
STEVE SMALE 

Finding a I lorseshoe 
on the Beaches 
of Rio 

What is Chaos? 
A mathematician discussing chaos is featured in the movie 

Jurassic Park. James Gleick's book Chaos remains on the 
best-seller list for many months. The characters of Tom 

Stoppard's celebrated p l ayArcad i a  discourse on the mean- 
ing of chaos. What is the fuss about? 

Chaos is a new science that establishes the omnipres- 
ence of unpredictability as a fundamental feature of com- 

mon experience. 
A belief in determinism, that the present state of the 

world determines the future precisely, dominated scientific 
thinking for two centuries. This credo was based on me- 
chanics, where Newton's equations of motion describe the 

trajectories in time of states of nature. These equations 
have the mathematical property that the initial condition 

determines the solution for all time. This was taken as prov- 
ing the validity of deterministic philosophy. Some went so 
far as to see in determinism a refutation of free will and 

hence even of human responsibility. 
At the beginning of this century, with the advent of quan- 

tum mechanics, the untenability of determinism was ex- 
posed. At least on the level of electrons, protons, and 
atoms, it was discovered that uncertainty prevailed. The 
equations of motion of quantum mechanics produce solu- 

tions that are probabilities evolving in time. 
In spite of quantum mechanics, Newton's equations gov- 

ern the motion of a pendulum, the behavior of the solar 
system, the evolution of the weather, many macroscopic 
situations. Therefore the quantum revolution left intact 
many deterministic habits of thought. For example, well af- 
ter the Second World War, scientists held the belief that 
long-range weather prediction would be successful when 

computer resources grew large enough. 

In the 1970s the scientific commtmity recognized another 
revolution, the theory of chaos, which seems to me to deal 
a death blow to the Newtonian picture of determinism. The 

world now knows that one must deal with unpredictability 
in understanding common experience. The coin-flipping 
syndrome is pervasive. "Sensitive dependence on initial 

conditions" has become a catchword of modern science. 
Chaos contributes much more than extending the do- 

main of indeterminacy, just  as quantum mechanics did 
more than half a century earlier. The deeper understand- 
ing of dynamics underlying the theory of chaos has shed 
light on every branch of science. Its accomplishments 

range from analysis of electrocardiograms to aiding the 
construction of computational devices. 

Chaos developed not from newly discovered physical 
laws, but by a deeper  analysis of the equations underlying 
Newtonian physics. Chaos is a scientific revolution based 
on mathematics----deduction rather than induction. Chaos 

takes the equations of Newton, and uses mathematical 
analysis to establish the widespread unpredictability in the 
phenomena described by those equations. Via mathemat- 
ics, one establishes the failure of Newtonian determinism 

by using Newton's own laws! 

Taxpayers' Money 
In 1960 in Rio de Janeiro I was receiving support from the 

National Science Foundation (NSF) of the United States as 
a postdoctoral  fellow, while doing research in an area of 
mathematics which was to become the theory of chaos. 
Subsequently questions were raised about my having used 
U.S. taxpayers '  money for this research done on the 
beaches of Rio. In fact none other than President Johnson's 
science adviser, Donald Hornig, wrote in 1968 in Science: 

1This is an expanded version of a paper to appear in the proceedings of the Intemational Congress of Science and Technology--45 years of the National Research 

Council of Brazil. 
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This blithe s p i r i t  leads m a t h e m a t i c i a n s  to ser ious ly  pro- 
pose that the c o m m o n  m a n  who p a y s  the taxes  ought to 

feel  that m a t h e m a t i c a l  creat ion should be supported  w i t h  
publ ic  f u n d s  on the beaches o f  Rio . . .  

What happened during the eight years between the work 

on the beaches and this national condemnation? 
The 1960s were turbulent in Berkeley where I was a pro- 

fessor; my students were arrested, tear gas frequently filled 

the campus air; dynamics conferences opened under cur- 
few; Theodore Kaczynski, the suspected Unabomber, was 
a colleague of mine in the Math Department. 

The Vietnam War was escalated by President Johnson 
in 1965, and I was moved to establish with Jerry Rubin a 

confrontational antiwar force. Our organization, the 
Vietnam Day Committee (VDC), with its teach-in, its troop 
train demonstrations and big marches, put me onto the 

front pages of the newspapers. These events led to a sub- 
poena by the House Unamerican Activities Committee 
(HUAC), which was issued while I was en route to Moscow 

to receive the Fields Medal in 1966. The subsequent press 
conference I held in Moscow attacking U.S. policies in the 
Vietnam War (as well as Russian intervention in Hungary) 

created a long-lasting furor in Washington, D.C. 
Let me hark back to what actually happened in that 

Spring of 1960 on those beaches of Rio de Janeiro. 

Flying Down to Rio 
In the 1950s there was an explosion of ideas in topology, 
which caught the imagination of many young research stu- 

dents such as myself. I finished a Ph.D. thesis in that do- 
main at the University of Michigan in 1956. During that sum- 

mer I, with my wife, Clara, attended in Mexico City a 
conference reflecting this great movement in mathematics, 
with the world's notables in topology present  and giving 
lectures. There I met a Brazilian, Elon Lima, who was writ- 
ing a thesis in topology at the University of Chicago--  

where I was about to take up the position of ins t ructor- -  
and we became good friends. 

A couple of years later, Elon introduced me to Mauricio 
Peixoto, a young Visiting professor from Brazil. Mauricio 

was from Rio, although he had come from a northern state 
of Brazil where his father had been governor. A good- 
humored pleasant  fellow, Mauricio, in spite of his occa- 
sional bursts of excitement, was conservative in his man- 
ner and in his politics. As was typical for the rare mathe- 
matician working in Brazil at that time, he was employed 

as teacher in an engineering college. Mauricio also helped 
found a new institute of mathematics (IMPA), and his as- 
pirations brought him to America to pursue research in 
1957. Subsequently he was to become the President of the 
Brazilian Academy of Sciences. 

Mauricio was working in the subject of differential equa- 
tions or dynamics and showed me some beautiful results. 
Before long I myself had proved some theorems in dy- 
namics. 

In the summer of 1958, Clara and I with our newborn 
son, Nat, moved to the Institute for Advanced Study (IAS) 

in Princeton, New Jersey. I was supposed to spend two 

yeats  there with an NSF postdoctoral  fellowship. However, 
due to our common mathematical interests, Mauricio and 
Elon invited me to fmish the second year in Rio de Janeiro. 

So Clara and I and our children, Nat and newly arrived 
Laura, left Princeton in December, 1959, to fly down to Rio. 

The children were so young that most of our luggage con- 

sisted of diapers, but nevertheless we were able to realize 
an old ambition of seeing Latin America. After visiting the 

Panamanian jungle, the four of us left Quito, Ecuador, 
Christmas of 1959, on the famous Andean railroad down to 
the port  of Guayaquil. Soon we were flying into Rio de 

Janeiro, recovering from sicknesses we had acquired in 
Lima. I still remember vividly, arriving at night, going out 
several times trying to get milk for our crying children, and 

returning with a substitute, cream or yogurt. We later learned 
that, in Rio, milk was sold only in the morning, on the street. 

At that time Brazil was truly part  of the "third world." 
However, our friends soon helped us settle into Brazilian 

life. We arrived just after a coup had been attempted by an 

air force colonel. He fled the country to take refuge in 
Argentina, and we were able to rent, from his wife, his lux- 
urious 11-room apartment in the district of Rio called Leme. 

The U.S. dollar went a long way in those days, and we were 
even able to hire the colonel 's two maids, all with our fel- 
lowship funds. 

Sitting in our upper-story garden veranda, we could look 
across to the hill of the favela (called Babylonia) where 
Black Orpheus was filmed. In the hot humid evenings pre- 
ceeding Carnaval, we would watch hundreds of the favela 

dwellers descend to samba in the streets. Sometimes I 
would join their wild dancing, which paraded for many 
miles. 

In front of our apartment, away from the hill, lay the fa- 
mous beach of Copacabana. I would spend my mornings 

on that wide, beautiful, sandy beach, swimming and body 
surfmg. Also, I took a pen and paper and would work on 
mathematics. 

Mathemat ics on the Beach 
Very quickly after our arrival in Rio, I found myself work- 
ing on mathematical research. My host institution, Instituto 

da Matematica, Pura e Aplicada (IMPA), funded by the 
Brazilian government, provided a pleasant office and work- 
ing environment. Just two years earlier IMPA had set up 
its own quarters, a small colonial building in the old sec- 

tion of Rio called Botafogo. There were no undergraduates 
and only a handful of graduate mathematics students. 
There were also a very few research mathematicians, no- 
tably Peixoto, Lima, and an analyst named Leopoldo 
Nachbin. There was also a good math library. But no one 

could have guessed that in less than three decades IMPA 
would become a world center of dynamical systems, 
housed in a palatial building, as well as a focus for all 
Brazilian science. 

In a typical afternoon I would take a bus to IMPA and 

soon be discussing topology with Elon or dynamics with 
Mauricio, or be browsing in the library. Mathematics re- 
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sea rch  typical ly doesn ' t  require  m u c h - - a  pad  of  p a p e r  and 
a bal lpoint  pen, l ibrary resources ,  and col leagues  to  query. 

I was  satisfied. 
Especial ly  enjoyable were  the  t imes spent  on the  beach. 

My work  was  most ly  scribbling down ideas  and trying to 
see  how arguments  could  be  put  together. I would  sketch 

crude diagrams of  geometr ic  objects  flowing through space,  
and  try to link the p ic tures  with formal deduct ions .  Deep 
in this kind of  thinking and writ ing on a pad  of  paper ,  I was  

not  bo thered  by the dis t ract ions  of the beach. It was  good 
to be  able to take t ime off from the research  to swim. 

The surf  was an excit ing challenge and even somet imes  
quite frightening. One t ime when Lima visi ted my "beach of- 

rice," we entered the  surf  and  were  both caught in a current  
which took  us out  to sea- While Elon felt his life fading, 

ba thers  shouted the advice to swim parallel  to the shore to 
a spot  where  we were  able to return. (It was 34 years  later, 
jus t  before Carnaval, that  once again those same beaches  al- 
mos t  did me in. This t ime an oversized wave bounced  me 

so  hard on the sand it in jured my wrist  and tore m y  shoul- 
der  tendon; and then that  same big wave carr ied me  out to 

sea. I was lucky to get  back  using my good arm.) 

Let ter  from Amer ica  
At that  time, as a topologis t ,  I p r ided  myself  on  a p a p e r  that  
I had  jus t  publ i shed  in dynamics .  I was de l ighted  with a 
conjec ture  in that  p a p e r  which  had as  a consequence  that  
(in m o d e m  terminology)  "chaos doesn ' t  exist"! 

This euphor ia  was  soon  sha t te red  by a le t ter  I rece ived  
f rom Norman Levinson. I knew him as coau thor  of  the  main 
gradua te  tex t  in ord inary  differential  equat ions and  as  a sci- 

ent is t  to be taken seriously.  
Levinson wrote  me  of  an  ear l ier  resul t  of  his which  ef- 

fect ively conta ined  a coun te rexample  to my conjec ture .  His 
p a p e r  in turn was  a c lar i f icat ion of  extensive w o r k  of  the  
Brit ish mathemat ic ians  Mary Cartwright  and  J. L. 

Li t t lewood done during World  War II. Car twright  and 
Li t t lewood had been  analysing some equat ions tha t  a rose  
in war- re la ted  s tudies  involving radio waves.  They had  
found unexpec ted  and unusua l  behaviour  of  so lu t ions  of  
these  equations.  In fact  Cartwright  and Li t t lewood had 

found  signs of  chaos,  even in equat ions that  a rose  natural ly  
in engineering. But the  wor ld  wasn ' t  ready to l isten. I never  
met  Litt lewood, but  in the  mid-sixties,  Dame Mary 
Cartwright,  then head  o f  a women ' s  col lege (Gir ton)  at  

Cambridge,  invited m e  to high table. 
I worked  day and night  to  t ry  to resolve the  chal lenge 

to  my beliefs tha t  the  le t te r  posed.  It was  neces sa ry  to 
t rans la te  Levinson's  analyt ic  arguments  into my  own geo- 
metr ic  way  of  thinking. At leas t  in my own case,  under-  
s tanding mathemat ics  doesn ' t  come from reading  or  even 

listening. It comes  f rom rethinking what  I see  or  hear.  I 
mus t  redo  the ma themat ics  in the  contex t  of  my  part icu-  
lar  background.  And tha t  background  cons is t s  of  many  
threads,  some strong, some  weak,  some algebraic,  some  vi- 
sual. My background  is s t ronger  in geometr ic  analysis,  but  
fol lowing a sequence of  formulae  gives me t rouble.  I tend  
to be  s lower  than mos t  mathemat ic ians  to unde r s t and  an 

argument.  The mathemat ica l  l i te ra ture  is useful  in that  i t  

p rovides  clues,  and one can of ten use  these  clues to pu t  
toge ther  a cogent  picture. When I have reorganized the  
ma themat ics  in my own terms,  then I feel an unders tand-  

ing, not  before .  
I eventual ly  convinced myse l f  that  indeed Levinson was  

correct ,  and  that  my conjec ture  was  wrong. Chaos was al- 

ready  impl ic i t  in the analyses  of  Car twright  and  Lit t lewood. 
The p a r a d o x  was resolved,  I had  guessed  wrongly. But 
while learning that, I d i scovered  the  horseshoe!  

The Horseshoe 
The ho r se shoe  is a natural  consequence  of  a geometr ica l  
way  of  looking at the  equat ions of  Cartwright-Li t t lewood 
and Levinson. It helps  unders tand  the mechan i sm of chaos,  
and expla in  the  widespread  unpredic tab i l i ty  in dynamics.  

Chaos  is a character is t ic  of  dynamics ,  that  is, of t ime 
evolut ion o f  a set  of  s ta tes  of  nature.  Let me take  t ime to  

be m e a s u r e d  in discrete  units. A s ta te  of  nature  will be ide- 
aiized as a po in t  in the  two-dimens ional  plane. 

I will  s t a r t  by descr ibing a non-chaot ic  l inear  example .  

The idea  is to take  a square, Figure  1, and to s tudy wha t  
happens  to  a point  on this square  in one unit  of  time, un- 

der  a t rans format ion  to be descr ibed .  
The ver t ica l  d imension is sh runk  uniformly towards  the  

center  of  the  square and the hor izonta l  is expanded  uni- 
formly at  the  same time. Figure  2 shows  the domain  ob- 
ta ined  by  this  process ,  A*B*D*C*, supe r imposed  over  the  
original square  ABDC. I have also shaded  in the set  of  

points  which  don ' t  move out  of  the  square in this  process .  
The s e c o n d  of  our  three  s tages  in unders tanding  is the  

pe r tu rbed  l inear  example.  Now the square is moved  into a 

bent  ve rs ion  of  the  e longated  rec tangle  of  Figure 2. Thus 
Figure 3 desc r ibes  the  mot ion  of  our  square obta ined  by  a 
small  modif ica t ion  of  Figure 2. 

The hor seshoe  is the fully non- l inear  vers ion of  wha t  
happens  to  poin ts  on the square,  by  an extens ion of  the  

p roces s  exp res sed  in Figures 2 and 3. This is the  s i tuat ion 
when mot ion  makes  a quali tat ive depar tu re  f rom the lin- 

ear  model .  See Figure 4. 

IGURE 

A B 

C D 

VOLUME 20, NUMBER 1, 1998 4 1  



"visual motion." The results in the next  section concern  vi- 

sual motions. 

In summary,  the horseshoe is a fully non-l inear motion. 

In the next  section, I will show how chaos comes out of 

this picture. 

FIGURE: 

The horseshoe is the domain sur rounded by the dotted 

line. 
Instead of a state of nature  evolving according to a math- 

ematical formula, the evolution is given geometrically. The 

full advantage of the geometrical point  of view is beginning 

to appear. The more traditional way of dealing with dy- 

namics was with the use of algebraic expressions. But a 

description given by formulae would be cumbersome.  That 

form of descript ion wouldn ' t  have led me to insights or to 

perceptive analysis. My background as a topologist, trained 

to bend objects like squares, helped to make it possible to 

see the horseshoe. 

The dynamics of the horseshoe is descr ibed by moving 

a point  in the square to a point  in the horseshoe according 

to Figure 4. Thus the comer  marked A moves  to the point  

marked A* in one uni t  of time. 

The mot ion of a general point  x in the square is a se- 

quence of points  x0 Xl x2 . . .  Here x0 = x is the present  

state, Xl is that  state a unit  of time later, x2 that state two 

units of t ime later, etc. 

Now imagine our  visual field to be jus t  the square itself. 

When a point  is moved out of the square we will discard 

that motion. Figure 5 shades in the points  which don' t  leave 

the square in one uni t  of time. 

I will call a sequence which never  leaves the square a 

IGURE: 

A B 

m $ . . . . . .  

The Horseshoe and Chaos: Coin Flipping 
The laws of chance, with good reason, have tradit ionally 

been  expressed in terms of flipping a coin. Guessing 

whether  heads or tails is the outcome of a coin toss is the 

paradigm of pure chance. On the other hand it is a deter- 

minist ic process that governs the whole mot ion of a real 

coin, and hence the result, heads or tails, depends only on 

very subtle factors of the ini t iat ion of the toss�9 This is "sen- 

sitive dependence on initial conditions�9 

A coin-flipping exper iment  is a sequence of coin tosses 

each of which has as outcome either heads (H) or tails (T). 

Thus it can be represented in the from HTTHHTTTTH . . . .  2 

A general  coin-flipping exper iment  is thus a sequence So sl  

s2 �9 �9 �9 where each of So, sl, s2 �9 �9 �9 is either H or T. 

Here is the result  of the horseshoe analysis that  I found  

on that  Copacabana beach. Consider  all the points  which, 

unde r  the horseshoe mapping,  stay in the square, i.e., don ' t  

drift out  of our  field of vision. These "visual motions" cor- 

respond precisely to the set  of a l l  coin-flipping experi- 

ments!  This discovery demons t ra tes  the occurrence  of un- 

predictabil i ty in fully non- l inear  mot ion and gives a 

mechan i sm of how de te rmin ism produces  uncertainty.  

The correspondence is the following. To each visual  mo- 

t ion there is an associated coin-flipping experiment.  If :Co 

Xl x2 �9 �9 �9 is the visual motion, at t ime i = 0, 1, 2, 3 , . . .  as- 

sociate H or heads if xi lies in the top half of the square 

and  T or tails if it lies in the bot tom half. 

Moreover, and this is the crux of the matter, every pos- 

sible sequence of coin flips is represented by a horseshoe 

motion.  Therefore the dynamics  is as unpredictable  as 

coin-flipping�9 In the natura l  o n e - o n e  correspondence 

X 0 Z l X 2  . . . - - - > S  0 s l  8 2  . . . ,  

Xo x l  x2 �9 �9 �9 is a mot ion  lying in the square and So Sl s2 
� 9  is a sequence of H's and T's. 

On the left is a determinist ically 

generated motion and  on  the 

right a coin-flipping experiment.  

We have seen complete 

unpredictabil i ty pop up within 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  - - .  

C* 

D 

" " - - . . . . .  
" - . ,  , 

" ' ' ' ' " - . .  , . , ,  

B *  ""'"-,,,.,. 

D* 

determinist ic  motion, the horse- 

shoe�9 This is chaos. 

The Hidden Origins of 
Chaos 
As chaos is a mathematical ly 

based revolution, it is no t  sur- 

prising that a mathemat ic ian  

first saw evidence of chaos in 

dynamics. 

2To give a complete picture in this section, one needs to reverse time and consider sequences of heads and tails which go back in time as well, 

4 2  THE MATHEMATICAL INTELUGENCER 



P 

A *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " ' " ' " ' " ' " ,  

, . . . . . L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

C *  " ' "  "' 

, 

D • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i.., '" 

S * ' -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " "  

c 

,=ULmaL~ 

D 

Henri Poincar~ was  (with David Hilbert) one of  the  two 

foremost  mathemat ic ians  in the world active at  the  end of 
the  last  century. I heard  of  him first as an originator  of  topol- 
ogy, who had writ ten an art icle claiming that a manifold  with 
the same algebraic invariants as the n-dimensional  sphere  

was  topologically identical  to the n-dimensional  sphere.  
Then he found a mis take  in his proof. Restricting himself  
now to 3 dimensions, he formulated the asser t ion as  a prob- 

lem, now called Poincar~'s  Conjecture, still one of  the  three 
or  four  great  unsolved p rob lems  in mathemat ics  today.  

More germane to my p resen t  s tory  is his con t r ibu t ion  to 

the  s tudy of  dynamics.  
Poincar~ made  extens ive  s tudies  in celest ial  mechanics ,  

tha t  is to say, the mot ions  of  the  planets.  At that  t ime it 

was  a ce lebra ted  p rob l em to prove  the solvabil i ty  of  those  
under lying equations,  and  in fact  Poincar~ at  one  t ime 
thought  that  he had p roved  it. Short ly thereafter ,  however ,  
he became  t raumat ized  by  a discovery which  no t  only 
showed  him wrong but  s h o w e d  the impossibi l i ty  of  ever  

solving the equations for  even three  bodies.  This d i scovery  
he chr is tened "homoclinic point." 

A B 

FIGURE 6 

A homocl in ic  poin t  is a mot ion  tending  to an equilibrium 

as t ime inc reases  and also to tha t  sarae  equil ibrium as t ime 
recedes  into the  past .  See Figure  6. Here p is an equilib- 
rium and h marks  the  homocl in ic  point.  The ar rows rep- 

resent  the  d i rec t ion  of  time. 
This definition sounds harmless enough but  carries amaz- 

ing consequences.  Poincar~ wrote  concerning his discovery: 3 

One will be struck by the complexity of  this figure, which 
I won't even try to draw. Nothing can more dearly give 
an idea of  the complexity of  the three-body problem and 
in general of  all the problems of  d y n a m i c s . . .  

In addi t ion  to showing the imposs ib i l i ty  of  solving the 
equations of  p lane ta ry  motion,  the  homocl in ic  point  has  
turned out  to  be  the t r ademark  of  chaos;  it is found in es- 

sent ial ly every  chaot ic  dynamical  system. 
It was  in the  first  half  of  this  century  that  Amer ican  

mathemat ics  came into its own, and  t radi t ions  s temming 
from Poincar~ in topology and dynamics  were  central  in 
this development .  G.D. Birkhoff  was  the  mos t  wel l -known 

FIGURE 7 

:IGURE ,= 

3My own translation from the French. 
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American mathematician before World War II. He came 
from Michigan and did his graduate work at the University 
of Chicago, before settling down at Harvard. Birkhoff was 
heavily influenced by Poincar~'s work in dynamics, and he 
developed these ideas and especially the properties of ho- 
moclinic points in his papers in the 20s and 30s. 

Unfortunately, the scientific community soon lost track 
of the important ideas surrounding the homoclinic points 
of Poincar& In the conferences in differential equations 
and dynamics that I attended in the late 50s, there was no 
awareness of this work. Even Levinson never showed in 
his book, papers, or correspondence with me that he was 
aware of homoclinic points. 

It is astounding how important scientific ideas can get 
lost, even when they are aired by leading mathematicians 
of the preceding decades. 

I learned about homoclinic points and Poincar~'s work 
from browsing in Birkhofs collected works, which I found 
in IMPA's library. It was because of the recently discov- 
ered horseshoe that the homoclinic landscape was to sink 
into my consciousness. In fact there was an important re- 
lation between horseshoes and homoclinic points. 

If a dynamics possesses a homoclinic point then ! 
proved that it also contains a horseshoe. This can be seen 
in Figure 7. 

Thus the coin-flipping syndrome underlies the homo- 
clinic phenomenon, and helps to comprehend it. 

The Third Force 
I was lucky to fmd myself in Rio at the confluence of three 
different historical traditions in dynamics. These three 
strains, while dealing with the same subject, were isolated 
from each other, and this isolation obstructed their devel- 
opment. I have already discussed two of these forces, 
Cartwright-Littlewood-Levinson and Poincar~-Birkhoff. 

The third had its roots in Russia with the school of dif- 
ferential equations of A. Andronov in Gorki in the 1930s. 
Andronov had died before the first time I went to the Soviet 
Union, but in Kiev, in 1961, I did meet his wife, Andronova- 
Leontovich, who was still working in Gorki in differential 
equations. 

In 1937 Andronov teamed up with the Soviet mathe- 
matician L. Pontryagin. Pontryagin had been blinded at the 
age of 14, yet went on to become a pioneering topologist. 
The pair described a geometric perspective of differential 
equations they called "rough," subsequently called struc- 
tural stability. Chaos, in contrast to the two previously men- 
tioned traditions, was absent in this development because 
of the restricted class of dynamics. 

Fifteen years later the great American topologist 
Solomon Lefschetz became enthusiastic about Andronov 
and Pontryagin's work. Lefschetz had also suffered an ac- 
cident, that of losing his arms, before turning to mathe- 
matics, and this perhaps generated some kind of bond be- 
tween him and the blind Pontryagin. They first met at a 
topology conference in Moscow in 1938, and again after 
the war. It was through Lefschetz's influence, in particular 
from an article of his student De Baggis, that Mauricio 
Peixoto in Brazil learned of structural stability. 

Peixoto came to Princeton to work with Lefschet~ in 
1957, and this is the route which led to our meeting each 
other through Elon. After this meeting, I studied Lefschetz's 
book on a geometric approach to differential equations, 
and eventually came to know Lefschetz in Princeton. 

Thanks to Pontryagin and Lefschetz, there was the 
specter of topology in the concept of structural stability of 
ordinary differential equations. I believe that was why I lis- 
tened to Mauricio. 

Good Luck 
Sometimes a horseshoe is considered an omen of good 
luck. The horseshoe I found on the beach of Rio certainly 
seemed to have such a property. 

In that spring of 19601 was primarily a topologist, mainly 
motivated by the problems of that subject, and most of all 
driven by the great unsolved problem posed by Poincar& 
Since I had started doing research in mathematics, I had 
produced false proofs of the 3-dimensional Poincar6 
Conjecture, returning again and again to that problem. 

Now on those beaches, within two months of fmding 
the horseshoe, I found to my amazement an idea which 
seemed to succeed provided I returned to Poincar6's orig- 
inal assertion and then restricted the dimension to 5 or 
more. In fact the idea not only led to a solution of 
Poincar6's Conjecture in dimensions greater than 4, but it 
gave rise to a large number of other nice results in topol- 
ogy. It was for this work that I received the Fields Medal 
in 1966. 

Thus ". . .  the mathematics created on the beaches of 
Rio . . ."  (Hornig) was the horseshoe and the higher- 
dimensional Poincar6 Conjecture. 
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