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Abstract

In a recent article [4], we studied the global solvability of the so-called
cohomological equation Lξf = g in C∞(R2), where ξ is a regular vector
field on the plane and Lξ the corresponding Lie derivative operator. In a
joint article with T. Gramchev and A. Kirilov [5], we studied the existence
of global L1

loc weak solutions of the cohomological equation for planar
vector fields depending only on one coordinate. Here we generalize the
results of both articles by providing explicit conditions for the existence of
global weak solutions to the cohomological equation when ξ is intrinsically
Hamiltonian or of finite type.

1 Introduction
The topological structure of regular (i.e. without zeros) vector fields ξ on R2

has been thoroughly investigated during the last century and is well understood
(see [4] for detailed references). The global analytic properties of the corre-
sponding partial differential operators Lξ (Lie derivative along the flow of ξ)
are, on the contrary, much less known. Some of their most basic properties were
studied in [4].

The main purpose of this article is to refine some of the results in [4], con-
cerning the action of the operators Lξ on spaces of differentiable functions, and
to use them to generalize to a much wider set of regular vector fields the results
obtained in [5], concerning weak solutions of the cohomological equation

Lξf = g ∈ Ck(R2), k = 1, 2, . . . ,∞ (1)

for regular planar vector fields depending only on one variable.
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2 Definitions and main results
The following definitions and notations will be used in the present article.
Vector Fields and Foliations. We will usually denote vector fields by ξ
and their corresponding (local) flows by φtξ. We say that a C1 function F is
regular if its differential dF is never zero; analogously, we say that a vector field
is regular when it has no zeros. We denote by Xr(R2) the set of all smooth
regular vector fields on the plane. Given any ξ ∈ Xr(R2), Fξ will denote the
smooth foliation of its integral trajectories and, by abuse of notation, the space
of leaves endowed with its canonical quotient smooth structure1. We denote by
πξ : R2 → Fξ the canonical projection that sends a point to the leaf passing
through it. A saturated neighborhood of a leaf ` of Fξ is a set π−1

ξ (U), where
U is a neighborhood of ` in Fξ. We say that two integral trajectories s1, s2 of
ξ are inseparable when they are inseparable as points in the quotient topology
of Fξ, i.e. when the intersection of every two saturated neighbourhoods of s1

and s2 is non-empty. An integral trajectory s which is inseparable from some
other integral trajectory is said a separatrix. We denote by Sξ the set of all
separatrices of ξ.

Definition 1. A vector field ξ ∈ Xr(R2) (and, by extension, the foliation Fξ)
is of finite type if Sξ is closed in Fξ and every separatrix is inseparable from
just finitely many other integral trajectories.

Example 1. The lines y = ±1 are the only inseparable integral trajectories of
the polynomial regular planar vector field ξ(x, y) = (2y, 1− y2) (see Fig. 3). In
particular, ξ is of finite type.

The set of vector fields of finite type is of great relevance since important
categories of vector fields belong to it. For example, every planar regular poly-
nomial vector field is of finite type: finite bounds for the number of separatrices
of a such vector fields were found first by Markus [11] and later improved inde-
pendently by M.P. Muller [14] and S. Schecter and M.F. Singer [16]. It is easy to
verify that are of finite type also all planar regular vector fields whose foliation is
invariant with respect to translations in a given direction. An important feature
of vector fields of finite type is that the complement of the set of the separatrices
of a vector field of finite type is the disjoint union of countably many unbounded
connected open sets (named by Markus [10] canonical regions) whose boundary
has only a finite number of connected components.

We recall that a vector field ξ is Hamiltonian when its flow preserves the
standard area 2-form Ω0 = dx ∧ dy, namely when (φtξ)

∗Ω0 = Ω0 for every t.
When ξ ∈ Xr(R2) is Hamiltonian, its integral trajectories are the level sets of a
regular function H, namely dH(ξ) = 0, which justifies the following definition:

Definition 2. A regular planar vector field ξ (resp. a foliation F) is intrinsi-
cally Hamiltonian if its integral trajectories (resp. the leaves of F) are the level

1The spaces of leaves are often non-Haussdorf. For an introduction to non-Haussdorf
smooth structures, see [8]
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sets of a regular function H, i.e. if dH(ξ) = 0 (resp. F = {dH = 0}). More-
over, we say that ξ (resp. F) is transversally Hamiltonian when its integral
trajectories (resp. leaves) are transversal at every point to the level sets of a
regular function H, i.e. if dH(ξ) > 0 at every point (resp. if F and {dH = 0}
are transversal at every point).

It was proved in [18] (resp. in [4]) that every intrinsically Hamiltonian vector
field (resp. every vector field of finite type) in Xr(R2) is also transversally
Hamiltonian.
Lie Derivatives and Main goal. Although in the context of Differential
Geometry these two objects are often identified, in order to avoid ambiguities
we use here different symbols for a vector field ξ = (ξx, ξy) and the corresponding
Lie derivative operator Lξ along its flow, namely we set

Lξf(x0) =
d

dt
f(φtξ(x0))

∣∣∣
t=0

= (ξx∂x + ξy∂y) f
∣∣∣
x=x0

.

It is easily seen that ξ ∈ Xr(R2) is intrinsically Hamiltonian if and only if
the partial differential equation Lξf = 0 admits a C1 regular solution and
is transversally Hamiltonian if and only if the partial differential inequality
Lξf > 0 has a C1 solution.

In the present article we focus on the image of the Lie derivative acting on
several functional spaces. In particular we consider the restrictions of Lξ to the
space of Cr functions

L
(r)
ξ : Cr(R2)→ Cr−1(R2) , r = 1, 2, . . . ,∞

and its extensions

L
(l,p)
ξ : W l,p

loc(R
2)→W l−1,p

loc (R2) , p ≥ 1, l = 1, 2, . . . ,

to the Sobolev spaces W l,p
loc(R2) of Lploc functions whose first l weak derivatives

are also Lploc (see [1] for a definition of weak derivatives of locally integrable
functions). Note that, in order to keep notation light, we will omit the upper
index in the operators Lξ when there is no ambiguity. We endow Cr(R2) with
the Whitney topology.

Our main goal is studying the images

Lξ
(
Cr(R2)

)
∩ Ck(R2) , Lξ

(
W l,p
loc(R

2)
)
∩ Ck(R2).

In other words, we study the existence of global Cr or W l,p
loc solutions of the

cohomological equation when the right hand side is of class Ck. In case there
is no regularity loss (i.e. r = k + 1), the problem reduces to studying the full
image Lξ(Ck+1(R2)).

Notice that, since Lξ(Cr(R2)) ⊂ Ck(R2) for r ≥ k + 1, it is enough to
consider the cases r = 1, . . . , k + 1. Similarly, since W k+1,p(R2) ⊂ Ck(R2) for
p > 2 and W k+2,p(R2) ⊂ Ck(R2) for 1 ≤ p ≤ 2 (e.g. see [6]), it is enough to
consider the cases l = 0, . . . , k + 1 for p > 2 and l = 0, . . . , k + 2 for 1 ≤ p ≤ 2.
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Remark 1. It makes sense considering the case l = 0, namely functions of
class W 0,p

loc = Lploc, because the solutions of (1) are, by definition, Ck+1 along
the integral curves of ξ.

Example 2. Consider again the regular vector field ξ = (2y, 1 − y2). As a
corollary of Proposition 2 in [4], 1 6∈ Lξ(C

r(R2)) ∩ C∞(R2) for any r. On
the other side 1 ∈ Lξ(L

1
loc(R2))

⋂
C∞(R2) since, for example, Lξf = 1 for

f(x, y) = 1
2 ln

∣∣∣ 1+y
1−y

∣∣∣. Note that, in particular,

1 ∈ Lξ
(
L1
loc(R2) ∩ C∞

(
R2 \ {y = ±1}

))⋂
C∞(R2).

This behavior is general, in the sense that we can always find weak solutions
of (1) that are Ck+1 outside of the set of separatrices of ξ. Such solutions
can be easily constructed via the method of characteristics (e.g. see [2]). Note,
finally, that solutions that diverge on just one of the two separatrices can be
easily obtained through the Lξ’s weak first-integral h(x, y) = x+ ln |1− y2|.

Main Results. In Section 3 we present some result on the local and global
geometry of planar foliations that we will use in Section 4. The section’s main
result, contained in Theorem 3, is that for such vector fields, locally, the problem
of the extension of a solution of the cohomological equation from a saturated
neighborhood of a separatrix s1 to the saturated neighborhood of an adjacent
separatrix s2 can be always reduced to the problem of the extension, from
L2

0 = (−∞, 0]×R \ {(0, 0)} to the whole L2
0, of a solution of ∂yf = g ∈ Ck(L2

0).
This theorem generalizes Proposition 8 in [4] and fixes a minor mistake in its
statement.

In Section 4 we study the images of L(r)
ξ and L

(l,p)
ξ Our main results are

contained in Theorem 5, where we provide explicit criteria for the solubility
of the cohomological equation in the Hamiltonian case, and Theorem 7, were
weaker results are provided for the finite-type non-Hamiltonian case. Moreover,
in Theorem 6, we show that the solvability of the cohomological equation, in
the Hamiltonian case, is stable with respect to small perturbation of the right
hand side.

Finally, in Section 5, we present in some detail four concrete examples. In
the first two we consider, respectively, the cases of two regular Hamiltonian and
non-Hamiltonian vector fields depending only on one variable and with just a
pair a separatrices and compare our results with those in [5]. In the last two
we consider two case not covered by the results in [5]: the case of a regular
Hamiltonian vector field with just a pair a separatrices and not invariant with
respect to translations in any direction and the case of a regular Hamiltonian
vector field with three separatrices inseparable from each other.

3 Geometry of Fξ
Both the global and local geometry of Fξ play a fundamental role to in the study
of the image of L(r)

ξ . For example, L(r)
ξ is surjective if and only if Fξ has no

4



separatrices (see Theorem 1 in [4]), while explicit conditions for the solvability
of (1) can be expressed in terms of Fξ’s local geometry. Below we prove some
global and local geometrical properties of planar foliations that are needed for
next section.

We recall that the geometry of the set of separatrices of a planar folia-
tion can be quite non-trivial. In [8] Haefliger and Reeb named feather the
1-dimensional simply connected non-Haussdorf manifold obtained by attaching
a new line (barb) to each point of a dense countable subset of a given line (stem).
By repeating this process recursively on the barbs an infinite number of times,
they get a 1-dimensional simply connected non-Haussdorf manifold, which they
call composed feather, with a dense set of branching (i.e. non-Haussdorf) points.
Since every 1-dimensional simply connected non-Haussdorf manifold is the space
of leaves of some planar foliation (see [8] for details), this is enough to conclude
that there are planar foliations whose separatrices are dense in the plane. Ex-
plicit examples are available in literature for C∞ ([17] and [18]) and Cω ([13])
foliations of the plane with a set of separatrices dense on some open set. Below
we show how to build a new explicit example, simpler and more natural than
the ones mentioned above, of C∞ foliation whose separatrices are dense on the
whole plane.

We start by considering the foliation F0 of the whole plane (x, y) in vertical
lines and any C∞ foliation S of the vertical half-stripe S = [−1, 1]× [0,∞) like
the one shown in Fig. 1 (left). The two vertical boundary components {±1} ×
[0,∞) of S are leaves of S and the restriction of S to some open neighborhood
of its third boundary component [−1, 1]×{0} coincides with the restriction to it
of F0. The only two separatrices in S are the half-line r = {−1}× [0,∞) and a
line s (dark line in Fig. 1) homotopic to y(1−x2) = 1. We denote by γ any line
(dashed line in Fig. 1) intersecting transversally s and cutting all other leaves
of S (except of course r), by t0 the x-axis, transversal to all leaves of F0, by Pk
the half-plane y < k and by Sn = [`n, `

′
n] × [n,∞), n = 1, 2, . . . , a sequence of

vertical half-strips not mutually intersecting. After replacing, on each Sn, the
vertical foliation with a suitably rescaled version of S, we get a C∞ foliation of
the plane F1 coinciding with F0 in P1 and whose of separatrices are dense on
the open set U = π−1

F1
(πF1

(t)) ⊃ P1.
We denote, respectively, by sn and γn the images, in Sn, of s and γ. Now

let tn be any line transversal to F1 and coinciding, within Sn, with γn, let Un =
π−1
F1

(πF1(tn)) and let Φn = (ϕn, ψn) : Un → R2 be a rectifying diffeomorphism
of the restriction of F1 to Un such that: 1. tn = {ψn = 0}; 2. all leaves are sent
to vertical lines and, in particular, sn = {ϕn = 0}; 3. the leaves of Un outside Sn
lie within ϕn > 0. With the same construction described above, we can modify
each of these foliations in the half-planes ϕn < 0, n = 1, 2, . . . , to produce a new

foliation F2 whose separatrices are dense in the open set U
∞⋃
n=1

π−1
F2

(πF2
(tn)) and

coincides with F1 on P2.
By repeating this construction recursively, we get a sequence {Fn} of C∞

foliations of the plane such that Fn+1|Pn+1
= Fn|Pn+1

and the closure of the
set of the separatrices of Fn contains Pn for every n = 1, 2, . . . . Hence the Fn
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converge to a smooth foliation F∞ with a set of separatrices dense in the whole
plane.

Remark 2. The space of leaves of F∞ has the structure of a 1-dimensional,
smooth non-Hausdorff smooth manifold with a dense set of binary branch points,
namely such that, at every branch point, exactly two branches (or barbs) meet.
It is easy to modify the foliation S in order to have, at every branch point, the
concurrence of any finite number of barbs, or even infinitely (countably) many.

Remark 3. A foliation F of S satisfying the properties we requested above for
S can be built through the C∞ function F (x, y) = arctan (x2−1+ey−2)(x+1)

x−1 . The

leaves of F are the curves y = 2 + ln (1−x)(x2+2x+1−c)
x+1 . Direct calculations show

that: 1) as x goes from −1 to +1, the leaves cross the strip S from y = 0 to
y = +∞ for c < 0, while they both come from and go back to y = +∞ for c > 0;
2) the sets r± = {±1}× [0,∞) and s = {y = 2+log(1−x2)} are leaves of F ; 3)
r− and s are the only separatrices of F ; 4) F is Hamiltonian. Through a C∞
modification of the exponential function, we can modify the foliation so that its
leaves are vertical straight lines in some neighborhood of [−1, 1]× {0}.

As mentioned in the remark above, S can be chosen to be Hamiltonian (see
Fig. 1, left). Hence, also every Fn, and therefore even F∞, is Hamiltonian of the
same class. In particular, as a corollary of a Lemma of Weiner [18] stating that
the first component projection π : Imm∞(R2,R2)→ Sub∞(R2,R) is surjective,
this shows that the topology of immersions of the plane into itself can be quite
non-trivial:

Proposition 1. For every k = 2, 3, . . . ,∞ there exist C∞ immersions Φ
FG

=
(F,G) : R2 → R2 such that the foliation F = {dF = 0} is a composed feather
where at every branch point meet k barbs.

At the other end of the spectrum, if in the construction above we use, instead
of S, a foliation S ′ such that every C1 function constant on its leaves has
gradient equal to zero on the separatrix r (see Fig. 1, right), we end up with a
foliation F ′∞ which cannot be obtained as the level set of any non-constant C1

function. Indeed, by construction, any C1 function constant on the leaves of
F ′∞ will have gradient equal to zero on a dense set on the plane, so it will have
a gradient identically zero everywhere and therefore it will be constant. Hence
F ′∞ provides a new (and simpler) example of planar foliation without non-trivial
first-integrals of class C1, other than the ones provided by Wazewski [17] and
Weiner [18], and an explicit example of foliation having as space of leaves the
composed feather defined by Haefliger and Reeb in [8].

At this regard, it is important to notice that, for a foliation in R2, the lack
of a smooth regular first-integral is a relative, rather than absolute, property.
Indeed, as a corollary of a result of Kaplan that every foliation of the plane has
a continuous first-integral [9], we can prove the following:

Theorem 1. Every C0 foliation of the plane is a C∞ Hamiltonian foliation for
some suitable differential structure.
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Figure 1: Detail of two C∞ foliations of the strip S = [−1, 1] × [0,∞) having, as its
only separatrices, the two lines r = {−1} × [0,∞) and s = {y = 2 + ln(x2 − 1)}. The
foliation S, on the left, is Hamiltonian and it consists of the level sets of the C∞ function
F (x, y) = arctan

(x2−1+ey−2)(x+1)
x−1

. The dashed line γ is a curve cutting s and everywhere
transverse to the foliation. The foliation S′, on the right, has the same topology as S but it is
non-Hamiltonian and it consists of the level sets of the (non-regular) C∞ function F ′(x, y) =

arctan
(x2−1+ey−2)(x+1)3

x−1
. Its two separatrices coincide with the ones of S. Note that dF ′ = 0

on x = −1, and so happens for all C1 functions which are constant on the leaves of S′.

Proof. Let F be a planar foliation and let G be any foliation everywhere transver-
sal to it. Assume that F is not Hamiltonian, otherwise there is nothing to prove,
and let F and G two continuous first-integrals of, respectively, F and G. Then
the map Φ

FG
= (F,G) ∈ C0(R2,R2) is locally injective. Let now R2

FG
be the

differential structure on R2 given by the atlas

AΦ
FG

= {(Ux, (ΦFG
)|Ux), x ∈ R2},

where Ux is any neighborhood of x such that the restriction of Φ
FG

to it is
injective. In every chart of this atlas, by definition, F and G are represented,
respectively, by F ◦ Φ−1

FG
and G ◦ Φ−1

FG
, namely the projection of the first and

second components,and therefore are C∞ and their differential is nowhere zero.
Moreover, by construction, F = {dF = 0} and G = {dG = 0} (note that the
differentials of F and G are taken with the respect to the atlas AΦ

FG
). Hence,

in R2
Φ
FG

, both F and G are C∞ Hamiltonian foliations.

Remark 4. Since, up to dimension 3, every manifold has, modulo diffeomor-
phisms, only one differentiable structure compatible with its topology (see [12]
and [15]), all the differential structures given by the atlases AΦ

FG
are globally

diffeomorphic to each other.

Consider now the set S of all separatrices of Fξ inseparable from a fixed
separatrix s. On this set it is given a total order relation as follows: s1 ≥ s2

if, given any two transversal t1, t2 cutting respectively s1, s2, any (and therefore
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Figure 2: C∞ foliation of the unit square [0, 1]2 coinciding with the vertical foliation in some
neighborhood of the horizontal sides l = [0, 1]× {0} and u = [0, 1]× {1}, having the vertical
sides as leaves and such that all leaves cutting u at 1/2 ≤ x ≤ 3/4 do cut l at 1/4 ≤ x ≤ 1/2.

every) integral trajectory of ξ that intersects both t1 and t2 cuts t1 before cutting
t2 (note that integral trajectories cutting both transversal do exist since we are
assuming s1 and s2 inseparable).

Definition 3. Given a pair of inseparable leaves s1, s2 of a foliation F , we
say that they are adjacent when, for every other leaf s3 inseparable from them,
holds either s3 ≥ s1 or s2 ≥ s3. We say that a curve γ separates two adjacent
separatrices s1 and s2, or that γ is between them, if s1 and s2 belong to different
connected components of R2 \ γ. We say that a foliation G transversal to F
minimally separates F if there is only one leaf of G between every two adjacent
separatrices of F .

We start with a technical Lemma:

Lemma 1. Consider the foliation H in horizontal lines of the set

S = [−1, 1]× [0, 1] \ [−1/2, 1/2]× {0}.

There exists a C∞ Hamiltonian foliation T of S such that:

1. T is everywhere transversal to H;

2. T separates minimally H;

3. the restriction of T to some neighborhood of the horizontal boundary com-
ponents of S, [−1, 1]× {0, 1}, is the foliation in vertical lines;

4. the vertical boundary components of S, {±1} × [0, 1], are leaves of T .

Proof. The foliationH has only two separatrices: the lines s1 = [−1,−1/2)×{0}
and s2 = (1/2, 1] × {0}. Let V be the vertical foliation of S, so that V is
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everywhere transversal toH and s1 and s2 are separated by all leaves {x = c}∩S
of V with −1/2 ≤ c ≤ 1/2.

We start our construction of T by replacing the foliation in the rectangle
L1 = [−1, 0] × [1/2, 1] with a suitably rescaled copy of the foliation shown
in Fig. 2 and the one in the rectangle R1 = [0, 1] × [1/2, 1], specular image
of L1 about the y axis, with a specular image of that foliation. After these
substitutions we get a C∞ foliation T1 still transversal at every point to H, but
where only the leaves crossing y = 1 at −1/4 ≤ x ≤ 1/4 do separate s1 and s2.

Now we repeat the procedure recursively by replacing the foliation in the
rectangles Ln = [−22−2n, 0] × [1/(n + 1), 1/n] and Rn = [0, 22−2n] × [1/(n +
1), 1/n] with suitably rescaled/reflected copies of the foliation shown in Fig. 2.
At the step n, therefore, we generate a C∞ foliation Tn everywhere transversal
to H and such that only the leaves crossing y = 1 at −1/22n ≤ x ≤ 1/22n do
separate s1 and s2.

In the limit for n → ∞, we are left with a C∞ foliation T everywhere
transversal to H and such that only the leaf {0}× (0, 1] separates s1 and s2, i.e.
T separates minimally H.

Theorem 2. Let F be a C0 foliation of R2. Then there exists a C0 transverse
foliation G which minimally separates F . Moreover, if F is Cr with respect to
some atlas A and either Hamiltonian or of finite type, then G can be chosen to
be Cr and Hamiltonian with respect to A.

Proof. Let A be any atlas of R2 where F is of class Cr. Then, either by Weiner’s
Lemma in [18] (if F is Hamiltonian) or by Theorem 2 in [4] (if it is of finite type),
there exists a Cr locally injective map Φ

FG
= (F,G) (which is an immersion if

F is Hamiltonian) that sends F and G, respectively, in vertical and horizontal
lines.

By definition of inseparable leaves, for every pair of adjacent inseparable
leaves s1, s2 ∈ F cut, respectively, by the transversals t1, t2 ∈ G, the set U12 =
π−1
F (πF (t1)) ∩ π−1

F (πF (t2)) contains a saturated one-sided (left or right, in the
(F,G) coordinates) neighborhood of s1 and s2. Let s1 ∪ s2 ⊂ F−1(a), ti =
G−1(bi), with b1 < b2, and assume, for the sake of the argument, that U12 ⊂
F−1((−∞, a)). Then U12 ⊃ Rε = (a− ε, a)× (b1, b2) for some ε > 0.

By Lemma 1, we can replace the restriction of G to Rε with a new foliation in
such a way that the new foliation G′ is still Hamiltonian, has the same regularity
as G and separates minimally s1 and s2. The proof is concluded by repeating
this process for all pairs of adjacent separatrices of F .

The previous result allows us to state a stronger version2 of Proposition 8
in [4]:

Theorem 3. Let ξ ∈ Xr(R2) be either Hamiltonian or of finite type and let
F ∈ C∞(R2) be a generator of kerLξ and G ∈ C∞(R2) such that LξG > 0
and G = {dG = 0} minimally separates Fξ. Then, for every pair of adjacent
separatrices s1, s2 ∈ Fξ, with s1 ∪ s2 ⊂ F−1(a) and separated by t ∈ G, with t ⊂

2The present version also fixes a minor mistake in the original Proposition’s claim
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G−1(b), and for every leaves t1, t2 ∈ G, with ti ⊂ G−1(bi), cutting respectively s1

and s2, set U = π−1
ξ (πξ(t1)) ∪ π−1

ξ (πξ(t2)) and V = π−1
ξ (πξ(t1)) ∩ π−1

ξ (πξ(t2)).
The map Φ

FG
= (F,G) : R2 → R2 satisfies the following conditions:

1. the restriction of Φ
FG

to U is a diffeomorphism onto Φ
FG

(U);

2. the leaves of the restrictions of Fξ and G to U are mapped, respectively,
into vertical and horizontal lines;

3. Φ
FG

(si) = {a} × G(si), with G(s1) ∪ G(s2) = (b′1, b) ∪ (b, b′2) for some
−∞ ≤ b′1 < b and b < b′2 ≤ ∞;

4. if V ⊂ F−1((−∞, a)) (resp. if V ⊂ F−1((a,∞)), then Φ
FG

(t) = (a1, a)×
{b} for some −∞ ≤ a1 < a (resp. Φ

FG
(t) = (a, a1) × {b} for some

a < a1 ≤ ∞) and (a−ε, a)×(b1, b2) ⊂ Φ
FG

(V ) (resp. (a, a+ε)×(b1, b2) ⊂
Φ
FG

(V )) for some ε > 0.

Definition 4. Under the conditions of the previous theorem, we call Φ
FG

: U →
R2 a normal chart for the adjacent separatrices s1, s2.

4 Lξ(C
r(R2)) ∩ Ck(R2) and Lξ(W

l,p
loc(R2)) ∩ Ck(R2)

It is well known that local solutions to the cohomological equation (1) can be
built through the method of characteristics. When ξ ∈ Xr(R2) and g ∈ Ck(R2),
the only obstruction to the existence of a Cr solution, 0 ≤ r ≤ k, is the problem
of extending a local solution across pairs of adjacent separatrices (e.g. see [4]).
In a normal chart (see Theorem 3), this problem can always be reduced to the
following:

Problem 1. Let L1 = (−∞, 0], L1
0 = (−∞, 0), L2 = (−∞, 0] × R and L2

0 =
L2 \ {(0, 0)}. Consider g ∈ Ck(L2

0) and ϕ ∈ Cr(L1 × {−1}) and define on
L1

0 × {1} the function

ψ(x) =

∫ 1

−1

g(x, t)dt+ ϕ(x)

(by abuse of notation we use above ψ(x) for ψ(x, 1) and ϕ(x) for ϕ(x,−1)).
Under which conditions on g the function ψ can be extended to a Cr function
at x = 0? Similarly, assuming ϕ ∈ W l,p

loc(L1 × {−1}) ∩ Cr(L1
0 × {−1}), under

which conditions on g is ψ of class W l,p
loc at x = 0?

In the study of this problem we will need the following functional spaces.
For every k = 0, 1, 2, . . . , we denote by Hk(Li0), i = 1, 2, the ring of left germs at
the origin of functions in Ck(Li0), i.e. the equivalence classes determined by the
equivalence relation h ' h′ if h and h′ coincide in some left neighborhood of the
origin. We focus our attention of the following subrings of Hk(Li0): Gr,k(Li0),
with r = 0, . . . , k, containing the left germs of all functions belonging to Cr(Li)∩
Ck(Li0), and Wl,p,k(Li0), with p ≥ 1 and l = 0, . . . , k + 3, containing the left
germs of all functions belonging to W l,p

loc(Li) ∩ Ck(Li0).
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Definition 5. We call singular left germs at the origin the elements of the quo-
tient rings SGr,k(Li0) = Hk(Li0)/Gr,k(Li0) and SWl,p,k(Li0) = Hk(Li0)/Wl,p,k(Li0).
By abuse of notation, we denote by SGk+1,k(L2

0) the singular germs of germs of
Ck functions which are Ck+1 in the first variable.

Definition 6. We denote, respectively, by θr,k : SGk,r(L2
0) → SGk,r(L1

0) and
θl,p,k : SWl,p,k(L2

0) → SWl,p,k(L1
0) the homomorphisms associating, to the left

singular germ at (0, 0) of a function g ∈ Ck(L2
0), the left singular germ at 0

of the function f(x) =
∫ 1

−1
g(x, y)dy ∈ Ck(L1

0) modulo, respectively, functions
of class Cr and W l,p

loc at x = 0. Correspondingly, we set Θr,k = ker θr,k and
Θl,p,k = ker θl,p,k.

Remark 5. The homeomorphisms θl,p,k are well defined because, if g ∈W l,p
loc(L2),

since, by hypothesis (see Problem 1), ϕ ∈W l,p
loc(L1), then

‖ψ‖W l,p([−1,0]) ≤ ‖g‖W l,p([−1,0]×[−1,1]) + ‖ϕ‖W l,p([−1,0]) <∞,

namely ψ ∈W l,p
loc(L1).

Theorem 4. The sets Θr,k and Θl,p,k satisfy the following properties for all
k = 0, 1, 2, . . . ,∞ and p ≥ 1:

1. Θr,k ( Θr−1,k for all 1 ≤ r ≤ k;

2. Θk,k contains the left singular germs of all y-odd Ck functions;

3. Θr,k ( Θr,p,k for all 0 ≤ r ≤ k.

Proof. In [4] we showed that the (left singular germ of the) function

g(x, y) =
x√

x2 + y2

provides an example of an element belonging to Θ0,∞ but not to Θ1,∞. After
integrating r times g with respect to x, we get concrete examples of elements
belonging to Θr,∞ but not to Θr+1,∞, which proves point (1). Point (2) is due
to the fact that in that case the integral of g in y is zero on every interval
symmetric with respect to zero.

Consider now again the function g used to prove point (1). Then ∂xg(x, y)
provides an example of function in Θ0,1,∞ but not in Θ0,∞ and Point (3) is
then proved by considering, more generally, g1/p and by integrating it with
respect to x as in point (1). Similar examples can also be obtained, for example,
via the function gα(x, y) =

(
x2 + y2

)−α, α > 0, which belongs to Θl,p,∞ for
0 ≤ α ≤ 1

p −
l
2 . For example, gα ∈ Θ0,1,∞ for 0 ≤ α ≤ 1 (note that, for α > 1

2 ,

gα 6∈ Θ0,∞) so that, considering as above g1/p
α and by integrating it with respect

to x, we get more examples of functions belonging to Θr,p,k but not to Θr,k.
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As we show below, the sets Θr,k and Θr,p,k play a fundamental role in the
solvability of the cohomological equation.
The Hamiltonian case. When ξ is Hamiltonian with respect to the standard
smooth structure, the projection Cr(Fξ) → Cr(U), given by the restriction of
a Cr function on Fξ to any open set U ⊂ Fξ, is surjective (e.g. see [8]), so that
the regularity of ψ in Problem 1 only depends on the germ of g at (0, 0).

For every pair of adjacent separatrices s1, s2 ∈ Fξ separated by t ∈ G, we
denote by a the common value of F at every point of the two separatrices and
by b the one of G at every point of t and define the homomorphisms θr,k,(a,b) =
θr,k ◦ T(a,b) and θl,p,k,(a,b) = θl,p,k ◦ T(a,b), where (T(a,b)g)(x, y) = g(x− a, y− b).

Theorem 5. Let ξ be a planar Hamiltonian vector field, F a generator of
kerLξ, G a transversal foliation minimally separating Fξ and ξ′F = ξ/LξG the
Hamiltonian vector field of F with respect to the symplectic form dF∧dG. Then,
for all k = 0, . . . ,∞, r = 0, . . . , k, l = 0, . . . , k + 3 and p ≥ 1:

1. g ∈ Lξ′
F

(
Cr(R2)

)
∩ Ck(R2) iff [T(ai,bi)(ΦFG

)∗g]SGr,k(L2
0) ∈ Θr,k for all i;

2. g ∈ Lξ′
F

(
Ck+1(R2)

)
iff (Φ

FG
)∗g is Ck+1 in the first variable

and [T(ai,bi)(ΦFG
)∗g]SGk+1,k(L2

0) ∈ Θk+1,k+1 for all i;

3. g ∈ Lξ′
F

(W l,p
loc(R2))∩Ck(R2) iff [T(ai,bi)(ΦFG

)∗g]SWl,k,p(L2
0) ∈ Θl,p,k for all

i.

Proof. 1. If g ∈ L(r)
ξ′
F

then there is a Cr solution f to Lξf = g. In a normal
chart (x′, y′) of some neighborhood of any pair of adjacent separatrices, the
function ϕ(x′) =

∫ ε
−ε g(x′, y′)dy′ : (−δ, 0) → R equals f(x′, ε) modulo some

function belonging to Cr((−δ, 0]), i.e. [ϕ]SGr(L1
0) = 0. If, on the other side,

[T(ai,bi)(ΦFG
)∗g]SGr(L2

0) ∈ Θr for all pairs of adjacent separatrices s1i , s2i with
transversals t1i , t2i , then we can define any Cr function of one of the transversals
and extend the solution to the whole plane with the method of the characteris-
tics. The condition [T(ai,bi)(ΦFG

)∗g]SGr(L2
0) ∈ Θr grants that on every separatrix

we can extend the solution to a Cr solution across the separatrix. The argument
works similarly for point 3 mutatis mutandis.

About point 2, the argument is the same but we must first prove that the
property that (Φ

FG
)∗g is Ck+1 in the first variable does not depend on the

particular choice of F and G. The reason for this is that every other first-
integral F ′ of ξ only depends on F , so that any other pair (F ′, G′), where
F ′ is a first-integral and G′ a transversal Hamiltonian for Fξ, is such that
(F ′, G′) = (F ′(F ), G′(F,G)). Hence, if (Φ

FG
)∗g is Ck+1 in the first argument

for one particular choice of F and G, it is so for every other choice.

Corollary 1. Under the hypotheses of Theorem 5, let P be the set of all points
(a, b) that separate pairs of adjacent separatrices of (Φ

FG
)∗ξ in Φ

FG
(R2). Then

the following inclusions hold:

1. Lξ′
F

(Cr(R2)) ∩ Ck(R2) ⊃ Φ∗
FG

(Cr(R2) ∩ Ck(R2 \ P));

12



2. Lξ′
F

(Ck+1(R2)) ⊃ Φ∗
FG

(Ck+1(R2));

3. Lξ′
F

(W l,p
loc(R2)) ∩ Ck(R2) ⊃ Φ∗

FG
(W l,p

loc(R2) ∩ Ck(R2 \ P)).

Next theorem shows in particular that the solvability of the cohomological
equation is stable under small perturbations of its right hand side:

Theorem 6. Let ξ ∈ Xr(R2) be Hamiltonian. Then:

1. Lξ(Cr(R2))∩Ck(R2) is a clopen subset of Ck(R2) for all r = 0, . . . , k and
k = 0, . . . ,∞. In particular, Lξ(C∞(R2)) is clopen in C∞(R2);

2. Lξ(Ck+1(R2)), is neither open or closed in Ck(R2) for all k = 0, 1, . . . ;

3. Lξ(W
l,p
loc(R2))∩Ck(R2) is a clopen subset of Ck(R2) for all l = 0, . . . , k+1,

if p > 2, and for all l = 0, . . . , k + 2, if 1 ≤ p ≤ 2, for all k = 0, 1, . . . .

Proof. 1. Set A = Lξ(C
r(R2))∩Ck(R2) and let g ∈ A. Every positive function

ε ∈ C0(R2) defines a neighborhood Uε of g in the strong Ck topology as the set
of all Ck functions g′ such that

|g′(x, y)− g(x, y)|+ ‖D(x,y)(g
′ − g)‖+ · · ·+ ‖Dk

(x,y)(g
′ − g)‖ ≤ ε(x, y)

for every (x, y) ∈ R2. If η > 0 is bounded then, in any normal chart,

lim
x→0−

∣∣∣∣ ∫ η

−η
∂kxg(x−a, y−b)dy

∣∣∣∣ <∞ iff lim
x→0−

∣∣∣∣ ∫ η

−η
∂kx (g(x− a, y − b) + ε(x, y)) dy

∣∣∣∣ <∞,
where (a, b) are the coordinates of the point that separates the two separatrices
in the normal chart. Hence, in all normal charts, θr,k ◦ T(a,b)([g]) = θr,k ◦
T(a,b)([g

′]) for all g′ ∈ Uε, namely Uε ⊂ A, namely A is open.
Now, let {gn} a sequence of elements of A converging to g ∈ Cr(R2) in

the strong topology. Then, almost all the gn coincide with g outside of some
compact set and, therefore, in any normal chart,

lim
x→0−

∫ ε

−ε
∂kxg(x, y)dy = lim

x→0−

∫ ε

−ε
∂kxgn(x, y)dy,

i.e. θr([g]) = θr([gn]), for almost all n, namely A is closed.
2. In case of Lξ(Ck+1(R2)), it is enough to observe that the property of

being Ck+1 in the first variable in every normal chart is clearly destroyed by a
generic Ck small perturbation and is not preserved by Ck convergence unless
k + 1 = k, namely k =∞.

3. The proof is the same as in point 1. The bounds to the values of l are
due to the fact that, by the Sobolev embedding theorem, W l,p(R2) ⊂ Ck+1(R2)
for l > k + 1 + 2/p (see [6]) and therefore, for such large values of l, these sets
are neither open nor closed in the Ck topology.
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The non-Hamiltonian case. The method we developed for Hamiltonian vec-
tor fields is much less powerful when ξ is not Hamiltonian. The main reason for
this is that, in this case, the projection Cr(Fξ) → Cr(U) that sends Cr func-
tions f to their restriction f |U to an open set U ⊂ Fξ is not always surjective
when U contains separatrices [8]. Hence there are constraints to the choice of
the function ϕ of Problem 1 since, if ϕ does not extends to a global Cr first
integral of ξ, then the extension of the solution via the method of characteristics
will sooner or later diverge on some of the separatrices.

We start by assuming that ξ is of finite type and recall the following property:

Proposition 2. If ξ ∈ Xr(R2) is not Hamiltonian, the differential of any gen-
erator of kerL

(r)
ξ , r ≥ 1, is zero on some of the separatrices of ξ. Similarly,

the first derivative of every solution of L(r)
ξ f = g on some of the separatrices is

determined by g modulo constants.

Proof. Since ξ is non-Hamiltonian, then the foliation Fξ has the following prop-
erty: there exist two adjacent separatrices s1 and s2 such that, taken any two
corresponding transversal segments t1 and t2, parametrized by the natural pa-
rameters η1, η2 with respect to the Euclidean metric in such a way that ηi = 0
is the coordinate of si ∩ ti and that both coordinates are positive for the points
of t1 and t2 inside π−1

Fξ (π−1
Fξ (t1) ∩ π−1

Fξ (π−1
Fξ (t2), then η1(η2) = ηα2 +O(ηβ2 ), with

β > α and α 6= 1. In other words, the leaves of Fξ approach the two separa-
trices at different rates. Assume now, for the argument’s sake, that α < 1, and
define a germ of a function ϕ(η1) on t1. Then, on t2, this function becomes
ψ(η2) = ϕ(η1(η2)) = ϕ(ηα2 +O(ηβ2 )), so that

dψ

dη2

∣∣∣∣
η2

=
α

η1−α
2

dϕ

dη1

∣∣∣∣
ηα2 +O(ηβ2 )

+O(β − 1)

and therefore we must have dϕ
dη1

∣∣
η1=0

= 0 in order to be able to extend ϕ to a
C1 function beyond t2.

Regarding the second part, through the method of characteristics we have
that

ψ(η2) =

T (η1(η2),η2)∫
0

[(Φtξ)
∗g](x(η2), y(η2))dt+ ϕ(η1(η2)),

where Φtξ is the flow of ξ. Hence

dψ

dη2

∣∣∣∣
η2

=

[
α

η1−α
2

∂1T (η1(η2), η2) + ∂2T (η1(η2), η2)

] [
(Φ

T (η1(η2),η2)
ξ )∗g

]
(x(η2), y(η2))+

+
α

η1−α
2

dϕ

dη1

∣∣∣∣
ηα2 +O(ηβ2 )

+O(β − 1)

and therefore we must have
dϕ

dη1

∣∣∣∣
η1=0

+ lim
η2→0

∂1T (η1(η2), η2)[(Φ
T (η1(η2),η2)
ξ )∗g](x(η2), y(η2)) = 0
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in order to be able to extend ϕ to a C1 function beyond t2.

Remark 6. Note that the derivative of ψ(η2) is not necessarily null at η2 = 0.

Let F ∈ kerL
(r)
ξ and let G = {dG = 0} be any Hamiltonian transversal

foliation which minimally separates Fξ. Then Φ
FG

= (F,G) : R2 → R2 is a Cr
locally injective map whose rank is 1 on some of the separatrices. In order to
make F and G both regular, we switch to the differential structure of the plane
R2

FG
. Since both F and G are Cr, then Cr(R2

FG
) ( Cr(R2). By repeating all

steps as in the previous section, we get the following, weaker, result

Theorem 7. Let ξ be a planar vector field of finite type, F a generator of
kerL

(r)
ξ , G a Cr transversal foliation minimally separating Fξ and ξ′F = ξ/LξG

the Hamiltonian vector field of F with respect to the symplectic form dF ∧ dG.
Then, for all k = 0, . . . ,∞, r = 0, . . . , k, l = 0, . . . , k + 3 and p ≥ 1:

1. g ∈ Lξ′
F

(
Cr(R2)

)
∩ Ck(R2) if [T(ai,bi)(ΦFG

)∗g]SGr,k(L2
0) ∈ Θr,k for all i;

2. g ∈ Lξ′
F

(
Ck(R2)

)
if (Φ

FG
)∗g is Ck+1 in the first variable

and [T(ai,bi)(ΦFG
)∗g]SGk+1,k(L2

0) ∈ Θk+1,k+1 for all i;

3. g ∈ Lξ′
F

(W l,p
loc(R2)) ∩Ck(R2) if [T(ai,bi)(ΦFG

)∗g]SWl,k,p(L2
0) ∈ Θl,p,k for all

i.

In this case the conditions are sufficient but not necessary because the coho-
mological equation can have Cr(R2) solutions which do not belong to Cr(R2

FG
).

In R2
FG

, such solution look like Cr functions whose derivatives of order r diverge
on some of the separatrices where dF = 0 (see Proposition 2). Nevertheless,
Theorem 7 is enough to extend Corollary 1 to vector fields of finite type:

Corollary 2. Under the hypotheses of Theorem 7, let P be the set of all points
(a, b) that separate pairs of adjacent separatrices of (Φ

FG
)∗ξ in Φ

FG
(R2). Then

the following inclusions hold:

1. Lξ′
F

(Cr(R2)) ∩ Ck(R2) ⊃ Φ∗
FG

(Cr(R2) ∩ Ck(R2 \ P ));

2. Lξ′
F

(Ck+1(R2)) ⊃ Φ∗
FG

(Ck+1(R2));

3. Lξ′
F

(W l,p
loc(R2)) ∩ Ck(R2) ⊃ Φ∗

FG
(W l,p

loc(R2) ∩ Ck(R2 \ P )).

The case when separatrices are not isolated is more pathological. We briefly
discuss here only the limit case, when separatrices are dense on the plane in such
a way that C1(Fξ) contains only the constant functions. For such a ξ, every
g ∈ Lξ(C

r(R2)) determines uniquely, modulo constants, the solution of the
cohomological equation (and, therefore, its restriction to any line). In particular,
the method of characteristics in this context can be applied only to C0 functions
since, given a transversal t, a generic ϕ ∈ Cr(t), r ≥ 1, will lead eventually to
some ineliminable divergence. In R2

Φ
FG

, though, both F ad G are regular
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Figure 3: [left] Foliations of the integral trajectories of ξ = (2y, 1 − y2) (continuous lines)
and η = (1,−y) (dashed lines). These are tangent, respectively, to the level sets of the regular
functions F (x, y) = (y2 − 1)ex and G(x, y) = −2yex. The leaves y = ±1 are the only pair
of inseparable leaves in Fξ, while Fη ' R has no inseparable leaves. Note that, since ξ is
intrinsically Hamiltonian, C1(Fξ) contains regular functions. [right] Image of Fξ and Fη via
ΦFG . The leaves of Fξ become vertical lines, those of Fη horizontal ones. The image, under
ΦFG , of the sets |y| < 1, y = 1, y = −1 and y = 0 in the left picture are respectively
represented, in the right one, by the sets (−∞, 0) × R, {0} × (−∞, 0), {0} × (0,∞) and
(−∞, 0)× {0}.

and the method of characteristic can be used to study the solvability of the
cohomological equation in Cr(R2

Φ
FG

) for all values of r.
Regarding the existence of more regular solutions with respect to the stan-

dard differential structure, we recall that, as shown in Proposition 2, g deter-
mines the derivative of the restriction of the solution of the equation L(r)

ξ f = g
on a dense set At of any transversal t.

Definition 7. We say that a Cr function ϕ on t is ξ-compatible with g if its
derivatives coincide with those induced by g, via ξ, in all points of At.

We are lead therefore to the following result:

Theorem 8. Let ξ ∈ Xr(R2) be such that dimC1(Fξ) = 1 and for each si ∈ Sξ
select a transversal ti. Then g ∈ Lξ(Cr(R2)) ∩ Ck(R2) iff, for each transversal
ti, there exists a Cr function ϕi on ti ξ-compatible with g.

5 Examples
In this section we present four model examples.

5.1 ξ = (2y, 1− y2)

This vector field is Hamiltonian and invariant with respect to horizontal trans-
lations. It is easy to see that its only separatrices are the straight lines y = ±1.
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A regular first-integral of Lξ is the function F (x, y) = (y2− 1)ex and a solution
to the partial differential inequality LξG 6= 0 is given by G(x, y) = −2yex. It
is easy to verify that G = {dG = 0} separates minimally Fξ. Note that, in
this particular case, Φ

FG
is globally injective. In the normal chart (R2,Φ

FG
),

the point that separates the two separatrices has coordinates (0, 0). A straight
calculation shows that

Ω
FG

= dF ∧ dG = 2(1 + y2)e2xdx ∧ dy

and, correspondingly,

ξ′
F

= Ω−1
FG

(dF ) =
e−x

2(1 + y2)
ξ, ξ′

G
= Ω−1

FG
(dG) =

e−x

1 + y2
(1,−y) .

By Proposition 6 in [4], (Φ
FG

)∗ξF = ∂y′ and (Φ
FG

)∗ξG = ∂x′ , where we set
(x′, y′) = (F,G), and the cohomological equation writes, in the normal chart
(R2 \ [0,∞)× {0},Φ

FG
), as ∂y′ f̂ = ĝ.

By Theorem 5, the equation Lξ′
F
f = g ∈ Ck(R2) has a Cr solution, r =

1, . . . , k, if and only if [(Φ
FG

)∗g]SGr,k(L2
0) ∈ Θr,k, namely if and only if the Ck+1

function ψ(x′) =
∫ 1

−1
ĝ(x′, y′)dy′ : [−∞, 0) → R can be extended to a Cr func-

tion at x′ = 0. The solution is, instead,W l,p
loc if and only if [(Φ

FG
)∗g]SWl,p,k(L2

0) ∈
Θl,p,k, namely iff ψ(x′) has a W l,p singularity at x′ = 0. Below we discuss in
some detail a few concrete cases.

As shown in the proof of Theorem 4, the condition

|ĝ(x′, y′)| ≤ C
[
(x′)2 + (y′)2

]−α
, C > 0

is enough to grant the existence of C0 solutions for α < 1/2 and of L1
loc solutions

for 1/2 ≤ α < 1.
Consider, for example, the function

ĝ(x′, y′) =
[
(x′)2 + (y′)2

]−1/4 ∈ C∞(R2 \ (0, 0)),

so that

g(x, y) = Φ∗
FG
ĝ(x, y) =

e−x/2√
1 + y2

∈ C∞(R2).

Then a solution to Lξ′F g = f is given, in the normal chart (x′, y′), by the function

f̂(x′, y′) =
y′

|x′| 12 2F1

(
1

4
,

1

2
,

3

2
;− (y′)2

(x′)2

)
,

where 2F1(a, b, c; z) is the Gaussian hypergeometric function.
In the (x, y) coordinates therefore the solution writes as

f(x, y) = − 2ye
x
2√

|1− y2| 2F1

(
1

4
,

1

2
,

3

2
;− 4y2

(1− y2)2

)
∈ C0(R2) ,
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where the continuity is due to the fact that 2F1

(
1
4 ,

1
2 ,

3
2 ;− 1

ε4

)
' 2ε for ε ' 0.

On the other side, for

ĝ(x′, y′) =
1√

(x′)2 + (y′)2
∈ C∞(R2 \ (0, 0)),

namely

g(x, y) =
e−x

1 + y2
∈ C∞(R2),

we get
f̂(x′, y′) = ln

(√
(x′)2 + (y′)2 + y′

)
,

namely
f(x, y) = x+ 2 ln |1− y| ∈ L1

loc(R2) ∩ C∞(R2 \ Sξ).

Note that the equation LξF f(x, y) = e−x

1+y2 is equivalent to Lξf(x, y) = 2, which
is why we found exactly the solution we already discussed in Example 2.

More generally, the condition

|ĝ(x′, y′)| ≤ C
[
(x′)2 + (y′)2

]−α
, (x′, y′) ∈ U0, C > 0

where U0 is some left neighborhood of the origin, writes down, in the original
coordinates (x, y), as

|g(x, y)| ≤ Ce2αx
[
1 + y2

]−2α
, (x, y) ∈ SM

where SM = (−∞,−M)×(−1, 1), for someM > 0. Since 1+y2 is bounded and
larger than 1 for every y ∈ SM , this means that g will give rise to C0 solutions
of Lξf = g when |g(x, y)| ≤ e−αx for α < 1/2 and to L1

loc solutions for α < 1.
The latter is the same condition given in [5], Proposition 3.1, for the existence

of L1
loc solutions to Lξ1f = g. This approach, though, shows that it is enough

that this inequality be satisfied by g on some neighborhood of x = −∞ within
the strip |y| < 1 rather than on the whole plane.

5.2 ξ = (2(2y − 1), 1− y2)

This vector field has the same separatrices as the previous one but it is non-
Hamiltonian. A smooth generator of kerLξ is given by F (x, y) = (y+1)3(y−1)ex

and a regular Hamiltonian function for a transverse foliation that minimally
separates Fξ is given by G(x, y) = (2y − 1)ex. In this case

Ω
FG

= dF ∧ dG = 2(1 + y)2(2− 4y + 3y2)e2xdx ∧ dy

is degenerate on the separatrix y = −1. Correspondingly,

ξ′
F

= Ω−1
FG

(dF ) =
e−x

2(2− 4y + 3y2)
ξ

18



Figure 4: [left] Foliations of the integral trajectories of ξ = (2(2y − 1), 1 − y2) (continuous
lines) and η = (2, 1 − 2y) (dashed lines). These are tangent, respectively, to the level sets of
the function F (x, y) = (y + 1)3(y − 1)ex, whose gradient is degenerate on y = −1, and of the
regular function G(x, y) = (2y − 1)ex. The leaf spaces Fξ and Fη have the same topology as
the corresponding ones in Fig. 3 but this time in C1(Fξ) there are no regular functions, since
the derivative of every C1 function must be zero on the leaf y = −1. [right] Image of Fξ and
Fη via ΦFG . The action of ΦFG is identical to the one described in Fig. 3, but this time its
differential on y = −1 is zero, i.e. ΦFG is not an immersion.

is regular, while

ξ′
G

= Ω−1
FG

(dG) =
e−x

2(1 + y)2(2− 4y + 3y2)
(2, 1− 2y) .

diverges on y = −1. Similarly, Φ
FG

maps, like in the previous example, the
whole plane injectively into R2 \ [0,∞) × {0}, but this time Φ

FG
is not an

immersion since its differential is zero on the separatrix y = −1.
When we restrict Φ

FG
to the set {|y| < 1}, the local coordinates (x′, y′) =

(F,G) are well-defined and smooth we can repeat verbatim all calculation for the
explicit solutions shown in the previous example. This corresponds to switching
differential structure in R2 and looking for solutions in R2

Φ
FG

. We recall that,
since ξ is of finite type, Ck(R2

Φ
FG

) ⊂ Ck(R2); in fact, Ck(R2
Φ
FG

) is the set of
all Ck functions that go to zero as (y + 1)3 in a neighborhood of y = −1.

Unlike the Hamiltonian case, though, now the solvability conditions based
on the germs of g in a neighborhood of the separatrices are only sufficient. New
solutions, not covered by the theorems in [5], can be found by letting ĝ, in the
normal chart coordinates, diverge on the separatrices, as long as Φ∗

FG
ĝ has the

required differentiability. Consider, for example, the case of

ĝ(x′, y′) = 3
√
x′
[
y′ −

√
(x′)2 + (y′)2

]2
This function behaves as 4 3

√
x′ (y′)2, of class C0, in a neighborhood of the

separatrix {0} × (0,∞), which is the image of y = −1, and more regularly, as
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Figure 5: [left] Foliations of the integral trajectories of ξ = (2x2y,−1) (continuous lines)
and η = (1, 0) (dashed lines). These are tangent, respectively, to the level sets of the regular
functions F (x, y) = y2 − e−x and G(x, y) = y. The leaves y2 = ex are the only pair of
inseparable leaves in Fξ, while Fη ' R has no inseparable leaves. Note that, since ξ is
intrinsically Hamiltonian, C1(Fξ) contains regular functions. [right] Image of Fξ and Fη via
ΦFG . The leaves of Fξ become vertical lines, those of Fη horizontal ones. The images of the
two separatrices are the sets {π} × (−∞, 0) and {π} × (0,∞), the image of the line y = 0 is
the set (0, π)× {0}.

4 3
√

(x′)13 (y′)2, of class C4, in a neighborhood of the separatrix {0}×(−∞, 0),
which is the image of y = 1. In R2

Φ
FG

, therefore, ĝ is of class C0 and so it gives
rise to a globally C0 solution

f̂(x′, y′) = 3
√
x′
[
(x′)2y′ +

2

3
(y′)3 − 2

3

(
(x′)2 + (y′)2

)3/2]
In R2, instead, the solution is more regular:(

Φ∗
FG
f̂
)

(x, y) = (1 + y)(1− y)1/3

[
F 2G+

2

3
G3 +

2

3

(
F 2 +G2

)3/2]
ex/3

behaves as (y − 1)13/3e4x/3 close to y = 1, i.e. of class C4, and is smooth close
to y = 1, so we have a globally C4 solution.

5.3 ξ = (2x2y,−1)
This vector field and the next one are not invariant with respect to any trans-
lation and therefore are not covered by the theorems in [5]. We point out that
similar examples, with superlinear nonlinearities with respect to x, appear in
the study of global Cauchy problems for hyperbolic PDEs on Rn with initial
data on y = 0 (e.g. see [7] and [3] and the references therein).
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A direct calculation shows that LξF (x, y) = 0 for the regular function

F (x, y) =


tan−1

[
y2 − 1

x

]
, x < 0;

π/2 , x = 0;

tan−1
[
y2 − 1

x

]
+ π , x > 0,

namely Fξ is Hamiltonian. The set F−1(c) has two connected components for
c ≥ π and only one for c < π, so the only inseparable integral trajectories
of ξ are the two connected components of F−1(π), namely the curves y =
±1/
√
x (see Fig. 5, left). Since the y component of ξ is always non-zero, Fξ

is everywhere transversal to the foliation in horizontal straight lines and it is
minimally separated by it. In particular, LξG(x, y) > 0 for G(x, y) = y (see
Fig. 5). In this case

ΩFG = dF ∧ dG =
dx ∧ dy

(1− xy2)2 + x2
.

and we get

ξ′F = −((1− xy2)2 + x2)ξ , ξ′G = ((1− xy2)2 + x2, 0) .

The image of the plane via the map ΦFG is the set (see Fig. 5, right)

tan−1(y′)2 < x′ < tan−1(y′)2 + π.

All explicit calculations shown in the first example can be repeated here.
For example, this time the condition

|ĝ(x′, y′)| ≤ C
[
(x′)2 + (y′)2

]−α
, (x′, y′) ∈ U0,

for the existence of regular and weak solutions of the cohomological equation
translates, in (x, y) coordinates, into

|g(x, y)| ≤ Cx2α, x ∈ SM ,

where in this case SM , M > 0, is the portion of the set y2 − 1/x < 0 contained
in the half-plane x > M . The corresponding condition for solutions of Lξf = g
is

|g(x, y)| ≤ C x2α

(1− xy2)2 + x2
≤ C ′x2(α−1), x ∈ SM ,

namely Lξf = g admits C0 solutions when |g(x, y)| ≤ Cx−1−ε for some ε > 0
and L1

loc solutions when |g(x, y)| ≤ Cx−ε for some ε > 0.

5.4 ξ = (3− 6ex(1− y2) + e2x(19− 22y2 + y4), 3 + 2ex(5 + 3y2) +
3e2x(1− y2)2)

Also this last vector field gives rise to a Hamiltonian foliation. For example, a
generator of kerL

(∞)
ξ is given by the smooth regular function

F (x, y) = (1− (y − 2)2 − e−x)(1− y2 − e−x)(1− (y + 2)2 − e−x).
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Figure 6: [left] Foliations of the integral trajectories of ξ = ((3−6ex(1−y2)+e2x(19−22y2+
y4), 3 + 2ex(5 + 3y2) + 3e2x(1− y2)2) (continuous lines) and η = (1, 0) (dashed lines). These
are tangent, respectively, to the level sets of the regular functions F (x, y) = (1 − (y − 2)2 −
e−x)(1− y2 − e−x)(1− (y+ 2)2 − e−x) and G(x, y) = y. The three leaves (y± 2)2 = 1− e−x
and y2 = 1 − e−x are the only separatrices of Fξ and are all inseparable from each other,
while Fη has no inseparable leaves. Note that, since ξ is intrinsically Hamiltonian, C1(Fξ)
contains regular functions. [right] Image of Fξ and Fη via ΦFG . The leaves of Fξ become
vertical lines, those of Fη horizontal ones. The image, under ΦFG , of the three separatrices
are the sets {0}× (3, 1), {0}× (1,−1) and {0}× (−1,−3); the images of the lines y = ±1 are
the sets (−∞, 0)× {1} and (−∞, 0)× {−1}.

Using the Descartes’ rule of signs it is easy to verify that, for c > 0, the level sets
F−1(c) are connected while, for c < 0, each level set consists of three disjoint
lines. The three curves in the level set F−1(0) are therefore inseparable from
each other. Since the y component of ξ is always different from 0, ξ is transversal
to every horizontal line and it is easily seen that the foliation in horizontal lines
minimally separates it (see Fig. 6). In particular, LξG = 1 > 0 for G(x, y) = y.
The image of the plane via Φ

FG
is the set

x′ < (1− (y′ − 2)2)(1− (y′)2)(1− (y′ + 2)2)

(see Fig. 6, right).
In this case,

Ω
FG

= dF ∧ dG = dx ∧ dy,
so that

ξ
F

= Ω−1
FG

(dF ) = ξ , ξ
G

= Ω−1
FG

(dG) = (1, 0)

The condition for the existence of solutions of Lξf = g

|ĝ(x′, y′)| ≤ C
[
(x′)2 + (y′)2

]−α
, (x′, y′) ∈ U±1,

where U1 and U−1 are left neighborhoods of, respectively, (0, 1) and (0,−1),
translates now, in (x, y) coordinates, into

|g(x, y)| ≤ Ce3αx, (x, y) ∈ SM,±1,
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where in this case SM,1 (resp. SM,2),M > 0, is the portion of the set F (x, y) < 0
contained in the half-plane x > M . Hence, for example, Lξf = g admits C0

solutions if |g(x, y)| ≤ Ce(3/2−ε)x, (x, y) ∈ SM,±1, for some ε > 0 and L1
loc

solutions if |g(x, y)| ≤ Ce(3−ε)x, (x, y) ∈ SM,±1, for some ε > 0.
By modifying suitably this particular F (x, y), it is easy to obtain examples of

intrinsically Hamiltonian and intrinsically non-Hamiltonian regular vector fields
whose foliation has a single node at which concur any number of inseparable
separatrices and which is minimally separated by the horizontal foliation.
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