Quasiperiodic Topology
Keywords: Quasiperiodicity , Closed 1-forms , Foliations , Poisson Dynamics , Multivalued functions , Multivalued Morse Theory , Low-dimensional Topology
The study of quasiperiodic functions in more than one variable was started by S.P. Novikov in connection with his works on Solitons theory and on multivalued Morse theory.
Definition.
Let $\pi_n:\mathbb R^n\to\mathbb T^n$ be the canonical projection of the Euclidean $n$-space into the $n$-Torus.
We say that a function $$f:\mathbb R^k\to\mathbb R$$ is quasiperiodic with $n$ quasiperiods
if there are ia a map $F:\mathbb T^n\to\mathbb R$ and an affine embedding $\psi:\mathbb R^k\to\mathbb R^n$ such that
$$
f = F\circ\pi_n\circ\psi
$$
and there is no smaller $n$ for which this can be done.
Roughly speaking, a quasiperiodic map in $k$ variables with $n$ quasiperiods is obtained by setting $n-k$ affine relations
among the $n$ variables of a $n$-periodic function.
Example 1
The function $f(x) = \cos(2\pi x)+\cos(\sqrt{2}\,2\pi x)$ is a quasiperiodic function in 1 variable
with 2 quasiperiods. In this case $F(x,y)=\cos(2\pi x)+\cos(2\pi y)$ and $\psi(x)=(x,\sqrt{2}\,x)$.
Example 2
The function $f(x,y) = \cos(2\pi x)+\cos(2\pi y)+\cos(2\pi(\sqrt{2}\, x+\sqrt{3}\, x-1))$ is a quasiperiodic function
in 2 variables with 3 quasiperiodis. In this case $F(x,y,z)=\cos(2\pi x)+\cos(2\pi y)+\cos(2\pi z)$
and $\psi(x,y)=(x,y,\sqrt{2}\, x+\sqrt{3}\, x-1)$.
One of the main problems of this field is: study the topology of the level sets of a quasiperiodic function.
So far, I have been studying the simplest non-trivial case: level sets of quasiperiodic functions in 2 variables with 3 quasiperiods.
This is equivalent to studying the topology of plnar sections of 3ply periodic surfaces. See the Gallery for a list of
most cases studied numerically so far.
For more results and examples, see
- R. De Leo, Existence and measure of ergodic leaves in Novikov's problem on the semiclassical motion of an electron, Russian Math Surveys, 56(6), 166-168, 1999, arXiv:math-ph/0005031
- R. De Leo, Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field, SIAM J. on App. Dyn. Sys., 2(4), 517-545, 2003, arXiv:math-ph/0006023
- R. De Leo, Characterization of ergodic regime directions in the Novikov problem of a normal metal in a strong magnetic field, Russian Math Surveys, 58(5), 1042-1043, 2003, arXiv:math/0207234v1
- R. De Leo, Topological effects in the magnetoresistance of Au and Ag, Physics Letters A, 332, 469-474, 2004, manuscript
- R. De Leo, Proof of a Dynnikov conjecture on the Novikov problem of plane sections of periodic surfaces, Russian Math Surveys, 60(3), 566-567, 2005, manuscript
- R. De Leo, First-principles generation of Stereographic Maps for high-field magnetoresistance in normal metals: an application to Au and Ag, Physica B, 362, 62-75, 2005, arXiv:cond-mat/0409383v1
- R. De Leo, Topology of plane sections of periodic polyhedra with an application to the Truncated Octahedron, Experimental Mathematics, 15(1), 109-124, 2006, arXiv:math/0502219v2
- R. De Leo and I.A. Dynnikov, Topology of plane sections of the infinite regular skew polyhedron {4,6|4}, Geometriae Dedicata, 138:1, 51-67, 2009, arXiv:0804.1668v1
- R. De Leo, A survey on quasiperiodic topology, Advanced Mathematical Methods in BioSciences and Applications, Eds. Berezovskaya and Toni, 2018.
- R. De Leo and A.Ya. Maltsev, Quasiperiodic dynamics and magnetoresistance in normal metals, Acta Applicandae Matematicae, 162:1, pp 47-61, 2019
- S.P. Novikov, R. De Leo, I.A. Dynnikov and A.Ya. Maltsev, Теория динамических систем и транспортные явления в нормальных металлах, Journal of Experimental and Theoretical Physics, 156:4, pp. 761-774, 2019 (English version)