Skip to main content
\(\newcommand{\bR}{{\Bbb R}} \newcommand{\bC}{{\Bbb C}} \newcommand{\bI}{{\Bbb I}} \newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand\bydef{\stackrel{{def}}{=}} \DeclareMathOperator{\sgn}{sign} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Numerical Analysis:
a very compact compendium
Roberto De Leo
Contents
Index
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Preface
1
Numbers
How much information is contained in a number?
Floating-point Systems
Double precision
Octave/MATLAB recap
Exercises
References and Suggested Readings
2
What is Numerical Analysis
What is Numerical Analysis
Case study 1: evaluating the derivative of a function
Case study 2: evaluating the value of a function
Octave/MATLAB recap
Exercises
References and Suggested Readings
3
Root-finding methods
Bisection Method
Functions Iterations
Newton's method
Secant method
The
fzero
MATLAB command
Octave/MATLAB recap
Exercises
References and Suggested Readings
4
Linear systems
Linear spaces and linear maps
The LU Method
Pivoting
Solving a system
Error analysis
Iterative Methods
Example: A Boundary Value Problem
The MATLAB/Octave backslash operator
Octave/MATLAB recap
Exercises
References and Suggested Readings
5
Eigenvalues
Eigenvalues and Eigenvectors
The Power method
The QR decomposition
The LR and QR methods
Octave/MATLAB recap
Exercises
References and Suggested Readings
6
Optimization
What does it mean optimizing a function
Iterative methods
Gradient methods
Steepest Descent
Newton's Method
Conjugate Gradient
MATLAB/Octave function fminsearch
Exercises
References and Suggested Readings
7
Interpolation
Motivation
Polynomial interpolation
How good can a polynomial approximation be?
Octave/MATLAB recap
Exercises
References and Suggested Readings
8
Numerical Integration
Riemann sums
Newton-Cotes Quadrature
Midpoint rule (\(n=0\))
Trapezoidal rule (\(n=1\))
Simpson rule (\(n=2\))
Exercises
References and Suggested Readings
9
ODEs
Initial Value Problems
Numerical Methods
Explicit Euler Method
Heun Method
RK4 Method
Stiff ODEs
Implicit Euler method
Boundary Value Problems
Shooting Method
Finite Differences Method
MATLAB's BVP method
Exercises
References and Suggested Readings
10
PDEs
Exercises
References and Suggested Readings
Back Matter
A
Notation
B
GNU Free Documentation License
References and Suggested Readings
Index
Colophon
Authored in PreTeXt
Numerical Analysis:
a very compact compendium
Roberto De Leo
Department of Mathematics
Howard University
roberto.deleo@howard.edu
November 8, 2022
Preface