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Abstract

We discuss the uniqueness of solutions of a family Sn, n =
2, 3, . . . , of nonlinear systems of equations in the first orthant
of Rn arising in the context of Kahler geometry. We pose a
few conjectures on the general behavior of the system and
prove them for low n in the general case and in a particu-
lar symmetric case. Some of our proofs are computer-aided
since at a certain point we need a large number of calcula-
tions. We take into account the computational errors and
show that our final results are completely rigorous.
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1 Introduction and motivation

Nonlinear systems of equations over manifolds can be so diverse from each
other that there is no hope to develop a general theory for their solvability
and uniqueness of solutions and often one has to settle for just numerical
results. On the other side, systems arising in applications have often so
strong symmetries that sometimes it is, on the contrary possible to attack
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the problem analytically. This is the case of the family Sn of nonlinear
systems (see Eq. (2)) that we present in this article.

In order to describe the origin of these systems, we need first to spend
some paragraphs to explain the setting in which they arise. In [6], Donaldson
presented several numerical results in the setting of Kahler geometry aimed
at approximating distinguished metrics, in particular balanced ones, follow-
ing some important theoretical results in [4, 5]. Given a complex manifold
X, Donaldson considers an ample holomorphic line bundle L → X, namely
a complex 1-dimensional bundle such that, for all k large enough, the (fi-
nite dimensional) vector space H0(X,Lk) of sections of Lk → X has bases
{σ1, . . . , σN} such that the map

Σ : x→ [σ1(x) : · · · : σN(x)] ,

is an embedding of X into CPN (for all concepts and definitions of com-
plex differential geometry we use in this section, we refer the reader to any
standard text, e.g. see Ch. 2 of [10])

The existence of such embedding is precious because it allows to pull-
back onto X the Fubini-Study metric gFS (and so the corresponding form
ωFS and measure µFS) canonically defined on CPN . In particular, given any
basis Σ = {σ1, . . . , σN} of H0(X,Lk), we say that Σ is balanced if

〈σi, σj〉FS =

∫
X

gFS(σi(z), σj(z))dµFS(Σ(z)) = c δij, i, j = 1, . . . , N

for some constant c.
When L = K±m is a power of the canonical bundle K of X, namely K

is the bundle of dimX-forms on X (we assume here that K is ample, which
is true, for instance, in case of the complex projective spaces CP k), then we
have a canonical measure defined on L in the following way: given any basis
Σ = {σ1, . . . , σN} of H0(X,L) orthonormal with respect to the Fubini-Study
metric, we define the canonical volume form

µcan =

[
N∑
i=0

|σi|2
]± 1

m

and we say that Σ is canonically balanced if

〈σi, σj〉can =

∫
X

gFS(σi(z), σj(z))dµcan(Σ(z)) = c δij, i, j = 1, . . . , N (1)
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for some constant c.
Balanced bases are relevant because they are related to the concept of

balanced metrics, that play an important role in Kahler geometry. What
is now called balanced geometry has been object of study in several recent
publications (e.g. see [13, 3, 14, 8, 12, 2]; in particular, see [11] for the most
updated results on this topic) balanced metrics can be characterized (see [6])
as fixed points of a map T and can be easily gotten numerically this way via
iterations. Not much is known, on the contrary, on the corresponding map
TK associated to the canonical case.

The case of interest for the present article is when X is the Riemann
sphere CP 1 and L = K−k = O(2k) is some power of the canonical line
bundle K = O(−2). In this case, it is known that L is the bundle of all
homogeneous polynomials in two complex variables z0 and z1 of degree 2k.
Modulo multiplication by a scalar, the only balanced basis for L → CP 1

is {σ` =
(
n
`

) 1
2 zn−`0 z`1}, ` = 0, . . . , n (e.g. see Example 2.4 in [1]). In [6],

Donaldson’s numerical results in case of CP 1 show that iterations of TK lead
to the standard balanced base of CP 1 but no particular reason is provided in
that paper. We believe that the reason is that, in this particular case, also
the canonically balanced base is unique and coincides with the balanced one.

Let us write explicitly the condition of being canonically balanced in the
two simplest cases. First, assume that L = K−1 = O(2), namely k = 1.
The unique balanced basis of L is Σ = {z2

0 ,
√

2z0z1, z
2
1}. Consider now, for

semplicity, the family of bases Σa = {z2
0 , az0z1, z

2
1}, a ∈ R, and let us write the

conditions for Σα to be canonically balanced in the projective chart z0 = 1.
Then

µcan(Σa(z)) =

[
2∑
i=0

|σi|2
]−1

dz ∧ dz̄ =
1

1 + a2|z|2 + |z|4
dz ∧ dz̄

and the non-trivial part of condition (1), namely

‖σ0‖can = ‖σ1‖can = ‖σ2‖can

becomes, after integration over the angle θ in polar coordinates (r, θ) and
switching to x = r2,

∞∫
0

1

1 + a2x+ x2
dx =

∞∫
0

a2x

1 + a2x+ x2
dx =

∞∫
0

x2

1 + a2x+ x2
dx.
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Note that this is actually a single equation, since the last terms becomes the
first after the substitution y = 1/x, and is exactly system S2 with α = a2

(see Eq. (2) and Sec. 3.1).
Assume now that L = K−2 = O(4), namely k = 2, so that the unique

balanced basis of L is Σ = {z4
0 , 2z

3
0z1,
√

6z2
0z

2
1 , 2z0z

3
1 , z

4
1}, and consider the

family of bases Σabc = {z4
0 , az

3
0z1, bz

2
0z

2
1 , cz0z

3
1 , z

4
1}, a, b, c ∈ R. The canonical

measure is

µcan(z) =

[
4∑
i=0

|σi|2
]−1/2

dz∧dz̄ =
1

(1 + a2|z|2 + b|z|4 + c|z|6 + |z|8)1/2
dz∧dz̄

so that the non-trivial part of condition (1) becomes now

∞∫
0

1

p1/2
dx =

∞∫
0

a2x

p1/2
dx =

∞∫
0

b2x2

p1/2
dx =

∞∫
0

c2x3

p1/2
dx =

∞∫
0

x4

p1/2
dx,

where p = (1+a2x+bx2 +cx3 +x4)1/2. As above, the first and last terms are
identical and the 3×3 system left is exactly system S4 with α1 = a2, α2 = b2

and α3 = c2. In general, setting L = K−k results in system S2k. Showing
that every Sn has a unique solution would amount to prove the uniqueness
of canonically balanced bases for the holomorphic bundles O(n)→ CP 1.

The article is structured as follows. In Section 2 we pose the main def-
initions and conjectures and prove some general property. In Section 3 we
discuss in detail and prove the conjectures, in particular the uniqueness of
the solution, in case of S2 and S3. In Section 4 we restrict our attention to the
subsystem Sn symmetric with respect to the symmetry x 7→ 1/x and prove
some stronger property it satisfies. In Section 5 we prove the conjectures for
S 3, S 4 and S 5. Finally, in Appendix A we discuss in detail the analysis of
errors relative to our compuations, showing how our numerical results lead
to rigorous results.

2 Hidden Structure and Conjectures

We denote by Rn
+ the first orthant of Rn, n ≥ 2, and we consider the family

of functions
Fk,n : Rn

+ → R, k = 0, . . . , n,
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defined by

Fk,n(α1, . . . , αn−1) =

∞∫
0

xk

p(x;α1, . . . , αn−1)
n+2
n

dx,

where
p(x;α1, . . . , αn−1) = 1 + α1x+ · · ·+ αn−1x

n−1 + xn.

The main object of study of this article is the following system:

Sn =


F0,n(α1, . . . , αn−1) = α1F1,n(α1, . . . , αn−1)

. . .

F0,n(α1, . . . , αn−1) = αn−1Fn−1,n(α1, . . . , αn−1).

(2)

We denote by Zn the set of its zeros in the first orthant On. Consider the
point

Pn =

((
n

1

)
,

(
n

2

)
, . . . ,

(
n

n− 1

))
and notice that

p(x;Pn) = (1 + x)n.

A direct calculation shows that

Fk,n(Pn) =
1(

n
k

)
(n+ 1)

=
1(
n
k

)F0,n(Pn), k = 0, . . . , n,

namely Pn ∈ Zn.
Our numerical and analytical explorations lead us to formulate the fol-

lowing conjecture:

Conjecture 1. For each n ≥ 2, System (2) has the unique solution Pn in
the first orthant, namely Zn = {Pn}.

The proof of this conjecture for several low-dimensional particular cases
is presented in next sections. In the remainder of this section we prove
the existence of a hidden non-trivial structure that allows us to reduce this
system, at least for the cases discussed in next sections, to a single degenerate
equation.

Lemma 2.1. Fk,n(α1, . . . , αn−1) = Fn−k,n(αn−1, . . . , α1).
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Proof. This is an immediate consequence of the fact that the domain of
integration appearing in the Fk is invariant under the transformation x 7→
1/x.

The following two functions play a fundamental role in our construction:

Gn(α1, . . . , αn−1) =

∞∫
0

1

p(x;α1, . . . , αn−1)
2
n

dx

and

Rn(α1, . . . , αn−1) = 1
α1

1
+ 2

α2

α1

+ · · ·+ (n− 1)
αn−1

αn−2

+ n
1

αn−1

.

For the sake of conciseness, we will use the notation A = (α1, . . . , αn−1) and

Ã = (αn−1, . . . , α1) in the rest of the article.

Proposition 2.2. If A = (α1, . . . , αn−1) ∈ Zn, then

Gn(A) = nF0,n(A) + F0,n(Ã).

Proof. Let A ∈ Zn. We know that

F0,n = α1F1,n = · · · = αn−1Fn−1.

From Lemma 2.1 we also know that, at any point A,

Fn,n(A) = F0,n(Ã).

Hence

Gn(A) =

∞∫
0

1

[1 + α1x+ · · ·+ αn−1xn−1 + xn]
2
n

dx =

=

∞∫
0

1 + α1x+ · · ·+ αn−1x
n−1 + xn

[1 + α1x+ · · ·+ αn−1xn−1 + xn]
n+2
2

dx =

= F0,n(A) + α1F1,n(A) + · · ·+ αn−1Fn−1,n(A) + Fn,n(A) =

= nF0,n(A) + F0,n(Ã).
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We use the notation F̃0,n(A) = F0,n(Ã) and similarly for Rn, so that

lemma above means that Gn = nF0,n + F̃0,n on Zn.

Proposition 2.3. The restriction of F0,n to Zn is the rational function

n

2Rn(α1, . . . , αn−1)
.

Proof. Since

p′(x;α1, . . . , αn−1) = α1 + 2α2x+ · · ·+ (n− 1)αn−1x
n−2 + nxn−1,

then
α1F0,n + 2α2F1,n + · · ·+ (n− 1)αn−1,nFn−2,n + nFn−1,n =

=

∞∫
0

p′(x;α1, . . . , αn−1)

[p(x;α1, . . . , αn−1)]
n+2
n

dx = − n/2

[p(x;α1, . . . , αn−1)]
n
2

∣∣∣∣∣
∞

0

=
n

2
.

On Zn we have that the left hand side of the identity above is equal to(
α1 + 2

α2

α1

+ · · ·+ (n− 1)
αn−1

αn−2

+ n
1

αn−1

)
F0,n(A) = Rn(A)F0,n(A),

so that finally

F0,n =
n

2Rn

on Zn.

Combining Proposition 2.2 with Proposition 2.3, we see that every solu-
tion of System (2) must also be a solution of the equation

Gn(A) =
n2

2Rn(A)
+

n

2Rn(Ã)
. (3)

Proposition 2.4. The point Pn is critical for the function

Γn(A) = Gn(A)− n2

2Rn(A)
− n

2Rn(Ã)

with critical value 0.
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Proof. Since the point is symmetric, we can rather consider Gn − n(n+1)
2R

.
First, notice that

F0,n(Pn) =

∞∫
0

1

((1 + x)n)
n+2
n

dx =

∞∫
0

1

(1 + x)n+2
dx =

1

n+ 1
,

Gn(Pn) =

∞∫
0

1

((1 + x)n)
2
n

dx =

∞∫
0

1

(1 + x)2
dx = 1

and

Rn(Pn) = Rn

((
n

n− 1

)
, . . . ,

(
n

1

))
=

=

(
n

1

)
+ 2

(
n
2

)(
n
1

) + · · ·+ (n− 1)

(
n
n−1

)(
n
n−2

) + n
1(
n
n−1

) =

= n+ (n− 1) + · · ·+ 2 + 1 = n(n+ 1)/2,

so that Γn(Pn) = 0.
Moreover,

∂αkGn

∣∣
Pn

= − 2

n

∞∫
0

xk

p(x;α1, . . . , αn−1)
n+2
n

dx = − 2

n
Fk,n = − 2

n

F0,n(
n
k

) = − 2

n(n+ 1)

1(
n
k

) ,
∂αkRn

∣∣
Pn

= (n− k)
1(
n

n−k−1

) − (n− k + 1)

(
n

n−k+1

)(
n

n−k

)2 =
k + 1(
n
k

) − k(
n
k

) =
1(
n
k

)
and

∂αk
n(n+ 1)/2

Rn

∣∣∣∣
Pn

= −n(n+ 1)/2

R2
n(Pn)

∂αkRn

∣∣
Pn

= − 2

n(n+ 1)

1(
n
k

) ,
so that ∂αkΓn

∣∣
Pn

= 0.

The study of cases n = 2, 3 and of the symmetric cases n = 3, 4, 5, 6
suggest the following pair of conjectures:

Conjecture 2. For each n ≥ 2, Γn has a local minimum at Pn. In particular,
Pn is an isolated zero of Γn.

Conjecture 3. For each n ≥ 2, Γn : On → R has a global unique minimum
at Pn. In particular, Γn > 0 in On \ {Pn}.

Note that Conjecture 3 implies immediately the claim of Conjecture 1.
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3 The cases n = 2 and n = 3

In this section we prove Conjecture 1 for n = 2 and n = 3. The first case is
simple enough that we could prove everything analytically. For the second
case we use two different techniques.

First, we use chains of inequalities in order to show that the set of solu-
tions is bounded and away from the coordinate planes. This shows that the
set of solutions is contained in some compact set K. Second, we subdivide
K into small cells Ci and expand Γn in Taylor series in each Ci (except the
cell containing the solution) to verify that Γn > 0 within K. In the cell
containing Pn we instead make sure that the determinant of the Hessian of
Γn is strictly positive. If we get a negative result in any of the cells, we make
the subdivision finer and repeat. This algorithm will terminate in finite time
if and only if Γn is strictly positive away in the complement of Pn.

A full discussion of the methods and error analysis we used in our com-
putations can be found in Appendix A of the present article.

3.1 The case n = 2

Here we have a single variable α = α1 and two functions

Fk,2(α) =

∫ ∞
0

xk

(1 + αx+ x2)2
, k = 0, 1.

System (2) reduces to the single equation

F0,2(α) = αF1,2(α).

In this case, therefore, the equivalence of System (2) with Eq. (3) is trivial.
The latter writes as

Γ2(α) = G2(α)− 3

R2(α)
= 0,

where

G2(α) = 2

∫ 1

0

dx

1 + αx+ x2
=



π − 2 arctan α√
4−α2√

4− α2
, α ∈ [0, 2)

1, α = 2

ln α+
√
α2−4

α−
√
α2−4√

4− α2
, α ∈ (2,∞)
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Figure 1: Graphs of G2 (blue) and 3/R2 (beige). The picture suggests that
G2 ≥ 3/R2 and that the equal sign only occurs at α = 2, where the two
graphs are tangent to each other.

and

R2(α) = α +
2

α
.

A direct calculation shows that(√
|4− α2|Γ2(α)

)′
= 2
√
|4− α2| 4− α2

(2 + α2)2
,

namely
√
|4− α2|Γ2(α) is monotonic in (0, 2) and (2,∞) and so there are

no other zeros of Γ2 in (0,∞).

3.2 The case n = 3

In this case there are two variables α = α1, β = α2 and three functions

Fk,3(α) =

∫ ∞
0

xk

(1 + αx+ βx2 + x3)
5
3

, k = 0, 1, 2.

System (2) is given by {
F0,3(α, β) = αF1,3(α, β)

F0,3(α, β) = βF2,3(α, β)
(4)

and Eq. (3) is

G3(α, β) =
9

2R3(α, β)
+

3

2R3(β, α)
,
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Figure 2: (left) Graphs of G3 (beige) and H3 = 9/(2R3) + 3/(2R̃3) (blue).
The picture suggests that G3 ≥ H3 and that the equal sign only occurs at
α = β = 3, where the two graphs are tangent to each other. (right) Graph
of the inequalities ∂αH3 > 0 (blue) and ∂βH3 > 0 (beige).

with

G3(α, β) =

∫ ∞
0

dx

(1 + αx+ βx2 + x3)
2
3

and

R3(α, β) = α + 2
β

α
+ 3

1

β
.

The function

Γ3(α, β) =

∫ ∞
0

dx

(1 + αx+ βx2 + x3)
2
3

− 9/2

α + 2β
α

+ 3 1
β

− 3/2

β + 2α
β

+ 3 1
α

has a local minimum at (3, 3). Indeed the Hessian of Γ3 is

H3 =

 2
189

1
126

1
126

2
189

+

 11
216

− 7
216

− 7
216

5
216

+

 5
648

− 7
648

− 7
648

11
648

 =

 157
2268

− 20
567

− 20
567

115
2268


whose eigenvalues are both positive. Hence, α = β = 3 is an isolated solution
of Eqs. (4). Next proposition shows that, similarly to the n = 2 case, Γ3 is
non-zero in some neighborhood of the coordinate axes:

Proposition 3.1. Z3 ⊂ (1,∞]× (1,∞]
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Proof. Set H3 = 9/(2R3) + 3/(2R̃3). First of all, notice that ∂αR3 = 1 −
2β/α2, so that Uα = {∂αR3 < 0} is the component containing the positive
β semi-axis of the complement of the parabola 2β = α2; similarly, ∂βR3 =
2/α − 3/β2, so that Uβ = {∂βR3 < 0} is the component containing the
positive α semi-axis of the complement of the parabola 3α = 2β2. Notice
that, in particular,

S = {(x, x), x ∈ [0, 1]} ⊂ Uα ∩ Uβ, {1} × [1,∞) ⊂ Uα, [1,∞)× {1} ⊂ Uβ.

Set Ũα (resp. Ũβ) for the symmetric of Uα (resp. Uβ) with respect to the

diagonal and notice that Uα ⊂ Ũβ and Ũα ⊂ Uβ. Given that ∂α

(
R̃3(α, β)

)
=

(∂βR3) (β, α) and ∂β

(
R̃3(α, β)

)
= (∂αR3) (β, α), this means that ∂αH3 > 0

in Uα and ∂βH3 > 0 in Ũα.
Denote by S the set [0, 1]× [0,∞) ∪ [0,∞)× [0, 1]. Ultimately, from the

facts proved above, it follows that, for every point P ∈ S, either the vertical
or the horizontal segment with an endpoint on a coordinate axis and the
other on P is entirely contained in S.

All that is left to prove our claim is that Γ3 > 0 on ∂S. On the coordinate
semiaxis this fact is trivial since H3 = 0 while G3 > 0. Consider now the
case α = 1, β ≥ 1. We must prove that∫ ∞

0

dx

(1 + x+ βx2 + x3)
2
3

− 9/2

1 + 2β + 3/β
− 3/2

β + 2/β + 3
> 0.

Note that∫ ∞
0

dx

(1 + x+ βx2 + x3)
2
3

=

∫ 1

0

dx

(1 + x+ βx2 + x3)
2
3

+

∫ 1

0

dx

(1 + βx+ x2 + x3)
2
3

≥

≥ 2

∫ 1

0

dx

(1 + (2 + β)x)
2
3

=
3

2 + β

(
(3 + β)1/3 − 1

)
so it is enough to prove that

6

2 + β

(
(3 + β)1/3 − 1

)
>

9/2

1 + 2β + 3/β
+

3/2

β + 2/β + 3
.

This follows trivially from a direct calculation:

3 + β −
[

2 + β

4

(
3

1 + 2β + 3/β
+

1

β + 2/β + 3

)
+ 1

]3

=
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3456+11664β+18108β2+17687β3+10150β4+2253β5+80β6+1281β7+2286β8+1643β9+512β10

64(1+β)3(3+β+2β2)3
.

Similarly happens for the second half-line.

With some suitable approximation of the integrals, it is easy to show that
all roots of the system are contained in a compact set:

Proposition 3.2. Z3 ⊂ [1, 21]× [1, 21]

Proof. We need to prove that∫ 1

0

dx

(1 + αx+ βx2 + x3)
2
3

− 9/2

α + 2β/α + 3/β
+

+

∫ 1

0

dx

(1 + βx+ αx2 + x3)
2
3

− 3/2

β + 2α/β + 3/α
> 0

outside of [1, 21]× [1, 21]; it is enough indeed to prove that∫ 1

0

dx

(1 + αx+ βx2 + x3)
2
3

>
9/2

α + 2β/α + 3/β
.

Consider first the region A = {α ≥ 21} ∩ {α ≥ β}. Inside A∫ 1

0

dx

(1 + αx+ βx2 + x3)
2
3

≥ 1

α
2
3

∫ 1

0

dx

( 1
20

+ x+ x2 + 1
20
x3)

2
3

≥ 1.65

α
2
3

.

In order to prove that
1.65

α
2
3

>
9/2

α + 2β
α

+ 3
β

we notice that (
2

9
1.65

(
α + 2

β

α
+

3

β

))3

>
α3

20

and that α3

20
≥ α2 for α ≥ 20. Similarly it can be shown that the inequality

holds in B = {β ≥ 21} ∩ {β ≥ α}.

Finally, we write [1, 21]2 = O ∪ A ∪ B, with O = [2, 3.3]2, A = [1, 5]2 \ O
and B = [1, 21]2 \A∪O. We subdivide O, A and B in smaller closed cells Ci
and in each Ci we expand either Γ3 to the first order of the Taylor series (if
Ci lies within A or B) or the determinant of his Hessian to the zero-th order
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(if it lies within O) and show that these functions are strictly positive in Ci
(see Appendix A).

In Table 1 we report the size of the cells used within the three sets above
and the value closer to zero found within them. This shows that there cannot
be zeros of Γ3 in [1, 21]2, since within O the function is strictly convex and
in A ∪B is strictly positive, proving Conjectures 1, 2, 3 for this case.

4 The symmetric case

Calculations in the general case get quickly involved as n grows. We consider
in the remainder of this article the simpler particular case when αk = αn−k,
namely we restrict the system to the m-dimensional plane of points invariant
by the linear transformation (α1, . . . , αn) 7→ (αn, . . . , α1), where m = dn/2e.
To this category, for n = 6, belongs the case considered by Donaldson in [6],
coming from a problem in Kahler geometry, that sparked our interest in the
general problem.

The restrictions Fk,n : Rm
+ → R of the Fk,n write as

Fk,n(α1, . . . , αm) =

∞∫
0

xk

p(x;α1, . . . , αm)
n+2
n

dx,

where

p(x;α1, . . . , αm) = 1 + · · ·+ αmx
m + αm+1x

m+1 + αmx
m+2 + · · ·+ xn

when n = 2m+ 1 and

p(x;α1, . . . , αm) = 1+· · ·+αm−1x
m−1+αmx

m+αmx
m+1+αm−1x

m+2+· · ·+xn

when n = 2m.
Due to Lemma 2.1, Fk,n = Fn−k,n and so the n× n System (2) reduces to

the m×m system

Sn =


F0,n(α1, . . . , αm) = α1F1,n(α1, . . . , αm)

. . .

F0,n(α1, . . . , αm) = αmFm,n(α1, . . . , αm)

(5)

We denote by Zn its set of zeros. Note that Pn =
((
n
1

)
, . . . ,

(
n
m

))
∈ Zn.
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Functions Gn and Rn become

Gn(α1, . . . , αm) =

∫ ∞
0

dx

p(x;α1, . . . , αm)
2
n

= 2

∫ 1

0

dx

p(x;α1, . . . , αm)
2
n

and

R n(α1, . . . , αm) = α1+2
α2

α1

+· · ·+m αm
αm−1

+(m+1)+(m+2)
αm−1

αm
+· · ·+(n−1)

α1

α2

+n
1

α1

when n = 2m+ 1 and

R n(α1, . . . , αm) = α1+2
α2

α1

+· · ·+m αm
αm−1

+(m+1)
αm−1

αm
+· · ·+(n−1)

α1

α2

+n
1

α1

when n = 2m.
Finally, Eq. (3) writes here as

Gn =
n(n+ 1)

2R n

.

We use the notation Gn = Gn −
n(n+1)

2R n
and formulate in this setting similar

conjectures for the general case:

Conjecture 4. For each n ≥ 2, System (5) has the unique solution Pn in
the first orthant, namely Zn = {Pn}.

Conjecture 5. For each n ≥ 2, Gn has a strict local minimum at Pn (equiv-
alently, Pn is an isolated zero of Gn).

Conjecture 6. For each n ≥ 2, Gn has a global minimum at Pn (equivalently,
Gn > 0 in Om \ {Pn}).

Proposition 4.1. The only critical point of R n in Om is at αk =
√(

n
k

)
,

k = 1, . . . ,m, where it has a global minimum.

Proof. Consider first the case when n is even. Directly from the definition
we get that

∂αmR n = m
1

αm−1

− (m+ 1)
αm−1

αm
= 0 (6)
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while

∂αk−1
R n = (k−1)

1

αk−2

−k αk
α2
k−1

+(k+1)
1

αk
−(k+2)

αk−2

α2
k−1

= 0, k = 2, . . . ,m.

(7)
By multiplying (6) by αm/αm−1 and summing the result to (7), with k = m,
we get that

(m− 1)
1

αm−2

− (m+ 2)
αm−2

α2
m−1

= 0.

By repeating this process, we ultimately arrive to

1− n 1

α2
1

= 0,

namely α2
1 = n. By substituting recursively we find that the only critical

point of R n in Om is such that α2
k =

(
n
k

)
, k = 1, . . . ,m. Since R n diverges

at the boundary, this unique critical point must be a minimum. The proof
when n is odd is similar.

Now set O = Om \ [
√(

n
1

)
,∞)× · · · × [

√(
n
m

)
,∞). The set O is a neigh-

borhood of the boundary of the first orthant. The lemma below will be used
in next section to prove the solution’s uniqueness.

Lemma 4.2. Let U = ∪mi=1Ui, with Ui = {∂αiR n < 0}. Then U ⊃ O.

Proof. Proceeding as in the previous proposition, we see that, for any choice
of the other coordinates in the interior of the orthant,

∂αmR n = m
1

αm−1

− (m+ 1)
αm−1

αm

diverges to −∞ for αm → 0 and reaches zero in the orthant at the single
point αm =

(
n
m

)
.

In case of

∂αm−1R n = (m− 1)
1

αm−2

−m αm
α2
m−1

+ (m+ 1)
1

αm
− (m+ 2)

αm−2

α2
m−1

,

we have again that the derivative diverges to −∞ for αm−1 → 0 for any fixed
value of the other coordinates in the interior of the orthant. Moreover, since
coordinates other than αm−1 appear only in the denominators of the positive
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Figure 3: Graphs of G3 (blue) and 6/R 3 (beige). The picture suggests that
G3 ≥ 6/R 3 and that the equal sign only occurs at α = 3, where the two
graphs are tangent to each other.

terms or in the numerators of the negative ones, we have that ∂αm−1R n < 0
when αm−1 <

(
n

m−1

)
and αk >

(
n
k

)
for every k 6= m− 1. The same argument

above applies to ∂αjR n for all j ≤ m−1, so this covers all points of O except
for the parallelotope Π =

∏m
i (0,

(
n
i

)
).

Now, take a point P ∈ Π and assume that ∂αjR n(P ) > 0 for j = 2, . . . ,m.
From case j = m we get that m/αm−1 > (m + 1)αm−1/α

2
m. Using this

inequality, from case j = m−1 we get that (m−1)/αm−2 > (m+2)αm−2/α
2
m−1

and so on, so that ultimately from case j = 2 we get that 2/α1 > (n−1)α1/α
2
2.

This means that

∂α1R n = 1− 2
α2

α2
1

+ (n− 1)
1

α2

− n 1

α2
1

< 1− n 1

α2
1

< 0,

since α1 < n in Π, and so that Π ⊂ U .

5 Proof of the conjectures in the symmetric

case for low n

Case n = 2 trivially belongs to both the general and the symmetric case,
so Section 3.1 represents a first confirmation of the three conjectures above.
Below we discuss all cases with n ≤ 5. The case n = 6 will be discussed in a
separate article, joint work with A. Loi (U. of Cagliari, Italy), dedicated to
the corresponding geometric problem in [6].
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5.1 n = 3

This case is covered by the proof of the non-symmetric case but here we will
provide a fully analytical proof. In this case we have a single variable α = α1

and the functions in play are

Fk,3(α) =

∞∫
0

xk

(1 + αx+ αx2 + x3)
5
3

dx,

G3(α) = 2

1∫
0

dx

(1 + αx+ αx2 + x3)
2
3

,

R 3(α) = α + 2 + 3/α.

System (5) is given by the single equation

F0,3(α) = αF1,3(α) (8)

and G3 = 0 writes explicitly as

1∫
0

2

(1 + αx+ αx2 + x3)
2
3

dx =
6

α + 2 + 3/α
.

We now consider the function

C(α) = (α2 + 2α + 3)G3(α),

that has the same zeros as G3. Its second derivative is

C ′′(α) = 4

1∫
0

1 + ρx+ σx2 + ρx3 + x4

(1 + x)2/3(1 + αx+ αx2 + x3)
8
3

dx,

where ρ = 2
3
(α− 5) and σ = 2

9
(23 + (2− α)2).

We claim that the integrand in C ′′(α) is a positive function, and there-
fore C ′′ > 0. Indeed the denominator of the integrand is always positive
and its numerator has all positive coefficients for α > 5. Moreover, a direct
calculation shows that the numerator has no critical point within the rect-
angle R = {0 ≤ α ≤ 5, 0 ≤ x ≤ 1}. At the boundaries, the numerator
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Figure 4: (left) Graphs of G4 (beige) and 10/R 4 (blue). The picture suggests
that G4 ≥ 10/R 4 and that the equal sign only occurs at α = 4, β = 6, where
the two graphs are tangent to each other. (right) Graph of the inequalities
∂α(10/R 4) < 0 (blue) and ∂β(10/R 4) < 0 (beige).

restricts to 9 and 12 + 4α + 2α2 on, respectively, x = 0 and x = 1, and to
9− 30x+ 54x2 − 30x3 + 9x4 and 9 + 64x2 + 9x4 on, respectively, α = 0 and
α = 5. All four of these polynomials are positive on ∂R and so the minimum
of the numerator within R is positive.

Since C ′′ > 0, C is strictly convex and so it can have at most one critical
point. Hence, G3 cannot have other zeros besides α = 3.

5.2 n = 4

In this case we have two variables, α = α1 and β = α2, and four functions

Fk,n =

∫ ∞
0

xk

(1 + αx+ βx2 + αx3 + x4)
3
2

, k = 0, 1, 2, 3.

System (5) is given by {
F0,4(α, β) = αF1,4(α, β)

F0,4(α, β) = βF2,4(α, β)
(9)

and G4 = 0 writes explicitly as

2

1∫
0

dx

(1 + αx+ βx2 + αx3 + x4)
1
2

=
10

α + 2β
α

+ 3α
β

+ 4 1
α

.
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Proposition 5.1. Let O = R2
+ \ (1,∞)2. Then Z4 ∩O = ∅.

Proof. We know from Lemma 5.1 that, close enough to each coordinate axis
in the first quadrant, in the direction perpendicular to the axis G4 decreases
while 1/R 4 increases.

We claim that G4 > 0 inside O. All is left to prove is that G4 > 0 on ∂O.
On each coordinate axis, this is due to the fact that G4 > 0 while 1/R 4 = 0.
When α = 1 and β ≥ 1,

G4 = 2

1∫
0

dx

(1 + x+ βx2 + x3 + x4)
1
2

≥ 2

1∫
0

dx

(1 + (3 + β)x)
1
2

= 4

√
4 + β − 1

3 + β
.

The fact that

4

√
4 + β − 1

3 + β
>

10

1 + 2β + 3/β + 4

follows from the observation that

4 + β −
[
1 +

5β(3 + β)

2(2β2 + 5β + 3)

]2

=
(3 + β)p(β)

4(1 + β)2(3 + 2β)2
,

where p(β) = 36 + 60β− 27β2 + 15β3 + 16β4, and that p > 0 for β ≥ 1 since,
in that range, p′(β) > 0 and p(1) > 0.

Similarly, when β = 1 and α ≥ 1,

G4 =

1∫
0

2dx

(1 + αx+ x2 + αx3 + x4)
1
2

≥
1∫

0

2dx

(1 + 2(1 + α)x)
1
2

≥ 2

√
3 + 2α− 1

1 + α
.

The fact that

2

√
3 + 2α− 1

1 + α
>

5

2α + 3/α

follows from the observation that

3 + 2α−
[
1 +

5(1 + α)

2(2α + 3/α)

]2

=
(1 + α)q(α)

4(3 + 2α2)2
,

where q(α) = 72− 60α+ 71α2− 65α3 + 32α4, and that q > 0 for α ≥ 1 since,
in that range, q′(α) > 0 and q(1) > 0.

Proposition 5.2. Z4 ⊂ [1, 34]× [1, 288]
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Proof. We use the fact that, in U = {6α + β ≥ 200},
1∫

0

2dx

(1 + αx+ βx2 + αx3 + x4)
1
2

>
2√

6α + β

1∫
0

dx

( 1
200

+ 1
6
x+ x2 + 1

6
x3 + 1

200
x4)

1
2

.

The integral in the r.h.s. is strictly larger than 2.5, so

(α, β) ∈ U =⇒ G4(α, β) >
5√

6α + β
.

We claim that 5/
√

6α + β > 10/R 4 when either α > 24 or α ≤ 24, β > 288.
Indeed, since R 2

4 > α2 + 4β, for α > 24 we have that R 2
4/4 > 6α+β. On the

other side, since R 2
4 > 4β2/α2 + 4β, for α ≤ 24 and β > 288 we have that

R 2
4/4 > β2/242 + β > 6 · 24 + β ≥ 6α + β

when β2 > 6 · 243, namely when β > 288.

We write the rectangle R = [2, 34] × [
√

6, 240] as the union of the sets
O = [3.5, 5]× [5, 7], A = [2, 7]× [2.4, 9]\O and B = R\A∪O. By proceeding
exactly as in case of Section 3.2 we verify that G4 has only one zero in R
(see Table 1 for the size of the cells used within the three sets above and the
value closer to zero found within them).

5.3 n = 5

In this case we still have just two variables, α = α1 and β = α2, but now five
functions

Fk,n =

∫ ∞
0

xk

(1 + αx+ βx2 + βx3 + αx4 + x5)
7
5

, k = 0, 1, 2, 3, 4.

System (5) is given by {
F0,5(α, β) = αF1,5(α, β)

F0,5(α, β) = βF2,5(α, β)
(10)

and G4 = 0 writes explicitly as

2

1∫
0

dx

(1 + αx+ βx2 + βx3 + αx4 + x5)
2
5

=
15

α + 2β
α

+ 3 + 4α
β

+ 5 1
α

.
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Figure 5: (left) Graphs of G5 (beige) and 15/R 5 (blue). The picture suggests
that G5 ≥ 15/R 5 and that the equal sign only occurs at α = 5, β = 10, where
the two graphs are tangent to each other. (right) Graph of the inequalities
∂α(15/R 5) < 0 (blue) and ∂β(15/R 5) < 0 (beige).

Proposition 5.3. Let O = R2
+ \ (1,∞)2. Then Z5 ∩O = ∅.

Proof. As in Prop 5.1, all is left to prove is that G5 > 0 on ∂O. On each
coordinate axis, this is due to the fact that G5 > 0 while 1/R 5 = 0. When
α = 1 and β ≥ 1,

G5 =

1∫
0

2dx

(1 + x+ βx2 + βx3 + x4 + x5)
2
5

≥

≥
1∫

0

2dx

[1 + (3 + 2β)x]
2
5

=
10

3

(4 + 2β)3/5 − 1

3 + 2β
.

The fact that

10

3

(4 + 2β)3/5 − 1

3 + 2β
>

15

1 + 2β + 3 + 4/β + 5

follows from the observation that

(4 + 2β)3 −
[
1 +

9

2

3 + 2β

1 + 2β + 3 + 4/β + 5

]5

=
(3 + 2β)r(β)

32(4 + β)5(1 + 2β)5
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where r(β) is a polynomial with all positive coefficients.
Similarly, when β = 1 and α ≥ 1,

G5 =

1∫
0

2dx

(1 + αx+ x2 + x3 + αx4 + x5)
2
5

≥

≥
1∫

0

2dx

[1 + (3 + 2α)x]
2
5

=
10

3

(4 + 2α)3/5 − 1

3 + 2α
.

The fact that

10

3

(4 + 2α)3/5 − 1

3 + 2α
>

15

α + 2/α + 3 + 4α + 5/α

follows from the observation that

(4 + 2α)3 −
[
1 +

9

2

3 + 2α

α + 2/α + 3 + 4α + 5/α

]5

=
(3 + 2α)s(α)

32(7 + 3α + 5α2)5

where s(α) is a polynomial with all positive coefficients.

Let us show that Z5 is bounded.

Proposition 5.4. Z5 ⊂ [1, 32]× [1, 400]

Proof. We use the fact that, in U = 6α + β ≥ 300,

2

1∫
0

dx

(1 + αx+ βx2 + βx3 + αx4 + x5)
2
5

=

=
2

(6α + β)
2
5

1∫
0

dx

( 1
300

+ 1
6
x+ x2 + x3 + 1

6
x4 + 1

300
x5)

2
5

>

>
3.91

(6α + β)
2
5

.

Now,
3.91

(6α + β)
2
5

>
15

R 5

=⇒ (6α + β)2 < kR 5
5,
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where k = 0.0012. Since R 5
5 > α5 + 10α3β + 40αβ2, for α ≥ 32 we have that

kα3 ≥ 36, k10α2 ≥ 12 and 40kα > 1, namely

kR 5
5 > (6α + β)2.

Since we have also that R 5
5 > 80β3/α + 360β2 + 480β3/α2 + 80β4/α3

and, for α ≤ 32 and β > 400, we have the inequalities 16kβ3/α > 36α2,
64kβ2/α > 12α and k(360β2 + 480β3/α2 + 80β4/α3) > 1, even in this range
we have that

kR 5
5 > (6α + β)2.

We write the rectangle R = [
√

5, 50]× [
√

10, 401] as the union of the sets
O = [4, 6]×[9, 11], A = [2.2, 11]×[3, 13]\O and B = R\A∪O. By proceeding
exactly as in case of Sections 3.2 and 5.2 we verify that G5 has only one zero
in R (see Table 1 for the size of the cells used within the three sets above
and the value closer to zero found within them).
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Appendix A Computations

The positivity of a smooth function f on a compact set K can be verified
directly, in principle, by considering a finite set of small cells Pi covering K
and expanding f in its Taylor series fi up to some finite order ki in each
of the Pi. If, by making the Pi small enough (and therefore their number
large enough), the amplitudes of Taylor’s error terms τi on each Pi becomes
smaller than the minimum value of fi on Pi, this will grant the positivity of
f over the each Pi and therefore on the whole K.

Notice that the number of points needed to make the errors small enough
depend on the behavior of the derivatives of order ki + 1, appearing in the
τi terms and, depending on the function, this approach could easily need
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way too many points for this calculation to be done by hand in a reasonable
time even on a powerful computational cluster. Nevertheless for many simple
functions, including the one we deal with in the present article, this number
is reasonable and can be done on a single computer in a reasonable time
(roughly a few tens of hours).

Notice also that, while real-numbers calculations made on nowadays com-
puters – namely floating points calculations – in general involve inherently
computational errors and therefore in general cannot be used to verify ex-
actly equalities, there is no such problem for inequalities, namely numerical
calculations in floating point format can be used to prove exactly whether
some inequality holds or not provided it is possible to make sure that the
error term is small enough. Luckily, this is exactly our case.

Below we illustrate our computational procedure in the particular sym-
metric case n = 4. We denote the absolute and relative floating point errors
in the evaluation of some function F by, respectively, δF and ρF . Let us
consider first R 4 and its derivatives. The evaluation of R 4 requires 3 multi-
plications, 3 divisions and 3 additions. The multiplications are all of num-
bers exactly representable in floating point format and, whithin the range
allowed to α and β, their product are numbers within the double precision
allowed range, so they are exact too. In the 3 divisions the relative errors
sum up but, since the numbers involved are exactly represented, the abso-
lute error in each operation is of 1 unit on the last significant digit. The
largest summand of α and β within the rectangle R = [2, 34] × [

√
6, 240] is

240, so that 4 + 2
√

6 ≤ R 4 < 960 and the absolute and relative errors are
δR 4

< 4 · 240 · 2−53 . 10−13 and ρR 4
< δR 4

/8.8 . 1.2 · 10−14. Given that the
numerator is exactly representable in floating point format, the same bound
applies to the relative error of 10/R 4.

In case of the first and second partial derivatives of 10/R 4 the denom-
inator will be, respectively, R 2

4 and R 3
4 while the numerator will contain,

respectively, a term ∂µR 4 or a combination 2∂µR 4∂νR 4 − ∂2
µνR 4. Given

that all second derivatives are negative in the whole first octant while, by
contruction, in O all first derivatives are positive, no phenomenon of catas-
trophic cancellation can occur. A direct check shows that |∂µR 4| ≤ R 4/µ
for both µ = α, β, so that the first derivatives of R 4 are bound by the same
relative error of R 4 itself while ∂µ(10/R 4) has relative error double than it,
namely ρ∂µR 4

≤ 2.4 · 10−14. In case of the second derivatives we have the two
summands 2∂µR 4∂νR 4/R 3

4 ≤ 2/(µνR 4) and 10(∂2
µνR 4)/R 2

4 ≤ 10/(µνR 4).
The terms ∂2

µνR 4 are all sums of either one or two terms which, inside
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R, are all bounded from above by 180. The absolute errors of the first
and second summands are therefore bounded from above by, respectively,
7 · 1.2 · 10−13 · 2

4(4+
√

6)
. 5 · 10−14 and 4 · 1.2 · 10−13 · 3600

(4+
√

6)2
. 4 · 10−11. Hence

δ∂2µνR 4
≤ 4 · 10−11 and ρ∂2µνR 4

≤ 4 · 10−11 · 12
4(4+

√
6)

. 2 · 10−11. We’ll see below

that, due to the much larger errors in the evaluation of the integrals in G4,
all these errors can be ignored.

Let us now discuss the error on G4 and its derivatives. First, we notice
that the integral defining G4 can be suitably re-written as an integral over a
compact interval, since

∞∫
0

1
√
p
dx = 2

1∫
0

1
√
p
dx.

where p = 1 +αx+βx2 +αx3 +x4. We approximate integrals I =
∫ b
a
f(x)dx

with the midpoint rule, namely with the quantity In = h
∑n

1 f(a + 2i−1
2
h),

where h = b−a
N

and N is the number of subdivisions. We will choose n so
that the absolute error

|I − IN | ≤ ‖f ′′‖∞
(b− a)3

24N2
,

where ‖ · ‖∞ is the sup norm in [a, b], is small enough to grant the positivity
of the function we study. We denote by ∆I the absolute error in the estimate
of the integral I due to the midpoint rule.

In this particular case, we have the following bounds for the norms of the
integrands of G4 and its first and second derivatives:
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∥∥∥∂xx 1√
p

∥∥∥
∞
≤ 6 + 9α + 6α2 + 5β + 7αβ + 2β2 . 2 · 105

∥∥∥∂xx∂α 1√
p

∥∥∥
∞
≤ 1.5(16 + 11α + 4α2 + 7β + 6αβ + 2β2) . 2.6 · 105

∥∥∥∂xx∂β 1√
p

∥∥∥
∞
≤ (240 + 264α + 62α2 + 72β + 28αβ + 8β2)/8 . 105

∥∥∥∂xx∂αα 1√
p

∥∥∥
∞
≤ {3(582 + 333α + 24α2 + 218β + 59αβ + 16β2)/4} . 1.2 · 106

∥∥∥∂xx∂αβ 1√
p

∥∥∥
∞
≤ {3(140 + 83a+ 9a2 + 35b+ 10ab+ 3b2)/16} . 5.2 · 105

∥∥∥∂xx∂ββ 1√
p

∥∥∥
∞
≤ {3(140 + 140α + 35α2 + 30β + 15αβ + 2β2)/4} . 2.2 · 105

∥∥∥∂xx∂ααα 1√
p

∥∥∥
∞
≤ {15(2400 + 1128a+ 96a2 + 1008b+ 288ab+ 96b2)/32} . 7.8 · 106

∥∥∥∂xx∂ααβ 1√
p

∥∥∥
∞
≤ {15(2704 + 1512a+ 126a2 + 784b+ 232ab+ 64b2)/32} . 2.8 · 106

∥∥∥∂xx∂αββ 1√
p

∥∥∥
∞
≤ {15(2016 + 1120a+ 148a2 + 392b+ 112ab+ 24b2)/32} . 1.3 · 106

∥∥∥∂xx∂βββ 1√
p

∥∥∥
∞
≤ {15(1008 + 1008a+ 252a2 + 168b+ 84ab+ 8b2)/32} . 7.1 · 105

In our calculations, in most cases the values of G4 over R range between
10−1 and 10−3 so a value of the integration error not larger than 10−4 would
be desirable. With the norms above, this can be obtained globally in R by
taking N = 15, a value of N still low enough to allow computations to be
completed within times of the order of the hour. Note also that the situation
is actually even better since the values of these norms in the region where G4

is closer to zero are actually much lower than the upper bounds above.
Besides the numerical integration errors, of course we have also floating-

point arithmetic errors on the evaluation of the integrals G4 and its deriva-
tives to evaluate the Taylor series truncation and the Taylor seris error. These
floating-point errors though are negligible. First, we choose the subdivision
of [0, 1] so that every extreme xi of the subdivision is exactly representable in
double precision floating precision format. This way we can evaluate exactly
the polynomials in the numerator and the denominator p(x;α, β), so that the
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only errors contributing to each summand of the midpoint rule come from
the square root of p at the denominator and the division between numerator
and denominator.

We implement all our calculations in C/C++ code that we compile with
GNU’s GCC compiler. Notice that GNU’s C Math library does not grant
correct rounding for functions besides sqrt (square root), fma (sums and
multiplications) and rint (round to nearest integer) [9]. For the evaluation
of the root of order n at the denominator of Gn we use therefore GNU’s
MPFR library, a C library for Multi-Precision Floating-point computations
with correct Rounding [7]. This way we can count on the fact that the
relative error on the root is the smallest possible, namely 2−53, and, since
the numerator is exact, the relative error of the quotient is still 2−53. Going
back to the case of G4, given that the numerators of the integrands are never
larger than 8 and that 1 ≤ p(x;α, β) ≤ 1 + 2α + β = 308 in [0, 1] × R, the
absolute error on a single summand of the Riemann sums is not larger than
8 · 2−53 . 9 · 10−16 and so the absolute error on the evaluation of an integral
due to floating-point errors will not be larger than 215 · 8 · 2−53 . 3 · 10−11.
In short, the error analysis above shows that there is no loss of generality
by taking into account only the error coming from the numerical integration
method.

Let us illustrate all this in a concrete case, namely the square Q centered
at the point (4.2, 7) with side l = 0.2. In its most explicit expression, our
estimate for the minimum value of G4 in Q has the form

`± δ` ±∆` ± δ∆`
± τ ± δτ ±∆τ ± δ∆τ ,

where ` is the minimum value of the linearization of G4 in Q and τ an upper
bound of the corresponding error of the Taylor series truncation of G4 at the
first order – we get τ by evaluating all integrals in the left lower corner of Q
and by maximizing the absolute value of the numerator and minimizing the
denominator (which is always positive) of R 4 and its derivatives. In other
words, G4 > 0 in Q if

`− δ` −∆` − δ∆`
− τ − δτ −∆τ − δ∆τ > 0.

In this particular case, ` = 1.10... · 10−3 so all floating point errors can be
safely ignored – in fact, the minimum value of ` in all cases discussed in the
present paper is larger than 10−4 so these errors can always be ignored. The
error term is τ = 9.28... · 10−4. Within Q, the norms of the integrands in G4
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Set Size of cells Fnc. Sub. Center Min. value Error erms

n = 3

[2, 3.3]2 0.01× 0.025 H3 210 (2, 3.275) 2.26 · 10−3 τ . 1.94 · 10−3

∆H3 . 8 · 10−5

∆τ . 5.2 · 10−5

[1, 5]2 0.1× 0.1 Γ3 210 (3.1, 3.3) 7.2× 10−4 τ . 4.5× 10−4

∆Γ3 . 5 · 10−5

∆τ . 10−5

[1, 21]2 0.5× 0.5 Γ3 210 (1.25, 5.25) 2.6× 10−1 τ . 1.5 · 10−1

∆` . 3× 10−4

∆τ . 3 · 10−4

n = 4

[3.5, 5]× [5, 7] 0.01× 0.025 H4 215 (4.99, 5) 6.3 · 10−5 τ . 5.6 · 10−5

∆H4 . 5 · 10−7

∆τ . 1.3 · 10−6

[2, 7]× [2.4, 9] 0.2× 0.2 G4 213 (4.2, 7) 1.1× 10−3 τ . 9.2 · 10−4

∆G4
. 3× 10−5

∆τ . 3 · 10−5

[2, 34]× [2.4, 240] 0.25× 0.5 G4 211 (4.75, 8.9) 8.8× 10−3 τ . 1.7 · 10−3

∆G4
. 10−3

∆τ . 5.5 · 10−3

n = 5

[4, 6]× [9, 11] 0.0125× 0.0125 H4 216 (4, 1.0975) 1.5 · 10−5 ∆H4 . 2.4 · 10−6

τ . 4.9 · 10−6

∆τ . 3.2 · 10−6

[2.2, 11]× [3, 13] 0.5× 0.5 G4 212 (2.2, 7) 4.09× 10−1 τ . 2.2× 10−1

∆G5
. 9 · 10−3

∆τ . 1.2 · 10−1

[3, 50]× [4, 401] 0.5× 1 G4 213 (3, 14) 3.8× 10−1 τ . 8.6× 10−2

∆G5
. 3.4 · 10−3

∆τ . 6.7 · 10−2

Table 1: Essential data on the calculations for the case n = 3 and the symmetrical
cases n = 4, 5. For each n we first verify the positivity of the Hessian of the function
(Γ3, G4 and G5 respectively) in a small rectangle (first row) about the known
solution ((3, 3), (4, 6) and (5, 10) respectively), then we verify the positivity of the
function itself in a larger rectangle (middle row) and then (last row) in the whole
region not covered by our analytical arguments (we implicitly assume that, while
dealing with a set, we do avoid all points belonging to the sets above). For each
case we report the size of the cells used within that set, the function analyzed, the
number of subdivisions used to evaluate the integrals through the midpoint rule,
the center of the cell where the value of the function was closer to its relative error
term, the actual value of the function and, in the rightmost column, the value of
the error term coming from the Taylor expansion (τ) and the corresponding errors
on the evaluation of the integrals (that we denote by ∆). We do not include the
floating-point errors since they are several orders of magnitude smaller.
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and its first derivatives are bounded by 103 so that, with as little as N = 10,
we get that ∆`,∆τ ≤ 4 · 10−5. Hence

τ + ∆τ + ∆` ≤ 1.008 · 10−3 ≤ `.

When points are too close to the solution (4, 6), this technique cannot
work so we rather consider the Hessian

H4 = ∂ααG4∂ββG4 − (∂αβG4)2

and show that it is strictly positive in a convex neighborhood O of it. Within
each small cell Q in which we subdivide O we expand H4 to the zero-th order,
namely we use the fact that, for all (α, β) ∈ Q, there is a (ξ, η) ∈ Q (in fact,
on the segment joining (α0, β0) to (α, β)) such that

H4(α, β) = H4(α0, β0) + ∂αH4(ξ, η) · (ξ − α0) + ∂βH4(ξ, η) · (η − β0).

We get a lower bound for H4 in Q by maximizing the Taylor series error
the same way we did above. Let us denote by H0, A and B the maxima of,
respectively, H4(α0, β0), ∂αH4 and ∂βH4. Similarly to above, our calculations
tell us that

min
Q
H4 > H0 − δH0 −∆Ho − δ∆Ho

− τ − δτ −∆τ − δ∆τ ,

where
∆H0 = ∆∂ααG4

·max
Q
|∂ββG4|+ max

Q
|∂ααG4| ·∆∂ββG4

+

+2∆∂αβG4
max
Q
|∂αβG4|

and
∆τ = ∆∂αααG4

·max
Q
|∂ββG4|+ max

Q
|∂αααG4| ·∆∂ββG4

+

+∆∂ααG4
max
Q
|∂αββG4|+ max

Q
|∂ααG4|∆∂αββG4

+ ...,

so we want to make sure that H0 is larger than the sum of all error terms. It
turns out that, within O = [3.5, 5]× [5, 7], H0 is always not smaller than 10−5

so that, once again, the floating-point error terms can be disregarded. This
time, though, we need a higher precision on the integrals since our bounds for
the norms of the second and third derivatives of G4 are significantly higher
than those of G4 itself and its first derivatives. It is enough to take N = 15,
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so that the error on G4 and its derivatives up to the third order are bound
from above by 3.1 · 10−4.

Let us consider the concrete case of the rectangle Q centered at the point
(4.99, 5). Our calculations show that H0 = 6.29... · 10−5, τ = 5.61... · 10−5,
∆H0 = 1.9... · 10−6 and ∆τ = 1.3... · 10−6, so that minQH4 > 0 in Q. Inci-
dentally, this is the cell with the smallest relative minimum value of H4 with
this subdivision.
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