generalization of the matrices
above and the Ai, 1 < i < n, are obtained through permutations of the
coordinates. Correspondingly, in RPn−1 we use coordinates ui = xi/xn,
i = 1, . . . , n− 1, and obtain

ψ1(u
i) =

(
(α− 1)u1 + 2

(α− 1)u1 + 2
,

u2

(α− 1)u1 + 2
, . . . ,

un−1

(α− 1)u1 + 2

)
,

similarly for i < n− 1 and

ψn−1(u
i) =

(
u1

(2− α)(u1 + · · ·+ un−1) + α
, . . . ,

un−1

(2− α)(u1 + · · ·+ un−1) + α

)
.
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A direct evaluation of the eigenvalues of the Jacobian matrices of the ψi gives
the same result we got for n = 3, namely for every n ≥ 3 we have that the
gasket Cα

n is a hyperbolic IFS for α ∈ (1, 4) and a parabolic IFS for α = 1, 4.
The bounds on the Hausdorff dimension of the attractors give

min{ 1

logn
4
α

,
1

logn α
} ≤ dimH RCα

n
≤ max{ 1

logn
4
α

,
1

logn α
}.

For n = 4, α = 2 we get the well-known result that the dimension of the
standard Sierpinski tetrahedron is equal to 2. Numerical evaluations of the

box-counting dimension of C4
def
=C1

4 suggest that the same could hold for the
4-dimensional version of the cubic gasket (see Fig. 6 for a picture of the
two sets). This is compatible with the numerical evaluation of the critical
exponent sC4 ' 2.758 from the data for NC4(k) shown in Table 3. From
it indeed we get that dimH C4 ≥ 3sC4/4 ' 2.07, that allows the value
dimH C4 = 2 if we assume an error of about 4% on sC4 , a precision in
agreement with the one measured in the numerical evaluations made above
for the affine gaskets.

3.3 The Apollonian gasket

We conclude the paper with a brief discussion on the Apollonian semigroup,
namely the semigroup H ⊂ SL4(N) generated by the matrices H1, H2, H3

defined in the introduction. This case was thoroughly studied, somehow
implicitly, by Boyd, in particular in [Boy72, Boy73b, Boy82], in the context of
the sequence of curvatures in an Apollonian gasket. Boyd’s investigation and
arguments were the archetype for most results and arguments in Section 2
of [DeL14].

We start by proving that, in our context, the reason for the asymptotic
behaviour shown in Fig. 2 is the same that holds for the Levitt-Yoccoz gasket,
namely that the free semigroup H is fast.

Lemma 4. Assume that matrices A1, . . . , Am ∈ Mn(N) have the following
properties:

1. they have some number k 6= 1 of rows containing a single entry equal
to 1 and all other equal to 0 and these entries equal to 1 belong all to
different columns and in those columns all entries are either 0 or 1;
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Figure 6: Images of the Sierpinski (S4 = C2
4) and the cubic (C4 = C1

4)
tetrahedra. In figure we show a full picture (above) and a detail (below) for
the sets T5,S4 (left) and T5,C4 (right).
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2. other rows are such that each of their entries is smaller than the sum
of the remaining n− 1 entries.

Then this property is shared by all products of the Ai.

Proof. We prove the lemma by induction. It is enough to consider the prod-
ucts of two generic matrices A = (Aij), B = (Bi

j), satisfying the hypotheses.
Assume first that k = 0 for B, namely

∑
k 6=`B

i
k ≥ Bi

` for all i, `. Then∑
k 6=`

(AB)ik =
∑

1≤j≤n
k 6=`

AijB
j
k =

∑
1≤j≤n

Aij
∑
k 6=`

Bj
k ≥

∑
1≤j≤n

AijB
j
` = (AB)i`.

Assume now that k > 1 for B and denote by I = (i1, . . . , ik) the rows
with a 1 and all other entries equal to 0. Every line (if any) of A with a 1
and all other entries equal to 0 leaves unaltered the corresponding row in B
and therefore the new line satisfies the conditions in the theorem. Otherwise
we notice that∑

k 6=`

(AB)ik =
∑

1≤j≤n
k 6=`

AijB
j
k ≥

∑
1≤j≤n
j 6∈I

AijB
j
` +

∑
1≤j≤n
j∈I

Aij
∑
k 6=`

Bj
k.

If j ∈ I then
∑

k 6=`B
j
k is either 0 or 1. Since by hypothesis there are at least

two such rows and
∑

k 6=`B
j
k +

∑
k 6=`B

j′

k ≥ 1 for every j, j′ ∈ I, j 6= j′, and

the corresponding entries Aij and Aij′ are both equal to 1, then∑
1≤j≤n
j∈I

Aij
∑
k 6=`

Bj
k ≥

∑
1≤j≤n
j∈I

AijB
j
` = (AB)i`,

therefore
∑

k 6=`(AB)ik ≥ (AB)i`.

Theorem 5. The Apollonian semigroup H is a fast gasket with coefficient
c ≥ 1/4.

Proof. Note first of all that Hirst matrices satisfy previous Lemma’s condi-
tions. Moreover the entries in the third line are not smaller than all other
entries in the same column and it is easy to see by induction that this prop-
erty is preserved by products.

Let ‖A‖∞ = max1≤i≤n
∑

1≤j≤n |Aij|. A look at the 6 matrices Hij, i 6= j,
shows that their third column has always at least three non-zero entries, so
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that ‖AIJ‖∞ ≥ ‖AJ‖∞
∑

j 6=j0 |A
i
3| where j0 is the index of the element of

the third column (if any) equal to zero (otherwise just set j0 = 1). By the
previous Lemma and the fact that the norm of every A ∈H in concentrated
in the third row, the sum of any three entries of the third row of A is always
larger than ‖A‖, so that ‖AIJ‖∞ ≥ ‖AJ‖∞‖AI‖. Since 4‖A‖ ≥ ‖A‖∞ ≥ ‖A‖,
the claim follows.

Together with Theorem 2, this provides an independent proof, based on
general principles rather than on the particular geometry of the Apollonian
gasket, of point 1 of Boyd’s Theorem 1.

Let us turn now to the evaluation of the critical exponent sH . Analyti-
cal bounds for it were studied in detail by Boyd in [Boy70, Boy72, Boy73a]
and we do not attempt to improve them here. Increasingly accurate nu-
merical evaluations of sH with several different techniques have been given
over the last half-century by Melzak [Mel69], Boyd [Boy82], Manna and Her-
rmann [MH91], Thomas and Dhar [TD94] and McMullen [McM98], giving
respectively the following values, with a heuristic error of 1 unit on the last
digit: 1.306951, 1.3056, 1.30568, 1.30568673, 1.305688. We remark that,
among all these evaluations, the one with the largest number of digits, given
by Thomas and Dhar, is the only one based on a heuristic method, while the
others are based on exact methods.

Partly to test our own software evaluating the function NH(k) for a
generic gasket H and partly because the computational power of comput-
ers increased quite a lot over the last fifteen years, which is how old is the
last evaluation of the exponent, we repeated the elementary evaluation made
by Boyd in 1982 by evaluating NH(k) for k = 2p, p = 1, . . . , 39 with re-
spect to the norm ‖AI‖ =

∑
1≤i,j≤4(AI)ijv

iwi, where v = (−1, 2, 2, 0) and
w = (1, 1, 1, 2) (this way ‖AI‖ is equal to the the curvature of the circle
of multi-index I in the Apollonian gasket generated by the circles of radius
−1, 2, 2), and then best-fitting with a straight line the data obtained (see
Table 3). We found a value of sH ' 1.3056867 which fully confirms the
heuristic evaluation of Thomas and Dhar and suggests an error of 2 on the
last digit of the estimate by McMullen.
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C2

(19)
2.000001

1, 7, 35, 143, 615, 2455, 9915, 39639, 159191, 636903,
2549123, 10195943, 40795027, 163182291, 652741999, 2610964315,
10444080375, 41776267143, 167105597331

C3

(15)
2.4438

4, 22, 148, 760, 4594, 24646, 136372, 740650, 4046188, 22022770,
119929126, 652445212, 3550689778, 19318095256, 105103180192

C4

(14)
2.758

5, 37, 293, 2197, 15125, 103669, 714245, 4849045, 32901077,
222724789,1507986917, 10202765749, 69029614661, 466938773125

A3

(29)
2.60

3, 3, 5, 12, 29, 64, 123, 255, 594, 1372, 3222, 7388,
17636, 41302, 95748, 226607, 534766, 1271425, 3032945, 7221236,
17258732, 41170226, 98428382, 235630679, 563928974, 1351059074,
3238344644, 7765525872, 18627071753

H
(39)

1.3056867

0, 1, 3, 8, 18, 48, 113, 278, 681, 1722, 4238, 10488, 25927, 64086, 158266, 391062,
967315, 2390800, 5909752, 14608522, 36115118, 89275994, 220684802, 545546400,
1348603780, 3333755028, 8241076212, 20372155276, 50360227721, 124491161884,
307744098990, 760747405278, 1880578271904, 4648814463680, 11491932849933,
28408221038996, 70225503797745, 173598409768852, 429137646728801

Table 3: Values of NA(ak), for k = 1, 2, . . . , K, for the cubic semigroups Ci,
i = 2, 3, 4, the Apollonian semigroup A3 and the Hirst semigroup H , where
a = 1.4 in case of A3 and a = 2 for all others. For each semigroup, we
report in the left column the largest value K of the exponent k for which
we evaluated NA(ak) (in parenthesis) and the slope of the straight line best
fitting the points (k, logaNA(k)), with a heuristic error of 1 on the last digit.
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